
Findings of the Association for Computational Linguistics: ACL 2025, pages 4131–4144
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

CodeTaxo: Enhancing Taxonomy Expansion with Limited Examples via
Code Language Prompts

Qingkai Zeng1∗, Yuyang Bai1, Zhaoxuan Tan1, Zhenyu Wu1, Shangbin Feng2, Meng Jiang1

1University of Notre Dame 2 University of Washington
{qzeng, ybai3, ztan3, zwu23, mjiang2}@nd.edu, shangbin@cs.washington.edu

Abstract
Taxonomies provide structural representations
of knowledge and are crucial in various applica-
tions. The task of taxonomy expansion involves
integrating emerging entities into existing tax-
onomies by identifying appropriate parent enti-
ties for these new query entities. Previous meth-
ods rely on self-supervised techniques that gen-
erate annotation data from existing taxonomies
but are less effective with small taxonomies
(fewer than 100 entities). In this work, we intro-
duce CODETAXO, a novel approach that lever-
ages large language models through code lan-
guage prompts to capture the taxonomic struc-
ture. Extensive experiments on five real-world
benchmarks from different domains demon-
strate that CODETAXO consistently achieves
superior performance across all evaluation met-
rics, significantly outperforming previous state-
of-the-art methods. The code and data are avail-
able at https://github.com/QingkaiZeng/
CodeTaxo-official.

1 Introduction

Taxonomies are hierarchical structures encoding
hypernym–hyponym (i.e., “is-A”) relations be-
tween concepts or entities. Relational knowl-
edge derived from taxonomies has been widely
leveraged to identify semantic relevance for web
search (Yin and Shah, 2010; Liu et al., 2020; Kang
et al., 2024), personalized recommendation (Zhang
et al., 2014; Tan et al., 2022; Huang et al., 2019),
and question answering (Yang et al., 2017). How-
ever, existing taxonomies are mainly constructed
by experts or through crowd-sourcing, making the
process time-consuming, labor-intensive, and re-
stricted in coverage (Bordea et al., 2016; Jurgens
and Pilehvar, 2016). As new entities emerge, con-
tinually enriching taxonomies with these additions
becomes vital. To address these challenges, taxon-
omy expansion aims to integrate new entities into
existing taxonomies automatically.

*Corresponding author.

User:
Iden�fy the parent
en�ty of the query
en�ty within the
current taxonomy.

science

physics

chemistry

organic
chemistry

science

physics

chemistry

science

physics

chemistry

organic
chemistry

science

physics

chemistry

organic
chemistry

Prompt
from User

Scoring
Function

...

LLM with
Internal Knowledge

Input Taxonomy
& Query Entity

Input Taxonomy
& Query Entity

Output
Taxonomy

organic
chemistry

Self-supervised
Annotation

Output
Taxonomy

(a) Discriminative Methods: A trained scoring function
selects the most appropriate parent entity from the taxon-
omy for a given query entity.

User:
Iden�fy the parent
en�ty of the query
en�ty within the
current taxonomy.

science

physics

chemistry

organic
chemistry

science

physics

chemistry

science

physics

chemistry

organic
chemistry

science

physics

chemistry

organic
chemistry

Prompt
from User

Scoring
Function

...

LLM with
Internal Knowledge

Input Taxonomy
& Query Entity

Input Taxonomy
& Query Entity

Output
Taxonomy

organic
chemistry

Self-supervised
Annotation

Output
Taxonomy

(b) Generative Methods: LLMs generate the parent entity
from the taxonomy based on the query entity.

Figure 1: Two Types Taxonomy Expansion Methods

As shown in Figure 1a, recent taxonomy ex-
pansion methods mainly rely on discriminative
methods that model hierarchical structures through
techniques like Egonets (Shen et al., 2020), mini-
paths (Yu et al., 2020), and Ego-Trees (Wang et al.,
2021). Although pre-trained language models
(PLMs) enhance these methods by encoding enti-
ties’ textual descriptions (Wang et al., 2021, 2022;
Liu et al., 2021b; Xu et al., 2022), their reliance on
limited self-supervised annotations often restricts
performance. In contrast, Generative Large Lan-
guage Models (LLMs) such as GPT-4 (Achiam
et al., 2023) and Llama family (Touvron et al.,
2023; Dubey et al., 2024) have recently shown re-
markable capabilities in text comprehension and
generation, making them highly effective for tasks
aimed at generating structural knowledge (Ye et al.,
2022; Bi et al., 2024; Sun et al., 2024a,b). Increas-
ing LLM parameters boosts generalization, surpass-
ing smaller models and enabling superior few-shot
or zero-shot performance. Even with limited anno-
tations, LLMs effectively leverage extensive knowl-
edge embedded within their parameters, acquired
from large-scale pre-training corpora. In Figure 1b,
we illustrate the pipeline to how generative meth-
ods are applied to the taxonomy expansion task.

4131

https://github.com/QingkaiZeng/CodeTaxo-official
https://github.com/QingkaiZeng/CodeTaxo-official

...

creating query node

organic_chemistry = Entity(name='...',
 description='...',
 parent=None,
 child=[])

finding the parent of the query node

then generating a comment to explain
why it is the parent of the given query
node (optional)

science

chemistry

class Entity:
 def __init__(self, name: str, description: str,
 parent: str, child: List['Entity']):

<Other Selected Entity Instances>

chemistry = Entity(name='chemistry',
 description='chemistry is ... ',
 parent='science',

 child=['thermochemistry',...,])

<Other Selected Entity Instances>

thermo-
chemistry

electro-
chemistry

organic
chemistry

organic_chemistry.add_parent(chemistry)

physics biology

Term:

Definition:

SimCSE

Top n%
Similarity # creating query node

thermochemistry = Entity(name='thermochemistry',
 description='...',
 parent=None, child=[])

Finding the parent of query node

thermochemistry.add_parent(chemistry)

creating query node

thermochemistry = Entity(name='thermochemistry',
 description='...',
 parent=None, child=[])

Finding the parent of query node

thermochemistry.add_parent(chemistry)

creating query node

thermochemistry = Entity(name='thermochemistry',
 description='...',
 parent=None, child=[])

Finding the parent of query node

thermochemistry.add_parent(chemistry)

creating query node

thermochemistry = Entity(name='thermochemistry',
 description='...',
 parent=None, child=[])

Finding the parent of query node

thermochemistry.add_parent(chemistry)

creating query node

thermochemistry = Entity(name='thermochemistry',
 description='...',
 parent=None, child=[])

finding the parent of query node

thermochemistry.add_parent(chemistry)

Taxonomy Code Representation

Few-shot Demo. Construction

Code Completion Prompt

Output Format
&

Optional Natural Language
ExplanationSemantic Similarity Filter

Input Taxonomy
&

Query Entity

Figure 2: The overview of the pipeline for CODETAXO: CODETAXO reformulates the task of integrating a query
entity q into an existing taxonomy T0 as a code completion task using code-based prompts for LLMs.

Two key challenges arise when applying LLMs
to taxonomy expansion. First, unlike traditional
text-to-text NLP tasks such as question answer-
ing and machine translation, representing the tax-
onomic structure for this task in natural language
is inherently challenging. Specifically, the process
requires "flattening" the taxonomy into a sequence
of parent-child entity pairs (Madaan et al., 2022),
effectively serializing a hierarchical structure into
linear text. This serialized format is notably differ-
ent from the unstructured text that LLMs primarily
encounter during pre-training. Furthermore, while
semantically related words in natural language are
usually located near each other, linearizing a tax-
onomy can separate conceptually related entities
by significant distances within the sequence. This
disparity adds to the difficulty of aligning LLM
outputs with the desired structured representation.
Second, scaling to large taxonomies amplifies the
problem, as including every entity from the existing
taxonomy in the prompt is infeasible. The limited
contextual window size of current LLMs and the
associated computational overhead imposes strict
constraints. Even if it were possible to include
thousands of entities within a prompt, the resulting
structural information loss would impair the clarity
of entity-specific distinctions, reducing the model’s
capacity to effectively utilize the taxonomy.

To overcome these challenges, we propose
CODETAXO, a novel taxonomy expansion ap-
proach that leverages code language as prompts.
Code-based representations have shown promise
in structure prediction tasks (Madaan et al., 2022;
Li et al., 2023; Wang et al., 2023; Li et al., 2024;
Bi et al., 2024), as code languages provide a more
natural format for structural data. In CODETAXO,
we frame taxonomy expansion as a code comple-
tion task. We introduce a base Entity class to
store entity surface names, definitions, parent refer-

ences, and child lists, along with two methods for
modifying the taxonomic relations between entities.
Each existing taxonomy entity is instantiated as a
corresponding Entity object. Due to constraints
of contextual window size, we apply a similarity-
based filter, using SimCSE (Gao et al., 2021) to
encode textual description for entities, to include
only the most relevant entities in the prompt

We evaluate CODETAXO through extensive ex-
periments on two sets of small-scale WordNet and
Graphine sub-taxonomies (Bansal et al., 2014; Liu
et al., 2021a), as well as three large-scale SemEval-
2016 taxonomies (Bordea et al., 2016). Our one-
shot CODETAXO surpasses all self-supervised base-
lines trained on large-scale SemEval-2016 annota-
tions, achieving relative accuracy improvements
of 10.26%, 8.89%, and 9.21% on SemEval-Sci,
SemEval-Env, and SemEval-Food, respectively.
Additionally, we evaluated CODETAXO using vari-
ous open-source LLMs, revealing several interest-
ing observations discussed in this work.

In summary, our main contributions include:

• We introduce CODETAXO, an innovative in-
context learning method that utilizes code lan-
guage prompts to represent taxonomic rela-
tionships between entities, thereby improving
the effectiveness of taxonomy expansion.

• We develop a similarity-based filter, which
employs a small pre-trained model to encode
the textual descriptions of entities, ensuring
that only highly relevant entities are included
in the prompt concerning the query entity.

• Extensive experiments demonstrate that
CODETAXO significantly enhances the per-
formance of taxonomy expansion across two
sets of small-scale sub-taxonomies and three
large-scale taxonomies.

4132

Task Instruction

Taxonomy Code Representation

Few-shot Demo.

Code Completion Prompt & Output

Complete the next line of code according to the comments and the given code
snippet. You need to find the parent of the query node in the given current
taxonomy and use the add_parent function. (a)

The parent of the given query node always exists in the given current taxonomy,
so do NOT generate a node that is NOT in the given current taxonomy. Note that
you only need to complete the next ONE line of code a one-line explanation to
explain why it is the parent node of the given query node, DO NOT generate any
additional content. (b)

Demo.

 = Entity(name= , description= , parent=None, child=[])

creating query node

Finding the parent of query node

<Entity class defined in Section 3.2>

.add_parent()

 = Entity(name= , description= , parent= , child=)

where the textual description of is , is the parent of ,
and is the list of children of .

:FOR EACH

Figure 3: Prompt Overview of CODETAXO

2 Problem Definition

Definition 1 (Taxonomy) We follow the definition
of taxonomy in (Jiang et al., 2023). A taxonomy
T = (E ,H) is a tree-like structure, where each
entity e ∈ E is a conceptual entity, and each edge
h ∈ H represents the hypernymy-hyponymy rela-
tion between the two entities connected by it. Each
entity e is associated with a set of textual descrip-
tion Xe = {Xt

e, X
d
e }, where Xt

e is its term and Xd
e

is its definition. Meanwhile, each directed edge
h = ⟨p, c⟩ ∈ H represents a parent-child relation-
ship that points to a child entity c from its most
exact hypernymy entity p.

Definition 2 (Taxonomy Expansion) Given a set
of emerging conceptual entities E ′, taxonomy ex-
pansion aims to incorporate these entities into an
existing seed taxonomy T0 = (E0,H0). The goal
is to expand T0 to be a larger taxonomy T =
(E0 ∪ E ′,H′). To insert each query entity q ∈ E ′,
we identify an appropriate anchor entity a ∈ E0,
and introduce a new edge ⟨q, a⟩. Consequently, the
updated edge set is H′ = H0∪q∈E ′{⟨q, a⟩}.

3 Methodology

In this section, we provide a comprehensive
overview of our proposed CODETAXO designed for
addressing the taxonomy expansion task. Specifi-
cally, CODETAXO expands the existing taxonomy
by prompting LLMs with code language. The
pipeline of CODETAXO is shown in Figure 2. Our
CODETAXO consists of three parts: Task Instruc-

from typing import List

class Entity:
 def __init__(
 self,
 name: str,
 description: str,
 parent: 'Entity',
 child: List['Entity']
):
 self.name = name
 self.description = description
 self.parent = parent
 self.child = child

 def add_parent(self, parent: 'Entity'):
 self.parent = parent
 parent.add_child(self)

 def add_child(self, child: 'Entity'):
 self.child.append(child)

Figure 4: Python code in CODETAXO defining a Entity
class for managing parent-child relations.

tion, Taxonomy Code Representation, and Few-
shot Demonstrations Construction.

3.1 Task Instruction

To enhance the effectiveness and accuracy of LLMs
in completing the taxonomy expansion task, we
propose a detailed task description along with a set
of fundamental rules, denoted as R, for expanding
the existing taxonomy via the query entity. As illus-
trated in Figure 3, component (a) outlines the objec-
tives of the taxonomy expansion task, framing it as
a code completion task and specifying add_parent
function should be employed. In component (b),
we emphasize a set of fundamental rules R for
the taxonomy expansion task. These rules include
the following: 1. Do not use entities that are not
covered in the existing taxonomy T0 = (E0,H0)
(r1); 2. Maintain the output generation format by
LLMs, consisting of one line of code followed by
one line explaining why the model made that pre-
diction (r2); 3. Refrain from generating additional
content (r3). Additionally, the rule for generating
an explanation for the prediction in r2 is optional
for future analysis. In CODETAXO, this rule is
omitted as generating explanations is not required.

3.2 Taxonomy Code Representation

To represent the existing taxonomy T0 = (V0, E0)
as code language, we concatenate the entity class
definition, representation of existing taxonomic re-
lations, and the code completion prompt. We use
Python as the programming language for the code
prompt due to its widespread popularity.

3.2.1 Entity Class Definition
First, we define a base type Entity to be inherited
by each entity mentioned in the taxonomy expan-

4133

sion. In Figure 4, we define a Python class named
Entity that models a taxonomic structure with
parent-child relations. The first line imports the
List type from the typing module, which is used
for type hinting. This allows the child attribute to
be explicitly declared as a list of Entity objects.

The Entity class encapsulates the attributes and
methods for managing hierarchical entities. The
__init__ method initializes an instance of the
Entity class with the following parameters:

• name: A string storing the term of the entity.
• description: A string storing the textual de-

scription of the entity
• parent: An instance of the Entity class, de-

noting the parent entity within the taxonomy.
• child: A list of entities, each an instance of

the Entity class, storing the entity’s children.
These instance attributes are assigned as follows:

self.name, self.description, self.parent,
and self.child. Additionally, since we consider
that each entity in the taxonomy should only have
one parent entity, we do not use the List type for
the parent attribute, unlike the child attribute.

The Entity class includes two methods for mod-
ifying the parent-child relations between entities.
The first method, add_parent, assigns a parent en-
tity to the current entity. It takes one parameter,
parent, which is an instance of the Entity class.
The second method, add_child, appends the child
entity to the self.child list of the current entity.
This method also requires one parameter, child,
which is an instance of the Entity class.

3.2.2 Representing the Existing Taxonomy
To facilitate the taxonomy expansion, the initial
taxonomy T0 is encoded using a programming lan-
guage. Instances of the Entity class, as defined in
Section 3.2.1, are created for each entity e in the
set E0 of T0. The taxonomy T0 is traversed from
top to bottom, and for each entry, an entity e ∈ E0
is instantiated as follows:

e = Entity(name = Xt
e, description = Xd

e ,

parent = pe, child = Ce)

where pe is the parent entity of e, and Ce =
[c1e, c

2
e, . . . , c

n
e] is the list of its child entities.

3.2.3 Semantic Similarity Filter
Including all entity e ∈ E0 to represent the ex-
isting taxonomy T0 presents two problems. First,
large-scale taxonomies overload the LLM’s limited

context window. Second, it unnecessarily expands
the search space, introducing irrelevant entities and
redundant information. To mitigate these issues,
we propose a Semantic Similarity Filter that selects
only entities relevant to the query q for inclusion in
the prompt context.

To compute the similarity between a query en-
tity q with its descriptive text X q = {Xt

q, X
d
q }

and an entity ei ∈ E0 with its descriptive text
X ei = {Xt

ei , X
d
ei}, we employ the pre-trained

language model (PLM) as textual encoder. We
concatenate the query entity q and the i-th entity
ei with special tokens [CLS] and [SEP], then en-
code the sequence using a pre-trained SimCSE
model (Gao et al., 2021). SimCSE converts them
into m-dimensional representation q, ei ∈ Rm:

q = PLM([CLS] ⊕Xt
q ⊕Xd

q ⊕ [SEP])

ei = PLM([CLS] ⊕Xt
ei ⊕Xd

ei ⊕ [SEP])

The semantic relevance is calculated using co-
sine similarity between {ei}ni=1 and q. We select
the Top-k entities most similar to query entity q
from the entity set E0 in T0 as follow:

I = argmax
I⊆{1,2,...,n},

|I|=k

∑

i∈I
cos_sim(ei,q)

where I is the index set of the selected entities
Esel = {ei|i ∈ I} that represents the existing tax-
onomy. k is set to 50% of the entities in E0.

3.2.4 Code Completion Prompt.
The code completion prompt involves the instantia-
tion of a query entity q as an instance of the Entity
class, as defined in Section 3.2.1. Since the query
entity q lacks information about its parent and child
entities, it is instantiated as follows:

q = Entity(name = Xt
q, description = Xd

q ,

parent = None, child = [])

Here, Xt
q and Xd

q define the query’s name and de-
scription, while None and [] indicate the absence
of parent and child entities.

We include the requirement “Find the parent of
the query node” as a comment to guide LLMs in
selecting an anchor entity a ∈ Esel as the parent
entity for entity q. The output is the query q, an
instance of the Entity class, which invokes the
predefined method add_parent() to assign a as
its parent entity like q.add_parent(a).

4134

Dataset SemEval-Sci SemEval-Env SemEval-Food WordNet Graphine

Metric Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P

Self-supervised Setting
TaxoExpan 27.8 57.6 11.1 54.8 27.6 54.2 19.8 64.8 24.5 65.9
STEAM 36.5 68.2 36.1 69.6 34.2 67.0 23.2 62.4 20.3 63.1
HEF 53.6 75.6 55.3 71.4 47.9 73.5 16.4 60.3 25.5 66.5
Musubu 44.9 76.2 45.3 65.4 42.3 72.4 28.5 64.0 35.4 75.2
TEMP 57.8 85.3 49.2 77.7 47.6 81.0 29.4 65.7 35.9 73.8
BoxTaxo 31.8 64.7 38.1 75.4 31.4 66.8 26.4 63.9 29.2 68.2
TaxoPrompt 61.4 85.6 57.4 83.6 53.2 83.1 40.3 71.5 33.9 74.4
TaxoInstruct 45.9 76.2 48.8 77.2 34.3 70.2 43.3 71.8 31.8 69.0

1-shot Setting
NL (GPT-4o) 54.8 88.3 52.5 81.3 55.5 85.6 72.2 90.7 69.8 89.1
CODETAXO (GPT-4o) 67.7 89.2 62.5 86.1 58.1 85.3 74.5 91.3 72.9 91.0
NL (GPT-4o-mini) 50.0 83.0 35.0 76.1 55.1 87.2 60.1 86.0 58.3 85.2
CODETAXO (GPT-4o-mini) 58.1 85.6 42.5 76.0 55.9 85.3 68.8 89.2 61.5 85.1

5-shot Setting
NL (GPT-4o) 56.5 84.3 60.0 85.5 52.5 86.9 72.2 90.1 69.3 90.0
CODETAXO (GPT-4o) 66.1 88.0 67.5 87.0 60.2 85.7 76.5 91.9 77.6 93.4
NL (GPT-4o-mini) 53.2 84.8 42.5 80.2 57.2 87.6 63.4 87.3 63.5 88.6
CODETAXO (GPT-4o-mini) 59.7 84.8 47.5 78.3 58.9 87.9 66.8 88.6 70.3 89.1

Table 1: Performance on taxonomy expansion across two small-scale taxonomies (WordNet and Graphine) and three
large-scale taxonomies (SemEval2016: science, environment, food). Bold indicates the highest score; underlined
indicates the second-highest. All metrics are in percentages (%).

We propose incorporating an optional feature
in the code completion prompt: “then generating
a comment to explain why it is the parent of the
given query node”. This feature allows the LLM to
simultaneously generate both the prediction and its
rationale, improving explainability and revealing
interesting insights, as discussed in Section 4.5.

3.3 Few-shot Demonstration Construction
To enhance LLMs’ ability to expand our existing
taxonomy, we propose a method for constructing
demonstrations using the initial taxonomy T0. Our
demonstration selection strategy focuses on the se-
mantic similarity between the query entity q and
entities e ∈ E0 in the existing taxonomy. Specifi-
cally, we use SimCSE encoding to calculate these
similarities, selecting the top-5 entities from the
existing set E0 based on their similarity to q:

Id = argmax
Id⊆{1,2,...,n},

|Id|=5

∑

i∈Id
cos_sim(ei,q)

Here, Id represents the indices of entities selected
for the demonstration set Edemo = {ei|i ∈ Id}.
For each demonstration di, we treat each entity
ei ∈ Edemo as a query entity and, following the
procedure outlined in Section 3.2.4, add its parent
entity using the add_parent method.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate taxonomy expansion on
small-scale WordNet sub-taxonomies (Bansal et al.,
2014) and Graphine taxonomies (Liu et al., 2021a).
Additionally, we evaluate three large-scale tax-
onomies from SemEval-2016 (Bordea et al., 2016)
across science, environment, and food domains.
For all benchmarks, 20% of leaf entities are re-
served for testing, with the remaining entities used
for training. See App. A.1 for details.

Baselines. We evaluate CODETAXO, using
both GPT-4O and GPT-4O-MINI, against self-
supervised baselines including TaxoExpan (Shen
et al., 2020), STEAM (Yu et al., 2020), HEF (Wang
et al., 2022), Musubu (Takeoka et al., 2021),
TEMP (Liu et al., 2021b), BoxTaxo (Jiang et al.,
2023), TaxoPrompt (Xu et al., 2022), and TaxoIn-
struct (Shen et al., 2024), and prompting LLMs
through natural language. See details in App. A.2.

Evaluation Metrics: We use two Accuracy
(ACC) and Wu & Palmer similarity (Wu&P) to
evaluate the performance of CODETAXO and base-
lines. See details in App. A.3

4135

Method Def. SemEval-Sci SemEval-Env SemEval-Food WordNet Graphine

Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P Acc Wu&P
1-shot Setting
NL (GPT-4o) ✓ 54.8 88.3 52.5 81.3 55.5 85.6 72.2 90.7 69.8 89.1

× 59.7 89.0 57.5 82.8 56.4 87.0 68.1 89.1 68.8 90.1
CODETAXO (GPT-4o) ✓ 67.7 89.2 62.5 86.1 58.1 85.3 74.5 91.3 72.9 91.0

× 56.5 84.5 55.0 85.1 56.8 86.1 66.4 88.4 69.8 88.8

5-shot Setting
NL (GPT-4o) ✓ 56.5 84.3 60.0 85.5 52.5 86.9 72.2 90.1 69.3 90.0

× 59.7 89.6 50.0 79.3 55.5 87.6 70.5 89.9 68.8 88.9
CODETAXO (GPT-4o) ✓ 66.1 88.0 67.5 87.0 60.2 85.7 76.5 91.9 77.6 93.4

× 51.6 80.6 65.0 86.7 57.6 86.1 67.8 88.8 68.8 89.7

Table 2: Impact of Definition Sentences (Def.) on CODETAXO and NL Performance in 1-Shot and 5-Shot Settings.

WN-NL WN-CT G-NL G-CT65

70

75

80

Ac
cu

ra
cy

 (%
)

69.1

76.2

67.2

78.7

67.5

71.9

68.2

77.6

67.5

76.5

67.7

79.2

WN-NL WN-CT G-NL G-CT
86

88

90

92

94

W
u

&
Pa

lm
er

 (%
)

89.3

91.1
90.2

92.6

88.8

90.7 90.4

91.9

88.8

91.1

90.2

92.4

CodeLLaMa-34B LLama-3-70B CodeLLaMA-70B

Figure 5: Performance comparison of NL and CODE-
TAXO (CT) across Llama trained on Code and Natural
Language domains. Due to limited contextual window
sizes, evaluations were conducted on small-scale sub-
taxonomies from WordNet (WN) and Graphine (G).

4.2 Experimental Results

4.2.1 Can CODETAXO expand taxonomy
better than other baselines?

We evaluate CodeTaxo against baseline methods
for taxonomy expansion in Table 1, including self-
supervised and in-context learning approaches. On
WordNet and Graphine, both NL and CODETAXO

significantly outperform self-supervised baselines.
In one-shot settings, CODETAXO improves accu-
racy by 72.06% and 103.06% over the best self-
supervised methods, demonstrating that minimal
annotated data effectively unlocks LLMs’ internal
knowledge, while self-supervised methods strug-
gle with limited-scale taxonomies. On large-scale
SemEval-2016 taxonomies, CODETAXO surpasses
the best self-supervised baseline, TaxoPrompt,
by 10.26%, 8.89%, and 9.21% on SemEval-Sci,
SemEval-Env, and SemEval-Food, respectively.
While the NL prompt underperforms TaxoPrompt
on SemEval-Sci and SemEval-Env, it exceeds Tax-
oPrompt on SemEval-Food but still trails Code-
Taxo by 4.68%, highlighting CODETAXO’s supe-
rior ability to capture taxonomic structures. Perfor-
mance depends on LLM capability and demonstra-
tion count, with GPT-4o outperforming GPT-4o-
mini and more demonstrations improving accuracy

Setting Config. SemEval-Sci SemEval-Env SemEval-Food

Demo. Filter Acc Wu&P Acc Wu&P Acc Wu&P

1-shot

× × 50.0 84.0 47.5 81.1 56.4 85.3
× ✓ 61.3 84.4 55.0 83.2 54.2 84.6
✓ × 61.3 85.9 47.5 79.0 57.2 86.7
✓ ✓ 67.7 89.2 62.5 86.1 58.1 85.3

5-shot

× × 58.1 86.0 55.0 82.8 56.4 86.5
× ✓ 59.7 84.7 57.5 83.7 58.5 85.8
✓ × 61.3 88.5 55.0 85.3 57.6 86.5
✓ ✓ 66.1 88.0 67.5 87.02 60.2 85.7

Table 3: Ablation Study of two major modules in the
CODETAXO: All metrics are presented in percentages
(%). Configurations indicate whether Demonstration Se-
lection (Demo.) and Semantic Similarity Filter (Filter)
were employed.

across benchmarks, underscoring the value of high-
quality demonstrations for taxonomy expansion.

4.2.2 How does CODETAXO perform across
different large language models?

We evaluate CODETAXO, a prompting method
specifically designed for programming languages,
by comparing its effectiveness against natural lan-
guage prompting on both general-purpose LLMs
and Code-LLMs. We used Llama-family models,
including LLaMa-3-70B-instruct, CodeLLaMA-
70B-instruct, and the smaller CodeLLaMA-34B-
instruct, to evaluate how model size affects perfor-
mance. Given the limited contextual capacity of
these models, we focused our evaluation on Word-
Net and Graphine, as shown in Figure 5. The re-
sults highlight CODETAXO’s superior accuracy and
Wu&P scores across all tested models, outperform-
ing natural language prompts in representing taxo-
nomic structures for black-box LLMs like GPT-4
and open-source LLMs. The analysis further re-
veals that CODETAXO benefits more significantly
from Code-LLMs, with a 13.33% accuracy im-
provement on WordNet compared to 6.51% for
natural language prompts when transitioning to

4136

T-1 T-10 T-25 T-50 T-100 T-50%
Top-K

40

50

60

70

80
Ac

cu
ra

cy
 (

%
)

Semantics Similarity Filter
SemEval-Sci
SemEval-Env
SemEval-Food

T-1 T-10 T-25 T-50 T-100 T-50%
Top-K

65

70

75

80

85

90

W
u

&
 P

al
m

er
 (

%
)

Semantics Similarity Filter

SemEval-Sci
SemEval-Env
SemEval-Food

Figure 6: Effect of Top-K relevant entities selected
through SimCSE-based Semantic Similarity Filter.

code language prompting. Notably, CodeLLaMA-
34B-instruct, despite being smaller, showed better
performance on WordNet and Graphine, emphasiz-
ing CODETAXO’s efficiency and robustness.

4.3 Hyperparmeter Analysis of CODETAXO

This section explores the impact of selecting Top-
K entities using the Semantic Similarity Filter
on model performance, with experiments con-
ducted using GPT-4o-mini across three SemEval
taxonomies. As shown in Figure 6, increasing the
number of Top-K entities generally enhances per-
formance by retaining more entities, thereby reduc-
ing the likelihood of filtering out the ground truth
and boosting prediction accuracy. However, this
improvement involves a trade-off: a smaller search
space sharpens the model’s focus but increases the
risk of excluding the ground truth. For instance,
in the SemEval-Sci taxonomy, the model achieved
optimal performance with a Hit@25 score of 78%
by retaining the top 25 entities, demonstrating the
filter’s ability to balance search space and coverage.
To further refine this balance, we retained the top
50% of entities in our experiments, ensuring that
Hit@n exceeded 90% across all benchmarks.

4.4 Ablation Study

4.4.1 Insight of Definition Sentences

We performed an ablation study on definition sen-
tences, a vital data source for taxonomy expan-
sion tasks, using two prompting methods: NL
and CODETAXO. Our results in Table 2 show
that without definition sentences, CODETAXO suf-
fers a substantial drop in accuracy and Wu&P
across all benchmarks in both 1-shot and 5-shot
settings, highlighting its reliance on semantic in-
formation from definitions to establish taxonomic
relationships. Interestingly, NL performed bet-
ter without definition sentences in specific bench-
marks (SemEval-Sci, SemEval-Env, SemEval-
Food) in the 1-shot setting, and in SemEval-Sci and
SemEval-Food in the 5-shot setting. This suggests
that NL struggles to process definition information

effectively, potentially leading to incorrect predic-
tions when overloaded with definitional content.

4.4.2 Effevtiveness of Demo. Selection and
Semantic Similarity Filter

We performed an ablation study on the three Se-
mEval2016 benchmarks mentioned above to as-
sess the effectiveness of the two primary modules
in CODETAXO: Demonstration Selection (Demo.)
and the Semantic Similarity Filter (Filter). Due to
the relatively small size of the taxonomies in Word-
Net and Graphine, filtering redundant entities from
the existing taxonomies was unnecessary. The re-
sults, presented in Table 3, indicate that selecting
demonstrations related to the query entity and filter-
ing out unrelated entities in the existing taxonomy
significantly improves taxonomy expansion. This
finding suggests that incorporating more relevant
contextual information and reducing redundant in-
formation to narrow the search space is beneficial
for both accuracy and the Wu&P score across all
SemEval2016 benchmarks.

4.5 Case Study

This section presents a case study demonstrat-
ing the effectiveness of our CODETAXO frame-
work by comparing its outputs to those of the
natural language (NL) prompt, alongside model
predictions and corresponding definitions in Ta-
ble 4. Notably, CODETAXO aligns closely with
the ground truth and generates explanations us-
ing the prompt from Section 3.2.4 to facilitate in-
sightful discussions. For instance, in the query
functional genomics, CODETAXO accurately clas-
sifies it under genomics, emphasizing its focus on
the “functions and interactions of genes within the
genome”, whereas the NL model incorrectly se-
lects the broader term genetics. Similarly, CODE-
TAXO identifies geopolitics as the parent entity
of geostrategy, highlighting its emphasis on geo-
graphic factors, while the NL model selects the
more general category of politics. These cases
showcase CODETAXO’s ability to leverage defini-
tion information for a comprehensive understand-
ing of taxonomy structures, resulting in more pre-
cise predictions.

5 Related Works

5.1 Taxonomy Expansion

In taxonomy expansion, various approaches have
been developed to integrate emerging entities into

4137

Query NL Output CodeTaxo Output CodeTaxo Exp.

functional genomics
Def. functional genomics
is a field of molecular bi-
ology that attempts to de-
scribe gene functions and

interactions

genetics
Def. genetics is a
branch of biology con-
cerned with the study of
genes, genetic variation,

and heredity in organisms.

genomics
Def. genomics is an interdis-
ciplinary field of biology fo-
cusing on the structure, func-
tion, evolution, mapping,
and editing of genomes

genomics
Exp. Functional ge-
nomics is a subfield
of genomics that fo-
cuses on understanding
the functions and inter-
actions of genes within

the genome.

geostrategy
Def. geostrategy, a sub-
field of geopolitics, is
a type of foreign policy
guided principally by
geographical factors as

they inform, constrain, or
affect political and military
planning

politics
Def. politics is the set of
activities that are associated
with making decisions in
groups, or other forms of
power relations between in-
dividuals, such as the distri-
bution of resources or status

geopolitics
Def. geopolitics on politics
and international relations

geopolitics
Exp. : Geostrategy is
a subfield of geopoli-
tics, which focuses on
geographic factors influ-

encing political and military
planning.

Table 4: Case study comparing the outputs of the CODETAXO and NL prompt using the SemEval-Sci benchmarks.
The table presents the definitions (Def.) of each model’s prediction, additionally with the CODETAXO explanations
(Exp.) provided in the last column (CodeTaxo Exp.). Yellow highlights emphasize the specific focus of the query
within its definition, as correctly captured by CODETAXO, while green highlights indicate broader, less precise
concepts used by the NL model.

existing taxonomies. Aly et al. (Aly et al., 2019)
and Ma et al. utilized hyperbolic embeddings
to capture taxonomic relations, while Jiang et
al. (Jiang et al., 2023) and Xu et al. (Xu et al.,
2024) employed box embedding and fuse embed-
ding instead of single vector embedding to en-
code taxonomic relations respectively. Manzoor
et al. (Manzoor et al., 2020) introduced implicit
edge semantics to enhance entity representations.
Self-supervised methods, such as Egonet (Shen
et al., 2020), mini-path (Yu et al., 2020), and Ego-
Tree (Wang et al., 2021), have also been explored
to model structural information within taxonomies.
To leverage more semantic information from the
textural description of entities, Liu et al. (Liu et al.,
2021b), Takeoka et al. (Takeoka et al., 2021) and
Xu et al. (Xu et al., 2022) fine-tuned BERT-based
models to leverage textual descriptions of entities.
Zhu et al. (Zhu et al., 2023) integrates textual and
visual semantics to capture the hierarchical relation
between entities. Shen et al. (Shen et al., 2024) and
Moskvoretskii et al. (Moskvoretskii et al., 2024)
unified framework combining various taxonomy
construction tasks for instruction tuning. To our
knowledge, CODETAXO is the first work to per-
form taxonomy expansion via prompting LLMs.

5.2 Code-LLMs for Structured Tasks
Recent studies have demonstrated the strong per-
formance of Code-LLMs in complex reasoning
tasks (Yang et al.; MA et al.), including symbolic

reasoning (Madaan et al., 2022; Cheng et al.), graph
reasoning (Cai et al., 2024), event structure predic-
tion (Wang et al., 2023; Chen et al., 2023), math-
ematical reasoning (Gao et al., 2023), and knowl-
edge graph construction (Li et al., 2023; Bi et al.,
2024). These works highlight Code-LLMs’ ability
to transform unstructured text into structured repre-
sentations, enabling advanced reasoning tasks. In
this paper, we focus on enhancing Code-LLMs’
ability to comprehend and expand existing tax-
onomies through emerging query entities.

6 Conclusion

In this paper, we introduce CODETAXO, a novel ap-
proach to taxonomy expansion that leverages code-
based prompts to effectively utilize the inherent
knowledge within LLMs. Our method addresses
key challenges in taxonomy expansion by reformu-
lating the task as a code completion problem and
employing a Semantic Similarity Filtering mecha-
nism to optimize the use of LLMs’ contextual ca-
pacity. Extensive experiments on small-scale and
large-scale taxonomies demonstrate that CODE-
TAXO achieves state-of-the-art performance in both
one-shot settings and five-shot settings. We envi-
sion CODETAXO as a powerful framework for inte-
grating emerging entities into existing taxonomies
by accurately identifying appropriate parent enti-
ties and also providing new insights for leveraging
LLMs in structured knowledge tasks.

4138

Limitations

This study represents an initial effort to utilize
LLMs for taxonomy expansion. Our primary objec-
tive is to identify an effective in-context learning
strategy to leverage the potential of LLMs. We ac-
knowledge that the performance and scalability of
CODETAXO are constrained by the inherent knowl-
edge of LLMs and the limitations of their context
window size. While this paper does not address
the challenges of expanding LLM knowledge or
increasing context window size, we hope that our
work will inspire further research in these areas.

Ethics Statement

Our research addresses taxonomy expansion within
general knowledge domains, leveraging our pro-
posed method, CODETAXO, which uses large lan-
guage models (LLMs) to generate structured knowl-
edge and overcome the limitations of traditional
manual taxonomy construction. We exclusively
utilize publicly available datasets and benchmarks,
avoiding user-generated, private, or sensitive data
to ensure compliance with privacy and ethical stan-
dards. While our datasets do not engage directly
with ethically sensitive content, LLMs inherently
carry biases from their pre-training data, which
may influence the structure and content of the ex-
panded taxonomies. To address this, we integrate
mechanisms for generating explanatory outputs,
enabling detailed scrutiny of the model’s reason-
ing and identifying potential biases. Additionally,
we recognize the risks of applying similar method-
ologies to subjective or sensitive domains, which
could lead to misrepresentation or bias. To miti-
gate such risks, we emphasize collaboration with
domain experts and advocate for responsible appli-
cation of our methodologies across diverse fields,
aiming to promote fairness, accuracy, and ethical
research practices.

Acknowledgements

This work was supported by NSF IIS-2119531,
IIS-2137396, IIS-2142827, IIS-2234058, CCF-
1901059, and ONR N00014-22-1-2507. The au-
thors also thank the OpenAI Researcher Access
Program (ID: 0000003889) for its support.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Rami Aly, Shantanu Acharya, Alexander Ossa, Arne
Köhn, Chris Biemann, and Alexander Panchenko.
2019. Every child should have parents: A taxonomy
refinement algorithm based on hyperbolic term em-
beddings. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4811–4817.

Mohit Bansal, David Burkett, Gerard De Melo, and
Dan Klein. 2014. Structured learning for taxonomy
induction with belief propagation. In ACL, pages
1041–1051.

Zhen Bi, Jing Chen, Yinuo Jiang, Feiyu Xiong, Wei Guo,
Huajun Chen, and Ningyu Zhang. 2024. Codekgc:
Code language model for generative knowledge
graph construction. ACM Transactions on Asian
and Low-Resource Language Information Process-
ing, 23(3):1–16.

Georgeta Bordea, Els Lefever, and Paul Buitelaar. 2016.
Semeval-2016 task 13: Taxonomy extraction evalu-
ation (texeval-2). In Proceedings of the 10th inter-
national workshop on semantic evaluation (semeval-
2016), pages 1081–1091.

Qiaolong Cai, Zhaowei Wang, Shizhe Diao, James
Kwok, and Yangqiu Song. 2024. Codegraph: En-
hancing graph reasoning of llms with code. arXiv
preprint arXiv:2408.13863.

Yangyi Chen, Xingyao Wang, Manling Li, Derek
Hoiem, and Heng Ji. 2023. Vistruct: Visual struc-
tural knowledge extraction via curriculum guided
code-vision representation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 13342–13357.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
et al. Binding language models in symbolic lan-
guages. In The Eleventh International Conference on
Learning Representations.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

4139

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He,
Ji-Rong Wen, and Daxiang Dong. 2019. Taxonomy-
aware multi-hop reasoning networks for sequential
recommendation. In Proceedings of the twelfth ACM
international conference on web search and data
mining, pages 573–581.

Song Jiang, Qiyue Yao, Qifan Wang, and Yizhou Sun.
2023. A single vector is not enough: Taxonomy
expansion via box embeddings. In Proceedings of
the ACM Web Conference 2023, pages 2467–2476.

David Jurgens and Mohammad Taher Pilehvar. 2016.
Semeval-2016 task 14: Semantic taxonomy enrich-
ment. In Proceedings of the 10th international work-
shop on semantic evaluation (SemEval-2016), pages
1092–1102.

SeongKu Kang, Shivam Agarwal, Bowen Jin, Dongha
Lee, Hwanjo Yu, and Jiawei Han. 2024. Improving
retrieval in theme-specific applications using a corpus
topical taxonomy. In Proceedings of the ACM on Web
Conference 2024, pages 1497–1508.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuan-Jing Huang, and Xipeng Qiu. 2023.
Codeie: Large code generation models are better few-
shot information extractors. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
15339–15353.

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren,
Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu, Xi-
ang Li, Zhilei Hu, et al. 2024. Knowcoder: Coding
structured knowledge into llms for universal informa-
tion extraction. arXiv preprint arXiv:2403.07969.

Bang Liu, Weidong Guo, Di Niu, Jinwen Luo, Chaoyue
Wang, Zhen Wen, and Yu Xu. 2020. Giant: scalable
creation of a web-scale ontology. In Proceedings of
the 2020 ACM SIGMOD International Conference
on Management of Data, pages 393–409.

Zequn Liu, Shukai Wang, Yiyang Gu, Ruiyi Zhang,
Ming Zhang, and Sheng Wang. 2021a. Graphine: A
dataset for graph-aware terminology definition gen-
eration. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3453–3463.

Zichen Liu, Hongyuan Xu, Yanlong Wen, Ning Jiang,
Haiying Wu, and Xiaojie Yuan. 2021b. Temp: Tax-
onomy expansion with dynamic margin loss through
taxonomy-paths. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3854–3863.

YINGWEI MA, Yue Liu, Yue Yu, Yuanliang Zhang,
Yu Jiang, Changjian Wang, and Shanshan Li. At
which training stage does code data help llms rea-
soning? In The Twelfth International Conference on
Learning Representations.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1384–1403.

Emaad Manzoor, Rui Li, Dhananjay Shrouty, and Jure
Leskovec. 2020. Expanding taxonomies with im-
plicit edge semantics. In Proceedings of The Web
Conference 2020, pages 2044–2054.

Viktor Moskvoretskii, Ekaterina Neminova, Alina
Lobanova, Alexander Panchenko, and Irina Nik-
ishina. 2024. Taxollama: Wordnet-based model for
solving multiple lexical sematic tasks. arXiv preprint
arXiv:2403.09207.

Jiaming Shen, Zhihong Shen, Chenyan Xiong, Chi
Wang, Kuansan Wang, and Jiawei Han. 2020. Tax-
oexpan: Self-supervised taxonomy expansion with
position-enhanced graph neural network. In Proceed-
ings of The Web Conference 2020, pages 486–497.

Yanzhen Shen, Yu Zhang, Yunyi Zhang, and Jiawei Han.
2024. A unified taxonomy-guided instruction tuning
framework for entity set expansion and taxonomy
expansion. arXiv preprint arXiv:2402.13405.

Kai Sun, Yifan Xu, Hanwen Zha, Yue Liu, and Xin Luna
Dong. 2024a. Head-to-tail: How knowledgeable are
large language models (llms)? aka will llms replace
knowledge graphs? In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 311–325.

Yushi Sun, Hao Xin, Kai Sun, Yifan Ethan Xu,
Xiao Yang, Xin Luna Dong, Nan Tang, and Lei
Chen. 2024b. Are large language models a good
replacement of taxonomies? arXiv preprint
arXiv:2406.11131.

Kunihiro Takeoka, Kosuke Akimoto, and Masafumi
Oyamada. 2021. Low-resource taxonomy enrich-
ment with pretrained language models. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2747–2758.

Yanchao Tan, Carl Yang, Xiangyu Wei, Chaochao Chen,
Longfei Li, and Xiaolin Zheng. 2022. Enhancing
recommendation with automated tag taxonomy con-
struction in hyperbolic space. In 2022 IEEE 38th In-
ternational Conference on Data Engineering (ICDE),
pages 1180–1192. IEEE.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

4140

Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Suyuchen Wang, Ruihui Zhao, Xi Chen, Yefeng Zheng,
and Bang Liu. 2021. Enquire one’s parent and child
before decision: Fully exploit hierarchical structure
for self-supervised taxonomy expansion. In Proceed-
ings of the Web Conference 2021, pages 3291–3304.

Suyuchen Wang, Ruihui Zhao, Yefeng Zheng, and Bang
Liu. 2022. Qen: Applicable taxonomy completion
via evaluating full taxonomic relations. In Proceed-
ings of the ACM Web Conference 2022, pages 1008–
1017.

Xingyao Wang, Sha Li, and Heng Ji. 2023. Code4struct:
Code generation for few-shot event structure predic-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 3640–3663.

Fred Xu, Song Jiang, Zijie Huang, Xiao Luo, Shichang
Zhang, Yuanzhou Chen, and Yizhou Sun. 2024. Fuse:
Measure-theoretic compact fuzzy set representation
for taxonomy expansion. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
2707–2720.

Hongyuan Xu, Yunong Chen, Zichen Liu, Yanlong Wen,
and Xiaojie Yuan. 2022. Taxoprompt: A prompt-
based generation method with taxonomic context
for self-supervised taxonomy expansion. In IJCAI,
pages 4432–4438.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi Fung,
Sha Li, Zixuan Huang, Xu Cao, Xingyao Wang,
Heng Ji, et al. If llm is the wizard, then code is
the wand: A survey on how code empowers large lan-
guage models to serve as intelligent agents. In ICLR
2024 Workshop on Large Language Model (LLM)
Agents.

Shuo Yang, Lei Zou, Zhongyuan Wang, Jun Yan, and
Ji-Rong Wen. 2017. Efficiently answering technical
questions—a knowledge graph approach. In Thirty-
First AAAI Conference on Artificial Intelligence.

Hongbin Ye, Ningyu Zhang, Hui Chen, and Huajun
Chen. 2022. Generative knowledge graph construc-
tion: A review. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–17.

Xiaoxin Yin and Sarthak Shah. 2010. Building taxon-
omy of web search intents for name entity queries.
In Proceedings of the 19th international conference
on World wide web, pages 1001–1010.

Yue Yu, Yinghao Li, Jiaming Shen, Hao Feng, Jimeng
Sun, and Chao Zhang. 2020. Steam: Self-supervised
taxonomy expansion with mini-paths. In Proceed-
ings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages
1026–1035.

Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and
Alexander Smola. 2014. Taxonomy discovery for
personalized recommendation. In Proceedings of the
7th ACM international conference on Web search and
data mining, pages 243–252.

Tinghui Zhu, Jingping Liu, Jiaqing Liang, Haiyun Jiang,
Yanghua Xiao, Zongyu Wang, Rui Xie, and Yunsen
Xian. 2023. Towards visual taxonomy expansion. In
Proceedings of the 31st ACM International Confer-
ence on Multimedia, pages 6481–6490.

A Appendix

A.1 Datasets

We evaluate the performance of taxonomy ex-
pansion methods on small-scale taxonomies us-
ing WordNet Sub-taxonomies from (Bansal et al.,
2014), and Graphine taxonomies from (Liu et al.,
2021a). Specifically, we use 35 Graphine tax-
onomies with fewer than 100 entities, selected
from a total of 227 taxonomies. For the Graphine
dataset, we selected 35 taxonomies with fewer
than 100 entities out of 227 total taxonomies. In
our experiment with WordNet, we utilized 114
sub-taxonomies from the test sets. Additionally,
we evaluate three large-scale taxonomies from
SemEval-2016 (Bordea et al., 2016) across sci-
ence, environment, and food domains. Table 5
presents the statistics of these taxonomies, all of
which contain entities and definitions curated by
human experts. For all benchmarks, 20% of leaf
entities are reserved for testing, with the remaining
entities used for training.

#Concepts #Edges Depth License

WordNet 20.5 19.5 3.0 WordNet
Graphine 48.2 48.2 4.6 None
SemEval-Sci 429.0 451.0 8.0 None
SemEval-Env 261.0 261.0 6.0 None
SemEval-Food 1,486.0 1,576.0 8.0 None

Table 5: Statistics of five taxonomy benchmarks. For
WordNet and Graphine, we report the average for tax-
onomies included in these two benchmarks.

A.2 Baselines

We compare our method with the following base-
lines for taxonomy expansion, all experiments are
implemented in a server with three NVIDIA A6000
GPUs:

• TaxoExpan (Shen et al., 2020): adopts
GNNs to encode local ego-graphs in taxon-
omy to enhance entity representation.

4141

• STEAM (Yu et al., 2020): utilizes the mini-
path information to capture the global struc-
ture of the taxonomy.

• HEF (Wang et al., 2022): represents tax-
onomies as ego-trees to capture hierarchy,
fully leveraging the hierarchical structure to
improve taxonomy coherence.

• Musubu (Takeoka et al., 2021): leverages
pre-trained models and fine-tunes them as sen-
tence classifiers using queries generated from
Hearst patterns.

• TEMP (Liu et al., 2021b): utilizes a pre-
trained model to encode text descriptions of
each concept in the taxonomy. It incorporates
taxonomic structure information through tax-
onomy paths.

• BoxTaxo (Jiang et al., 2023): represent the
entities via box embeddings instead of single
vector embeddings to capture the hierarchical
relation between entities.

• TaxoPrompt (Xu et al., 2022): adopt prompt
tuning on the BERT-based encoder model to
capture the taxonomic structure.

• TaxoInstruct (Shen et al., 2024): a unified
framework for taxonomy-related tasks using
instruction tuning, focused solely on taxon-
omy expansion for fair comparison.

To the best of our knowledge, CODETAXO repre-
sents the first work to address taxonomy expansion
using an in-context learning approach. To vali-
date the effectiveness of the code language based
prompt design, we additionally propose a prompt-
ing method based on natural language prompts.
The results obtained using the natural language
prompt (NL) are presented in Table 1. To ensure
that the natural language prompt communicates
the same information as code language prompt in
CODETAXO, we represent each entity using natural
language to describe its surface name, definition,
parent, and children list. The details of the NL
prompt are provided in Table 7. For a more direct
comparison, we also demonstrate CODETAXO’s
predictions on the same example in Table 8.

A.3 Evaluation Metrics.

The performance of CODETAXO and the baseline
models for taxonomy expansion tasks is evaluated
using commonly adopted metrics, including accu-
racy (Acc) and Wu & Palmer similarity (Wu&P), as
established in prior work (Yu et al., 2020; Liu et al.,
2021b; Wang et al., 2021). Since CODETAXO is

Dataset 1-shot 5-shot

NL CodeTaxo NL CodeTaxo

SemEval-Sci 15737.2 9701.4 16095.1 10342.6
SemEval-Env 8965.7 5693.6 9325.0 6321.1
SemEval-Food 48908.1 30536.5 49266.4 31176.3
WordNet 948.9 1369.2 1306.4 1962.3
Graphine 2486.0 3223.9 2855.2 3893.3

Table 6: Comparison of average tokens used by NL and
CODETAXO across 5 benchmarks in 1-shot and 5-shot
settings.

a generation-based method rather than a ranking-
based one, the mean reciprocal rank (MRR) used
in the baselines is not applicable to CODETAXO.

A.4 Efficiency Analysis of CODETAXO

Token Consumption Table 6 compares average
token usage across benchmarks and prompt types
(CODETAXO vs. NL) in 1-shot and 5-shot set-
tings. The findings highlight CODETAXO’s effi-
ciency in reducing token usage while maintaining
effectiveness. Notably, in SemEval2016, CODE-
TAXO cuts token usage by approximately 37.6% in
the SemEval-Food task compared to natural lan-
guage prompts. However, in the WordNet and
Graphine datasets, CODETAXO uses slightly more
tokens due to the need to define Entity classes and
methods. Overall, the significant reduction in token
usage in SemEval2016 underscores CODETAXO’s
efficiency, especially in contexts with limited token
windows.

4142

Natural Language Prompt

User: Given the current taxonomy, find the parent of the query node. Please note that the query node
may be a new node not in the current taxonomy. The parent of given query node always exists, so do
not generate ’none’ or ’not found’. You only need to answer the entity name and do not generate any
additional content or comments.

lunacy: obsolete terms for legal insanity; parent: insanity; children: [].
irrationality: the state of being irrational; lacking powers of understanding; parent: insanity; children:
[].
dementia: mental deterioration of organic or functional origin; parent: insanity; children: [’presenile
dementia’, ’alcoholic dementia’, ’senile dementia’].
alcoholic dementia: dementia observed during the last stages of severe chronic alcoholism; involves
loss of memory for recent events although long term memory is intact; parent: dementia; children: [].
Pick’s disease: a progressive form of presenile dementia found most often in middle-aged and elderly
women and characterized by degeneration of the frontal and temporal lobes with loss of intellectual
ability and transitory aphasia; parent: presenile dementia; children: [].
derangement: a state of mental disturbance and disorientation; parent: insanity; children: [].
craziness: informal terms for insanity; parent: insanity; children: [].
presenile dementia: dementia with onset before the age of 65; parent: dementia; children: ["Pick’s
disease"].
senile dementia: dementia of the aged; results from degeneration of the brain in the absence of
cerebrovascular disease; parent: dementia; children: [].
insanity: relatively permanent disorder of the mind; parent: None; children: [’irrationality’, ’dementia’,
’craziness’, ’derangement’, ’lunacy’].

Query node: Alzheimer’s disease
The parent of query node:

Assistant: dementia

Ground Truth: presenile dementia

Table 7: Example of Natural Language (NL) Prompt.

4143

Code Prompt

User: Complete the next line of code according to the comments and the given code snippet. You need to find the parent
of the query node in the given current taxonomy and use the add_parent function. The parent of given query node always
exists in the given current taxonomy, so do NOT generate node that is NOT in the given current taxonomy. Note that you only
need to complete the next ONE line of code, do not generate any additional content or comments.

from typing import List

class Entity:
def __init__(self, name: str, description: str, parent: str, child: List[’Entity’]):
self.name = name
self.description = description
self.parent = parent
self.child = child

def add_parent(self, parent: ’Entity’):
self.parent = parent.name
parent.add_child(self)

def add_child(self, child: ’Entity’):
self.child.append(child)

Creating entities and establishing parent-child relationship
lunacy = Entity(name=’lunacy’, description=’obsolete terms for legal insanity’, parent=insanity,
child=[])
irrationality = Entity(name=’irrationality’, description=’the state of being irrational; lacking
powers of understanding’, parent=insanity, child=[])
dementia = Entity(name=’dementia’, description=’mental deterioration of organic or functional
origin’, parent=insanity, child=[’presenile dementia’, ’alcoholic dementia’, ’senile dementia’])
alcoholic_dementia = Entity(name=’alcoholic dementia’, description=’dementia observed during the
last stages of severe chronic alcoholism; involves loss of memory for recent events although long
term memory is intact’, parent=dementia, child=[])
Pick’s_disease = Entity(name=’Pick’s disease’, description=’a progressive form of presenile dementia
found most often in middle-aged and elderly women and characterized by degeneration of the frontal and
temporal lobes with loss of intellectual ability and transitory aphasia’, parent=presenile dementia,
child=[])
derangement = Entity(name=’derangement’, description=’a state of mental disturbance and
disorientation’, parent=insanity, child=[])
craziness = Entity(name=’craziness’, description=’informal terms for insanity’, parent=insanity,
child=[])
presenile_dementia = Entity(name=’presenile dementia’, description=’dementia with onset before the
age of 65’, parent=dementia, child=["Pick’s disease"])
senile_dementia = Entity(name=’senile dementia’, description=’dementia of the aged; results from
degeneration of the brain in the absence of cerebrovascular disease’, parent=dementia, child=[])
insanity = Entity(name=’insanity’, description=’relatively permanent disorder of the mind’,
parent=None, child=[’irrationality’, ’dementia’, ’craziness’, ’derangement’, ’lunacy’])

creating query node
Alzheimer’s_disease = Entity(name=’Alzheimer’s disease’, description=’a progressive form of presenile
dementia that is similar to senile dementia except that it usually starts in the 40s or 50s; first
symptoms are impaired memory which is followed by impaired thought and speech and finally complete
helplessness’, parent=None, child=[])

Finding the parent of query node

Assistant: Alzheimer’s_disease.add_parent(presenile_dementia)

Ground Truth: presenile dementia

Table 8: Example of Code-based Prompt.

4144

