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Abstract

The reranker and generator are two critical
components in the Retrieval-Augmented Gen-
eration (i.e., RAG) pipeline, responsible for
ranking relevant documents and generating re-
sponses. However, due to differences in pre-
training data and objectives, there is an in-
evitable misalignment between the documents
ranked as relevant by the reranker and those
required by the generator to support query-
specific answers. To bridge this gap, we
propose RADIO, a novel and practical pref-
erence alignment framework with RAtionale
DIstillatiOn. Specifically, we first propose a ra-
tionale extraction method that leverages the rea-
soning capabilities of Large Language Models
(LLMs) to extract the rationales necessary for
answering a query. Subsequently, a rationale-
based alignment process is designed to rerank
documents based on the extracted rationales
and fine-tune the reranker to better align the
preferences. Extensive experiments conducted
on three tasks across four datasets demonstrate
the effectiveness and transferability of our ap-
proach. Our code is released online1.

1 Introduction

Large Language Models (LLMs), pretrained on
massive datasets, have demonstrated exceptional
reasoning and text generation capabilities, as ev-
idenced by prior research (Zhao et al., 2023; Ni
et al., 2025; Wang et al., 2023b; Xu et al., 2024; Fu
et al., 2023). These models also adhere to the scal-
ing laws, exhibiting improvements in performance
and intelligence as the number of parameters in-
creases (Kaplan et al., 2020). Retrieval-augmented
generation (RAG) (Xu et al., 2025a,b) builds upon
these capabilities by integrating information re-
trieval mechanisms (Zhao et al., 2018a,b; Liu et al.,
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2024) with generative models, such as LLMs. This
approach not only mitigates the problem of hallu-
cination in text generation but also enhances the
system’s adaptability to dynamically evolving in-
formation needs, making it a robust solution for
tasks requiring both accuracy and contextual rele-
vance (Gao et al., 2023).

However, RAG pipelines typically assemble
components (e.g., the reranker and generator (Fan
et al., 2024)) that have been pretrained separately.
Due to differences in their pretraining data and
optimization objectives, these components often
exhibit varying preferences, which can impact the
overall effectiveness of the system. Specifically,
pretrained rerankers (Xiao et al., 2023) are de-
signed to evaluate the relevance between queries
and documents. However, the documents identified
as relevant under this criterion may not provide
the necessary support for reasoning to derive an
accurate answer to the query. Bridging this gap
between the reranker’s relevance measurement and
the generator’s reasoning requirements presents a
significant challenge that must be addressed to im-
prove the RAG pipeline’s performance.

Recent studies try to address this gap by train-
ing a bridge model (Ke et al., 2024), using LLM-
based scores (Zhang et al., 2024) or combining both
LLM-based and retrieval-based scores (Dong et al.,
2024) to fine-tune RAG components. Addition-
ally, while some other methods are not explicitly
designed for this problem, they can indirectly con-
tribute to bridging the gap. These approaches can
use response quality (Ma et al., 2023) or perplexity
distillation (Izacard et al., 2023; Shi et al., 2023) as
signals to fine-tune the reranker. Despite showing
promise, these approaches face critical limitations:
their alignment signals rely solely on the surface-
level connection between the query/answer and
document, failing to capture the deeper reasoning
processes or more complex relationships involved.

To address the above limitation, we propose RA-
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DIO, a novel and practical preference alignment
framework with rationale distillation in RAG. RA-
DIO leverages rationale as a signal to bridge the
reranker’s relevance measurement with the gen-
erator’s reasoning requirements for response gen-
eration. First, to efficiently extract the rationales
needed to answer a query, we use the query and
its ground truth answer as context and generate the
rationales with LLMs. Second, to mitigate the pref-
erence misalignment between the reranker and gen-
erator while ensuring the solution remains practical,
we rerank the documents based on the extracted
rationales and fine-tune the reranker. This step dis-
tillates rationales from generators to rerankers, and
aligns the reranker with the generator’s information
needs for answering the query effectively.

RADIO effectively addresses the preference in-
consistency between RAG components by first gen-
erating a comprehensive rationale and then fine-
tuning the reranker based on the extracted ratio-
nale. This approach considers the deeper rea-
soning behind answers. We evaluate RADIO on
three tasks across four datasets: Open-domain
QA (NQ (Kwiatkowski et al., 2019) and Trivi-
aQA (Joshi et al., 2017)), Multi-choice questions
(MMLU (Hendrycks et al., 2020)), and Multi-hop
QA (Musique (Trivedi et al., 2022)). The results
validate the superiority of our method compared to
other state-of-the-art baselines. Our contributions
can be summarized as follows:

• We propose RADIO, a novel and practical frame-
work designed to address the preference misalign-
ment of different components in RAG pipelines.

• We introduce rationale distillation within the
RAG framework, which is an effective approach
that leverages explicit textual rationales as signals
to align the preferences of different components
in RAG.

• Extensive experiments are conducted on three
tasks across four datasets to demonstrate the ef-
fectiveness and transferability of RADIO.

2 Related Work

Retrieval-Augmented Generation. Large lan-
guage models (LLMs) have demonstrated ground-
breaking performance across numerous tasks (Jia
et al., 2025) but still face challenges such as hallu-
cination and outdated knowledge (Gao et al., 2023).
To address these issues, retrieval-augmented gener-
ation (RAG) has been introduced (Fan et al., 2024;

Zhang et al., 2025; Jia et al., 2024a). RAG re-
trieves relevant information from external knowl-
edge bases and incorporates it as contextual input
to the generator (LLM), enhancing the accuracy
and reliability of the generated responses. The
typical RAG pipeline can be divided into several
key components: query rewriter, retriever, reranker,
and generator. The query rewriter (Wang et al.,
2023a) modifies and expands (Jia et al., 2024b;
Li et al., 2023a) the original query to improve re-
trieval recall, ensuring more relevant documents are
retrieved. The retriever (Chen et al., 2024) fetches
relevant documents based on the query. Dense
retrievers generally outperform sparse retrievers
in this step. To integrate contextual information
more effectively and identify documents more rele-
vant to the query, rerankers (Moreira et al., 2024a)
with larger models and greater complexity are intro-
duced to reorder the retrieved documents compared
to retrievers. Finally, the generator—usually a pow-
erful LLM such as GPT-4 (Achiam et al., 2023)
or Llama (Touvron et al., 2023)—uses the query
and the top-k documents from the reranker to gen-
erate the final response. In this work, we address
the issue of preference misalignment among dif-
ferent components within the RAG pipeline. We
aim to leverage rationale as a signal to align these
preferences and enhance the overall performance
of the RAG system. It is worth noting that RA-
DIO and methods like ReAct (Yao et al., 2022) are
not mutually exclusive and can be used together to
complement each other. While RADIO enhances
the ranking of retrieved documents at each step,
ReAct focuses on task-solving through reasoning
and action.
Preference Alignment. To further improve LLMs,
preference alignment is often performed after the
initial pretraining phase (Jiang et al., 2024). Ap-
proaches such RLHF (Ouyang et al., 2022) and
DPO (Rafailov et al., 2024) are proposed to align
the output of LLMs more closely with human pref-
erences. DPO transforms tasks into classification
problems, achieving high computational efficiency
and strong performance. In the context of RAG,
several works (Ke et al., 2024) can be transformed
to address the challenge of preference alignment
between RAG components. REPLUG (Shi et al.,
2023) improves RAG pipelines involving black-
box LLMs by using the probability of the LLM
generating the correct answer as a signal to deter-
mine document importance. Similarly, RRR (Ma
et al., 2023) uses metrics based on the quality
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Figure 1: Overview of RADIO.

of the LLM’s generated response as a signal to
evaluate a document’s utility. On the other hand,
ARL2 (Zhang et al., 2024) prompts LLMs to gen-
erate self-guided relevance labels for fine-tuning
retriever, and DPA-RAG (Dong et al., 2024) intro-
duces a bidirectional alignment strategy to mitigate
preference inconsistencies in RAG pipelines. In
this work, we focus on optimizing the reranker
within RAG. Our goal is to enable the reranker
to effectively identify supportive documents well-
suited for the generator, whether black-box or open-
source, facilitating the production of accurate out-
puts. In addition, BGM (Ke et al., 2024) trains
a bridge model between retriever and LLMs to
transform the retrieved information into the format
LLM’s prefer. Our method is theoretically compat-
ible with BGM and could be combined to jointly
enhance performance without any conflict.

3 Methodology

In this section, we detail rationale distillation in
RAG. Specifically, we first demonstrate the task
definition of RAG in Section 3.1. Then we give an
overview of our proposed framework in Section 3.2,
introduce the rationale extraction method in Sec-
tion 3.3, and detail the rationale-based alignment
in Section 3.4 and optimization in Section 3.5.

3.1 Task Definition
To address the hallucination problem and enhance
adaptability to dynamic information of LLMs,
RAG systems have been proposed. These systems
enhance generative models by introducing addi-
tional contextual information retrieved based on a
given query q. Specifically, when a query q is input
into the RAG pipeline, the retriever Rretriever first
retrieves relevant documents by calculating similar-
ity scores and top-k1 selection. The process can be
formalized as follows:

Dretriever = {di | di ∈ Top-k1(scoreretriever(q, d))}
(1)

where q and d are the query and document,
scoreretriever denotes the score function in retriever,
di means the i-th document in corpus and Dretriever
is the documents set output by retriever Rretriever.

To eliminate contextually irrelevant noise and
provide more precise contextual information, the
initially filtered documents will be further reranked
by the reranker:

Dreranker = {dj | dj ∈ Top-k2(scorereranker(q, d))}
(2)

where Dreranker is the documents selected by
reranker, scorereranker denotes the score function
in reranker. Note that the jth document dj is in
Dretriever (i.e., dj ∈ Dretriever) and k2 is the number
of documents selected by reranker, which is smaller
than k1 used by the retriever.

Finally, the documents filtered by the reranker,
along with the original query, will be fed into the
generator as contextual information to help gener-
ate the final response:

ŷ = G(q,Dreranker) (3)

where ŷ is the generated response and G denotes
the generator.

It is worth noting that the documents selected by
the reranker directly influence the generator’s input.
Therefore, in this work, we aim to align the prefer-
ences of the reranker and generator to enhance their
consistency. This alignment improves the overall
accuracy of the RAG system’s responses.

3.2 Framework Overview

The overview of RADIO is depicted in Figure 1.
RADIO is consisted of two phases: rationale extrac-
tion (Figure 1(a)) and rationale-based alignment
(Figure 1(b)).

In the rationale extraction process, we combine
the query with its ground truth answer and input
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them into LLMs to generate precise rationales. Us-
ing the correct answer as context in the prompt im-
proves the accuracy of the LLM’s rationale genera-
tion, ensuring that the generated rationale closely
aligns with the requirements for deriving the cor-
rect answer.

In the rationale-based alignment process, our
goal is to use the generated rationale to guide
rerankers, enabling it to select documents that bet-
ter support the generator in answering the query.
Specifically, we leverage the generated rationale
as a signal to rerank documents. The reranked
documents will be used to fine-tune the reranker,
addressing the preference misalignment between
the reranker and the generator. By aligning these
components, the process ensures that the selected
documents are not only contextually relevant but
also optimally supportive for the generator’s rea-
soning and response generation.

3.3 Rationale Extraction
Rationales are critical components of LLM rea-
soning processes and have been shown to enhance
the accuracy of LLM-generated responses signif-
icantly. This perspective is supported by existing
works such as Chain-of-Thoughts (CoT (Wei et al.,
2022)). Existing work (Shi et al., 2023; Ma et al.,
2023; Dong et al., 2024) has primarily focused on
the initial relationships between queries and doc-
uments or indirect relationships between answers
and documents, while overlooking rationales, a
crucial intermediary component in the reasoning
process. Motivated by this, we aim to extract ratio-
nales as signals to align the preferences of different
components in the RAG pipeline.

To accurately extract the rationale necessary for
answering a query and deriving the correct answer,
we combine the query with the ground truth answer
as contextual information of LLMs, as shown in
Figure 1(a). The prompt template used for this pro-
cess is as follows: "You are a professional QA assis-
tant. Given a question and the ground truth answer,
you can output the rationale why the ground truth
answer is correct. Question: {question}. Answer:
{answer}. Rationale: ". The generation process can
be formalized as:

r = LLM(q, a) (4)

where q and a are the query and answer, r deontes
the generated rationale.

By doing so, we effectively bridge the gap be-
tween the query and the answer by generating the

necessary rationale. This rationale accurately sup-
ports the reasoning process required to derive the
correct answer from the query.

3.4 Rationale-based Alignment
Given the extracted rationale r, a key challenge lies
in effectively and efficiently utilizing it to improve
preference consistency within the RAG pipeline.
In this section, we propose a rationale-based align-
ment approach, where the rationale serves as a
signal to fine-tune the reranker. This enables the
reranker to identify and prioritize supportive doc-
uments that facilitate the generator in producing
accurate responses. Specifically, we first use the
retriever Rretriever to retrieve k1 relevant documents
based on the query:

Dretriever = Rretriever(q, C) (5)

where Dretriever is the document set retrieved
by Rretriever based on query q and corpus C, and
|Dretriever| = k1.

Next, to facilitate the comparison of similarity
between different documents and the rationale, we
use a text encoder to convert both the documents
and the rationale into dense vectors.

edocument
i = Encoder(di) (6)

erationale = Encoder(r) (7)

where edocument
i and erationale denote the representa-

tions of ith document and rationale. di is the ith
document and r represents the extracted rationale.

Then, we calculate the semantic similarity be-
tween each document and the rationale. Here, we
use cosine similarity, denoted as sim(·). The cal-
culated scores indicate the degree to which each
document supports generating the correct answer,
with higher scores reflecting stronger support. We
also linearly interpolate the score of documents
with their retrieval score in the retrieval stage by
weighted score sum.

srationale
i = sim(edocument

i , erationale) (8)

sretriever
i = scoreretriever(q,di) (9)

s′i = αsrationale
i + (1− α)sretriever

i (10)

where srationale
i , sretriever

i , s′i represent the rationale
similarity score, retrieval score, and final score for
ith document. scoreretriever(·) is the score function
in retriever and α is a hyperparameter used for inte-
gration. Note that we apply min-max normalization
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in this work to both rationale score and retrieval
score before integration.

Next, we rerank the documents based on their
scores. Following the previous sampling method
Top-k shifted by N (Moreira et al., 2024b), we se-
lect the top-ranked document as the positive sample
and then shift by n documents and sample m neg-
ative samples from the subsequent documents to
construct positive-negative pairs for fine-tuning the
reranker. This process can be represented as:

dpos = di,where i = argmax
i

s′i (11)

{dneg} = Samplem({di|rank(di) > n}) (12)

where dpos and dneg are the sampling positive and
negative documents, Samplem(·) denotes a sam-
pling operation that selects m negative documents
from the set of documents ranked lower than n.

3.5 Optimization
Following BGE embedding (Xiao et al., 2023) and
QA Ranking Benchmark (Moreira et al., 2024a),
we use InfoNCE as our optimization objectives to
fine-tune reranker:

f(q, d) = exp(ϕ(q, d)/τ) (13)

L = −log
f(q, d+)

f(q, d+) +
∑N

i=1 f(q, d
−
i )

(14)

where d+ and d− represent the positive and nega-
tive document, τ is the temperature parameter, and
N denotes the number of negative documents.

4 Experiments

4.1 Datasets and Metrics
Following previous work (Shi et al., 2023; Zhang
et al., 2024), we conduct experiments on three tasks
across four datasets to evaluate RADIO with other
methods: Open-domain QA (NQ (Kwiatkowski
et al., 2019) and TriviaQA (Joshi et al., 2017)),
Multi-choice questions (MMLU (Hendrycks et al.,
2020)), and Multi-hop QA (Musique (Trivedi et al.,
2022)). Detailed dataset descriptions are given in
Appendix A.1. Following previous work (Ma et al.,
2023; Shi et al., 2023), we report EM and F1 scores
for QA datasets and EM for MMLU.

4.2 Baselines
To verify the effectiveness of RADIO, we conduct
experiments with the following baseline methods:
Base (Xiao et al., 2023), Atlas (Izacard et al.,

2023), REPLUG (Shi et al., 2023), Trainable
rewrite-retrieve-read (RRR) (Ma et al., 2023),
ARL2 (Zhang et al., 2024), and DPA-RAG (Dong
et al., 2024). The detailed introduction of baselines
is given in Appendix A.2.

4.3 Backbone Rerankers

To validate the generality and adaptability of RA-
DIO, we select three different rerankers as the back-
bone models for our experiments: gte-base (Li
et al., 2023b), gte-large (Li et al., 2023b), and
bge-reranker-base (Xiao et al., 2023). A detailed
introduction is given in Appendix A.3.

4.4 Implementation Details

We implement RADIO on FlashRAG (Jin et al.,
2024), a Python library for efficient RAG research.
In the RAG pipeline, we take e5-base-v2 (Wang
et al., 2022) as the retriever, and Meta-Llama-3.1-
8B-Instruct (Touvron et al., 2023) as the generator.
We sample 20,000 instances from NQ and Trivi-
aQA to construct the fine-tuning dataset and fine-
tune rerankers separately. For document sampling,
we set the shift n in Top-k shifted by N method as 3,
and sample 6 negative samples from the subsequent
documents. To ensure a fair comparison, the sam-
pling index is fixed and remains unchanged across
methods. In the RAG pipeline, we set the number
of documents selected by retriever and reranker
(i.e., k1 and k2) as 20 and 5. The retrieval cor-
pus we used in experiments is Wikipedia (2018,
December). For fine-tuning the reranker, we tune
the training epochs from 1 to 5 and the integra-
tion hyperparameter α from 0.0 to 1.0. We use
Adam (Kingma, 2014) optimizer with a learning
rate 6e-5 and a weight decay of 0.01. The prompts
we used in experiments are given in Appendix A.4.
We provide an analysis of the impact of fine-tuning
sample size on performance in Appendix A.5, and
we also give a detailed analysis on the shift parame-
ter n and the negative samples m in Appendix A.6.

4.5 Main Results

4.5.1 Open-domain QA
To evaluate the effectiveness of RADIO and its
transferability across different rerankers, we con-
duct experiments on the NQ and TriviaQA datasets.
The results are presented in Table 1. A case study
is given in Appendix A.7. From these results, we
can draw the following conclusions:

• Compared to the Base method, most experimen-
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Table 1: Overall experiments. “*” indicates the statistically significant improvements (i.e., two-sided t-test with
p < 0.05) over the best baseline. For all metrics, higher is better. ∆ represents the relative improvement of RADIO
over Base method.

Method
NQ TriviaQA

gte-base gte-large bge-reranker-base gte-base gte-large bge-reranker-base

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

Base 0.2931 0.4046 0.2798 0.3935 0.3371 0.4603 0.5449 0.6374 0.5495 0.6414 0.6114 0.7120
Atlas 0.3338 0.4587 0.3418 0.4677 0.3521 0.4832 0.5823 0.6752 0.6004 0.6972 0.6083 0.7063

REPLUG 0.3257 0.4484 0.2607 0.3670 0.3427 0.4753 0.5679 0.6578 0.5248 0.6171 0.6032 0.7004
RRR 0.3374 0.4608 0.3299 0.4578 0.3438 0.4754 0.5801 0.6716 0.5358 0.6237 0.6099 0.7091
ARL2 0.3413 0.4688 0.3515 0.4804 0.3568 0.4885 0.6079 0.7086 0.6107 0.7120 0.6137 0.7149

DPA-RAG 0.3391 0.4674 0.3385 0.4710 0.3462 0.4793 0.6080 0.7076 0.6097 0.7119 0.6149 0.7169*
RADIO (Ours) 0.3512* 0.4790* 0.3565* 0.4850* 0.3665* 0.4917* 0.6084 0.7095* 0.6128* 0.7137* 0.6154 0.7151

∆ ↑ 19.82% ↑ 18.39% ↑27.41% ↑23.25% ↑8.72% ↑6.82% ↑11.55% ↑11.31% ↑11.52% ↑11.27% ↑0.65% ↑0.40%

Table 2: Experimental results on MMLU. EM is re-
ported as the evaluation metric. The source dataset used
to fine-tune rerankers is the Open-domain QA dataset
NQ. ∆ represents the relative improvement of RADIO
over Base method.

Method Humanities Social STEM Other ALL

Base 0.4089 0.6867 0.5147 0.6650 0.5502
Atlas 0.3985 0.6935 0.5074 0.6563 0.5447

REPLUG 0.4102 0.6854 0.5065 0.6590 0.5473
RRR 0.4079 0.6913 0.5116 0.6572 0.5484
ARL2 0.4147 0.7016 0.5106 0.6630 0.5540

DPA-RAG 0.4157 0.701 0.5078 0.6652 0.5541
RADIO (Ours) 0.4172 0.7013 0.5080 0.6717 0.5562

∆ ↑2.03% ↑2.13% ↓1.30% ↑1.01% ↑1.09%

tal settings achieve better results, demonstrating
the necessity of preference alignment within the
RAG pipeline.

• Compared to other baseline methods, RA-
DIO consistently achieves superior performance
across all datasets and reranker backbone config-
urations. The results validate the effectiveness of
using rationales as signals for preference align-
ment in RAG pipeline.

• On TriviaQA, methods such as RRR and RE-
PLUG show performance declines relative to
the base method when using rerankers gte-large
and bge-reranker-base. This indicates that these
methods are sensitive, limiting their applicability.
In contrast, RADIO demonstrates robust adapt-
ability to different rerankers, achieving signifi-
cant performance improvements across all three
rerankers.

• As the reranker becomes larger or more powerful
(e.g., progressing from gte-base to gte-large and
further to bge-reranker-base), the performance
ranking of models fine-tuned with RADIO aligns
with the reranker’s inherent capabilities. This

suggests that RADIO’s performance gains are
sustainable and scalable with stronger rerankers,
providing an avenue to further explore the upper
performance limits of RAG pipelines.

4.6 Task Generalization Analysis
4.6.1 Multi-choice Questions
We also conduct experiments on MMLU. Since
MMLU is a multiple-choice dataset, we report the
EM metric (Ma et al., 2023). Additionally, follow-
ing previous work (Yu et al., 2023), we fine-tune
the reranker bge-reranker-base using open-domain
QA as the source task and evaluate its performance
on the MMLU dataset. Table 2 shows the results of
fine-tuning reranker with NQ dataset. The results
of fine-tuning reranker with TriviaQA are given in
Appendix A.8. We can draw the following conclu-
sions:

• From the metrics corresponding to the ALL cate-
gory, RADIO demonstrates consistent improve-
ments over Base. This highlights the effective-
ness and generalization of RADIO, as it success-
fully adapts to multi-choice question tasks even
when fine-tuned on the Open-domain QA tasks.

• Analyzing the results by question category, RA-
DIO shows more significant improvements over
the Base method in the Humanities and Social
Sciences categories, with average gains of 2.03%
and 2.13%, respectively. However, it exhibits a
slight negative effect in the STEM category. This
may be due to the fine-tuning datasets (NQ and
TriviaQA), which are Open-domain QA datasets
with distributions more similar to humanities
and social sciences but markedly different from
STEM subjects.

• Compared to other baseline methods, RADIO
achieves top performance in the vast majority of
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Table 3: Transferability analysis across generators. EM is reported as the metric for MMLU dataset.

Generator Method
NQ MMLU

EM F1 Humanities Social STEM Other ALL

Llama3.1-8b-instruct
Base 0.3371 0.4603 0.4089 0.6867 0.5147 0.6650 0.5502

RADIO (ours) 0.3665 0.4917 0.4172 0.7013 0.5080 0.6717 0.5562

qwen2.5-14b-instruct
Base 0.3310 0.4484 0.5439 0.8200 0.7206 0.7541 0.6906

RADIO (ours) 0.3518 0.4753 0.5598 0.8229 0.7250 0.7631 0.6995

gpt4o-mini
Base 0.3607 0.4880 0.6485 0.8362 0.6784 0.8005 0.7300

RADIO (ours) 0.3742 0.5086 0.6548 0.8372 0.6768 0.8010 0.7321

Table 4: Experimental results on Musique. EM and F1
are reported as the metrics. The source datasets used to
fine-tune rerankers are Open-domain QA datasets NQ
and TriviaQA. ∆ represents the relative improvement
of RADIO over Base method.

Method
NQ (Source Dataset) TriviaQA (Source Dataset)

EM F1 EM F1

Base 0.0662 0.1297 0.0662 0.1297
Altlas 0.0658 0.1336 0.0541 0.1184

REPLUG 0.0608 0.1269 0.0559 0.1188
RRR 0.0658 0.1315 0.0592 0.1207
ARL2 0.0641 0.1309 0.0674 0.1330

DPA-RAG 0.0629 0.1307 0.0690 0.1337
RADIO (Ours) 0.0699 0.1371 0.0695 0.1347

∆ ↑5.59% ↑5.71% ↑4.98% ↑3.86%

metrics, demonstrating its superiority and state-
of-the-art capability.

4.6.2 Multi-hop QA
We also conduct experiments on the multi-hop
dataset Musique with reranker bge-reranker-base,
and the experimental results are shown in Table 4.
Based on the experimental results, we can draw the
following conclusions:

• First, RADIO achieves significant performance
improvements in all evaluation metrics (EM and
F1), demonstrating its task generalization abil-
ity in multi-hop reasoning tasks. On the NQ
source dataset, RADIO achieves an EM value
of 0.0699 and an F1 value of 0.1371, with im-
provements of 5.59% and 5.71% over the Base
method, respectively. On the TriviaQA source
dataset, RADIO’s EM value is 0.0695, and F1
value is 0.1347, showing improvements of 4.98%
and 3.86% over the Base method.

• Secondly, compared to other baseline methods,
RADIO demonstrates a more balanced and con-
sistent advantage across both the NQ and Trivi-
aQA source datasets. Notably, when using NQ as
the source dataset, only RADIO shows a positive

improvement in the EM metric, while all other
baseline methods experience varying degrees of
negative degradation.

4.7 Transferability Analysis across
Generators

We conduct experiments on two datasets of differ-
ent tasks, NQ and MMLU, using three different
generators (Llama3.1-8b-instruct (Touvron et al.,
2023), qwen2.5-14b-instruct (Yang et al., 2024),
and gpt4o-mini (Achiam et al., 2023)) with bge-
reranker-base fine-tuned on NQ to validate the
transferability of our method, as shown in Ta-
ble 3. We can find that (1) RADIO maintains
its effectiveness across different generators, con-
sistently enhancing the performance of the origi-
nal RAG pipeline. This demonstrates RADIO’s
strong transferability with various generators. (2)
Comparing different generators reveals that RA-
DIO’s performance gains are more pronounced
with smaller, less capable generators. Specifically,
when the generators are Llama3.1, Qwen2.5, and
GPT4o-mini, RADIO achieves EM improvements
of 8.72%, 6.28%, and 3.74%, respectively, and F1
improvements of 6.82%, 6.00%, and 4.22%. This
is because as the generator’s capability increases
and approaches the upper performance limits of
the RAG pipeline, further enhancing the pipeline
becomes increasingly challenging, resulting in a
smaller improvement.

4.8 Ablation Study
To explore the specific impact of rationale and re-
trieval score, we design the following variants with
reranker bge-reranker-base:

• w/o ALL: Base reranker without fine-tuning. Do
not introduce rationale or retrieval score.

• w/o Retrieval: Ranking documents and fine-
tuning reranker only based on the rationale
scores.

4248



Table 5: Ablation study.

Dataset Metrics w/o ALL w/o Retrieval RADIO

NQ
EM 0.3371 0.3587 0.3665
F1 0.4603 0.4858 0.4917

MMLU

Humanities (EM) 0.4089 0.4168 0.4172
Social (EM) 0.6867 0.6981 0.7013
STEM (EM) 0.5147 0.5109 0.508
Other (EM) 0.665 0.6666 0.6717
ALL (EM) 0.5502 0.5548 0.5562
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Figure 2: Hyperparameter analysis on NQ and MMLU.

• RADIO: Fine-tuning reranker based on both ra-
tionale and retrieval scores.

Table 5 shows the results of ablation study on
NQ and MMLU, where we can derive the follow-
ing findings: (1) Both the rationale score and re-
trieval score contribute positively to RADIO’s per-
formance, with the rationale score demonstrating a
stronger positive impact compared to the retrieval
score. (2) RADIO outperforms both w/o ALL and
w/o Retrieval, while w/o Retrieval surpasses w/o
ALL. This indicates that the rationale score and
retrieval score are not conflicting but rather com-
plementary. Their integration provides a more ro-
bust signal for document ranking, which effectively
aids in fine-tuning the reranker. (3) In the STEM
category of the MMLU dataset, w/o ALL outper-
forms both w/o Retrieval and RADIO. This could
be attributed to the fact that the training dataset
(NQ) contains questions with distributions more
similar to humanities and social sciences, leading
to trends in the Humanities, Social Sciences, and
Other categories that differ from STEM category.

4.9 Hyperparameter Analysis
Figure 2 visualizes the performance of RADIO
across different integration coefficients α on NQ

and MMLU. The x-axis represents the integration
coefficients α and the y-axis represents the evalua-
tion metrics EM (red) or F1 (blue). For the MMLU
dataset, we present results for two representative
categories: Humanities and STEM. The trends for
other categories align with those observed in Hu-
manities. Complete experimental results are pro-
vided in Appendix A.9 for reference. From the fig-
ure, we can draw the following conclusions: (1) As
α increases, the metrics on the NQ dataset and most
categories of the MMLU dataset exhibit a trend of
first rising and then falling, with the optimal range
for α being between 0.3 and 0.7. This demonstrates
the complementary nature of rationale scores and
retrieval scores, which together form an optimal
signal for preference alignment. (2) When α = 0,
the RAG performance is suboptimal because docu-
ment scoring relies entirely on retrieval scores, fo-
cusing solely on query-document relevance while
ignoring whether the document supports the gen-
erator in answering the query. Conversely, when
α = 1, the performance is still not optimal, as it
completely disregards retrieval relevance, leading
to a mismatch between the fine-tuning dataset and
the training data, which negatively affects model
performance. (3) The trends for STEM differ from
those of other MMLU categories, showing an op-
posite pattern. This is likely due to the significant
distributional differences between STEM and Hu-
manities/Social Sciences, resulting in a "seesaw
effect" as observed in the figure. It is worth not-
ing that this phenomenon is also reflected in RE-
PLUG (Shi et al., 2023), where the improvement
in the STEM category is weaker compared to other
categories.

5 Conclusion

In this paper, we propose a novel and practical pref-
erence alignment framework, RADIO, with ratio-
nale distillation in retrieval-augmented generation.
First, we introduce a rationale extraction method
to extract the rationales necessary for answering
queries with LLMs. Next, a rationale-based align-
ment is proposed to rerank documents based on
extracted rationales and fine-tune rerankers. Exten-
sive experiments on three tasks across four datasets
are conducted to validate the effectiveness of our
proposed method against state-of-the-art baselines
and demonstrate its strong transferability. We also
release our code online to facilitate the following
research and ease of reproduction.
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6 Limitations

First, compared to other methods, our approach
RADIO requires additional time in the rationale
extraction stage to generate rationales. Since dif-
ferent samples are independent of one another, we
can reduce generation time by employing paral-
lel processing to mitigate this issue. Secondly,
the MMLU experimental results reveal that the
composition of fine-tuning datasets can affect RA-
DIO’s effectiveness. This issue can be addressed
by designing task-specific fine-tuning datasets for
different downstream tasks or large-scale general
fine-tuning datasets.
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A Appendix

A.1 Dataset Desctiptions

The detailed descriptions of baselines are given as
follows:

• Natural Questions (NQ): NQ contains real
user questions compiled from Google search,
with corresponding answers identified from
Wikipedia by human annotators.

• TriviaQA: TriviaQA dataset comprises trivia
questions paired with answer annotations and
supporting evidence documents, such as web
pages and Wikipedia articles. It is designed to
assess a model’s ability to retrieve and compre-
hend textual evidence for open-domain ques-
tion answering.

• Massive Multitask Language Understand-
ing (MMLU): MMLU is a comprehensive
evaluation dataset comprising 57 categories
of questions, which are grouped into four
broad domains: Humanities, Social Sciences,
STEM, and Other. In this paper, we report
evaluation metrics based on these categories.

• Musique: MuSiQue is a multi-hop question
answering dataset created using a bottom-up
approach to ensure connected reasoning, with
25,000 2–4 hop questions.

A.2 Baselines

Following is the introduction of baselines:

• Base (Xiao et al., 2023): The reranker model
is used off-the-shelf without any fine-tuning.

• Atlas (Izacard et al., 2023): A pretrained
retrieval-augmented language model designed
for knowledge intensive task. We choose the
EMDR2 (Singh et al., 2021) as the reward to
rerank documents and fine-tune rerankers.

• REPLUG (Shi et al., 2023): REPLUG seeks
to fine-tune the retriever to enhance RAG
pipelines that include black-box LLMs. It
achieves this by using the query and docu-
ment as contextual inputs and leveraging the
probability of the LLM generating the correct
answer as the importance score. This idea
is also reflected in the PDist method in At-
las (Izacard et al., 2023).

Table 6: Prompts for QA datasets.

System Prompt: Answer the question based on
the given document. Only give me the answer
and do not output any other words. The
following are given documents.
{reference}
User Prompt:
Question: {question}
Answer:

• Trainable rewrite-retrieve-read (RRR) (Ma
et al., 2023): RRR optimizes the query
rewriter using the evaluation metrics of the
final RAG output as a reward, which is used
to fine-tune rerankers in our pipeline, enhanc-
ing the overall effectiveness of RAG.

• ARL2 (Zhang et al., 2024): ARL2 introduces
a method to use LLMs as supervisor to gen-
erate self-guided relevance labels (e.g., “Not
relevant”, “relevant”) for fine-tuning retriever.

• DPA-RAG (Dong et al., 2024): DPA-RAG
proposes a knowledge preference pipeline to
dual-align rerankers and generators in RAG.
It combines document importance from the
LLM’s perspective with the importance deter-
mined during the retrieval stage.

A.3 Detailed Introduction to Backbone
Rerankers

To validate the generality and adaptability of RA-
DIO, we select three different rerankers as the back-
bone models for our experiments: (1) gte-base (Li
et al., 2023b): a reranker model proposed by Al-
ibaba DAMO Academy, with 109M parameters
and 768 embedding dimensions. (2) gte-large (Li
et al., 2023b): the larger version of gte-base, with
335M parameters and 1024 embedding dimensions.
(3) bge-reranker-base (Xiao et al., 2023): a pow-
erful cross-encoder architecture reranker proposed
by Beijing Academy of Artificial Intelligence, with
278M parameters.

A.4 Prompts

In this section, we detail the prompts we used in
the experiments. For Open-domain QA datasets
(NQ and TriviaQA) and Multi-hop QA dataset
(Musique), the prompts are as shown in Table 6.
For Multi-choice dataset MMLU, the prompts are
shown in Table 7.
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Table 7: Prompts for Multi-choice datasets.

System Prompt: Answer the question based on
the given document. Only give me the option
(A/B/C/D) and do not output any other words.
The following are given documents.
{reference}
User Prompt:
Question: {question}
Answer:

Table 8: Experimental results on NQ with different
numbers of fine-tuning samples.

Sample Num. EM F1

0 0.3371 0.4603
4,000 0.3526 0.4843
8,000 0.3634 0.4896
12,000 0.3582 0.4842
16,000 0.3604 0.4889
20,000 0.3665 0.4917

A.5 Sample Efficiency Analysis of Fine-tuning

To understand the impact of fine-tuning samples
on RAG performance, we conduct additional ex-
periments to evaluate RADIO’s performance under
a few-shot learning setup using varying amounts
of fine-tuning samples (0, 4,000, 8,000, 12,000,
16,000, and 20,000 instances) on the NQ dataset
with bge-reranker-base. The results are shown in
Table 8.

We observe that even with a relatively small num-
ber of fine-tuning samples (e.g., 4,000 or 8,000),
RADIO yields substantial improvements over the
zero-shot baseline. Notably, with 8,000 samples
the EM score increases by 7.8% and the F1 score by
6.4%, clearly demonstrating the model’s capacity
to benefit from limited task-specific data. More-
over, as the number of fine-tuning instances in-
creases, the overall performance tends to improve,
suggesting that additional annotated data can fur-
ther enhance the retrieval and generation capabili-
ties of the system. Although there are minor fluc-
tuations—such as a slight dip in performance at
12,000 and 16,000 samples—these variations may
stem from differences in data distribution or opti-
mization dynamics.

Table 9: Hyperparameter analysis on the number of
negative samples m.

Shift (n) Negative Samples m EM F1

3 2 0.3615 0.4886
3 4 0.3601 0.4888
3 6 0.3665 0.4917
3 8 0.3604 0.4895

Table 10: Hyperparameter analysis on the shift n in
Top-k shifted by N

Shift (n) Negative Samples m EM F1

1 6 0.3654 0.4918
2 6 0.3554 0.4826
3 6 0.3665 0.4917
4 6 0.3579 0.4868
5 6 0.3587 0.4887

A.6 More Analysis on Training
Hyperparameters

To understand the specific impact of two training
hyperparameters (i.e., the shift n in Top-k shifted by
N and the number of negative samples m) on per-
formance, we conduct the following experiments
on NQ based on bge-reranker-base:

• Varying m: We fix n = 3 and vary m over
the values 2,4,6, and 8.

• Varying n: We fix m = 6 and vary n over the
values 1,2,3,4, and 5.

The detailed experimental results are presented
in Table 9 and Table 10, respectively. From the
results, we can find the following points: (1) Im-
pact of Negative Samples m: Variations in the
number of negative samples m have a relatively
modest effect on RADIO’s performance. The re-
sults suggest that the model is robust to changes
in m, as only marginal performance differences
are observed when m is varied from 2 to 8. (2)
Impact of the shift parameter n: In contrast, the
shift parameter n in the Top-k shifted by N mech-
anism plays a more critical role. Our experiments
show that smaller values of n yield better perfor-
mance, while larger n values lead to a notable drop
in both EM and F1 scores. We hypothesize that
as n increases, the task of mining hard negatives
becomes more challenging, which in turn hampers
the fine-tuning process of RADIO.
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Example 1: Query: which state is the richest state in nigeria
Ground Truth:                                                     ['Lagos State']

Document Reranked by RADIO
1. Niger State is a state in central Nigeria, and it is the largest
state in the country in terms of land area. 2. Introduction to
Niger State. 3. Lagos State is the most economically important
state in the country, containing the city of Lagos, which is
Nigeria's largest city. Lagos State is a significant financial center,
and if it were a country, it would be the fifth-largest economy in
Africa. 4. Ugbo Kingdom is a town in the Ilaje Local Government
Area of Ondo State in the southwestern part of Nigeria. Ugbo
Kingdom is ranked as the richest king in Nigeria. 5. Rivers State,
also known simply as Rivers, is one of the 36 states of Nigeria.

Response Given by RADIO:                                     Lagos State✅
Document Reranked by DPA-RAG
1. Niger State is a state in central Nigeria, and it is the largest
state in the country in terms of land area. 2. Ugbo Kingdom is a
town in the Ilaje Local Government Area of Ondo State in the
southwestern part of Nigeria. Ugbo Kingdom is ranked as the
richest king in Nigeria. 3. Introduction to Niger State. 4. Kano is
located in the northern part of Nigeria and is an important
commercial and economic center of Nigeria. 5. The official
language of Nigeria is English. The religious composition of
Nigeria is roughly divided into Christians in the southern region
and Muslims in the northern region.

Response Given by DPA-RAG:                  Can not give a answer.❌

Example 2: Query: who is the highest selling r&b artist of all time
Ground Truth:                                ['Rihanna', 'Michael Jackson']

Document Reranked by RADIO
1. R. Kelly is recognized as one of the best-selling music artists in
the US. 2. Record sales definitions. Michael Jackson's 1982 album
"Thriller" is still the best-selling album of all time. 3. R. Kelly is
considered one of the most successful R&B artists of the past 25
years. 4. 1990s in Music. Janet Jackson, Michael Jackson,
Whitney Houston, and Mariah Carey are among the best-selling
music artists, particularly in the 1990s when they brought
contemporary R&B to the global stage. 5. 2000s in
Music. Destiny's Child, composed of Beyoncé, Michelle Williams,
and Kelly Rowland, is the most successful female R&B group in
history, selling over 50 million records globally in the 2000s.

Response Given by RADIO:                               Michael Jackson✅

Document Reranked by DPA-RAG
1. R. Kelly is considered one of the most successful R&B artists of
the past 25 years. 2. R. Kelly was one of the most successful
male R&B artists of the 1990s and one of the best-selling music
artists of all time. 3. R. Kelly performed on the same stage as
other hip-hop artists such as Nas, Sean Combs, and The
Notorious B.I.G. 4. 2000s in Music. Destiny's Child, composed of
Beyoncé, Michelle Williams, and Kelly Rowland, is the most
successful female R&B group in history, selling over 50 million
records globally in the 2000s. 5. Rhythm and Blues.

Response Given by DPA-RAG:                                       R. Kelly❌

Figure 3: Case study on NQ dataset.

A.7 Case Study

To intuitively illustrate the effectiveness of RADIO,
we select examples from the NQ dataset to com-
pare the documents reranked by RADIO with those
reranked by a novel baseline, DPA-RAG, as well as
their responses. In Figure 3 Example 1, the query
asks, "Which state is the richest state in Nigeria?"
RADIO successfully ranks information about La-
gos State’s economic and financial status, which
relates to the correct answer, among the top-3 doc-
uments. In contrast, DPA-RAG fails to identify
documents relevant to answering the query, and
cannot provide a valid response. In Figure 3 Exam-
ple 2, the query is, "Who is the highest-selling R&B

artist of all time?" RADIO prioritizes documents
containing information about the correct answer,
Michael Jackson, and effectively highlights key
terms such as "R&B" and "best-selling." However,
DPA-RAG misinterprets the query’s constraints, re-
trieving documents that either overlook the R&B
artist specification or fail to consider the time span,
resulting in an incorrect response. These exam-
ples demonstrate that RADIO enhances RAG by
providing a more efficient and accurate reranking.
It selects contextually appropriate documents, en-
abling the generator to infer correct answers.

A.8 More Results on MMLU
In this section, we give the complete experimental
results on MMLU. Specifically, we use the NQ
dataset and TriviaQA dataset as source dataset to
fine-tune rerankers and evaluate them in MMLU.
The results are shown in Table 11.

A.9 More Results on Hyperparameter
Analysis

Figure 4 illustrates the trend of RADIO’s perfor-
mance across various MMLU categories as the in-
tegration coefficient α increases. For Humanities,
Social Sciences, and Other, the trends are consis-
tent: as α increases, the performance metrics first
improve and then decline. However, the STEM cat-
egory shows a unique pattern, with metrics initially
decreasing as α grows, followed by an improve-
ment. This divergence may be attributed to the
fine-tuning dataset (NQ), which shares a closer dis-
tribution with Humanities, Social Sciences, and
Other categories, while differing significantly from
the STEM category.
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Table 11: Experimental results on MMLU. EM is reported as the metric. The source datasets used to fine-tune
rerankers are Open-domain QA datasets NQ and TriviaQA.

Method
MMLU (Source Dataset NQ) MMLU (Source Dataset TriviaQA)

Humanities Social STEM Other ALL Humanities Social STEM Other ALL

Base 0.4089 0.6867 0.5147 0.6650 0.5502 0.4089 0.6867 0.5147 0.6650 0.5502
Atlas 0.3985 0.6935 0.5074 0.6563 0.5447 0.3966 0.6822 0.4868 0.654 0.5364

REPLUG 0.4102 0.6854 0.5065 0.6590 0.5473 0.3977 0.6744 0.4821 0.6466 0.5323
RRR 0.4079 0.6913 0.5116 0.6572 0.5484 0.4132 0.6926 0.5005 0.6501 0.5464
ARL2 0.4147 0.7016 0.5106 0.6630 0.5540 0.4012 0.6951 0.5011 0.6639 0.5462

DPA-RAG 0.4157 0.701 0.5078 0.6652 0.5541 0.4189 0.6932 0.5062 0.6746 0.5552
RADIO (Ours) 0.4172 0.7013 0.5080 0.6717 0.5562 0.4230 0.6942 0.5090 0.6678 0.5559
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Figure 4: More results of hyperparameter analysis on MMLU.
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