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Abstract

Over the past decade, various studies have ad-
dressed how speakers solve the so-called ‘The
Paradigm Cell Filling Problem’ (PCFP) (Ack-
erman et al., 2009) across different languages.
The PCFP addresses a fundamental question
in morphological processing: how do speakers
accurately generate inflected forms of words
when presented with incomplete paradigms?
This problem is particularly salient when mod-
eling complex inflectional systems. We fo-
cus on Spanish verbal paradigms, where cer-
tain verbs follow an irregular L-shaped pattern,
where the first-person singular present indica-
tive stem matches the stem used throughout the
present subjunctive mood. We formulate the
problem as a morphological reinflection task.
Specifically, we investigate the role of input
frequency in the acquisition of regular versus
irregular L-shaped patterns in transformer mod-
els. By systematically manipulating the input
distributions and analyzing model behavior, we
reveal four key findings: 1) Models perform
better on L-shaped verbs compared to regular
verbs, especially in uneven frequency condi-
tions; 2) Robust primacy effects are observed,
but no consistent recency effects; 3) Memoriza-
tion becomes more prominent as the proportion
of L-shaped verbs increases; 4) There is a ten-
dency to regularize L-shaped verbs when their
consonant alternation pairs are rare or absent
in the training data.

1 Introduction

A common generation task in morphology is mor-
phological inflection, where a target form has
to be generated from its corresponding lemma
and feature tag, e.g., (lemma:decir, target
tag:<V;IND;PRS;1;SG>) 7→ digo. A central chal-
lenge in understanding how speakers handle mor-
phological inflection is the Paradigm Cell Filling
Problem (PCFP) (Ackerman et al., 2009), which
asks how speakers can reliably produce inflected

forms of words when they are presented with in-
complete paradigms.

To address the PCFP, encoder-decoder based
neural networks have been used to simulate the
learning and generation of inflected forms (Silfver-
berg and Hulden, 2018a; Wiemerslage et al., 2022).
Our study extends this line of research by applying
the PCFP to a morphomic pattern using encoder-
decoder transformers. The morphomic pattern, as
introduced by Spencer and Aronoff (1994), is a
morphological pattern that exists independently of
semantics or syntax. It is purely based on the form
and structure of words. A key characteristic of mor-
phomic patterns is their predictability within the
verbal paradigm. The verb forms that are part of
the pattern share morphological features, despite a
lack of apparent semantic or syntactic motivation
(Blevins, 2016; Maiden, 2018).

Maiden (2011, 2018, 2021) identified mor-
phomic patterns across Romance languages. We fo-
cus on Spanish for data availability reasons (Herce
and Allassonnière-Tang, 2024). To illustrate an ex-
ample, the Spanish verb forms “digo” (1st person
singular, indicative) and “digan” (3rd person plural,
subjunctive) of the verb decir ‘to say’ (see Table 1)
share the stem “dig-”. This shared morphological
feature is part of a morphomic pattern. However,
there is no obvious semantic or syntactic property
that links “digo” and “digan” while excluding “di-
cen” (3rd person plural, indicative) of the same
verb, which uses a different stem “dic-”.

Spanish exhibits several morphomic patterns,
namely L-, N-, P- and F-shaped patterns (Maiden,
2018; Herce and Allassonnière-Tang, 2024). Of
these, only the L-shaped pattern has been explored
for human learnability (Nevins et al., 2015; Cappel-
laro et al., 2024). We choose the L-shaped pattern
for our study because it allows us to assess the cog-
nitive plausibility of our neural network models.
The L-shaped pattern is characterized by the use
of a distinct stem form in the first person singu-
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lar present indicative and all cells of the present
subjunctive mood. For example, the irregular verb
decir exhibits the L-shaped morphome pattern, as
shown in Table 1.

‘to say’ Indicative Subjunctive
Orthographic IPA Orthographic IPA

1SG digo d"igo diga d"iga
2SG dices d"ises digas d"igas
3SG dice d"ise diga d"iga
1PL decimos des"imos digamos dig"amos
2PL decís des"is digáis dig"ajs
3PL dicen d"isen digan d"igan

Table 1: A Spanish example of the Romance L-pattern,
verb decir ’to say’. L-shaped pattern cells are shaded.

Spanish L-shaped verbs exhibit an interesting
distribution in the lexicon: they are found in rela-
tively few word types but demonstrate high token
frequency, which is the frequency of occurrence of
individual word forms (Maiden, 2011). The role
of type frequency, which refers to the number of
different words that follow a particular morpholog-
ical pattern in morphological productivity has been
well established in the linguistic literature (Bybee,
1995; Pierrehumbert, 2001; Bybee, 2003; Albright
and Hayes, 2003; Baer-Henney and van de Vijver,
2012; del Prado Martın et al., 2004). These studies
show that patterns with higher type frequency are
more likely to be extended to novel forms, suggest-
ing a strong correlation between type frequency
and productivity. However, previous studies on
L-shaped verbs challenge this established relation-
ship. Nevins et al. (2015) and Cappellaro et al.
(2024) find conflicting evidence on productivity of
morphomes in human studies. This highlights the
need for a computational approach that can system-
atically explore the factors influencing morphome
productivity. Computational modeling allows us to
manipulate type frequency in ways that would be
challenging in human studies, enabling a more con-
trolled investigation of its effects on morphomic
pattern learnability and productivity.

In our study, we investigate the impact of type
frequency on the learnability of morphomic pat-
terns, specifically the L-shaped pattern, by imple-
menting a morphological reinflection task framed
as a PCFP using transformer models.

The morphological reinflection task aligns with
the morphological framework of abstraction based
on data directly available to speakers (i.e., inflec-
tion forms) (Blevins, 2006; Boyé and Schalchli,
2019), providing a realistic setting. We imple-

ment a multi-source setup of the morphological
reinflection task (Kann et al., 2017), which uses
multiple source form-tag pairs instead of one form-
tag pair. The task here is to generate an in-
flected form from two source form-tag pairs and
the target feature tag to predict the target inflected
form, e.g., (source form 1:digo, source tag
1:<V;IND;PRS;1;SG>, source form 2:diga,
source tag 2:<V;SBJV;PRS;1;SG>, target
tag:<V;SBJV;PRS;2;SG>) 7→ digas. The choice
of two-source setup is motivated by two key con-
siderations: 1) identifying L-shaped verbs requires
knowledge of at least two paradigm cells (one
cell within the L-shaped pattern, one cell outside;
see Table 1), and 2) previous research shows that
two-source form-tag pairs are sufficient for achiev-
ing high accuracy in paradigm completion, with
no gains from additional sources (Silfverberg and
Hulden, 2018b; Liu and Hulden, 2020).

The reinflection task is particularly challeng-
ing due to the variability of the starting point (the
source), which can be any other inflected form of
the same lemma. This variability makes the task
more cognitively plausible, reflecting the data spar-
sity encountered by human speakers, who never
encounter all of the inflected forms of their lan-
guage (Blevins et al., 2017).

The main aims of the study are: 1) To model
the learning of the L-shaped morphome in Spanish
using transformers for morphological reinflection;
2) To analyze the models’ performance across vary-
ing input frequency distributions of regular and
L-shaped verbs; 3) To conduct post-hoc analyses
investigating: a) the impact of paradigm cell combi-
nations on L-shaped learning, b) models’ ability to
memorize and generalize morphomic patterns, and
c) sensitivity to the input frequency of consonant
alternations.

We publish the dataset and code used in
our study at https://github.com/hhuslamlab/
modeling_spanish_acl

2 Related Work

Silfverberg and Hulden (2018a) introduced the
encoder-decoder approach to PCFP by formulating
the problem as a morphological reinflection task.
The following paragraphs will provide an overview
of the methodologies used to address this problem
over time.

Initial non-neural models focused on learning
string edit rules from data using sequence-to-
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sequence models (Albright and Hayes, 2003; Dur-
rett and DeNero, 2013) and string transductions
(Nicolai et al., 2015). Subsequently, Ahlberg et al.
(2015) proposed a finite state construction and used
a classifier to select the correct inflection. Simi-
larly, Alegria and Etxeberria (2016) used a single
Weighted Finite-State Transducer (WFST) (Novak
et al., 2012) to model the mapping between lem-
mas and inflected forms. Taji et al. (2016) devel-
oped a morphological analyzer that learns from the
training data and applies the learned patterns to re-
inflect test data. Nicolai et al. (2016) implemented
a discriminative transducer based on Jiampojamarn
et al. (2008) that searches for a series of character
transformation rules to perform the inflection. Liu
and Mao (2016) and Cotterell et al. (2017) applied
affixing rules to generate inflected forms, which
involved appending or altering affixes (prefixes,
suffixes, infixes, etc.) according to morphologi-
cal rules. More recently, Sherbakov and Vylomova
(2022) used a non-neural system to predict inflected
forms based on string patterns observed in train-
ing samples. Kwak et al. (2023) introduced an
improved affixing system that incorporated addi-
tional linguistic information to better capture the
complexities in morphological generation. These
methods, while interpretable, often struggled with
irregular forms and low-resource scenarios.

The introduction of neural-based sequence-to-
sequence models marked a significant milestone
in modeling morphological reinflection by learn-
ing complex morphological patterns without ex-
plicit rules (Kann and Schütze, 2016; Malouf, 2016;
Faruqui et al., 2016). Subsequent studies built
upon this approach, including the hard monotonic
attention for strict alignment between input and
output sequences (Wu and Cotterell, 2019), multi-
source setups with bi-directional LSTMs (Kann
and Schütze, 2016), character-level LSTMs (Sil-
fverberg and Hulden, 2018a), and encoder-decoder
based transformers (Wu et al., 2021). Recent de-
velopments include phonologically-aware embed-
dings (Guriel et al., 2023) to capture both ortho-
graphic and phonetic information of words. Other
approaches include treating morphological reinflec-
tion as a classification problem (Shcherbakov and
Vylomova, 2023), and the application of imitation
learning (Makarov and Clematide, 2018). Lastly,
Large Language Models have also been explored
for morphological reinflection, including analyz-
ing ChatGPT’s capability in morphological genera-
tion across multiple languages (Weissweiler et al.,

2023).
Our study implements a model that closely fol-

lows the formulation of the encoder-decoder trans-
former for character-level transduction proposed by
Wu et al. (2021), due to its high performance on in-
flectional tasks across various languages (Cotterell
et al., 2017, 2018; Vylomova et al., 2020).

3 Methodology

3.1 Model Architecture
We implement the model using fairseq (Ott et al.,
2019), a PyTorch-based sequence modeling toolkit.
The model consists of four layers with four atten-
tion heads, an embedding size of 256, and a hidden
layer size of 1,024. We use the Adam Optimizer
(Kingma and Ba, 2017) with an initial learning
rate of 0.001, 0.1 label smoothing, and a 1.0 gra-
dient clip threshold. The model is trained for a
maximum of 10,000 optimizer updates, with check-
points saved every ten epochs. Beam search is used
at decoding time with a beam width of five.

Hyperparameter tuning Hyperparameter tun-
ing, particularly the batch size, plays a crucial role
in seq2seq tasks (Wu et al., 2021; Popel and Bo-
jar, 2018). We use varying batch sizes, from 32 to
3,600, and observed that the impact of batch size
on the accuracy of predicting L-shaped verbs is
not uniform across frequency conditions (see Fig-
ure 7 in Appendix). We adopt a batch size of 400
following established practices in morphological
tasks (Vylomova et al., 2020; Pimentel et al., 2021;
Kodner and Khalifa, 2022).

3.2 Dataset construction
We use the Spanish verbal morphology dataset
from the Universal Morphology (UniMorph)
project1. The entries in the dataset are coded in
the Unimorph scheme (Sylak-Glassman, 2016).
For example, the label V;IND;PRS;1;SG , corre-
sponding to a first person singular present tense
verb form, such as digo, is decomposed into
a set of morphosyntactic features: [POS=VERB,
mood=INDICATIVE, tense=PRESENT, person=1,
number=SINGULAR]. The data representation in
UniMorph follows the structure: (lemma, form,
feature). We transcribe the lemma and in-
flected form in the International Phonetic Al-
phabet (IPA) to capture phonological representa-
tions, resulting in an entry such as (desiR, digo,
V;IND;PRS;1;SG).

1https://unimorph.github.io/
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For the reinflection task, we convert these en-
tries to two source form-tag pairs: the target feature
tag and the target inflected form. For example, if
the first source form is digo (1st person singular,
indicative), the second source form is diga (1st
person singular, subjunctive) and the target form
is digas (2nd person singular, subjunctive), then
the above entry is converted to a so-called triple
entry such as (digo, V;IND;PRS;1;SG, diga,
V;SBJV;PRS;1;SG, V;SBJV;PRS;2;SG, digas).
The dataset contains 5,460 distinct lemmas, of
which 300 are L-shaped lemmas, and 4,860 are NL-
shaped lemmas, which results in 382,956 triples.

To investigate the role of input frequency, we im-
plement three experimental conditions, each char-
acterized by a different ratio of L-shaped to regular
(henceforth, NL-shaped) verbs in the training set
under a) a naturalistic frequency distribution with
10% L-shaped verbs and 90% NL-shaped verbs
(henceforth, 10%L-90%NL condition) to reflect a
realistic frequency distribution of the Spanish lan-
guage2, and two counterfactual conditions with an
increase in the frequency of L-shaped verbs, and a
decrease in the frequency of the NL-shaped verbs:
b) 50% L-shaped verbs and 50% NL-shaped verbs
(henceforth, 50%L-50%NL condition) and c) 90%
L-shaped verbs and 10% NL-shaped verbs (hence-
forth, 90%L-10%NL condition). The relative fre-
quency of these counterfactual conditions is created
to allow a direct comparison of the learnability of
L-shaped verbs relative to NL-shaped verbs.

Data representation The input sequence for our
model is structured as follows:

d i g a # <V;SBJV;PRS;1;SG> # d i g a s #
<V;SBJV;PRS;2;SG> # <V;IND;PRS;1;SG>

The expected target output is the space-separated
characters forming the target word, d i g o. We re-
fer to this input-output sequence as a combination.

Data sampling To isolate the effect of relative
type frequency, we used an identical set of lemmas
across all three conditions. As mentioned above,
only 300 L-shaped lemmas are found in the Uni-
Morph dataset, therefore, the maximum number
of L-shaped lemmas in the 90%L-10%NL condi-
tion is capped to 300, representing 90%L. There-
fore, the training set contains 333 lemmas, and we
need to sample 33 NL-shaped verbs (amongst the
4,860 NL-shaped verbs) to represent 10% of NL.
Similarly, we sample for the other two conditions

2This is similar to the relative frequencies of L and NL-
shaped verbs in the dataset which is 6% L and 94% NL.

(50%L-50%NL and 10%L-90%NL).

We implement a rigorous data splitting strategy
to mitigate the risk of artificially inflated model
performance due to lemma overlap between train-
ing and testing data (Goldman et al., 2022; Kodner
et al., 2023). At the lemma level, we ensure no
lemma overlap between the training, development,
and test sets. We apply a 70-10-20 split ratio to
the lemmas, with 70% (training), 10% (develop-
ment), and 20% (testing). At the combination level,
given that each lemma produces approximately 600
combinations and there are 333 lemmas in each
condition (resulting in 199,800 combinations), we
partition the data into four bins to manage computa-
tional complexity and maintain cognitive plausibil-
ity. Each bin preserves the condition-specific dis-
tribution of L and NL-shaped lemmas (e.g., 10%L-
90%NL). Finally, at the run level, we implement
three randomized runs for each combination bin to
account for potential order effects during training.
Specifically, we generate three distinct training sets
for each of the four combination bins created at the
combination level.

The training data comprises full inflection tables,
with which the model inflects unseen lemmas. For
the development and test data, every two-slot com-
bination of given slots is used as input to predict the
target form corresponding to the target Morphosyn-
tactic description (MSD) tag. Across all frequency
conditions, our sampling procedure yields a train-
ing set of 39,435 combinations, a development set
of 4,455 combinations, and a test set of 44,220
combinations. To enhance the robustness of our
evaluation, we maintain a constant test set for each
combination bin. In total, we generate 12 such
datasets for each frequency condition. See Figure 1
for an illustration of our data sampling procedure.

Combi. bin 1 (25%) Combi. bin 2 (25%) Combi. bin 3 (25%) Combi. bin 4 (25%)

R1.2R1.1

Condition
(e.g., 10%L-90%NL)

Combination level splitting

R1.3 R2.1 R2.2 R2.3 R3.1 R3.2 R3.3 R4.1 R4.2 R4.3

Figure 1: Flowchart showing the process for creating
the dataset for each condition at the combination level,
and run level.
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4 Analysis and Results

We begin by presenting the sequence accuracies of
the models across the three frequency conditions.
Subsequently, we conduct a series of post-hoc anal-
yses to understand the factors influencing learning
of morphomic patterns under varying frequency
conditions. In Section 4.1, we examine potential
position biases in models. Section 4.2 investigates
the models’ sensitivity to memorization versus gen-
eralization effects (Hupkes et al., 2023). Lastly, in
Section 4.3, we examine the models’ behavior for
specific phonological alternations.

We analyze the models’ performance across
varying input frequency distributions of regular and
L-shaped verbs, addressing our research aim 2. We
use two evaluation metrics: sequence accuracy and
stem-only accuracy, as the errors can only occur
in the suffixes and the stem of the predicted form
(Kodner and Khalifa, 2022).

We first evaluate sequence accuracies (refer to
Figure 2) across frequency conditions. In the
10%L-90%NL condition, NL-shaped verbs have a
mean accuracy of 61.8%, which is 25.05% higher
than the 36.75% mean accuracy of L-shaped verbs.
Conversely, in the 90%L-10%NL condition, L-
shaped verbs have a mean accuracy of 88.75%,
outperforming NL-shaped verbs by 64.58%, which
have a mean accuracy of 24.17%. In the 50%L-
50%NL condition, L-shaped verbs have a mean
accuracy of 72.31%, while NL-shaped verbs have
a mean accuracy of 55.19%, with L-shaped verbs
performing 17.12% better.

Subsequently, we analyze stem accuracies to iso-
late the models’ performance on stem alternations
across the frequency conditions (Appendix A.1).
The results show a clear trend: the more frequent
verb type in each condition consistently has bet-
ter stem accuracy. In the 10%L-90%NL condi-
tion, NL-shaped verbs achieve a mean stem accu-
racy of 68.59%, which is 11.89% higher than the
56.7% mean stem accuracy of L-shaped verbs. In
the 50%L-50%NL condition, L-shaped verbs have
a mean stem accuracy of 77.24%, slightly better
than NL-shaped verbs at 70.25%, with a differ-
ence of 6.99%. In the 90%L-10%NL condition,
L-shaped verbs have a higher mean stem accuracy
of 89.51%, outperforming NL-shaped verbs which
have a mean stem accuracy of 31.09%, showing a
difference of 58.2%.

These results show a clear performance differ-
ence between the models based on the distribu-

tion of verb types in the training data. In the
10%L-90%NL condition, which most closely ap-
proximates the natural distribution in Spanish, the
models perform better on NL-shaped verbs than
on L-shaped verbs. However, we find a learning
advantage for L-shaped verbs in other conditions,
suggesting the models might be learning specific
characteristics of L-shaped verbs. To further un-
derstand the factors influencing the acquisition of
morphomic patterns in the models’, we conduct a
series of post-hoc analyses.

10%L-90%NL 50%L-50%NL 90%L-10%NL
0

20

40

60

80

Conditions

A
cc

ur
ac

y
(in

%
)

NL-shaped
L-shaped

Figure 2: Mean and 95% confidence intervals of overall
sequence accuracies for L-shaped and NL-shaped verbs
across frequency conditions (10%L-90%NL, 50%L-
50%NL and 90%L-10%NL conditions).

4.1 Cell combinations

We examine the influence of paradigm cell com-
binations on the acquisition of L-shaped verbs, in
line with our research aim 3a. Our analysis re-
veal robust primacy effects but recency effects are
inconsistent.

Transformers are prone to position bias, dispro-
portionately focusing on specific token positions
due to architectural constraints (Dufter et al., 2022).
We examine position bias in transformer through
two psycholinguistically grounded metrics: pri-
macy and recency effects. The primacy effect is a
cognitive bias in which humans tend to remember
and be influenced by the first pieces of informa-
tion they are exposed to more than information
presented later on (Asch, 1946). The recency effect
refers to the tendency for humans to more easily
recall items at the end of a list compared to items in
the middle of the list (Marshall and Werder, 1972).

Each cell combination consists of three parts:
the source 1 cell , the source 2 cell, and the target
cell. We classify these cells based on their position
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relative to the L-shaped morphomic pattern: cells
within the L-shaped morphomic pattern are labeled
as In, while those outside are labeled as Out. For
example, a combination with source 1 as digo (In),
source 2 as dices (Out), and target form as diga (In)
is categorized as In-Out-In.

10%L-90%NL 50%L-50%NL 90%L-10%NL
Cell combi. L (%) NL (%) L/NL L (%) NL (%) L/NL L (%) NL (%) L/NL
In-In-In 45.61 60.64 0.7 82.56 53.75 1.63 90.02 24.14 6.85

In-Out-Out 4.44 34.84 0.08 57.18 34.58 1.78 91.53 40.66 2.86
In-In-Out 27.17 62.57 0.4 63.94 54.19 1.15 87.66 22.85 5.07
In-Out-In 40.26 45.4 0.9 80.47 45.83 1.92 91.98 48.72 6.07
Out-In-In 40.62 64.77 0.57 76.17 57.19 1.41 89.54 16.93 15.23
Out-In-Out 37.68 66.68 0.54 70.49 59.58 1.18 87.43 16.53 6.58
Out-Out-In 30.39 59.23 0.45 59.8 52.11 1.08 87.06 22.42 7.44
Out-Out-Out 25.56 58.87 0.38 69.77 56.19 1.23 86.7 18.4 6.19

Table 2: Cell combination accuracies for 10%L-90%NL
(left), 50%L-50%NL (middle), and 90%L-10%NL
(right). The mean accuracies in percentage are calcu-
lated for separately by verb types (L denotes L-shaped
verbs and NL denotes NL-shaped verbs) and by cell
combinations (e.g., In-In-In). L/NL denotes the ratio
of the mean accuracies of the L-shaped vs NL-shaped
verbs. For a visualization of this table, see Appendix
A.2.

To investigate potential primacy and recency ef-
fects, we compare pairs of cell combinations where
the target cell aligns with either source 1 (primacy)
or source 2 (recency) (Table 2). For example, In-
Out-In allows for a primacy effect, while Out-In-In
allows for a recency effect. We evaluate these ef-
fects by identifying minimally different pairs of
cell combinations, such as comparing In-Out-In
(primacy) to Out-Out-In to assess the presence of
a primacy effect. The results show a consistent
primacy effect for L-shaped verbs in the 10%L-
90%NL and 50%L-50%NL conditions, and this ef-
fect is weaker in the 90%L-10%NL condition. For
instance, in the 10%L-90%NL condition, the ac-
curacy of the In-Out-In cell combination (40.26%)
exceeds that of Out-Out-In (30.39%), indicating
an apparent primacy effect. However, we do not
detect a consistent recency effect across conditions.

We also find that ‘In’ targets are predicted more
accurately than ‘Out’ targets for L-shaped verbs
across all frequency conditions, suggesting a poten-
tial bias towards these ‘In’ cells.

4.2 Memorization and Generalization

We examine the models’ ability to memorize and
generalize morphomic patterns, focusing specifi-
cally on stem-final consonant triples under varying
frequency conditions, addressing our research aim
3b. Our analysis shows that in most frequency
conditions, the models show higher accuracy for

memorized stem-final consonants compared to gen-
eralized ones, with the exception of the balanced
50%L-50%NL condition. We also find that mem-
orization improves as the frequency of L-shaped
verbs increases.

In order to generate accurate predictions, the
transformer model must balance between mem-
orization and generalization (Arpit et al., 2017;
Zhang et al., 2021). This balance is particularly
crucial when modeling L-shaped morphomes as
it involves irregular stem alternations that do not
follow straightforward phonological or semantic
rules. Thereby, the model must rely on memoriza-
tion to reproduce the specific alternations of seen
verbs. At the same time, it must be able to extend
to novel alternations. We assess how varying the
distribution of L-shaped verbs in the training data
affects the models’ ability to memorize and gen-
eralize stem-final consonant triples. We focus on
triples formed by the stem-final consonants of the
first source form, second source form, and target
form. For example, given the forms (tRad"usen
(source 1), tRadusk"amos (source 2), tRad"uskan
(target)), the stem-final consonant triple consists
of s, sk, and sk. We quantify memorization as
the models’ ability in reproducing seen stem-final
consonant triples, and generalization as their abil-
ity to correctly predict unseen triples. We treat
memorization and generalization as two distinct
knowledge states.

Using mixed-effects logistic regression, we ex-
amine how frequency conditions and knowledge
states influence prediction accuracy. Logistic
mixed-effects models are implemented using the
glmer function from the lme4 package (Bates
et al., 2015) in R. Our model predicts accuracy
(prediction_status: correct vs. incorrect) with
two fixed effects - frequency conditions and knowl-
edge state conditions - and two random intercepts:
triples and model (among 12 models). We im-
plement the following model structure:

glmer(prediction_status ∼
knowledge_state * frequency_condition +

(1|triples) + (1|model), data=df,
family="binomial")

To interpret the results of our fitted model, we
use the emmeans package (Lenth, 2024) to calculate
estimated marginal means (EMMs). This way, we
can estimate the predicted probabilities of correct
predictions for different combinations of knowl-
edge states and frequency conditions. In the condi-
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tion where the frequency distribution of verb types
is equal (50%L-50%NL condition), we observe
a slight advantage for generalization over memo-
rization, with predicted probabilities for general-
ized stem-final consonant pairs being 0.113 higher
than for memorized stem-final consonant pairs.
However, in the 10%L-90%NL condition, mem-
orized stem-final consonant pairs show a 0.036
higher predicted probability. In contrast, in the
90%L-10%NL condition, this advantage increases
to 0.304 (see Appendix A.3 for detailed results).

In terms of memorization, we find a positive
correlation between the frequency of L-shaped
verbs in the training data and the probability of
correct predictions. The highest probability of cor-
rect predictions occurs in the 90%L-10%NL condi-
tion (0.754), followed by 50%L-50%NL condition
(0.627) and least in the 10%L-90%NL condition
(0.252). This suggests that increased exposure to L-
shaped verbs enhances the model’s ability to mem-
orize stem-final consonant triples.

For generalization, the highest probability of
correct predictions occurs in the balanced 50%L-
50%NL condition (0.74). Interestingly, the prob-
abilities are lower in the skewed conditions, with
the 10%L-90%NL condition having a probability
of 0.216 and the 90%L-10%NL condition having a
probability of 0.450.

4.3 Consonant pair analysis
We investigate the models’ performance on spe-
cific stem-final consonant pairs of L-shaped verbs,
focusing on the alternating pairs comprising the
stem-final consonant of the forms in the ‘Out’ cells
and that of the ‘In’ cells within the paradigm (as
discussed in section 4.1), addressing our aim 3c.
Our analysis shows that the models are sensitive to
the input frequency of consonant alternations, indi-
cating that they have not fully acquired the abstract
morphological patterns.

For example, for the lemma desiR, the consonant
pair is [s]-[g], where [s] is the stem-final consonant
of the out cells and [g] is found in forms sharing the
L-shaped pattern. The most frequent pairs in the
dataset are [s]-[sk], with 141 occurrences, followed
by [n]-[ng] and [ç]-[x], with 53 and 25 occurrences,
respectively. This skewed distribution naturally re-
sults in varying ratios for each experimental run
due to our data sampling process (as shown in Sec-
tion 3).

We examine the models’ sensitivity to consonant
pair frequencies across the frequency conditions

and assess how varying proportions of L-shaped in
the input affect the learning of consonant alterna-
tions. Across all three runs of the 10%L-90%NL
condition, [s]-[sk] appears frequently in both test
(3-4 times) and training sets (8-13 times). Some
pairs like [lç]-[lx] and [s]-[g] appear in test sets but
are rare or absent in training, which might pose
difficulty for models in applying patterns to novel
combinations. In the 50%L-50%NL condition, [s]-
[sk] remains the most frequent pair, appearing 14-
22 times in test sets and 15-23 times in training sets.
Other pairs like [n]-[ng] and [s]-[g] also appear but
less frequently. In the 90%L-10%NL condition,
[s]-[sk] appears even more frequently (22-32 times
in test sets and 97-104 times in training), while
other pairs remain less common. Details are given
in Appendix A.4. A confusion matrix in Appendix
A.5 summarizes the top 5 most erroneous conso-
nant pairs for L-shaped verbs.

The main frequency effect can still be found
consistently across these consonant pairs. In the
10%L-90%NL condition, [s]-[sk] achieves 68.6%
accuracy, while [s]-[g] and [n]-[ng] reach 26.2%
and 77.4%, respectively. Accuracy increases in
the 50%L-50%NL condition to 89.8%, 60.6%, and
83.6%, respectively. In the 90%L-10%NL condi-
tion, accuracies further improve to 93.3%, 92.6%,
and 91.4%. Looking beyond accuracies, we find
that the models still make systematic errors, of-
ten defaulting to more frequent lemma consonants
rather than altered ones (e.g., predicting [s]-[s] in-
stead of [s]-[sk]).

The models perform worse for less frequent or
unseen alternations (such as [s]-[g]) compared to
more frequent alternations ([s]-[sk]). This indicates
that the models have not fully acquired the abstract
morphological patterns. In these cases, models
tend to regularize L-shaped verbs in datasets, as er-
roneous predictions often result in non-alternating
pairs. These results suggests that the models are re-
lying heavily on frequency-based pattern matching
rather than acquiring true morphological compe-
tence.

5 Conclusion

In this paper, we examine the learning capabilities
of transformer models with respect to morphomic
pattern, specifically the L-shaped pattern in Span-
ish. We conduct a series of post-hoc analyses to
understand the factors influencing the learning of
morphomic patterns under varying frequency con-
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ditions.
Transformer models have shown remarkable

ability to learn irregular patterns in related language
tasks, such as English past tense inflection, Ger-
man noun plurals and Arabic noun plurals (Kodner
and Khalifa, 2022; Kakolu Ramarao et al., 2022).
However, morphomic patterns are complex linguis-
tic patterns that are hard to acquire (Nevins et al.,
2015). The models’ ability to capture morphomic
patterns was not guaranteed because these patterns
operate independently of semantics, syntax, and
phonology. In our study, the models’ performance
on L-shaped verbs, especially in conditions with
uneven frequency, indicates that transformers have
developed some level of competence in recognizing
and applying morphomic patterns from the training
data.

We first look at the learning strategies of the
transformer with respect to input ordering. We ob-
serve a clear primacy effect in models’ processing
of L-shaped verbs, suggesting that the models are
more influenced by the first source cell in mak-
ing predictions. We also observe that models have
higher accuracy in predicting target forms that are
part of L-shaped pattern compared to those out-
side the L-shaped pattern within a morphological
paradigm. This bias suggests that the models are
capturing some aspects of the overall paradigm
structure, particularly the distribution of irregular
forms within the L-shaped pattern.

In our investigation of models’ strategies for bal-
ancing memorization and generalization, we show
that the type frequency of L-shaped verbs impacts
the models’ ability to both memorize and general-
ize stem-final consonant alternations. For memo-
rization, we observe a positive correlation between
the frequency of L-shaped verbs in the training data
and the model’s ability to correctly reproduce seen
stem-final consonants. This suggests that increased
exposure to L-shaped verbs enhances the model’s
ability to retain and apply stem-final consonant al-
ternations. This finding aligns with studies which
show morphological patterns with higher type fre-
quency to be more productive (Bybee, 1995; Pier-
rehumbert, 2001; Baer-Henney and van de Vijver,
2012, inter alia). However, when it comes to gen-
eralization, we observe a non-linear relationship
between the frequency of L-shaped verbs in the
training data and the model’s ability to produce
unseen stem-final consonants. We find that gener-
alization performance peaks in the balanced con-
dition (50%L-50%NL), but decreases in skewed

conditions (90%L-10%NL and 10%L-90%NL con-
ditions). While increased exposure to L-shaped
verbs enhances memorization, it may not necessar-
ily lead to better generalization.

While the models demonstrate some ability to
learn and apply the L-shaped pattern, they exhibit
a clear preference for regular patterns when en-
countering unfamiliar consonant alternations. This
suggests that the models simply rely on frequency-
based pattern and have not fully acquired abstract
morphological rules.

Furthermore, the models’ superior performance
on regular verbs in the 10%L-90%NL condition
(a close approximation to natural language dis-
tribution) validates the results from Nevins et al.
(2015)’s study. In their study with Spanish speak-
ers on a wug-test-like inflection task, 71.9% of the
participants showed a preference to NL-shaped re-
sponses over L-shaped responses. This similarity in
behavior between transformers and human partici-
pants motivates a deeper comparison. In the future,
we aim to compare our model’s performance with
the experimental results from human speakers, such
as those from Nevins et al. (2015) and Cappellaro
et al. (2024). Through this comparison, we could
assess how effectively our computational approach
captures the linguistic and cognitive phenomena
observed in human morphological processing in
the context of morphomic patterns.

Limitations
We acknowledge several limitations in our current
study that could be addressed in future research.
First, we did not explore alternative computational
approaches. For example, Recurrent Neural Net-
works (RNNs) have been used to model German
plurals (Dankers et al., 2021), and Linear Discrimi-
native Learning models have been used to model
Korean verbs (Jeong et al., 2023), along with other
approaches outlined in Section 2.

Second, we did not perform probing analyses to
investigate the internal representations of the model
but instead relied solely on post-hoc analyses.

Third, to rigorously evaluate the model’s gen-
eralization capabilities, it would be beneficial to
use test data that is entirely unattested in the train-
ing set. This means that both the lemmas (word
stems) and the feature tags (e.g., tense, number, per-
son) should be novel to the model. This approach,
similar to Kodner et al. (2023), would provide a
more robust assessment of the model’s ability to
generalize morphomic patterns to unseen data.
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Finally, we did not account for the morpholog-
ical complexity of the verbs. Some verbs have
prefixes, and some do not, therefore, some lemmas
share the same stems. On the one hand, this ren-
ders the lemma-level train-development-test split-
ting procedure less effective and might artificially
inflate the accuracies of our models. On the other
hand, this is arguably ecologically more valid as
human learners do get exposed to both morpholog-
ically complex and simple verbs.
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A Appendices

A.1 Accuracies
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Figure 3: Mean and 95% confidence intervals of stem
sequence accuracies for L-shaped and NL-shaped verbs
across frequency conditions. Gray: NL-shaped, Orange:
L-shaped.

A.2 Cell combinations
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Figure 4: Cell combination accuracies for 10L-90NL
condition. Gray: NL-shaped, Orange: L-shaped.
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Figure 5: Cell combination accuracies for 50L-50NL
condition. Gray: NL-shaped, Orange: L-shaped.
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Figure 6: Cell combination accuracies for 90L-10NL
condition. Gray: NL-shaped, Orange: L-shaped.

A.3 Memorization and Generalization task

Knowledge state Condition Prob. SE asymp.LCL asymp.UCL
Generalization 10%L-90%NL 0.216 0.0150 0.188 0.247
Memorization 10%L-90%NL 0.252 0.0183 0.218 0.290
Generalization 50%L-50%NL 0.740 0.0260 0.686 0.788
Memorization 50%L-50%NL 0.627 0.0351 0.556 0.693
Generalization 90%L-10%NL 0.450 0.0353 0.382 0.520
Memorization 90%L-10%NL 0.754 0.0301 0.690 0.808

Table 3: Estimated marginal means for knowledge state
and frequency condition combinations with asymptotic
95% confidence intervals. ‘Prob.’ represents the es-
timated marginal means, ‘SE’ is the standard error,
‘asymp.LCL’ is the asymptotic lower confidence limit,
and ‘asymp.UCL’ is the asymptotic upper confidence
limit.

Memorization
Contrast odds.ratio SE z.ratio p.value
10%L-90%NL / 50%L-50%NL 0.2009 0.02336 -13.806 <.0001
10%L-90%NL / 90%L-10%NL 0.1100 0.01394 -17.420 <.0001
50%L-50%NL / 90%L-10%NL 0.5476 0.08795 -3.749 0.0005
Generalization
Contrast odds.ratio SE z.ratio p.value
10%L-90%NL / 50%L-50%NL 0.0969 0.00949 -23.833 <.0001
10%L-90%NL / 90%L-10%NL 0.3369 0.03802 -9.642 <.0001
50%L-50%NL / 90%L-10%NL 3.4750 0.47015 9.207 <.0001

Table 4: Pairwise comparisons of frequency condition
levels for each knowledge state. ‘odds.ratio’ represents
the estimated odds ratio, ‘SE’ is the standard error,
‘z.ratio’ is the z-statistic, and ‘p.value’ is the p-value.
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A.4 Consonant-pair analysis

Stem-final consonants No. of occurrences
[s]-[sk] 141
[n]-[ng] 53
[ç]-[x] 25
[s]-[g] 15
[ ]-[jg] 14
[Rç]-[Rx] 10
[nç]-[nx] 10
[l]-[lg] 4
[lç]-[lx] 4
[s]-[sg] 2
[b]-[p] 1

Table 5: Number of alternating stem final-consonant
pairs of all the L-shaped verbs. ‘[ ]’ represents the
absence of stem-final consonant.

Consonant-pairs Freq. in Test Freq. in Train

R
un

1

[s]-[sk] 3 8
[n]-[ng] 2 4
[nç]-[nx] 1 1
[lç]-[lx] 1 0

R
un

2

[s]-[sk] 3 13
[n]-[ng] 1 2
[nç]-[nx] 1 1

[s]-[g] 1 0

R
un

3 [s]-[sk] 4 10
[s]-[g] 2 1

Table 6: Frequency of stem-final consonants in train and
test in 10%L-90%NL condition.

Consonant-pairs Freq. in Test Freq. in Train

R
un

1

[s]-[sk] 19 20
[n]-[ng] 3 10
[nç]-[nx] 2 0

[s]-[g] 3 2
[l]-[lg] 1 0
[ ]-[jg] 3 0
[lç]-[lx] 1 1

R
un

2

[s]-[sk] 22 15
[ç]-[x] 2 5

[n]-[ng] 3 7
[nç]-[nx] 1 1
[lç]-[lx] 1 1
[s]-[g] 2 3
[s]-[sg] 1 0

R
un

3

[s]-[sk] 14 23
[s]-[g] 4 0

[n]-[ng] 2 12
[ ]-[jg] 3 4
[l]-[lg] 1 1

[Rç]-[Rx] 1 2
[nç]-[nx] 2 1
[ç]-[x] 2 4

Table 7: Frequency of stem-final consonants in train
and test in 50%L-50%NL condition. ‘[ ]’ represents the
absence of stem-final consonant.
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Figure 7: Effect of batch sizes on L-shaped accuracy for
different frequency conditions (10%L-90%NL, 50%L-
50%NL, and 90%L-10%NL).

Consonant-pairs Freq. in Test Freq. in Train

R
un

1

[s]-[sk] 32 97
[ç]-[x] 5 18
[ ]-[jg] 5 5

[nç]-[nx] 2 7
[Rç]-[Rx] 3 6
[n]-[ng] 6 40
[lç]-[lx] 1 2
[s]-[g] 2 11

R
un

2

[s]-[sk] 22 104
[ç]-[x] 2 5

[Rç]-[Rx] 1 7
[s]-[g] 4 10
[l]-[lg] 2 2
[ ]-[jg] 4 8

[nç]-[nx] 3 7
[s]-[sg] 1 1

R
un

3

[s]-[sk] 25 103
[nç]-[nx] 4 6

[s]-[g] 2 11
[ç]-[x] 7 18

[lç]-[lx] 2 1
[n]-[ng] 10 35
[l]-[lg] 2 2

[Rç]-[Rx] 1 6
[ ]-[jg] 1 9

Table 8: Frequency of stem-final consonants in train
and test in 90%L-10%NL condition. ‘[ ]’ represents the
absence of stem-final consonant.
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A.5 Confusion Matrix

10%L-90%NL condition
P [s]-[s] P [s]-[sk] P [s]-[g] P [n]-[ng] P [s]-[] P [s]-[d] P [s]-[sg] P [n]-[n] P [n]-[Rb] Accuracy

G [s]-[sk] 303 857 0 0 48 41 0 0 0 68.61%
G [s]-[g] 235 21 99 0 8 0 15 0 0 26.19%
G [n]-[ng] 0 0 0 281 0 0 0 56 26 77.41%
50%L-50%NL condition

P [s]-[sk] P [s]-[g] P [n]-[ng] P [s]-[s] P [s]-[d] P [s]-[S] P [s]-[jg] P [n]-[n] P [n]-[mp] Accuracy
G [s]-[sk] 6170 32 0 523 73 70 0 0 0 89.84%
G [s]-[g] 112 613 0 210 0 0 76 0 0 60.63%
G [n]-[ng] 0 0 853 0 0 0 0 139 29 83.55%
90%L-10%NL condition

P [s]-[sk] P [n]-[ng] P [ç]-[x] P [s]-[s] P [s]-[Rs] P [n]-[n] P [n]-[sk] P [n]-[n] P [ç]-[ç] Accuracy
G [s]-[sk] 9473 0 0 570 36 70 0 0 0 93.34%
G [n]-[ng] 0 3394 0 0 0 130 0 139 0 92.66%
G [ç]-[x] 0 0 1954 0 0 0 0 0 183 91.44%

Table 9: Confusion matrix for the top 3 most erroneous consonant-pairs (considering mean values) for L-shaped
verbs across conditions. G = Gold, P = Prediction. Bold indicates the correct predictions.
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