
Findings of the Association for Computational Linguistics: ACL 2025, pages 3895–3906
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Entropy-based Exploration Conduction for Multi-step Reasoning
Jinghan Zhang1, Xiting Wang2*, Fengran Mo3, Yeyang Zhou4, Wanfu Gao5, Kunpeng Liu1

1Portland State University,
2Gaoling School of Artificial Intelligence Renmin University of China Beijing, China,

3University of Montreal, 4Uber, 5Jilin University
{jinghanz,kunpeng}@pdx.edu

xitingwang@ruc.edu.cn
fengran.mo@umontreal.ca

yeyang.zhou@uber.com, gaowf@jlu.edu.cn

Abstract

Multi-step processes via large language mod-
els (LLMs) have proven effective for solving
complex reasoning tasks. However, the depth
of exploration of the reasoning procedure can
significantly affect the task performance. Exist-
ing methods to automatically decide the depth
often lead to high cost and a lack of flexibility.
To address these issues, we propose Entropy-
based Exploration Depth Conduction (Entro-
duction), a novel method that dynamically ad-
justs the exploration depth during multi-step
reasoning by monitoring LLM’s output entropy
and variance entropy. We employ these two fea-
tures to capture the model’s uncertainty of the
current step and the fluctuation of uncertainty
across consecutive reasoning steps. Based on
the observed entropy changes, the LLM selects
whether to deepen, expand, or stop exploration
according to the probability, which facilitates
the trade-off between the reasoning accuracy
and exploration effectiveness. Experimental
results across four benchmark datasets demon-
strate the efficacy of Entro-duction.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable reasoning capabilities across various
domains (Brown et al., 2020; Touvron et al.,
2023; Patterson et al., 2022; Fu et al., 2022; Wei
et al., 2022). However, they would still encounter
challenges in generating accurate and effective
multi-step reasoning in terms of complex down-
stream tasks. Specifically, LLMs may exhibit over-
reasoning or under-reasoning, which both imply
the depth of exploration for a given problem does
not match expectations (Ahn et al., 2024; Mirzadeh
et al., 2024; Huang and Chang, 2022; Fu et al.,
2023). This mismatch issue of reasoning path could

*Corresponding Author. Beijing Key Laboratory of Re-
search on Large Models and Intelligent Governance. Engineer-
ing Research Center of Next-Generation Intelligent Search
and Recommendation, MOE.

lead to several issues: (1) inaccurate, insufficient,
or redundant reasoning outcomes; (2) unnecessary
computation costs (Yeo et al., 2025; Yang et al.,
2024; Lightman et al., 2023). These issues might
be attributed to two aspects: i) the lack of evalua-
tion and regulatory mechanisms for LLMs’ reason-
ing process; ii) there are significant variations in
the reasoning process required for different tasks,
and LLMs might not be unable to accurately judge
and adjust the depth of exploration for a task solely
based on their parametric knowledge during pre-
training.

1 Too Little Depth - Insufficient Exploration

2 Too Much Depth - Excessive Exploration

3 Fixed Structure - Redundancy

Reasoning
Steps
...

4 Our Method - Dynamically Decide
Exploration Depth

...

Solution
Space

???

Figure 1: Reasoning depth mismatching solution space.

Existing methods for optimizing the exploration
depth of multi-step reasoning in LLMs can be cat-
egorized into two types: outcome-based optimiza-

3895

tion and process-based optimization. Outcome-
based optimization aligns the LLMs’ reasoning
exploration with human expectation after generat-
ing a complete reasoning path and approaching the
final conclusions (Jin et al., 2024; Liu et al., 2024a;
Ton et al., 2024; Yu et al., 2024). These approaches
rely on post-training techniques of LLMs, which
are resource-intensive and do not provide an imme-
diate improvement on the current task. Further, due
to the diversity of reasoning tasks, the enhancement
gain is task-specific. In process-based optimization,
the LLMs supervise and evaluate their reasoning
process through self-critique or by labeling rea-
soning steps to enhance outputs (Ma et al., 2025;
Yang et al., 2024; Pan et al., 2023). The advan-
tages of the process-based optimization methods
are their immediacy and low cost. However, the
LLMs should have high reasoning capabilities and
a substantial knowledge base. Moreover, since the
process is usually opaque, it is difficult for humans
to effectively provide supervision signals and in-
terpret the optimization processes. The model’s
illusions, biases, and errors may be reinforced dur-
ing this process (Stechly et al., 2023, 2024b; Liang
et al., 2024b; Song et al., 2025).

Our Target. Given the existing challenges, we
aim to develop a method that guides LLMs to auto-
matically, concisely, and transparently determine
the appropriate depth of exploration based on task
information and the model’s reasoning state. The
goal is to enable the model to look ahead during
reasoning, plan dynamically, and decide whether
further exploration is necessary to achieve optimal
reasoning outcomes. The whole procedure involves
enhancing multi-step reasoning performance and
reducing unnecessary exploration.

Our Method. To tackle these challenges,
we propose Entropy-based Exploration Depth
Conduction (Entro-duction), a novel method to
help LLMs assess the adequacy of exploration dur-
ing multi-step reasoning processes, thus enhancing
the outcomes of reasoning. Inspired by Entropy
Uncertainty Measurement (Coles et al., 2017; Far-
quhar et al., 2024; Zhang et al., 2024a; Rosenfeld
et al., 1996), we employ entropy changes in the
LLM’s reasoning process to evaluate its uncertainty
of reasoning, which reflects the reasoning confi-
dence, and accordingly switch exploration strategy.
Specifically, we use entropy and variance entropy
as rewards to update the LLM’s probability distri-
bution for its next exploratory action, whether to

deepen, stop, or expand exploration. This distribu-
tion subsequently guides a behavior selection mech-
anism that promotes reasoning when exploration is
insufficient and avoids redundant reasoning when
it is adequate.

In summary, our contributions involve:

1. We propose Entro-duction to help LLMs dy-
namically evaluate the adequacy of explo-
ration based on their reasoning uncertainty
to enhance reasoning performance and avoid
unnecessary exploration.

2. We further design an entropy-based explo-
ration behavior selection mechanism, which
refers to LLMs’ expectancy and confidence in
the reasoning procedure.

3. We conduct a series of experiments to demon-
strate the effectiveness of Entro-duction on
various reasoning tasks. Our results and anal-
ysis show that the Entro-duction outperforms
baseline methods.

2 Related Work

Reasoning Steps and Structures. When re-
sponding to queries, LLMs typically provide direct
outputs. For complex questions, direct outputs of-
ten fail to deliver correct answers because they may
overlook deeper logical connections or contextual
information (Xia et al., 2024; Minaee et al., 2024).
Multi-step reasoning involves instructing LLMs
to decompose and progressively address problems,
breaking down complex tasks into smaller, man-
ageable units to significantly enhance reasoning
capabilities (Chu et al., 2023). The simplest struc-
ture of multi-step reasoning is the Chain of Thought
(CoT) (Wei et al., 2022; Wang and Zhou, 2024),
which links reasoning steps by connecting distinct
thoughts into a linear, coherent sequence (Li et al.,
2024; Jin and Lu, 2024; Sprague et al., 2024).

To enable more comprehensive exploratory rea-
soning, some studies based on CoT have devel-
oped structured reasoning methods, such as self-
consistent CoT (CoT-SC), Complex CoT, and Tree-
of-Thought (ToT) (Wang et al., 2022; Zhang et al.,
2024c; Yao et al., 2024; Mo et al., 2024; Liu
et al., 2024b; Mo and Xin, 2024; Zhang et al.,
2024b). These methods are called reasoning struc-
tures. They guide LLMs to do multi-directional
exploration of problem solution spaces for superior
reasoning solutions by capturing more complex
and varied logical relationships (Xia et al., 2024;

3896

Stechly et al., 2024a; Mo et al., 2023; Liang et al.,
2024a). However, the breadth and depth of these
reasoning structures highly depend on predefined
settings and vary greatly across different tasks, lim-
iting their generalizability and flexibility.

Optimization of Reasoning Depth. The depth
of reasoning structures refers to the number of lay-
ers or steps in the reasoning process, namely, the
number of reasoning steps an LLM must under-
take before reaching a final answer (Plaat et al.,
2024; Gomez, 2023). For any given task, the op-
timal number of reasoning layers often correlates
with the task’s complexity and the level of detail
required (Zhang et al., 2024c). Current methods
in determining these layers or optimize reasoning
structures automatically. These methods include
using reinforcement learning algorithms to opti-
mize the number of reasoning steps or dynamically
adjusting the depth of exploration during the rea-
soning process (Jin et al., 2024; Liu et al., 2024a;
Hoffmann et al., 2022).

The main issues of these methods include: (1)
the automated algorithms may lack precision due
to the lack of precision; (2) making dynamic ad-
justments without fully understanding task char-
acteristics could harm the reasoning process; (3)
for highly complex or novel tasks, preset reasoning
structures may be inappropriate, and could limit
the model’s applicability and flexibility. These is-
sues together ultimately affect the LLM’s reasoning
reliability and efficiency, and lead to inaccurate rea-
soning outcomes or redundant exploration.

3 Methodology

3.1 Problem Formulation
Given a reasoning task and an LLMR as the rea-
soner, the multi-step reasoning process is to gener-
ate a reasoning structure S . Structure S comprises
directed links connecting sentence-level reasoning
nodes. A reasoning chain is a unidirectional se-
quence that begins at an initial reasoning node and
concludes at a terminal node:

Ci = Ti1 → Ti2 → · · · → Ti,j → · · · , i = 1, ...,m,
(1)

where Ti,j is the j-th node in the i-th chain,m is the
total number of chains in S. The chain length |Ci|
is the total number of nodes within Ci. We define
the depth Sd of S as the maximum length of any
reasoning chain within the structure:

Sd = max{|Ci|}. (2)

Since S could contain several valid reasoning
chains, the reasoning conclusion L is made through
a voting mechanism V :

L = V (S,R). (3)

In this paper, our goal is to generate a structure S
such that it achieves optimal reasoning accuracy,
denoted as Acc(L), with an optimal depth Sd.

3.2 Reasoning State Evaluation

The essence of the multi-step reasoning process
is to explore the solution space of task Q. Our
exploration goal is to cover as many potential rea-
soning paths as possible to ensure the accuracy and
completeness of the solution. However, exhaustive
exploration is inefficient and often impractical. As
the problem’s complexity grows, the solution space
expands exponentially, driving the computational
and time costs to untenable levels. Consequently,
we must balance the breadth and depth of explo-
ration. Achieving this balance calls for a method
that can look forward from each current reasoning
state, predicting and adjusting subsequent explo-
ration steps, so that we do not miss crucial paths or
waste resources on unnecessary ones.

We employ uncertainty and stability to describe
the reasoning state. Uncertainty measures the di-
vergence of current thought processes, as shown in
Figure 2. In a reasoning step, a high uncertainty in-
dicates the presence of multiple possible directions
or conclusions, this means a wide scope of explo-
ration is necessary. Conversely, low uncertainty,
where there are few or even a single possible out-
come, indicates a more focused path. Specifically,
we employ entropy as a metric for uncertainty to
quantify the number of potential paths that need
exploration at any given moment and to gauge the
confidence level in the conclusions.

Definition 1: Entropy. Consider a reasoning
step represented by a sentence, denoted as Ti,j ,
which consists of a sequence of n tokens:

Ti,j = {tij1, tij2, . . . , tijn}. (4)

Each token tijk matches a logit lijk, which is the
model’s raw output before the softmax function.
The collection of logits for the entire sentence is:

lij = {lij1, lij2, . . . , lijn}. (5)

We calculate the probability pijk of each token
tijk by applying the softmax function to its corre-

3897

Entropy

VarEntropy

Entropy

VarEntropy

Entropy

VarEntropy

Entropy

VarEntropy

Deepen

Deepen

Expand

Stop

Task "Let's think step-
by-step!"

Step 1:

token 1 token 2 ...

logit 1 logit 2 ...

p1 p2 ...

Softmax

ϵ-greedy

Stop

Deepen

Expand

Figure 2: Framework of Entro-duction. We obtain two metrics, entropy and variance entropy, by calculating the
probabilities of the logits at each reasoning step. Subsequently, we employ the epsilon-greedy method to select the
appropriate exploration behavior based on changes in both metrics.

sponding logit lijk:

pijk =
exp(lijk)∑n
r=1 exp(lijr)

. (6)

Then the entropy of the sentence Ti,j is:

H(Ti,j) = −
n∑

k=1

pijk log2(pijk). (7)

This measures the uncertainty or information
content encoded in the probability distribution
{pij1, pij2, . . . , pijn}.

To compare the entropies across reasoning steps
of varying lengths, we define the normalized en-
tropy as:

H̃(Ti,j) =
H(Ti,j)
log2(n)

. (8)

Here, log2(n) is the maximum possible entropy
when all n tokens have uniform probability. Hence,
the normalized entropy is bounded between 0 and
1 for consistent comparisons.

Similarly, we employ variance entropy to capture
how much uncertainty fluctuates across consecutive
reasoning steps. It indicates the consistency or
divergence of the thought process.

Definition 2: Variance Entropy. For reasoning
step Ti,j of length n, let:

H(Ti,j) =
1

n

n∑

k=1

H(tijk), (9)

be the average token-level entropy in Ti,j . We de-
fine the variance entropy as:

σ2
H(Ti,j) =

1

n

n∑

k=1

[
H(tijk)−H(Ti,j)

]2
. (10)

For comparisons, we define the normalized vari-
ance entropy:

σ̃2
H(Ti,j) =

σ2
H(Ti,j)
log2(n)

. (11)

In this way, we have a normalized concise metric
for tracking fluctuations in uncertainty within each
reasoning step.

3.3 Exploration Behaviors
With two metrics for reasoning state defined above,
we further consider how to use changes in these
metrics to determine exploration behavior strate-
gies. The possible scenarios are listed below:

1. Entropy ↓ , Variance Entropy ↓: The reason-
ing step becomes more certain, and the overall
thought process more coherent. This indicates
that information is becoming more focused,
and the reasoning process is stable and effec-
tive. The LLM should continue to explore in
this direction.

2. Entropy ↑ , Variance Entropy ↓: The rea-
soning step introduces more uncertainty, but
the fluctuations between different steps are de-
creasing. This suggests that while a broader
range of possibilities has emerged, the overall
direction has not become dispersed. The LLM
should continue to explore in this direction.

3. Entropy ↓ , Variance Entropy ↑: The uncer-
tainty of reasoning is decreasing, but the fluc-
tuation between reasoning steps is increasing.
This indicates potential divergences in local
steps, and we should consider increasing ex-
ploration in different directions to cover pos-
sible solutions.

3898

4. Entropy ↑ , Variance Entropy ↑: The rea-
soning process becomes simultaneously more
complex and more unstable. This indicates
that current exploration might have strategic
deviations, but another possibility is that the
model is exploring a new or more challeng-
ing direction. We need to consider avoiding
ineffective exploration while maintaining the
potential for the model to tackle challenging
problems.

Accordingly, we design a mechanism that ad-
justs the probability of exploration behaviors based
on entropy and variance entropy changes. We de-
fine the exploration behaviors as follows:

Deepen: This behavior extends the current rea-
soning chain Ci by adding a new node Ti,j+1:

Ci → Ci ∪ {Ti,j+1}. (12)

Expand: This behavior divides the current rea-
soning chain at Ti,j , creates two separate chains Ci
and C′i. Each chain extending from the split point
generates a new node:

Ci → (Ci ∪ {Ti,j+1}) , C′i →
(
Ci ∪ {T ′

i,j+1}
)
.

(13)
Stop: This behavior terminates the extension of

the current chain Ci at the current node Ti,j :

Ci → Ci \ {Ti,j+1}. (14)

3.4 Behavior Selection Mechanism
At the j-th reasoning step, we define:

∆Hj = H(Tj+1)−H(Tj), (15)

∆σ2
H,j = σ2

H(Tj+1)− σ2
H(Tj), (16)

which denotes the changes in entropy and variance
entropy, respectively. We define the state:

sj =
(
∆Hj ,∆σ2

H,j

)
, (17)

and the set of possible actions as

A = {Deepen,Expand, Stop}. (18)

We introduce a mapping function Φ : R2 → A
that assigns to each state (∆Hj , ∆σ2

H,j) a “best”
action a∗j :

Φ(∆H,∆σ2
H) =





Deepen,
if (∆H < 0,∆σ2

H < 0)

or (∆H > 0,∆σ2
H < 0),

Expand, if ∆H < 0,∆σ2
H > 0,

Stop, if ∆H > 0,∆σ2
H > 0.

(19)

Algorithm 1 Entro-duction
1: Input: Reasoning task Q; LLM reasoner R;

max steps J ; exploration rate ϵ.
2: Output: Reasoning structure S and conclusion

L.
3: Initialize S; set j ← 1; initialize chains {Ci}.
4: while j ≤ J do
5: for each active chain Ci do
6: Compute H(Tj) and σ2

H(Tj) accord-
ing to Eqs. 7, 10.

7: Compute ∆Hj and ∆σ2
H,j according

to Eqs. 15, 16).
8: Determine a∗j ← Φ(∆Hj ,∆σ2

H,j) ac-
cording to Eq. 19.

9: Sample action aj with probability
πj(a | sj) according to Eq. 20).

10: Execute aj :
i) Deepen: append Tj+1 to Ci.

ii) Expand: branch Ci into two chains with
Tj+1 and T ′

j+1.
iii) Stop: finalize Ci (no further expansion).

11: end for
12: if all chains stopped or j = J then
13: break
14: end if
15: j ← j + 1
16: end while
17: L ← V (S,R) (final conclusion via consen-

sus).
18: return S, L

Then, at each step j, we sample the actual action
aj according to an ϵ-greedy rule:

πj
(
a | sj

)
=




1− ϵ, a = a∗j ,

ϵ

|A| − 1
, a ̸= a∗j .

(20)

Given the current state sj = (∆Hj ,∆σ2
H,j), we

first compute a∗j = Φ(sj), then draw aj from πj(· |
sj). If aj = Stop, the reasoning ends; otherwise,
the system transitions to the next state sj+1, where
the new entropy measures yield an updated state.

4 Experiments

In this section, we first compare the reasoning per-
formance and reasoning steps used between base-
line methods and Entro-duction. Subsequently, we
present ablation studies to analyze the contributions
of each part of our strategies. Following this, we

3899

examine how different parameter settings impact
Entro-duction’s overall robustness.

4.1 Experiment Settings

Datasets. Entro-duction is a general approach
applicable to various LLMs and reasoning tasks.
Here, we test across four reasoning tasks with
benchmark datasets, including two mathematical
tasks (GSM8K (Cobbe et al., 2021), SVAMP (Pa-
tel et al., 2021)) and two commonsense question-
answering tasks (StrategyQA (Geva et al., 2021),
CommonsenseQA (Talmor et al., 2018)). Here,
GSM8K challenges language models with multi-
step math reasoning tasks, assessing their complex
reasoning capabilities, while SVAMP focuses on
simpler, one-step math reasoning tasks. Strate-
gyQA tests strategic reasoning skills for deriving
implicit strategies and using deductive reasoning to
answer questions. CommonsenseQA (CSQA) tests
the ability to handle commonsense reasoning with
everyday knowledge. In evaluating performance
on these datasets, we primarily focus on reasoning
accuracy (%) as the key metric.

Baselines. We compare Entro-duction with two
strong baseline types: (1) Reasoning structures, in-
cluding Chain of Thought (CoT), Chain of Thought
with Self-Consistency (CoT-SC), Tree of Thought
(ToT) and Complex CoT:

• CoT: Guides the model to solve problems step-
by-step and generates a coherent reasoning
chain that leads to a conclusion.

• CoT-SC: Generates multiple reasoning chains
and uses a majority vote to determine the final
output. We sample answer 8 (CoT-SC@maj8)
and 64 (CoT-SC@maj64) times to employ
majority vote for selection.

• ToT: Expands the reasoning process into a
tree-like structure where multiple branches
represent different reasoning pathways.

• Complex CoT: Engages with complex sam-
ples and selects the best solution from various
intricate reasoning paths for tackling multi-
faceted and challenging problems.

and (2) Reasoning depth optimization methods, in-
cluding Self-talk (Shwartz et al., 2020; Molfese
et al., 2024) and Distillation-Reinforcement-
Reasoning (DRR) (Yang et al., 2024):

• Self-talk: Enhances reasoning by eliciting
LLMs to generate exploratory questions, un-
covering implicit background knowledge and
selecting the best answer.

• DRR: Distills LLM reasoning processes into
synthetic data by training a lightweight model
to provide feedback.

For detailed settings of baselines, please refer to
Appendix A.

Implementation Details. We conduct the ex-
periments utilizing the Llama-3.1-8B-Instruct1.
The temperature for all models is set to the default
value of 0.7, with a maximum token limit of 128.
All tasks are performed on an NVIDIA 4090 GPU.

4.2 Overall Performance
The overall performance is reported in Table 1. For
the baselines, we compare reasoning accuracies
across four datasets, and for reasoning structures,
we additionally measure the number of steps re-
quired. Since each structure’s steps and branches
are predefined, we adopt configurations that can
perform well and that further increasing the step
count often does not bring significant gains. Specif-
ically, for math tasks, CoT is set to 8 steps, CoT-SC
adopts 3 parallel chains of 8 steps each, and ToT
generates three branches per step for five layers.
For commonsense tasks, CoT is set to 5 steps, CoT-
SC adopts 3 parallel chains of 5 steps each, and ToT
generates three branches per step for five layers.

Compared to reasoning structures, our Entro-
duction approach achieves both higher accu-
racy and fewer reasoning steps. For instance,
on GSM8K, CoT reaches 0.75 accuracy, CoT-
SC@maj64 0.80, and Complex CoT 0.81, while
Entro-duction attains 0.85. A similar advantage
appears on SVAMP (up to 0.92), and on the com-
monsense tasks StrategyQA and CSQA, Entro-
duction scores 0.70 and 0.79 respectively, surpass-
ing most baselines. Moreover, tree-structured meth-
ods ToT require hundreds of steps (over 100 in sev-
eral cases), while Entro-duction needs much fewer
steps, only more than CoT. Even compared to fixed-
step approaches such as CoT and Complex CoT,
Entro-duction delivers higher accuracy in a similar
or slightly increased number of steps.

Compared to reasoning depth optimization meth-
ods, Entro-duction consistently attains higher per-

1https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

3900

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

Method
Math Commonsense

GSM8K SVAMP StrategyQA CSQA
Accuracy # Steps Accuracy # Steps Accuracy # Steps Accuracy # Steps

CoT 75.2 8.0 83.4 8.0 57.7 5.0 75.6 5.0
CoT-SC@maj8 78.1 24.0 87.5 24.0 68.3 15.0 78.2 15.0
CoT-SC@maj64 80.2 24.0 89.6 24.0 67.1 15.0 78.7 15.0
ToT 72.6 121.0 83.3 121.0 65.8 121.0 73.5 121.0
Complex CoT 81.4 8.0 86.2 8.0 65.7 5.0 73.9 5.0

Self-talk 79.1 / 83.7 / 61.5 / 70.0 /
DRR 83.0 / 90.2 / 67.7 / 82.1 /

Entro-duction 85.4 9.5 92.0 11.20 70.3 9.6 79.6 7.1

Table 1: Performance comparison across different reasoning methods with accuracy and number of steps.

formance. Self-talk achieves accuracies of 0.79,
0.61, and 0.70 on GSM8K, StrategyQA, and
CSQA, all below Entro-duction ’s 0.85, 0.70, and
0.79. DRR demonstrates decent performance on
SVAMP (0.90) and CSQA (0.82), but still trails
Entro-duction on GSM8K (0.83 vs. 0.85) and Strat-
egyQA (0.67 vs. 0.70). Moreover, these methods
often rely on additional training or separate mod-
els, while Entro-duction balances accuracy and a
relatively low reasoning overhead without training.

4.3 Ablation Study
4.3.1 Impact of Jointly Using Entropy and

Variance Entropy
To validate the necessity of jointly using entropy
and variance entropy, we conduct experiments
across four datasets to validate the necessity of
jointly using entropy and variance entropy. We set
four different scenarios: Base (neither used), En-
tropy (only entropy used), Variance (only variance
entropy used), and Both (both used).

As shown in Figure 3, when using only entropy,
the model tends to stop reasoning prematurely in
scenarios with many potential outcomes but fewer
overall fluctuations (Scenario 2). Using only vari-
ance entropy can capture changes in fluctuations
between reasoning steps. It slightly outperforms
using entropy alone, but still proves inadequate for
handling various uncertainty scenarios Scenario 3),
with accuracies mostly close to or below Base.

4.3.2 Impact of Expansion in Reasoning
Compared with Deepen and Stop that directly af-
fect reasoning depth, Expand is a key behavior in
Entro-duction to branch out the current reasoning
path to cover more potential solutions. We further
validate the necessity of the behavior Expand by

0.25

0.50

0.75

1.00

Base Entropy Variance Both

S
co

re

GSM8K

0.25

0.50

0.75

1.00

Base Entropy Variance Both

S
co

re

SVAMP

0.25

0.50

0.75

1.00

Base Entropy Variance Both

S
co

re

StrategyQA

0.25

0.50

0.75

1.00

Base Entropy Variance Both

S
co

re

CSQA

Figure 3: Comparison of adjusting with entropy and/or
variance entropy.

comparing three settings across datasets: Base (no
behavior selection), w/o (only using Deepen and
Stop), and w/ (enabling Expand).

As shown in Figure 4, the accuracies of w/o are
generally lower than those of w/, particularly in
tasks requiring multiple reasoning paths or branch-
ing thought processes, such as SVAMP and Strate-
gyQA. The result indicates that using only Deepen
and Stop limits the exploration of potential direc-
tions, while expanding the exploration contributes
to improving the completeness of the reasoning.

4.3.3 Impact of Soft Stop
In some complex tasks, we notice that the initial
reasoning process could see an increase in both
entropy and variance entropy. However, the model
may still expect valid exploration in the contin-
ued reasoning. In this case, if we adopt a “hard
stop”, which means immediate shutdown, it could
terminate exploration in advance of arriving at the

3901

0.5

0.6

0.7

0.8

0.9

1.0

Base w/o w/

S
co

re
GSM8K

0.5

0.6

0.7

0.8

0.9

1.0

Base w/o w/

S
co

re

SVAMP

0.5

0.6

0.7

0.8

0.9

1.0

Base w/o w/

S
co

re

StrategyQA

0.5

0.6

0.7

0.8

0.9

1.0

Base w/o w/

S
co

re

CSQA

Figure 4: Impact of the behavior Expand.

correct conclusion. Instead, we introduce a “soft
stop” mechanism to balance the need for thorough
exploration and the risk of redundant reasoning.
The model continues for several additional steps
before stopping. In our experiments, we imple-
ment four settings: Base (no stopping strategy),
Stop@1 (hard stop with immediate termination),
Stop@2 (soft stop with one more reasoning step
before stopping) and Stop@3 (soft stop with two
more reasoning steps before stopping).

0.4

0.6

0.8

1.0

Base Stop@1Stop@2Stop@3

S
co

re

GSM8K

0.4

0.6

0.8

1.0

Base Stop@1Stop@2Stop@3

S
co

re

SVAMP

0.4

0.6

0.8

1.0

Base Stop@1Stop@2Stop@3

S
co

re

StrategyQA

0.4

0.6

0.8

1.0

Base Stop@1Stop@2Stop@3

S
co

re

CSQA

Figure 5: Comparison of stopping strategies.

As shown in Figure 5, we can see that the hard
stop strategy has the lowest outcomes across all
four datasets, lower than not employing any stop-
ping strategy. The soft stop strategy consistently
has the best results. Moreover, on datasets SVAMP
and CSQA, Stop@2 performs as well or better than
Stop@3. This result suggests that a soft stop ex-
tending two to three steps is sufficient to complete
effective exploration without the need for extensive
further reasoning.

4.4 Robustness Study
We further discuss the impact of ϵ-greedy strategy
by testing four ϵ values (0.05, 0.1, 0.25, 0.5).

25

50

75

100

0.05 0.1 0.25 0.5

S
co

re

GSM8K

25

50

75

100

0.05 0.1 0.25 0.5

S
co

re

SVAMP

25

50

75

100

0.05 0.1 0.25 0.5

S
co

re

StrategyQA

25

50

75

100

0.05 0.1 0.25 0.5

S
co

re

CSQA

Figure 6: Comparison of choice of ϵ.

As shown in Figure 6, ϵ = 0.25 consis-
tently achieves the highest accuracy across all four
datasets. This result demonstrates that this value
enhances the model’s performance by effectively
exploring the solution space. Specifically, when ϵ
is set too low (ϵ = 0.05), the model’s performance
is poor. This is likely due to insufficient explo-
ration that relies heavily on the known strategy,
thus unable to explore potential solutions hidden
in the space. Meanwhile, when ϵ = 0.5, it outper-
forms ϵ = 0.1 in mathematical tasks and underper-
forms in commonsense tasks. This result indicates
that tasks requiring reasoning with stringent logical
structure and relatively more steps need broader
exploration to identify the correct solutions. For
commonsense tasks, which require more precise
adopting of knowledge for quick decision-making.
In this type of task, over-exploration may lead the
model away from the question background and thus
miss the intuitive commonsense answers.

5 Conclusion

In this study, we introduce Entro-duction, a novel
approach that dynamically adjusts the exploration
depth during LLM multi-step reasoning by mon-
itoring the entropy and variance entropy. Entro-
duction leverages the change of both metrics to
select exploration behavior to enhance reasoning
performance and avoid redundant reasoning steps.
Our experiments across multiple reasoning datasets
demonstrate the effectiveness of the Entro-duction
and its components.

3902

Limitations

We develop a framework with dynamic depth ad-
justment strategies for LLMs. If not precisely cali-
brated, it might lead to suboptimal reasoning perfor-
mance. This may limit the Entro-duction method’s
ability to adaptively balance exploration and ex-
ploitation in real-time. Besides, the experiments
are conducted on four benchmark datasets on one
Llama model, which may not provide a compre-
hensive view of the Entro-duction’s generalization
capability across LLMs with varying sizes and pre-
training processes. Moreover, the Entro-duction is
mainly evaluated on specific tasks and these tasks
cannot fully reflect the complexities of real-world
scenarios where reasoning tasks can be variable and
with more complex and external solution spaces.
We left these potential explorations as future work.

Acknowledgements Dr. Xiting Wang is sup-
ported by the National Natural Science Foundation
of China (NSFC) (NO. 62476279, NO. 92470205),
Major Innovation & Planning Interdisciplinary Plat-
form for the “Double-First Class” Initiative, Ren-
min University of China, the Fundamental Re-
search Funds for the Central Universities, and the
Research Funds of Renmin University of China
No. 24XNKJ18. Dr. Xiting Wang is supported
by fund for building world-class universities (disci-
plines) of Renmin University of China and Public
Computing Cloud, Renmin University of China.

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui

Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. arXiv preprint arXiv:2402.00157.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,
Bing Qin, and Ting Liu. 2023. A survey of chain of
thought reasoning: Advances, frontiers and future.
arXiv preprint arXiv:2309.15402.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Patrick J Coles, Mario Berta, Marco Tomamichel, and
Stephanie Wehner. 2017. Entropic uncertainty re-
lations and their applications. Reviews of Modern
Physics, 89(1):015002.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and
Yarin Gal. 2024. Detecting hallucinations in large
language models using semantic entropy. Nature,
630(8017):625–630.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and
Tushar Khot. 2023. Specializing smaller language
models towards multi-step reasoning. In Inter-
national Conference on Machine Learning, pages
10421–10430. PMLR.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2022. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Kye Gomez. 2023. Tree of thoughts. https://github.
com/kyegomez/tree-of-thoughts.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, et al. 2022. Train-
ing compute-optimal large language models. arXiv
preprint arXiv:2203.15556.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. 2024. The impact of reasoning step
length on large language models. arXiv preprint
arXiv:2401.04925.

Ziqi Jin and Wei Lu. 2024. Self-harmonized chain of
thought. arXiv preprint arXiv:2409.04057.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.
2024. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint
arXiv:2402.12875.

Xun Liang, Shichao Song, Zifan Zheng, Hanyu Wang,
Qingchen Yu, Xunkai Li, Rong-Hua Li, Feiyu Xiong,
and Zhiyu Li. 2024a. Internal consistency and self-
feedback in large language models: A survey. arXiv
preprint arXiv:2407.14507.

Yuxin Liang, Zhuoyang Song, Hao Wang, and Jiax-
ing Zhang. 2024b. Learning to trust your feelings:
Leveraging self-awareness in llms for hallucination
mitigation. arXiv preprint arXiv:2401.15449.

3903

https://github.com/kyegomez/tree-of-thoughts
https://github.com/kyegomez/tree-of-thoughts

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Ji-
ayang, Yue Zhang, Xipeng Qiu, and Zheng Zhang.
2024a. Can language models learn to skip steps?
Preprint, arXiv:2411.01855.

Tongxuan Liu, Wenjiang Xu, Weizhe Huang, Xingyu
Wang, Jiaxing Wang, Hailong Yang, and Jing Li.
2024b. Logic-of-thought: Injecting logic into con-
texts for full reasoning in large language models.
arXiv preprint arXiv:2409.17539.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan
Fang, and Xinchao Wang. 2025. Cot-valve: Length-
compressible chain-of-thought tuning. Preprint,
arXiv:2502.09601.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. arXiv preprint arXiv:2402.06196.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

Fengran Mo, Kelong Mao, Ziliang Zhao, Hongjin
Qian, Haonan Chen, Yiruo Cheng, Xiaoxi Li, Yu-
tao Zhu, Zhicheng Dou, and Jian-Yun Nie. 2024.
A survey of conversational search. arXiv preprint
arXiv:2410.15576.

Fengran Mo, Kelong Mao, Yutao Zhu, Yihong Wu,
Kaiyu Huang, and Jian-Yun Nie. 2023. Convgqr:
Generative query reformulation for conversational
search. arXiv preprint arXiv:2305.15645.

Shentong Mo and Miao Xin. 2024. Tree of uncer-
tain thoughts reasoning for large language models.
In ICASSP 2024-2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 12742–12746. IEEE.

Francesco Maria Molfese, Simone Conia, Riccardo Or-
lando, and Roberto Navigli. 2024. Zebra: Zero-
shot example-based retrieval augmentation for com-
monsense question answering. arXiv preprint
arXiv:2410.05077.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. Preprint, arXiv:2308.03188.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc
Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David R So, Maud Texier, and Jeff Dean.
2022. The carbon footprint of machine learning train-
ing will plateau, then shrink. Computer, 55(7):18–
28.

Aske Plaat, Annie Wong, Suzan Verberne, Joost
Broekens, Niki van Stein, and Thomas Back. 2024.
Reasoning with large language models, a survey.
arXiv preprint arXiv:2407.11511.

Ronald Rosenfeld et al. 1996. A maximum entropy
approach to adaptive statistical language modelling.
Computer speech and language, 10(3):187.

Vered Shwartz, Peter West, Ronan Le Bras, Chan-
dra Bhagavatula, and Yejin Choi. 2020. Unsuper-
vised commonsense question answering with self-
talk. arXiv preprint arXiv:2004.05483.

Xiaoshuai Song, Yanan Wu, Weixun Wang, Jiaheng Liu,
Wenbo Su, and Bo Zheng. 2025. Progco: Program
helps self-correction of large language models. arXiv
preprint arXiv:2501.01264.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez,
Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur-
rett. 2024. To cot or not to cot? chain-of-thought
helps mainly on math and symbolic reasoning. arXiv
preprint arXiv:2409.12183.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. 2023. Gpt-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning prob-
lems. Preprint, arXiv:2310.12397.

Kaya Stechly, Karthik Valmeekam, and Subbarao
Kambhampati. 2024a. Chain of thoughtlessness:
An analysis of cot in planning. arXiv preprint
arXiv:2405.04776.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2024b. On the self-verification limitations
of large language models on reasoning and planning
tasks. arXiv preprint arXiv:2402.08115.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Jean-Francois Ton, Muhammad Faaiz Taufiq, and
Yang Liu. 2024. Understanding chain-of-thought
in llms through information theory. Preprint,
arXiv:2411.11984.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

3904

https://arxiv.org/abs/2411.01855
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2310.12397
https://arxiv.org/abs/2411.11984
https://arxiv.org/abs/2411.11984

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Xuezhi Wang and Denny Zhou. 2024. Chain-of-
thought reasoning without prompting. arXiv preprint
arXiv:2402.10200.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yu Xia, Rui Wang, Xu Liu, Mingyan Li, Tong Yu, Xiang
Chen, Julian McAuley, and Shuai Li. 2024. Beyond
chain-of-thought: A survey of chain-of-x paradigms
for llms. arXiv preprint arXiv:2404.15676.

Diji Yang, Linda Zeng, Kezhen Chen, and Yi Zhang.
2024. Reinforcing thinking through reasoning-
enhanced reward models. arXiv preprint
arXiv:2501.01457.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neu-
big, and Xiang Yue. 2025. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint
arXiv:2502.03373.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov.
2024. Distilling system 2 into system 1. Preprint,
arXiv:2407.06023.

Jinghan Zhang, Xiting Wang, Yiqiao Jin, Changyu Chen,
Xinhao Zhang, and Kunpeng Liu. 2024a. Prototyp-
ical reward network for data-efficient rlhf. arXiv
preprint arXiv:2406.06606.

Jinghan Zhang, Xiting Wang, Weijieying Ren, Lu Jiang,
Dongjie Wang, and Kunpeng Liu. 2024b. Ratt:
Athought structure for coherent and correct llmrea-
soning. arXiv preprint arXiv:2406.02746.

Yifan Zhang, Yang Yuan, and Andrew Chi-Chih Yao.
2024c. On the diagram of thought. arXiv preprint
arXiv:2409.10038.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

3905

https://arxiv.org/abs/2407.06023

Appendix

A Experimental Settings

A.1 Baselines
In CoT, we prompt the model with the sentense
“Let’s think step-by-step.”. For CoT-SC, we
use a majority vote to identify the most probable
correct solution, with the same few-shot examples
as the standard CoT method. For Complex CoT
we follow the setting in (Zhou et al., 2022). The
setting of Self-talk and DRR method follows the
setting in (Yang et al., 2024).

A.2 Answer-Cleaning
We showcase our answer-cleaning process with
GSM8K as an example. In the context of the

Algorithm 2 Answer Cleansing for GSM8K
Dataset

1: Input: pred ▷ Raw prediction from the model
2: Output: cleansed_pred ▷ Cleansed numerical

prediction
3: Remove commas from pred
4: Extract all numbers from pred using regex
5: Select the first or last number based on context
6: return cleansed_pred

GSM8K dataset, the answer-cleansing process is
crucial for ensuring the accuracy and usability of
predictions from large language models. Initially,
the raw prediction, referred to as pred, often con-
tains numerical answers formatted with commas or
mixed with textual content. To standardize these
predictions, we first remove any commas to nor-
malize the numbers. Subsequently, we use regular
expressions to extract all numerical values from
this cleaned string. Given the nature of GSM8K
tasks, where a specific numerical answer is typi-
cally required, our algorithm strategically selects
either the first or last number based on predefined
logic tailored to the dataset’s requirements. This
selection process is designed to pick the most rel-
evant number based on its position in the model’s
output. The final step produces a cleansed_pred,
which is the processed and formatted numerical
answer ready for evaluation against the dataset’s
ground truth.

3906

