Long-form Hallucination Detection with Self-elicitation
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Abstract

While Large Language Models (LLMs) have
exhibited impressive performance in generat-
ing long-form content, they frequently present
a hazard of producing factual inaccuracies or
hallucinations. An effective strategy to mitigate
this hazard is to leverage off-the-shelf LLMs to
detect hallucinations after the generation. The
primary challenge resides in the comprehensive
elicitation of the intrinsic knowledge acquired
during their pre-training phase. However, exist-
ing methods that employ multi-step reasoning
chains predominantly fall short of addressing
this issue. Moreover, since existing methods
for hallucination detection tend to decompose
text into isolated statements, they are unable to
understand the contextual semantic relations in
long-form content. In this paper, we study a
novel concept, self-elicitation, to leverage self-
generated thoughts derived from prior state-
ments as catalysts to elicit the expression of in-
trinsic knowledge and understand contextual se-
mantics. We present a framework, SelfElicit, to
integrate self-elicitation with graph structures
to effectively organize the elicited knowledge
and facilitate factual evaluations. Extensive ex-
periments on five datasets in various domains
demonstrate the effectiveness of self-elicitation
and the superiority of our proposed method.

1 Introduction

Large Language Models (LLMs), pre-trained on
massive text corpora and fine-tuned to follow hu-
man instructions (Bai et al., 2023; Touvron et al.,
2023; GLM et al., 2024; Al@Meta, 2024), have
shown remarkable performance to generate long-
form content that consists of multiple coherent sen-
tences (Wei et al., 2022). However, there remains
a concern regarding their tendency to generate fac-
tual (external) hallucinations (Bang et al., 2023),
producing sentences that appear plausible but are
factually unsupported (Huang et al., 2023). This
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Figure 1: Schematic illustration of hallucination detec-
tion in long-form content. (a) Statements are isolat-
edly evaluated. (b) Prior statements are incorporated
as context. We investigate (c¢) how prior self-generated
thoughts can elicit models’ intrinsic knowledge.

issue undermines their reliability in real-world sce-
narios where factually accurate responses are ex-
pected (Wei et al., 2024). For example, a model-
generated non-factual statement, "Gliclazide can be
taken at any time of the day, regardless of whether
it is on an empty stomach or after meals", could
mislead patients into taking medication at inappro-
priate times, as the medication is actually recom-
mended to be taken with food (NHS, 2024). An
important strategy to alleviate hallucinations is to
detect hallucinations after generation (Lee et al.,
2023b; Manakul et al., 2023; Mishra et al., 2024;
Guan et al., 2024).

The detection of hallucinations in large language
models has been approached through various meth-
ods, such as retrieval-based techniques (Min et al.,
2023; Li et al., 2023b; Xia et al., 2024; Wei et al.,
2024; Yue et al., 2024; Sansford et al., 2024) and
probe-based approaches (Li et al., 2023a; Zhang
et al., 2024a; Chuang et al., 2024; Wang et al.,
2024a). However, these methods rely heavily on ex-
ternal databases or training corpora, which may not
always be available. Consequently, many studies
have shifted toward leveraging the intrinsic capabil-
ities of pre-trained, off-the-shelf LLMs. The cen-
tral challenge lies in effectively eliciting models’
internal knowledge for hallucination detection. For
example, Zhao et al. (2024) and Wang et al. (2024b)
prompt the models to verbally express knowledge
through chain-of-thought reasoning. Manakul et al.
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(2023); Miindler et al. (2024); Miao et al. (2024)
prompt the model to generate statements from vari-
ous perspectives and quantify their semantic con-
sistencies. Other works (Kang et al., 2023; Dhu-
liawala et al., 2024; Farquhar et al., 2024; Setty
and Setty, 2024) ask the model to answer verifica-
tion questions corresponding to the factoids. While
theoretically insightful, these multi-step elicitation
procedures often encounter limitations in practice.
They either tend to express knowledge with low
relevance or are prone to accumulated inaccura-
cies when extracting triples or constructing verifica-
tion questions, therefore requiring labor-intensive,
meticulous design of prompts or samples to ensure
accuracy and performance.

Additionally, the long-form content generated
by LLMs consists of multiple semantically related
sentences that exhibit logical relationships (Quan
et al., 2024; Que et al., 2024), such as coherence,
comparison, and causality. For instance, the preced-
ing statement, "Gliclazide is an oral hypoglycemic
medication" and the subsequent statement, "It is
suitable for adult type 2 diabetes patients whose
blood sugar cannot be adequately controlled by
diet alone", demonstrate logical coherence and pro-
gression. The first statement introduces the cate-
gory and function of the medication, while the sec-
ond statement further elaborates on its specific med-
ical application. However, existing long-form hal-
lucination detection methods (Zhang et al., 2020;
Min et al., 2023; Wei et al., 2024; Li et al., 2024b)
generally decompose the long-form text into iso-
lated statements for individual fact-checking (Fig-
ure 1(a)), overlooking the contextual semantic rela-
tionships and limiting their long-form understand-
ing. Incorporating contextual information into mod-
els (Figure 1(b)) can provide a more natural, coher-
ent chain of meanings, enhancing the understand-
ing and evaluation of successive statements.

In this work, we present SelfElicit, an integrated
framework designed to effectively elicit a model’s
intrinsic knowledge and utilize semantic relations
for hallucination detection in long-form content.
Specifically, it evaluates the factuality of each state-
ment and elicits relevant knowledge through reflec-
tion conditioned on the evaluation. These elicited
thoughts are then incorporated into subsequent eval-
uations as contextual information (Figure 1(c)),
forming an iterative process where the evaluation
and elicitation interact, namely self-elicitation. To
mitigate hallucinations arising during the self-elicit
process, we integrate a knowledge hypergraph with

self-elicitation to facilitate knowledge retention,
deduplication, and resolution of inconsistencies.
Extensive experiments on five datasets in various
domains demonstrate that self-elicitation can act as
an effective catalyst to improve both the factuality
and diversity of models’ knowledge expression and
our framework outperforms existing methods for
long-form hallucination detection. To sum up, our
contributions include:

* We study a novel concept of self-eliciting
large language models for hallucination de-
tection. We show that using self-generated
thoughts from prior statements as catalysts
effectively facilitates intrinsic knowledge ex-
pression and hallucination detection.

* We propose a new framework, SelfElicit, for
long-form hallucination detection, which syn-
ergizes the self-elicitation mechanism with
contextual semantic relation understanding.
A knowledge hypergraph is integrated to or-
ganize the elicited knowledge and alleviate
hallucination snowballing.

* Our framework consistently demonstrates su-
perior performance in long-form hallucination
detection on datasets with various domains
with different language models. We further
show that self-elicitation enhances knowledge
expression with better factuality and diversity.

2 Preliminaries

2.1 Task

In this paper, we investigate the task of long-form
hallucination detection, which aims to detect under-
lying factual incorrectness from a given long-form
content. The hallucination detection uses the intrin-
sic capabilities of LLMs without external databases,
fine-tuning, or neural probes.

Given a user query () and a candidate response
R that includes several sentences {ri, 7, - - - }, the
long-form hallucination detection task is to identify
whether there is any factual incorrectness in each
sentence and the entire response. Formally,

fone 2 (@iriyra, ) = G, d2, -
i s (QR) =Y
where f f s and fE - respectively refer to sentence-

wise and response-wise algorithms with language
models. ¢; and Y are binary predictions for each
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sentence 7; and for the response R, respectively,
where positive values refer to hallucinated and neg-
ative values refer to factual.

2.2 Knowledge Hypergraph

A knowledge hypergraph is a memory bank that
stores and describes the relationships of knowledge
with a graph structure. Each vertex v refers to an
entity. Each hyperedge e connecting any number
of vertices refers to a piece of knowledge relating
to these entities (denoted as e.vertices). For ex-
ample, an edge "The mechanism of Gliclazide is
to lower blood glucose by stimulating pancreatic
B-cells to secrete insulin' connects vertices "Gli-
clazide", "blood glucose", "pancreatic 5-cells",
and "insulin" since the statement is directly re-
lated to these concepts. We denote the graph as
G = (V,E), where V and E respectively refer to
the vertex set and the edge set. Compared with con-
ventional knowledge graphs constructed by triples
symbolizing knowledge regarding only two entities,
a hyperedge interconnects any number of entities
and thus is favorable for describing complex knowl-
edge (Chen et al., 2024).

3 Methodology

Figure 2 provides an overview of our framework.
Given long-form content to be fact-checked, we
first extract important entities and statements cor-
responding to factoids to be checked. We then
present the framework along with a knowledge hy-
pergraph to iteratively evaluate the factuality of
each statement via @retrieving contextual infor-
mation from the graph, @evaluating the factual-
ity based on calibration, ®@reflecting for intrinsic
knowledge elicitation, @resolving inconsistencies
suggesting induced hallucinations and ®updating
the graph to retain the elicited thoughts.

3.1 Statement Extraction

Extending previous works (Min et al., 2023;
Dammu et al., 2023; Wei et al., 2024) extracting
statements via LLMs, we first propose to identify
named entities before the extractions to alleviate
information missing. Formally,

Vi, Va,---

Si1, 84,2, "

:LM(Pett77"1,T2,"'), (1)
= LM(PeIt7 ‘/;;7 ri)u (2)
where V; is the entity set corresponding to sentence

r;. 8; refers to the j-th statements extracted from
sentence r; concerning entities V;. Peyy and Peyy
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Figure 2: The overall framework. For each candidate
statement extracted from long-form content, we itera-
tively use a Graph-guided Self-elicitation process for
hallucination detection and knowledge elicitation and a
Knowledge Storage process to adaptively memorize the
elicited knowledge for subsequent evaluations.

are the prompts for entity and statement extraction
with domain expertise (shown in Appendix F). We
concatenate all 5; ; to obtain the candidate state-
ment list {s1, s2,- - }.

We then construct the initial knowledge hyper-
graph as Gy = (V, Eg), whose vertex set includes
all identified entities, i.e., V=V, UV, U---, and
edge set is empty, i.e., g = &

3.2 Graph-guided Self-elicitation

Knowledge Sampling. Given graph G;_1 =
(V,E;_1) retaining self-generated thoughts from
prior evaluations of {si,s2, - ,s;—1}, a graph
sampling procedure is conducted to retrieve contex-
tual information and intermediate thoughts related
to current statement s;. Specifically, entities rel-
evant to s; are identified by string matching, i.e.,
Vi = {vjlvj in s;,v; € V}. Then, sub-graphs
with various relevance degrees are extracted using
the combinations of the entities as queries:

V;(k) = Combine(V;, k), 3)
E;(k) ={e|e.vertices == V;(k),e € E;_1}, (4)
E; = U{Ei(k)|a < k < B}, (5)

where Combine(-) refers to k-combinations of ele-
ments V;. « and 3 are hyperparameters balancing
the relevance and diversity ranges. Lower k sug-
gests a wider scope with richer diversity, while
higher k refers to a more precise matching strat-
egy for stronger relevance (more studies in Ap-
pendix D.2). Finally, all statements corresponding
to the sampled edges [; are appended to obtain
context Cj.
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Fact-Checking via Calibration. Calibration-
based fact-checking has shown stable and competi-
tive performance in previous literature (Kadavath
et al., 2022; Manakul et al., 2023; Zhao et al., 2024,
Tian et al., 2024). Similarly, we prompt the models
to evaluate the factuality of a given statement s;
by asking whether the statement is True, False, or
Not Sure and obtain the normalized logit of False
at the first output token as the hallucination score
p;. The sampled statements C; are prefixed before
s; to provide contextual information for a better
understanding of semantic relationships.

Calibration-based Elicitation. Efforts have
been made to elicit the intrinsic knowledge (Petroni
et al., 2019) such as cloze (Miao et al., 2024,
Miindler et al., 2024), validation questions (Man-
akul et al., 2023; Dhuliawala et al., 2024), or chain-
of-thought (Weller et al., 2024; Zhao et al., 2024).
However, we observe that these methods are prone
to inconsistent outputs or accumulated inaccura-
cies during multi-step open-ended generations and
neglect the semantic relations in context.

To this end, we present an approach that guides
the models to verbally express relevant intrinsic
knowledge by elaborating on their calibrated first
output token. We found in our experiments that
this approach provides more consistent reasoning
and better contextual understanding. Formally,

Ozgval’ Ozeﬂ = LM(Cz, Pevaly Si)v (6)

where P, is the evaluation and reflection prompt
(full prompt in Figure 11, Appendix F).

Context: {context C_i}

Description: {candidate s_i}

Is the above description:

A True B False C Not Sure
Choose your option and explain why:

of”“l refers to the first output token, where we ob-
tain the normalized hallucination score p;. ogef !
refers to the reflection sentences with objective
knowledge extracted via rules or prompting from
the models’ outputs, which consist of detailed elab-
orations, subsequent deductions, factoids, and sub-

jective opinions.

3.3 Elicited Knowledge Storage

Graph Updating. After eliciting intrinsic knowl-
edge conditioned on the statement, we store it in the
graph to provide contextual information for subse-
quent evaluations and handle potential knowledge

inconsistencies. Specifically, for each sentence ex-
tracted from reflection, i.e., ¢;; € ofef [ a corre-
sponding new edge ¢; ; is created with verbally
matched entities as its vertices, i.e., V;; = {v |
vin ¢;;, v € V}. All new edges obtained from

reflection are dentoed as:
E; = {éi,j ‘ é@j.VCI‘ﬁCCS == Vi,j}7 @)

where j is the sentence index within ogef !, We then
iteratively merge each new edge in E; into graph
G;_1 to obtain the updated graph G;:

E; = Merge(E;_1,E;). 3
Consistency Checking. In some cases, mod-
els might produce hallucinations during the reflec-
tion processes, especially when reasoning on am-
biguous or unfamiliar statements. Previous works
(Miindler et al., 2024; Yehuda et al., 2024; Far-
quhar et al., 2024) have shown that models’ fabri-
cated statements are less likely to be self-consistent.
To alleviate the hallucination snowballing (Zhang
et al., 2023a), we conduct contrasts across reflec-
tions within each elicitation and across elicitations
based on self-consistency (Kuhn et al., 2023; Far-
quhar et al., 2024) with the knowledge hypergraph.
In each contrast procedure, we first identify the
conflicted statement, ¢ € I~Ei, that shares identical
vertices with existing edges, i.e., é.vertices ==
e.vertices, Je € [E;_;. Next, a Natural Language
Inference (NLI) process categorizes the semantic
relationships into three types: Entail (statements
are identical in meaning, leading to the replace-
ment of the original statement), Contradict (state-
ments have directly opposite meanings), or Neutral
(statements describe different entities or aspects
and are both retained) with the following prompt
(full prompt in Figure 12, Appendix F).
p

Determine the relationship between two sentences.
[entail]: Identical content, describing the same

aspect of the same object.

[contradict]: Directly opposite content about the
same aspect of the same object.

[neutral]: Different objects or aspects, allowing
coexistence.

Sentence A: {sentence_A}

Sentence B: {sentence_B}

-

If contradicted, a revision and resolution of the
conflict are conducted with the following prompt
(full prompt in Figure 13, Appendix F).

Sentence A: {sentence_A}

Sentence B: {sentence_B}

Two sentences describe the same subject but are
contradictory. Determine which is more accurate
based on logic and factuality.
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Table 1: Full hallucination detection results. S: sentence-wise metrics. R: response-wise metrics. Red: the best.
Blue: the second best. Higher metrics are better.

LLM Metric SelfElicit 10 ContextIO HistoryIO CoT CoVE FaR SelfChkGPT | ChatProtect
S R S R S R S R S R S R S R S R S R
WikiBio (biography)

Qwen AUC 0.594 0.653|0.527 0.628 | 0.587 0.522|0.543 0.614 | 0.500 0.566 |0.527 0.524 |0.543 0.508 | 0.539 0.639 | 0.512 0.657
Llama2 0.578 0.707 | 0.516 0.559 | 0.534 0.534|0.477 0.540|0.534 0.531|0.553 0.636 | 0.506 0.522|0.572 0.708 | 0.517 0.704
FActScore (biography)

Qwen AUC 0.524 0.557|0.497 0.455]0.504 0.359 | 0.486 0.344|0.510 0.572]0.486 0.485|0.500 0.462|0.495 0.481|0.495 0.382
Llama2 0.534 0.545]0.494 0.345]0.475 0.404]0.526 0.353]0.498 0.471|0.481 0.427|0.453 0.380|0.536 0.471|0.496 0.461
HaluEval2 (education, finance, science)

Qwen AUC 0.789 0.564 | 0.729 0.516 | 0.680 0.460 | 0.780 0.532|0.599 0.516 |0.672 0.513 | 0.757 0.557 | 0.631 0.524 | 0.528 0.494
Llama2 0.581 0.545|0.513 0.529|0.502 0.493 | 0.516 0.491|0.598 0.499 |0.593 0.505|0.596 0.489 |0.601 0.498 | 0.560 0.541
MedHallu-zh (medicine)

Qwen F1 ]0.269 0.475|0.187 0.441|0.191 0.430|0.238 0.453|0.192 0.402|0.165 0.395|0.207 0.441|0.085 0.395|0.085 0.395

AUC |0.810 0.671|0.771 0.598|0.760 0.603 | 0.782 0.653 | 0.638 0.571|0.597 0.548|0.763 0.613 |0.500 0.500|0.512 0.517
GLM F1 |0.228 0.445|0.182 0.421|0.153 0.424|0.213 0.435|0.131 0.395|0.170 0.423 |0.139 0.405|0.085 0.395|0.134 0.395
AUC |0.798 0.622|0.756 0.598 | 0.733 0.582|0.781 0.614|0.564 0.527 | 0.661 0.567 | 0.702 0.554 | 0.494 0.500 | 0.611 0.558
MedHallu-en (medicine)
Qwen F1 |0.242 0.463|0.182 0.436|0.168 0.443|0.233 0.472|0.192 0.395|0.085 0.395|0.187 0.445|0.226 0.428|0.085 0.395
AUC | 0.803 0.656|0.762 0.622|0.743 0.614|0.779 0.659 |0.596 0.570 | 0.500 0.498|0.763 0.630 | 0.682 0.623 | 0.505 0.505
Qwen2 F1 |0.282 0.479|0.275 0.466|0.247 0.460 | 0.254 0.456|0.211 0.422|0.259 0.440|0.217 0.447 |0.232 0.444 | 0.087 0.395
AUC |0.820 0.667 | 0.805 0.665|0.802 0.661 |0.811 0.656 |0.636 0.595|0.672 0.614 |0.784 0.640 | 0.675 0.636 | 0.523 0.537
Llama2 F1 |0.181 0.408|0.137 0.410|0.139 0.407 | 0.133 0.413|0.142 0.395|0.085 0.395|0.140 0.411|0.103 0.397 | 0.136 0.395
AUC |0.748 0.582|0.697 0.555|0.705 0.509 | 0.667 0.551|0.594 0.537|0.499 0.497 | 0.709 0.558 | 0.561 0.547 | 0.550 0.568
Llama3 F1 |0.211 0.447|0.156 0.406|0.170 0.405|0.147 0.413|0.223 0.449 | 0.184 0.421|0.184 0.422|0.158 0.417|0.208 0.414
AUC |0.773 0.622|0.724 0.546|0.741 0.572|0.662 0.605 | 0.666 0.626 | 0.699 0.562 |0.730 0.586 | 0.634 0.613 | 0.601 0.600
GPT40 F1 [0.329 0.494|0.185 0.395|0.183 0.395|0.250 0.395|0.279 0.487|0.277 0.488 | 0.085 0.395|0.135 0.395|0.085 0.395
mini  AUC |0.682 0.668 | 0.560 0.559|0.564 0.574|0.597 0.586|0.686 0.661 |0.703 0.658 | 0.520 0.521|0.623 0.603 | 0.512 0.505
Icount |16 120 o]0 o0o]o0 3|1 3|1 o0o]o0o o012 1]o0o 1

The consistency checks between edges are con-
ducted iteratively until all candidate edges in E;
have been merged into the graph.

In summary, the iterative interaction between
evaluation and elicitation processes continuously
extends the knowledge hypergraph with intrinsic
knowledge and retains the semantic relationships
in the long-form context, facilitating subsequent
evaluation and elicitation. Note that all knowl-
edge in the graph is explicitly expressed by the
models themselves, and no external information is
included.

Output. After obtaining the hallucination score
D;,j for each statement s; ;, we compute the predic-
tion g; for each candidate sentence r; using max-
imum aggregation, i.e., §; = max(p; 1,Di2,---),
and similarly obtain Y for the full response R, i.e.,
Y = max(yjl,gjg, ce )

We provide detailed complexity analysis in Ap-
pendix B, implementation details in Appendix C.4,
full prompts in Appendix F, and pseudo-code in
Appendix G.

4 Experiments

4.1 Experimental Setups

Datasets. We use the following long-form halluci-
nation detection datasets: MedHallu-zh, MedHallu-
en (medicine, see Appendix C.2 for the construc-
tion process), WikiBio (biography, Manakul et al.,

Table 2: Dataset Statistics. pos%: proportion of non-
factuality. #Sent/Smp: number of sentences per sample.

0],

Dataset Split Total (pos%) #Sent(Smp
Response Sentence avg. min max

Train | 1,622 (27.6%) 10,688 (5.3%) |6.59 1 22
ﬁiﬂgiﬂﬁiﬂ Validate | 270 (24.1%) 1,809 (4.4%) |670 1 21
Test | 812(24.6%) 5,534 (44%) |6.81 1 30

Wikigie  Validate | 71(71.8%)  571(66.0%) [8.04 4 13
© Test | 167(754%) 1337(759%)|8.00 3 13
FActSeore | Validate | 138 (97.8%)  1042(57.3%) |15 4 16
CISCOTE est | 323 (95.7%) 2,477 (542%)|7.67 4 15
Validate | 245 (89.4%) 1,035 (45.8%) [440 1 5

HaluBval2  “op | 551(90.9%) 2464 (45.8%) |447 1 6

2023), FActScore (biography, Min et al., 2023),
and HaluEval2 (education, finance, and science, Li
et al., 2024a). Table 2 shows the dataset statistics.

Models. We use the following off-the-shelf lan-
guage models: Qwenl1.5-7B-chat (Qwen, Bai et al.,
2023), Qwen2.5-7B-Instruct (Qwen2, Bai et al.,
2023), ChatGLM3-6B (GLM, GLM et al., 2024),
Llama2-7B-chat (L1lama2, Touvron et al., 2023),
Llama3.1-8B-Instruct (L1ama3, Al@Meta, 2024),
and GPT4o-mini (OpenAl, 2024) for experiments.
All language models use greedy decoding (temper-
ature=0) during text generation for stable outputs.

Baselines. We compare our method with the fol-
lowing baselines, including classic calibration fact-
checking (10, Kadavath et al., 2022; Mahaut et al.,
2024), long-form enhanced methods (ContextIO
and HistorylO), and methods with various elicita-
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Figure 3: Relative performance (%, average AUC v.s.
SelfElicit) on samples with various lengths (numbers of
sentences) with Qwen. x-axis: samples with length >x.

tion approaches: chain-of-thought (CoT, Wei et al.
2022 and FaR, Zhao et al., 2024), self-ask (CoVE,
Dhuliawala et al., 2024), and self-consistency (Self-
CheckGPT, Manakul et al., 2023, and ChatProtect,
Miindler et al., 2024). For all methods, we use an
identical prompt after their original procedures to
obtain the hallucination score for a fair compari-
son (i.e., only elicitation approaches are different).
More details are shown in Appendix C.1.

Metrics. We treat the hallucination detection
as a classification task, where positive labels re-
fer to non-factual statements. F'1 and AUROC
are used for both sentence-wise and response-wise
metrics. Since the threshold variance affects the
metrics (Huang et al., 2024), we search for the best
thresholds with the highest sentence/response F'1
metrics independently on the validation set and re-
gard hallucination scores larger than the thresholds
as positive predictions on the test set.

4.2 Main Results

Table 1 shows the overall detection results. Ap-
pendix E shows supplementary results with specific
domains on HaluEval2 and severities on MedHallu.

Multi-step elicitation reasoning generally
shows compromised performance. Methods
requiring multi-step reasoning (e.g., CoVE and
ChatProtect) generally have inferior performance
compared with other methods, while methods
with straightforward prompts (e.g., IO) to utilize
the models’ knowledge generally perform better.
Drawing from the conclusion of previous research
(Sprague et al., 2024), the primary benefit of multi-
step reasoning comes in the ability to execute sym-
bolic steps and track the outputs (Sprague et al.,
2024), rather than direct knowledge assessment.
On the contrary, the risk of inaccuracies (e.g., in-
formation missing when generating questions in
CoVE and triple ambiguity in ChatProtect) accu-
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Figure 4: Factuality (left) and diversity (right) of elicited
knowledge with different elicitation methods. x-axis
refers to the statement’s index number.

mulates as the reasoning steps increase, potentially
harming their overall capabilities to fully utilize the
models’ intrinsic knowledge.

Long-form understanding benefits the detec-
tion. In Figure 3, methods without context (e.g.,
IO and SelfCheckGPT) show inferior performance
compared with context-enhanced methods (e.g.,
ContextlO and HistorylO). As the length of the
sample increases, the gap between these two cate-
gories increases since the contextual information
facilitates the understanding of statements and rea-
soning for fact-checking.

SelfElicit generally achieves superior perfor-
mance across LLMs. Comparing results across
various families of modern LLMs, SelfElicit con-
sistently outperforms baselines (ranking top tiers
in 37/40 cases). Conceptually, thoughts from prior
statements ease the fact-check reasoning with in-
context knowledge (Wang et al., 2022; Lee et al.,
2023a) and also provide coherent understandings
of the logical relationships across sentences. The
self-consistency checking mechanism also helps to
alleviate the snowballing of hallucinated content.

4.3 Elicitation Quality

We take a closer look into the elicitation by compar-
ing the factuality (whether the reflection is factual)
and diversity (whether the reflection is not identi-
cal to the statement) of the elicited knowledge with
different elicitating methods: (1) CoT: chain-of-
thought expression, (2) Reflect: calibration-guided
reflection, (3) Context: reflection with prior state-
ments, and (4) Elicit: reflection with previously
generated thoughts. The reflections are generated
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Figure 5: Ablation results (AUC).
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by Qwen and assessed by GPT4. We assign an
index for each sentence within a multi-sentence
response (starting from 1) and report the results
averaged on the index in Figure 4.

We observe that (1) CoT has the lowest factuality
rates and highest diversity, indicating a higher risk
of induced hallucinations. On the contrary, evaluat-
ing before reflection can guide the elicitation with
models’ calibration and alleviate fabrications. (2)
Prefixing context (Context) improves both the fac-
tuality and diversity in most cases (vs Reflect), sug-
gesting that leveraging the contextual relations ben-
efits the knowledge understanding. (3) Combined
with conflict resolution, Elicit can consistently im-
prove the expression of intrinsic knowledge with
better factuality and diversity.

4.4 Ablation Study

We conduct an ablation study to demonstrate the ef-
fectiveness of each component of our method. The
variants include: (1) w/o context: fact-checking
without sampled contextual knowledge, (2) w/o
elicit: using prior statements rather than reflections
as context, (3) w/o sample: linearizing the entire
graph rather than sampling relevant knowledge as
context, (4) w/o conflict: merging all new edges
without inconsistencies mitigation, and (5) full: full
SelfElicit method with all components. Figure 5
and Appendix E.3 show the ablation results.

We conclude that: (1) w/o context shows a salient
degradation compared with other variants, high-
lighting the importance of contextual semantics.
(2) Variants without sampling or conflict mitigation
provide relatively inferior performance compared
to full, even the worst in several cases (e.g., sub-
figure(d)). Manual reviews show that providing
irrelevant or self-contradictory context to models
will largely disturb their focus and affect their rea-
soning, demonstrating the importance of sampling
and conflict mitigation components. (3) Versus all

® SelfElicit ® ContexttO ® CoT SelfCheckGPT CoVE
10 ® HistorylO ® FaR ® ChatProtect
o ‘ 107 L \ [ J
O o
0 |- q | q F
08
- . ® .
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Figure 6: Inference costs with Qwen. x-axis: average
AUC metrics. y-axis: number of output tokens (log).
Spot size refers to the number of model calls.

Case of evaluation with contextual information

=====without contextual information=====

Description: Therefore, a reduction of Lp(a)

from 800 to 600 may be considered normal to

some extent, especially when taking these

lifestyle factors into account.

Is the above description:

ATrue ATrue

B False B False

C Not sure C Not sure
luation & Reflectior

ATrue. B False.

Based on the given description, it seems to According to the context provided, the reference range

suggest that a reduction of of Lp(a) from 800to | for Lp (lipoprotein) levels is between 10 and 125

600 could be seen as within a reasonable range nanomoles per liter, which is considered normal. An

or normal, considering certain lifestyle factors. Lp(a) value of 800 would fall outside this normal range,

The statement does not explicitly state that it's as it is significantly elevated. Elevated Lp(a) is

definitely true for all cases, but it implies a level | considered a risk factor for cardiovascular problems due

of acceptability. to its potential to form plaques in arteries. ..

ith contextual informatios
Context: Lp(a) levels should be between 10 and 125
nanomoles per liter, which is a common way to express
blood lipid concentrations...
Description: Therefore, a reduction of Lp(a) from 800..
Is the above description:

Self-elicited during
prior evaluations

luation & Reflection ==========

Figure 7: A comparison of evaluation and reflec-
tion without(left) or with(right) contextual information.
Red : non-factual content. Green : factual content.

Blue : newly elicited content.

ablated variants, the full method generally provides
the best performance. The full method outperforms
6.8% over w/o context, 6.0% over w/o elicit, 5.1%
over w/o sample, and 2.9% over w/o conflict on
average, highlighting the synergistic effect of all
constituted parts.

4.5 Inference Costs

Figure 6 shows the inference costs for all methods.
SelfElicit achieves the best performance with mod-
erate costs in both the number of model calls and
output tokens. Compared with multi-step reasoning
methods having lower efficiency (e.g., SelfCheck-
GPT, ChatProtect, and CoVE), our method shows
that simple reflections can also be effective in elic-
iting intrinsic knowledge. Specifically, SelfElicit
has a comparable cost to chain-of-thought and con-
sistently outperforms. Detailed metrics are in Ap-
pendix E.4. Theoretical complexity and scalability
analysis are in Appendix B.

4.6 Case Study

We show a case of evaluation with/without con-
textual information in Figure 7. On the left side,
the model has difficulty evaluating the statement
since it fails to recall the normal range of Lp(a)
or compare the values in a single reasoning step.
On the contrary, on the right side, thoughts elicited
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Case of elicited inaccuracy and mitigation via self-consistency

Description: Dermovate and Daivonex are used for treating psoriasis vulgaris

Is the above description =
P @ Model generating

B False hallucinations for
C Not Sure unfamiliar knowledge

B False. Dermovate 'ana Daivonex are not recognized or well-known treatments fo prescription.
psoriasis vulgaris. Psoriasis is a common skin condition that typically responds to | @ Identical
‘medications like topical corticosteroids, vitamin D analogs, phototherapy... vertices Psoriasis vulgaris
onflict Detection Query
Please determine the semantic relationship between the following two sentences. There are three possible types of relationships:
1. [entail]...2. [contradict]...3. [neutral]..
Please analyze sentence A and sentence B, and choose one of the relationships. Please briefly explain your reasoning.
Sentence A: Dermovate and Daivonex are referring to prescription medications or ingredients that are commonly used i
treatment of psoriasis vulgaris, a skin condition. ® Semantic
Sentence B: Dermovate and Daivonex are not recognized or well-known treatments for psoriasis vulgaris.——| conflicts are
Judgment result: detected
onflict Detection Resp
[contradict] Sentence A states that... Sentence B claims that.... Both sentences are about Dermovate and Daivonex in relation to
poriasis, but their meaning are opposite - one suggests they are hopeful, while the other says they are not.
—

onflict Mitigation Query === itigated
Sentence A: Dermovate and Daivonex are referring to prescription medications or ingredients that are commonly via self -
Sentence B: Dermovate and Daivonex are not recognized or well-known treatments for psoriasis vulgaris. consistency
Please consider the logic and factual basis of the sentences. Choose the sentence you think is correct and select fri
options: [Sentence A is correct][Sentence B is correct]

onflict Mitigation Resp 7
[Sentence A is correct]. Sentence A states that...On the other hand, Sentence B claims that... Therefore, if both sentences are
describing the same aspect, Sentence A would be the more accurate one.

Figure 8: A case of generating inaccurate reflection and
how it is mitigated by conflict detection module. Red :

non-factual content. Green : factual content.

from prior statements provide direct information
(the normal range of Lp(a)) to facilitate the eval-
uation of the current statement. Moreover, a new
piece of knowledge about the indication of Lp(a)
(‘blue ) is elicited along with the evaluation.

Figure 8 shows a case when the model gen-
erates inaccurate reflection due to unfamiliarity
with specific knowledge and how the inaccuracy
is mitigated by conflict detection. Since Dermo-
vate and Daivonex are trade names that are less ex-
posed than their pharmaceutical names', the model
@fails to fact-check the statement and generates
erroneous reflections ((red ). Such generated hallu-
cinations might accumulate and finally affect the
reasoning of subsequent evaluations. Thanks to the
@conflict detection module, i.e., the erroneous re-
flection shares an identical vertex set (Dermovate,
Daivonex, and Psoriasis) with existing edges in
the hypergraph, @the NLI component is activated
and identifies their semantic contradiction. Finally,
@the conflict is mitigated via self-consistency to
avoid the snowballing of errors.

5 Disscussion

5.1 Connection with RAG

SelfElicit and retrieval-argument generations
(RAG) (Jin et al., 2024; Luo et al., 2024; Sun et al.,
2024) share some similarities in their schemas,
i.e., retrieving relative information from a knowl-
edge graph to facilitate the down-streaming tasks.
Recent works (Sansford et al., 2024; Yuan et al.,
2024; Niu et al., 2024) have demonstrated the per-
formance gain to incorporate external knowledge

"Manual tests show the model is less familiar with them.

graphs for hallucination detection. Differently, our
work organizes knowledge graphs elicited from
the models themselves, rather than relying on ex-
ternal databases. Moreover, compared with RAG
methods where databases are stand-alone, the self-
elicited knowledge hypergraphs in our framework
depend on the models and evolve in parallel with
the evaluation processes. Theoretically, our method
is orthogonal to these RAG methods and can be
integrated with these methods into a unified design,
which might further benefit both the elicitation and
hallucination detection.

5.2 Comparison with chain reasoning
methods

Compared with chain reasoning methods, our
method differs in three aspects. Knowledge Man-
agement. Our method utilizes a structured graph
as the knowledge base, enabling multi-path rea-
soning and dynamic updates, whereas chain rea-
soning methods rely on hidden states and linear
text expressions. Our method also supports ex-
plicit knowledge verification, editing, and exter-
nal knowledge integration in future works. Con-
flict Resolution. Our method employs a self-
consistency-based mechanism to resolve conflicts
through NLI actively, whereas, in chain reasoning
methods, unsolved inaccuracies may disturb the
generation and lead to self-contradictions. Scala-
bility. Through iterations and knowledge sampling,
our method is preferred for long-form hallucination
detection, while chain reasoning methods might
suffer from excessively long inputs and reduced
reasoning capabilities, leading to confused output
format or hallucinations.

5.3 Domain-specific Adaption

Experiments in various domains (medicine, biogra-
phy, finance, science, and education) have shown
the generalizability of our method. Our method
can also be applied to a wider range of domains.
The only adaption required is the prompt of ex-
tracting entities/statements (Section 3.1), which
is known as open information extraction (Niklaus
et al., 2018). Incorporating domain-specific exper-
tise will improve the quality of this procedure. All
other prompts used in our framework are domain-
agnostic and no additional adaptation is required.

6 Conclusion

In this paper, we have investigated the task of de-
tecting hallucinations from long-form content. Ex-

4089



isting methods predominantly fall short of com-
prehensively elicitating the intrinsic knowledge
of models or overlook the semantic relationships
within long-form content. To address these issues,
we present a novel framework, SelfElicit, which
uses self-generated thoughts from prior statements
to elicit the models’ intrinsic knowledge and syner-
gize self-elicitation and contextual understanding
in a unified diagram. Extensive experiments on five
datasets with various domains with modern large
language models have shown the effectiveness and
superiority of the proposed framework.

Limitations

Some of the limitations of this work include: (1)
this work primarily focuses on technological meth-
ods to elicit the intrinsic knowledge of models, leav-
ing the question of why self-elicitation, as a mech-
anism, fundamentally improves knowledge elicita-
tion to future works. Understanding whether LLMs
either abstract knowledge over linguistic forms or
merely memorize statements (Carlini et al., 2022)
could provide more insights into hallucinations.
(2) Since SelfElicit functions in an iterative loop,
inaccuracies might gradually accumulate and the
complexities increase as the length of response R
increases, which might limit the application for
large-scale deployments. (3) Besides factual hal-
lucinations in long-form content, evaluating addi-
tional metrics, such as contextual appropriateness
and logical coherence will enhance the assessment
of generated content. (4) The performance upper
bound is theoretically restricted by the models’ ca-
pacity obtained from pre-training, leaving contin-
ual improvements an open question.

Ethical Considerations

The statements and examples provided in this paper
are intended for demonstration purposes only and
may contain non-factual information. Our intent
is to illustrate concepts rather than present veri-
fied facts. Readers are strongly advised to consult
with professional practitioners or academic experts
before taking any actions in high-risk scenarios.
The MedHallu datasets are collected and annotated
by third-party certified organizations ethically and
legally. All datasets in this paper are anonymized
and intended for research only.
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A RelatedWorks

A.1 Hallucination Detection

Retrieval-argument methods. Extracting relevant
knowledge from external authentic database and
incorporating it with the query is a common way of
detecting hallucination (Min et al., 2023; Tian et al.,
2024; Gou et al., 2024; Li et al., 2024c; Xia et al.,
2024). Li et al. (2023b); Yu et al. (2023); Wei et al.
(2024) proposed to update the retrieval results with
LLM until the retrieved documents adequately sup-
port answering the questions. Kamoi et al. (2024);
Yuan et al. (2024); Sansford et al. (2024) extracted
keywords as entities and knowledge as triples and
retrieved reference triples from knowledge graphs
or texts. Additionally, Yue et al. (2024) contrasted
the supportive arguments and refuting arguments
derived from retrieval evidence.

Probe-based methods. Probe-based methods
aim to understand the hallucination within the hid-
den activations of deeper model layers (Azaria and
Mitchell, 2023; Zhang et al., 2024b; Wang et al.,
2024a). They usually required probes pre-trained
on a specific dataset to detect the hallucinations (Li
et al., 2023a; Zhang et al., 2024a).

Intrinsic Knowledge-based methods. We cate-
gorize existing knowledge-based hallucination de-
tection methods into three types. (1) Some meth-
ods focus on the token probabilities of white-box
LLMs. Kadavath et al. (2022); Tian et al. (2024)
proposed a calibration-based method to evaluate
the correctness of the content with multiple-choice
questions. Extending the token entropy estima-
tion (Manakul et al., 2023) with keyword focus-
ing, Zhang et al. (2023b) proposed to penalize the
attention score of the hallucinated token to avoid
snowballing (Zhang et al., 2023a). FaR (Zhao et al.,
2024) and CoK (Wang et al., 2024b) elicited the
intrinsic knowledge relevant to the query and re-
flected on the knowledge to improve the calibra-
tion. (2) Some methods propose to ask LLMs to
express their uncertainty verbally (Mahaut et al.,
2024). Tao et al. (2024) leverages reinforcement
learning guided by a tailored dual-component re-
ward function. (3) Other methods aim at the seman-
tic consistency over sentences (Kuhn et al., 2023;
Manakul et al., 2023; Miindler et al., 2024; Miao
etal., 2024). SelfCheckGPT (Manakul et al., 2023),
Kuhn et al. (2023) and Farquhar et al. (2024) es-
timated the variance of the meaning of generated
content. Cohen et al. (2023) discovered the in-
consistencies with the interaction between LLMs.

InterrogateLLM (Yehuda et al., 2024) reversed the
query-response pair and estimated the variation
of reconstructed queries for semantic uncertainty.
ChatProtect (Miindler et al., 2024) and SelfCheck
(Miao et al., 2024) detected hallucinations by com-
paring the original content and the regenerated
one. EVER (Kang et al., 2023), CoVE (Dhuliawala
et al., 2024), Zhang et al. (2024c), Farquhar et al.
(2024), and QuestGen (Setty and Setty, 2024) gen-
erated questions corresponding to each fact within
the content, answered the generated question, and
measured the coherence between the answer and
the original content.

Compared with the above works, our method
uses self-generated thoughts as a catalyst to elicit
intrinsic knowledge, without external databases,
finetuning, or complex multi-step reasoning. Mean-
while, the iterative schema captures the contextual
relationships of long-form content and the conflict
mitigation mechanism reduces induced hallucina-
tion.

A.2 Large Language Models with Knowledge
Graphs

Efforts have been made to facilitate large language
models for reasoning or factuality with knowledge
graphs. GoT (Besta et al., 2024) used a graph
structure to guide the reasoning of LLMs. Yuan
et al. (2024) proposed to extract knowledge graphs
from external text databases and regarded fact-
checking as a task of NLI. GraphRAG (Edge et al.,
2024) built a graph-based text index by deriving en-
tity knowledge graphs from the source documents
and generating summaries for hierarchical graph
communities. RoG (Luo et al., 2024) synergized
LLMs reasoning with KGs to improve the ability of
knowledge traceability and knowledge correctabil-
ity. ToG (Sun et al., 2024) and Graph-CoT (Jin
et al., 2024) treated the LLLM as an agent to inter-
actively explore related entities and relations on
KGs and perform reasoning based on the retrieved
knowledge. Re-KGR (Kamoi et al., 2024) and
StructGPT (Jiang et al., 2023) leveraged knowl-
edge graphs as external databases and directly re-
trieved reference information for factual QA. Sans-
ford et al. (2024) converted the response into a
candidate knowledge graph and fact-checked each
triple in the graph. Compared with the above meth-
ods, our method does not rely on external knowl-
edge graphs but uses self-elicited knowledge to
construct the graph to facilitate hallucination detec-
tion.
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Table 3: Complexity analysis of all methods. N: the
number of sentences. F': the number of factoids. K:
the number of generated documents. Brackets denote
the components that require LLM usage.

Method ‘ Token ‘ Open-ended (major overhead)
10 ‘ N (fact-check)
ContextIO ‘ N (fact-check) ‘
HistoryIO ‘ N (fact-check) ‘ N (reflect)
CoT ‘ N (fact-check) ‘ N (reason)
CoVE ‘ FN (result compare) N (gfr;:;]az]?sf:gons)
FaR | N (fact-check) | Nielicit) + N(reflect)
SelfCheckGPT ‘ KN (fact-check) ‘ K (generate document)
ChatProtect FN(eval) ‘ _E:(;)ztcrf; ztetrtir]ijrljz:)
F (fact-check)
SelfElicit + F(detect conflict) 1 (extract) + F (reflect)

+ F (mitigate conflict)

B Complexity and Scalability

Complexity

Assume there are IV statements (or F' factoids,
where N ~ F) to be fact-checked in a given sam-
ple. We categorize the LLM usages into two cate-
gories: token where only the first token or its logit
matters, and open-ended where LLLMs generate
full reasoning given an instruction. We summarize
the theoretical complexity of all methods in Table
3.

Since an open-ended generation is magnitudes
more costly than a token generation because the
former usually generates hundreds of tokens while
the latter generates only several tokens, the major
overhead comes from the open-ended generations.
In summary, SelfElicit (1+F) has a comparable
complexity with CoT (N) and is faster than CoVE
(N+FN), FaR (N+N), and ChatProtect (N+FN).
The detailed experimental results are shown in Ap-
pendix E.4.

Scalability

We discuss in this section the scalability of
SelfElicit concerning increasingly longer samples
(i.e., the number of statements within a sample in-
creases). We denote the number of statements (or
factoids) in a sample as F'. The complexities of the
components are:

» sampling & merging. Rule-based, no LLM
usage. Since the sampling is merely edge
retrieval rather than graph traversal, the over-
head is trivial.

* evaluation & reflection. O(F") LLM calls in

total to evaluate all statements one by one.

* conflict detection & mitigation. In extreme
cases where each new edge conflicts with the
existing ones in the graph, the complexity is
O(F?).

In summary, the overall complexity is O(F?) for
each input sample, which indicates an underlying
quadratic increase of overhead if the number of
factoids of a sample as F' increases.

However, we argue that this scalability issue is
not the major challenge in current hallucination
detection practices. Specifically, the conflict de-
tection/mitigation procedures are not always acti-
vated in all cases (e.g., the detection is activated
in 17.76% (801/4510) cases, and the mitigation is
activated in 1.06% (48/4510) cases with Qwen in
MedHallu-en). More specifically, conflict detec-
tions contribute to 40k/1.4M (2.8%) token usages
and mitigations contribute to 2.4k/1.4M (0.2%) to-
ken usages. Moreover, we optimize the implemen-
tation to limit the costs, such as early-stopping the
generation during hypergraph updating (conflict
detection and mitigation) processes since we only
care about the first several tokens (e.g., [contradict]
in conflict detections or [Sentence A is correct] in
mitigations.

To handle potential dataset scalability challenges
in the future, several in-place optimizations can be
made, including (1) an improved graph sampling
procedure to minimize conflict possibilities, (2)
more efficient conflict detection approaches (e.g.,
embedding-based index), and (3) reducing the scale
of the graph via clustering approaches.

C Experimental Details

C.1 Baselines

Our comparison includes representative methods
that focus on retrieval-free, training-free methods
for post-generation fact-checking, including classic
calibration-based fact-checking:

* 10 (Kadavath et al., 2022): Straightforwardly
querying whether the statement is factual or
not and obtaining the probability of False
token as hallucination score.

context enhanced methods:

e ContextIO: Prior evaluated statements are
prefixed as contextual information.
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e HistoryIO: Historical information (both
queries and responses) of prior evaluations
are prefixed as contextual information.

and methods with various elicitation approaches:

e CoT (Wei et al., 2022): Prompting to evaluate
the factuality of the given statement after step-
by-step reasoning.

* CoVE (Dhuliawala et al., 2024): Generating
verification questions given the statement, an-
swering the questions independently, and sum-
marizing for final evaluation. The factored
answering strategy is employed. We manually
craft 3 few-shot samples for question genera-
tion on each dataset.

* FaR (Zhao et al., 2024): Eliciting the knowl-
edge relevant to the statement from models
and asking models to reason on them to gen-
erate the final answer.

¢ SelfCheckGPT (Manakul et al., 2023):
Querying to assess whether the statement is
supported by stochastic documents answering
the original user query. In the experiment, 5
stochastic documents are generated for each
sample and the prompt-based setting is em-
ployed.

¢ ChatProtect (Miindler et al., 2024): Extract-
ing knowledge triples, cloze triples, and pre-
dicting the contradiction between the given
and the new statements. We manually craft
3 few-shot samples for triple extraction and
cloze on each dataset.

We have excluded some related methods de-
signed to quantify the factuality during generation
rather than post-generation (Fadeeva et al., 2024;
Zhang et al., 2023b; Yehuda et al., 2024) and meth-
ods required training on specific datasets (Zhang
et al., 2024a; Wang et al., 2024a; Li et al., 2023a;
Chuang et al., 2024; Wang et al., 2024b) or focus-
ing on retrieval-argument approaches (Min et al.,
2023; Tian et al., 2024; Li et al., 2024c; Xia et al.,
2024). For all methods, we use an identical prompt
(similar to IO) after their original procedures to
obtain the hallucination score for a fair comparison,
i.e., only elicitation approaches are different.

C.2 Datasets
MedHallu Datasets

We have collected a substantial dataset, namely
MedHallu, by collecting genuine user queries and
the corresponding responses generated by LLMs
from an online healthcare QA platform. All identi-
fying information is removed. This corpus mainly
encompasses chronic diseases, cancer, and psori-
asis and includes a Chinese version (with postfix
-zh) and an English version (with postfix —en). The
anonymous, query-response pairs are preprocessed
with the following steps to obtain hallucination la-
bels.

Step 1: Claim Parsing. The long-form response
is first segmented into sentences by punctuation.
Then, following (Wei et al., 2024), GPT-4 is used
to split sentences into atomic claims, where each
refers to a piece of information.

Step 2: Labeling. We ask certified medical
experts to label whether each LLM-generated re-
sponse includes any factual error or misunderstands
the user query. Then, GPT4 is used to label each
sentence given the response-wise human labels to
obtain sentence-wise labels and claim-wise labels.
We carefully check every positive sentence/claim
such that they actually include factual errors.

Step 3: Multi-language. We use GPT4 to trans-
late the Chinese QA pairs, sentences and claims
into English. The prompt is constituted of the orig-
inal user query and the candidate response and in-
cludes instructions to ask the LLM to take special
care of the medical terminologies.

Step 4: Deduplication & Splitting. Sam-
ples with duplicated queries and responses are re-
moved. Then all samples are randomly shuffled
and split into train/validation/test sets with a ra-
tio of 0.6/0.1/0.3. Table 10 shows a sample from
MedHallu-en.

Other Datasets

For the WikiBio, FActScore, and HaluEval2
datasets, the split ratio is 0/0.3/0.7 and both minor
and major inaccuracies are regarded as non-factual.

C.3 Data Preprocessing

As stated in previous works (Deng et al., 2024),
the sentences might include information irrelevant
to the central idea of the document. Verifying
all information is inefficient and even misleading
since some statements are simple repetitions of
the user query or include subjective thoughts that
are not directly relevant to the concept of factual-
ity. To this end, we identify sentences that contain
check-worthy statements, including assertions and
thoughts regarding objective knowledge. Specifi-
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Figure 9: Performance and cost with different model
scales. Log coordinates are used in both x-axes and
y-axis in sub-figure(b).

cally, we provide the LL.Ms instructions and few-
shot samples with domain-specific expertise and
ask them to judge whether a sentence includes
any objective knowledge. The selected check-
worthy sentences are denoted as {r1, 79, - - }. For
MedHallu-zh and MedHallu-en datasets, we use
the prompt in Figure 14 for check-worthy state-
ments. For other datasets, all statements are re-
garded as check-worthy.

C.4 Implementation Details

All experiments are conducted with transformers
(Wolf et al., 2020) 4.43.0 on a Centos machine
with Nvidia A800-80G GPUs. For statement ex-
traction (Section 3.1), the extraction of entities and
statements is achieved in a single chain-of-thought
generation. For knowledge sampling (Section 3.2),
we set @« = 1 and B = 3 practically. The generated
order of the sampled statements is retained and
duplicated sampled statements are removed. For
evaluation and elicitation (Section 3.2), the logit of
the first token of the output is used for the hallucina-
tion score, and other tokens are regarded as reflec-
tions. These reflections are split into sentences and
filtered via manually crafted rules (e.g., discard-
ing sentences with black-listed words) to obtain
knowledgeable statements. For simplicity, we only
obtain 1 reflection for each candidate statement.
For knowledge storage and conflict resolution (Sec-
tion 3.3), the order of the merged statements is kept
so that newly generated statements are arranged af-
ter the older ones. All detailed prompts are shown
in Appendix F.

D More Experiments

D.1 Model Scalability

We study the relationship between model scale and
performance. We choose methods with preferable
performance and efficiency (i.e., 10, CoT, FaR, and
SelfElicit) for comparison and use the Qwenl.5-
chat (Bai et al., 2023) family with model sizes 0.5B,

Table 4: Results with different a-( pairs with Qwen on
MedHallu-zh. Bold: the best. Underlined: the second
best.

Match | o

=

sentence paragraph
F1 AUC| F1 AUC

0.272 0.794 | 0.458 0.656
0.265 0.815|0.452 0.651
0.269 0.8100.475 0.671
0.242 0.783|0.434 0.611

0.237 0.735|0.461 0.635
0.264 0.816 | 0.453 0.655
0.264 0.814|0.452 0.651
0.255 0.760 | 0.444 0.622

strict

relax

W m =W - =
WWN —=[WWwN—

1.8B, 4B, 7B, 14B, 32B, and 110B.

The scaling of the performance and cost is shown
in Figure 9. We have the following observations.
(1) The trend generally follows the scaling law that
larger models tend to have better performance and
the inference costs also increase nearly linearly
with the model size. (2) We notice a salient per-
formance and cost degradation of the 4B model
and a slightly higher cost for the 1.8B model. Af-
ter manually checking the output, we found that
the average output length of the 1.8B models is
much longer than that of the 4B model. We be-
lieve the reason is the models’ preference obtained
during pre-training, rather than caused by hallu-
cination detection approaches. (3) Both the 7B
and 14B models achieve a good balance between
performance and cost. Therefore, we choose the
7B model or models with similar scales to conduct
all experiments in this paper. (4) Comparing all
baselines, our SelfElicit almost achieves the best
performance with all model scales, while having
relatively similar inference with CoT.

D.2 Hyperparameter Sensitivity

By changing the o and /3 hyper-parameters in Equa-
tion 3, we can change the sampling scope from
the knowledge hypergraph. We conduct experi-
ments to investigate the choices of these hyper-
parameters, and matching strategy. Matching strat-
egy strict refers to sample an edge iff the query
Vi(k) exactly match the vertex set of an edge, i.c.,
e.nodes == V; (k). The relax refers to sample an
edge if the query V; (k) is a subset of the vertices of
an edge, i.e., e.vertices € V;(k), providing a wider
sampling scope.

Table 4 shows the result with different o~/ pairs.
We set the maximum value of both hyperparam-
eters to 3 practically, since we found that com-
binations of more than 3 entities rarely sample
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Table 5: Comparison of prompt and NLI model for
semantic relationship prediction. Bold: the better one.

Sentence-wise | Response-wise
FI  AUC | FI AUC

LLM prompt | 0.269 0.810 | 0.475 0.671
NLImodel |0.269 0.794 |0.469 0.664
LLM prompt | 0.228 0.798 | 0.445 0.622
NLI model |0.227 0.793 | 0.452 0.625

LLM prompt | 0.242 0.803 | 0.463 0.656
NLI model |0.237 0.789 |0.455 0.647
LLM prompt | 0.181 0.748 | 0.408 0.582
NLI model |0.179 0.746 |0.397 0.572

Dataset ‘ LLM ‘ Method

MedHallu-zh | 2"

GLM

Qwen

MedHallu-en
Llama2

any edges. It can be observed that the perfor-
mance is sensitive to the knowledge context sam-
pled from the graph. A conservative sampling strat-
egy (a = 1, 8 = 1) will limit the utility of the
knowledge in the graph, resulting in a performance
closer to baselines IO (see Table 1). On the con-
trary, an excessively unrestricted sampling (o = 3,
B = 3) will result in more irrelevant information
and longer input contexts, thereby limiting the per-
formance. Therefore, we practically set « = 1 and
B = 3 in all other experiments for convenience.

D.3 NLI Method

We compare two different methods to predict the
semantic relationship between two statements hav-
ing identical entities (Equation 8): LLM prompts or
specific pre-trained NLI models. For LLM prompts,
we use prompt shown in Figure 12 and for NLI
models, we use StructBERT? for MedHallu-zh and
DeBERTa? for MedHallu-en. The results are listed
in Table 5. It can be observed that using prompts
consistently performs better than using specific
NLI models. However, the differences are triv-
ial and therefore we decided to use prompts in our
implementation for convenience.

E Supplementary Results

E.1 Performance in each Domain on
HaluEval2

HaluEval2 includes 197 education samples, 199 sci-
ence samples, and 199 finance samples. The hallu-
cination detection results in each domain are shown
in Table 6. Regarding specific domains, our method
achieves leading (best or second best) performance
in 7 over 12 cases and SOTA in education/science
domains with the Qwen model. These results show

2https://modelscope.cn/models/iic/nlp_
structbert_nli_chinese-large

3https://huggingface.co/microsoft/
deberta-large-mnli

that SelfElicit has a strong performance across vari-
ous domains. However, it is observed that SelfElicit
does not achieve state-of-the-art in several cases,
because the logical relationships among sentences
are less correlated on datasets not specifically de-
signed for long-form hallucination detection. As
a result, the advantages of understanding contex-
tual relationships are limited, restricting the perfor-
mance gains of all context-argument methods (e.g.,
ContextlO, HistorylO, and SelfElicit).

E.2 Performance with Different Severity on
MedHallu-en

Distinguishing between high-risk and low-risk er-
rors is essential in real-world clinical settings. To
quantify the performance with different severity in
medical datasets, we have asked the clinical expert
to annotate all the erroneous samples in the test
set of the MedHallu-en into 50 high-risk samples
(e.g., duration, side effect, medication efficacy er-
rors), 89 medium-risk samples (e.g., normal range,
symptom errors), and 61 low-risk samples (e.g.,
health supplement efficacy, pill weight errors). The
results are shown in Table 7.

We observe that SelfElicit outperforms all base-
lines in detecting hallucinations with various sever-
ities. Specifically, SelfElicit detects 86% high-risk
errors (+5 samples, +10% than the best baseline),
87% medium-risk errors (+6 samples, +6% than
the best baseline), and 92% low-risk errors (+2
samples, +3% than the best baseline). Moreover,
despite ChatProtect has leading performance in de-
tecting positive samples, it suffers from the most
false positives. Among all methods, SelfElicit has
the least false positives (8 samples less than the best
baseline) and the highest precision (+0.11, +50%
than the best baseline). These additional results
have shown the significant leading performance of
SelfElicit against baselines across different severity
in medical domains.

E.3 Detailed Results of Ablation Study

Table 8 shows the detailed ablation results shown
in Section 4.4.

E.4 Detailed Results of Inference Costs

Table 9 shows the detailed results on inference costs
shown in Section 4.5.

F Prompts

Figure 10, Figure 12, Figure 13 show the prompts
of SelfElicit.
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Table 6: Hallucination detection results (AUC) for each domain (education, science, and finance) on HaluEval2
dataset with Qwen. S: sentence-level metrics. R: response-level metrics. Red: the best. Blue: the second best.

Higher metrics are better.

LLM SelfElicit 10 ContextIO HistorylO CoT CoVE FaR SelfChkGPT | ChatProtect
S R S R S R S R S R S R S R S R S R

HaluEval2-education

Qwen |0.791 0.758 | 0.709 0.651|0.708 0.593|0.762 0.711|0.618 0.604 | 0.665 0.499 | 0.702 0.481 | 0.609 0.562 | 0.521 0.490

Llama2 | 0.583 0.462 | 0.517 0.448 | 0.503 0.467 | 0.495 0.484|0.613 0.591 | 0.549 0.575|0.556 0.613|0.556 0.501|0.542 0.601
HaluEval2-science

Qwen |0.831 0.588 |0.789 0.547|0.696 0.462|0.822 0.575]0.587 0.511|0.659 0.507 |0.806 0.633|0.622 0.440 | 0.530 0.514

Llama2 | 0.583 0.570|0.512 0.544 | 0.500 0.500 | 0.463 0.513 | 0.568 0.416|0.607 0.500 | 0.631 0.424 | 0.626 0.404 | 0.563 0.607
HaluEval2-finance

Qwen |0.739 0.506 | 0.737 0.516|0.689 0.421|0.740 0.481 | 0.614 0.545|0.671 0.504|0.703 0.526 | 0.661 0.520 | 0.525 0.473

Llama2 | 0.567 0.559 | 0.502 0.553 | 0.500 0.500 | 0.568 0.538 | 0.630 0.548 | 0.628 0.522|0.571 0.471|0.599 0.524|0.543 0.442

Table 7: Detection results (the number of predicted positives and recall, higher is better) on all 200 erroneous
samples with Qwen2 on MedHallu-en. We also report the number of false positives (lower is better) and the
precision metric (higher is better). Red: best. Blue: second best.

Severity ‘ SelfElicit 10 ContextIO HistoryIO  CoT CoVE FaR SelfChkGPT ChatProtect
overallf 176 (0.88) 135(0.68) 114 (0.57) 87(0.43) 81(0.41) 76(0.38) 120(0.60) 122(0.61) 163 (0.81)
high-riskt 43 (0.86) 24(0.48) 25(0.50) 16(0.32) 20(0.40) 13(0.26) 25(0.50) 24 (0.48) 38 (0.76)
medium-risk? | 77 (0.87) 64 (0.72) 51(0.57) 36(0.40) 34(0.38) 32(0.36) 72(0.81)  52(0.58) 71 (0.80)
low-risk T 56 (0.92) 47(0.77) 38(0.62) 35(0.57) 27(0.44) 31(0.51) 23(0.38) 46 (0.75) 54 (0.89)
False Positive| 351 482 474 415 359 372 547 489 584
Precisiont 0.33 0.22 0.19 0.17 0.18 0.17 0.18 0.20 0.22

Table 8: Detailed ablation metrics of all variants.

atas w/o context | w/o elicil w/o sample | w/o conﬂlcl full

Dataset LLM ‘ S s s R s R
MedHallugh QN [0743 0.621]0.79 0.6150.803 0.652|0.808 0.668 | 0.810 0.671
ChatGLM | 0.787 0.613]0.789 0.614|0.788 0.615 |0.788 0.615|0.798 0.622
MedHall Qwen |0.784 0.622]0.795 0.624[0.797 0.632|0.796 0.629|0.803 0.656
CORAEn  ama2 |0.712 0.572]0.728 0569 [0.727 0.564 |0.719 0.572|0.748 0.582
WikiBi Qwen |0.527 0.628]0.547 0.622[0.543 0.614|0.562 0.632]0.594 0.653
" Llama2 |0.516 0.559]0.521 0572|0527 0.541 |0.542 0.639|0.568 0.705
Halubvay  Q¥en 0729 0.516]0.723 0.510[0.780 0.532|0.781 0.542|0.789 0564
Llama2 | 0513 0529|0512 0.523|0.516 0526|0518 0.531|0.521 0.545

Prompt for identifying named entities and extracting knowledge statements

You are a knowledge extractor. Your task is to identify named entities from the given sentences and

extract the knowledge points related to these entities.

Steps:

1. For each sentence, identify the named entities within. Named entities include, but are not
limited to: {{entity types}}

Please use the format “Named entities in sentence 1: Entity 1 (Type 1) to list all the named
entities you find.

. For each identified named entity, extract all the related knowledge points, ensuring the
semantic integrity of the points, and that they can be understood independently from the
original sentence. If independent knowledge points cannot be extracted, please return the
original sentence directly. Please use the format “Knowledge points in sentence 1: [Knowledge
point 1][Knowledge point 2]to list all the knowledge points you find.

{{few shot}}

Your task is to provide named entities and knowledge points based on the following sentence:

{{sentence}}

Named entities:

N

Figure 10: Prompt for identifying named entities and
extracting knowledge statements.

G Pseudo-code
Algorithm 1 shows the pseudo-code of SelfElicit.

Table 9: Inference costs for all methods with the Qwen
model. Perform.: average AUC metrics. #Call: num-
ber of LLM calls. #Token: number of generated tokens.

. Relative . Relative | #Token| Relative
Dataset Method | b rormp | #CA ycan (k) #Token]
10 79% | 7552 -394% | 390  -61.7%
ContextlO | -8.1% | 7.552  -394% | 399  -60.9%
Historyl0 | -3.1% | 7.552  -394% | 370  -63.1%
MedHallush CoT 84% | 7552  -4l6% | 934 5%
¢ CoVE 227% | 36852 +196.0% | 1828  +79.2%
FaR 1% | 14104  +133% | 2300  +126.4%
SelfCheckGPT | -32.5% | 130912 4951.3% | 13711 +1244.0%
ChatProtect | -30.5% | 138.758 +1014.3% | 5703  +459.0%
SelfElicit - 12452 = L.020 -
0 52% | 7422 373% | 636 -547%
Contextl0 | -7.0% | 7422  -373% | 657  -532%
Historyl0 | -12% | 7422  -373% | 489  -652%
MedHallu-en CoT 201% | 7422 373% | 1296 18%
CoVE 316% | 38.606 +2267% | 2484  +76.8%
FaR 59% | 14104  +19.0% | 2752 +95.9%
SelfCheckGPT | -10.5% | 131,066 +1006.5% | 10,828  +670.9%
ChatProtect | -30.8% | 164010 +1284.6% | 6398  +355.5%
SelfElicit - T1.845 - 1,405 -
10 5% | 1908 61.9% | 159  -704%
ContextlO | -10.6% | 1908  -619% | 175  -67.4%
Historylo | -73% | 1908  -61.9% | 219  -59.3%
WikiBio CoT 145% | 1908  -619% | 526  -2.1%
CoVE 155% | 12,619 +1523% | LI156  +114.9%
FaR 154% | 5724 +144% | 1399  +160.0%
SelfCheckGPT | -5.7% | 10730 +114.5% | 870  +61.7%
ChatProtect | -6.5% | 86178 +1622.9% | 2410  +348.0%
SelfElicit : 5,002 - 538 -
10 80% | 1863 -183% | 113  -586%
Contextl0 | -162% | 1863  -183% | 148  -46.0%
Historyl0 | -3.4% | 1863  -183% | 153  -44.0%
HaluBval2 CoT 164% | 1863  -183% | 559  +103.5%
CoVE J119% | 9641  +322.9% | 1823 +563.3%
FaR 27% | 5580 +145.1% | 2244  +716.3%
SelfCheckGPT | -13.6% | 11400 +400.0% | 1662  +504.5%
ChatProtect | -22.7% | 60240 +2542.1% | 1047  +280.8%
SelfElicit - 2280 - 274 -
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Algorithm 1: Self-elicitation Procedure.

Input :Sentences {71, 72, -
Output : Sentence-wise non-factual scores ¢1, g2,

- }, a language model LM, a NLI model NLIL
- -, and response-wise score Y.

/* Extract entities and statements */
1 81,82, ,V1,Va, -« <= LM(r1,7r2,--+);
/* Graph-guided self-elicitation */
2 Initialize graph Gy with vertex set V <— V3 U Vo U - - -, and edge set Ey < &;
3 for s; € {s1,s2, -} do
/* Knowledge sampling */
4 for k € [a, 5] do
5 ‘ Sample [; (k) from graph G;_1 with related vertices V; (k);
6 end
7 Aggregate all I£; (k) and linearize to context C;;
/* Fact-evaluation & Elicitation */
8 Evaluate s; given context C; with LM, obtaining score p; and reflections o}*/";
/* Graph Update */
9 Obtain new edges E; from reflection o] /",
10 E°"9 « E;_q;
11 for ¢ € E; do
12 Etem? o,
13 if e.vertices == €.vertices, 3 € E°"*9 then
14 rel< NLI(e, €);
15 if rel is "entail” then Add e to E*™P ;
16 else if rel is "neutral” then Add e and & to E**™7 ;
17 else /* mitigate conflicts */
18 é < LM(e, €);
19 Add é to Et¢™P;
20 else
21 Add e to Ete™P;
22 end
23 ]Eo'rig P Etemp
24 end
25 Update graph G; with edge set E°"%;
26 end

27 Obtain sentence predictions ¢ by aggregating scores from statements;

28 Obtain response prediction Y by aggregating scores from sentences;

Prompt for evaluation and reflection

Context: {{CONTEXT}}
Description: {{SENTENCE}}

Is the above description:

ATrue

B False

C Not sure

Choose your option from A, B and C and explain why:

Figure 11: Prompt for evaluation and reflection.

Prompt for detecting the relation between two statements

Please determine the semantic relationship between the following two sentences. There are three
possible types of relationships:

1. [entail]: The content of the two sentences is the identical, describing the same aspect of the same
object, with consistent content.

2. [contradict]: The two sentences describe the same aspect of the same object, but the content is
directly opposite, presenting a contradiction.

3. [neutral]: The two sentences describe different objects, or different aspects of the same object,
and can coexist.

Please analyze sentence A and sentence B, and choose one of the relationships. Please briefly
explain your reasoning.

Sentence A: {{SENTENCE_A}}

Sentence B: {{SENTENCE_B}}

Judgment result:

Figure 12: Prompt for detecting the relation between
two statements.

Prompt for mitigating the conflicts between two statements

Please read the following two sentences.

These two sentences describe the same aspect of the same object, but their content is contradictory.
Your task is to judge which sentence is more accurate based on your own understanding.

Sentence A: {{SENTENCE_A}}

Sentence B: {{SENTENCE_B}}

Judging criteria:

Please consider the logic and factual basis of the sentences. Choose the sentence you think is
correct and select from the following two options:

[Sentence A is correct]

[Sentence B is correct]

Figure 13: Prompt for mitigating the conflicts between
two statements.
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Original Sample

User Query:

‘When should Gliclazide be taken? Why?

Candidate Response:

Gliclazide is an oral hypoglycemic medication. It is suitable for adult type 2 diabetes patients whose blood sugar cannot be
controlled by diet alone. Generally, Gliclazide can be taken at any time of the day, regardless of whether it is on an empty
stomach or after meals. This is mainly because the mechanism of action of Gliclazide is to lower blood sugar by stimulating
the secretion of insulin from pancreatic S-cells, and this process is not affected by meal intake. It should be noted that the
specific timing and dosage of medication should be determined based on individual differences and the doctor’s advice. In
addition, during the use of Gliclazide, it is necessary to regularly monitor blood sugar levels and adjust the dosage according
to medical advice. Do not increase or decrease the dosage or stop taking the medication on your own to avoid adverse
reactions such as hypoglycemia.

Human Label: x Incorrect. Gliclazide should be taken before each meal.

Preprocessed Sample

Sentences:

1. Gliclazide is an oral hypoglycemic medication

2. It is suitable for adult type 2 diabetes patients whose blood sugar cannot be controlled by diet alone

3. Generally, Gliclazide can be taken at any time of the day, regardless of whether it is on an empty stomach or after meals x
4. This is mainly because the mechanism of action of Gliclazide is to lower blood sugar by stimulating the secretion of
insulin from pancreatic -cells, and this process is not affected by meal intake x

5. It should be noted that the specific timing and dosage of medication should be determined based on individual differences
and the doctor’s advice

6. In addition, during the use of Gliclazide, it is necessary to regularly monitor blood sugar levels and adjust the dosage
according to medical advice

7. Do not increase or decrease the dosage or stop taking the medication on your own to avoid adverse reactions such as
hypoglycemia

Claims:

. Gliclazide is an oral hypoglycemic medication

. Gliclazide is suitable for adult type 2 diabetes patients whose blood sugar cannot be adequately controlled by diet alone

. Gliclazide can be taken at any time of the day x

. Gliclazide can be taken either on an empty stomach or after meals x

. The mechanism of action of Gliclazide is to lower blood glucose by stimulating pancreatic 3-cells to secrete insulin

. The action process of Glargine is not affected by food intake

. The specific timing and dosage of Gliclazide medication should be determined based on individual differences and the
doctor’s recommendations

8. During the use of Gliclazide, it is necessary to regularly monitor blood sugar levels and adjust the dosage according to
the doctor’s instructions

9. Do not adjust the dosage or discontinue the medication on your own when using Gliclazide

10. Adjusting the dosage of Gliclazide on your own may lead to adverse reactions such as hypoglycemia

NN RN =

Table 10: A sample from MedHallu-en. v refers to factual and xrefers to non-factual.

Prompt for identifying check-worthy sentences with domain expertise

You will be handling questions and answers related to medical consultations and healthcare. Your
task is to categorize a sentence from the response based on its content. Classify the sentence
accurately under one of the following categories:
1. [Medical Knowledge]: Includes objective descriptions of medical knowledge, detailing specific
diseases, symptoms, medications, methods, etc. Examples include:
a. Ezetimibe is a cholesterol absorption inhibitor that reduces cholesterol absorption in the gut,
thereby lowering blood lipids

N

. [Personal Condition]: Describes the current state of a specific patient (complaints, history,
laboratory data, signs), without including treatment or advice. Examples include:
a. Age 48, tumor marker carcinoembryonic antigen 100

. [Lifestyle]: Discusses health and lifestyle habits other than treatment. Examples include:
a. Increasing physical exercise can effectively reduce the risk of cardiovascular disease

w

4. [Other]: Sentences that do not fit into any of the above categories, such as emotional
expression type, subjective evaluation type, non-medical type, etc.
Please identify which category the following sentence from the response belongs to:

{{sentence}}

Figure 14: Prompt for identifying check-worthy sen-
tences with domain expertise for MedHallu-zh and
MedHallu-en.
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