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Abstract
Chain-of-thought (CoT) prompting has been
widely adopted to enhance the reasoning ca-
pabilities of large language models (LLMs).
However, the effectiveness of CoT reasoning is
inconsistent across tasks with different reason-
ing types. This work presents a novel perspec-
tive to understand CoT behavior through the
lens of confirmation bias in cognitive psychol-
ogy. Specifically, we examine how model in-
ternal beliefs, approximated by direct question-
answering probabilities, affect both reasoning
generation (Q → R) and reasoning-guided an-
swer prediction (QR → A) in CoT. By decom-
posing CoT into a two-stage process, we con-
duct a thorough correlation analysis in model
beliefs, rationale attributes, and stage-wise per-
formance. Our results provide strong evidence
of confirmation bias in LLMs, such that model
beliefs not only skew the reasoning process but
also influence how rationales are utilized for
answer prediction. Furthermore, the interplay
between task vulnerability to confirmation bias
and the strength of beliefs also provides expla-
nations for CoT effectiveness across reasoning
tasks and models. Overall, this study provides a
valuable insight for the needs of better prompt-
ing strategies that mitigate confirmation bias to
enhance reasoning performance. Code is avail-
able at https://github.com/yuewan2/biasedcot.

1 Introduction

Chain-of-thought (CoT) prompting (Wei et al.,
2022), which explicitly guides the models to gener-
ate intermediate reasoning steps, is one of the most
acknowledged prompting strategies for enhancing
the reasoning capability of large language models
(LLMs). Aside from its benefits of revealing the
thinking process in a human-readable format (Joshi
et al., 2023), it has proven to be significantly ef-
fective in complex reasoning tasks (Kojima et al.,
2022; Zhou et al., 2023; Qi et al., 2025).

To investigate the key factors behind the ef-
fectiveness of CoT reasoning, prior studies have

Figure 1: A typical Venn diagram of confirmation bias
in cognitive psychology, using the example of a com-
monsensical question. The agent reinforces its internal
beliefs and skews its reasoning process towards "making
music", while overlooking other relevant facts of play-
ing guitar. Notes that the internal belief is unobserved
but plays a huge role in decision making.

examined both the nature of reasoning problems
(Sprague et al., 2025; Feng et al., 2023; Liu et al.,
2024), the patterns and symbols of the prompts
(Madaan et al., 2023), and the attributes of the
CoT rationale (Golovneva et al., 2023; Prasad et al.,
2023). A key finding across multiple studies is that
CoT is particularly useful for symbolic and mathe-
matics reasoning tasks (Sprague et al., 2025; Feng
et al., 2023). In contrast, CoT is less effective for
non-symbolic reasoning tasks like commonsense
reasoning. Moreover, research (Liu et al., 2024)
shows that CoT can even hinder performance in
tasks where deliberate reasoning negatively im-
pacts human performance. It is also observed
that the validity of CoT reasoning contributes only
marginally to the CoT performance, whereas query
(answer) relevance and reasoning steps ordering
play a more important role (Wang et al., 2023).

In this work, we offer a novel perspective from
cognitive psychology to understand the CoT be-
haviors across reasoning tasks. We argue that, like

3788



human beings, LLMs can demonstrate the same
patterns of confirmation bias (Nickerson, 1998)
that affects the reasoning process. Confirmation
bias (Figure 1) refers to the tendency to selec-
tively retrieve and interpret information in the man-
ner that reinforces preexisting beliefs (Nickerson,
1998). It is often more pervasive in tasks that re-
quire subjective interpretation and prior knowledge
compared to those involving formal logic and ob-
jective correctness (Berthet et al., 2024). From
this perspective, we seek to answer two questions:
1. How does confirmation bias affect CoT behav-
ior? and 2. Why does its influence vary across
questions, reasoning types, and LLMs? We begin
by approximating internal beliefs using the direct
question-answering probabilities, and the answer
confidence as an indicator of beliefs strength. To
enable a fine-grained analysis, we decompose CoT
reasoning into two stages of reasoning generation
(Q → R) and reasoning-guided answer prediction
(QR → A). We then perform correlation analysis
between beliefs, rationale attributes, and stage-wise
performance to explore patterns of confirmation
bias across reasoning tasks and LLMs.

Notably, our experiments reveal patterns of con-
firmation bias in CoT. The strength of internal be-
liefs is found to significantly influence CoT perfor-
mance at both reasoning stages through variations
in rationale presentation and how rationale is uti-
lized for answer prediction. The extent of CoT
improvement also aligns well with the degree to
which reasoning tasks are prone to confirmation
bias. In addition, we find that "debiasing" inter-
nal beliefs becomes even more challenging when
they are stronger. This provides a different view of
why CoT prompting is most effective in symbolic
reasoning tasks (e.g., mathematical reasoning) com-
pared to non-symbolic reasoning tasks, which rely
more on contextual and implicit knowledge rather
than formal rules for problem-solving. It also sheds
light on when CoT can be more reliably trusted.

In summary, we offer a novel perspective from
cognitive psychology in undersanding CoT behav-
ior, showing that patterns of confirmation bias can
influence CoT performance across questions, rea-
soning types, and LLMs. We also propose a new
framework for analyzing CoT behavior, which in-
cludes the decomposition of the end-to-end accu-
racy into the performance of Q → R and QR → A,
along with a stratified correlation analysis that
connects model internal beliefs with rationale at-
tributes and stage-wise CoT performance.

2 Preliminary

Chain-of-thought In the conventional chain-of-
thought (CoT) (Wei et al., 2022) formulation, a
reasoning chain R is explicitly decomposed into
intermediate steps [r1, r2, . . . , rT ] given a question
Q, leading to the final prediction A. In conven-
tion, each sentence is treated as a reasoning step.
Notably, we can factorize CoT into a two-stage
process as,

P (A,R|Q) = P (A|Q,R)P (R|Q)

where the P (R|Q) indicates the reasoning genera-
tion stage (Q → R), and P (A|Q,R) corresponds
to the stage of reasoning-guided answer prediction
(QR → A). The performance of the latter stage
is also viewed as the model’s faithfulness, which
measures the consistency between the predicted
answer and the underlying reasoning process (Par-
calabescu and Frank, 2024; Bentham et al., 2024).
Examining the performance at each stage provides
a more fine-grained CoT evaluation.

Confirmation bias In cognitive psychology, con-
firmation bias (Nickerson, 1998) is the tendency
to seek and interpret information in a way that
confirms preexisting beliefs. It is especially per-
vasive in reasoning processes that rely on subjec-
tive interpretation, prior knowledge, and heuris-
tic decision-making (Berthet et al., 2024). In
a question-answering setup, beliefs B are often
associated with Q and influence the decision as
P (A|Q,B). This can be further extended using
the CoT formulation:

P (A,R|Q,B) = P (A|Q,R,B)P (R|Q,B)

which suggests that prior beliefs B may affect both
reasoning stages.

3 Evaluation Methods

Several challenges exist for exploring confirmation
bias in CoT reasoning of LLMs. Firstly, beliefs B
are often internal and unobserved. For LLMs, the
beliefs associated with a question may come from
the prior exposure to question-related content dur-
ing training, making them hard to measure. Second,
end-to-end accuracy alone is insufficient for ana-
lyzing the effects of B at different stages. A fine-
grained correlation analysis requires a stage-wise
performance measure, as well as the quantification
of R’s attributes given B. Third, since we hypothe-
size that B is a strong prior factor that influences
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all aspects, it is crucial to develop a method to con-
trol its effects in certain analysis. We address each
of these challenges in the following sections. We
primarily focus on multiple-choice QA questions
in this work.

3.1 Internal Beliefs Quantification

Direct answer prediction as B The actual
internal beliefs B are impossible to measure, as
they are unobserved and inherently tied to the
model’s exposure to question-related content
during training. However, we argue that the
zero-shot answering probability P (Ai|Q) =

softmax( 1
T ′

∑T ′
t=1 logP (ait |ai1:t−1 , Q)), where

Ai denote the ith answer choice given question Q
and T ′ represents the number of tokens in Ai, can
serve as a proxy. A higher probability indicates
that B is more favored towards Ai given Q.

Entropy as strength of B We then measure the
strength of B by the model’s confidence over the
answer prediction. We leverage the entropy of
P (Ai|Q) as the measure, where a lower entropy
corresponds to higher confidence:

− 1

C

n∑

i=1

P (Ai|Q) logP (Ai|Q)

where C = log(n) is the normalization factor that
scales the entropy between 0 and 1. This nor-
malization enables confidence comparisons across
datasets. While entropy is limited to white-box
LLMs, we argue that token-level log probabili-
ties provide a direct and clearer reflection of the
model’s belief towards the information.

Empirical difficulty as B against A∗ To further
measure B against the correct answer A∗, we com-
pute the log probability difference between A* and
the highest scored answer choice excluding A∗:

max
Ai ̸=A∗

logP (Ai|Q)− logP (A∗|Q)

We also term this as the empirical difficulty of a
question. Large negative value means that model
is confidently correct about the question (low dif-
ficulty), whereas large positive value means the
model is confidently incorrect, requiring more ef-
forts to correct B (i.e., greater difficulty). For sim-
plicity, both "entropy" and "empirical difficulty"
will only refer to the measures from the direct an-
swering setting in the following sections.

3.2 Chain-of-Thought Evaluation

To analyze the effect of internal beliefs in CoT
generation, we evaluate CoT using multiple met-
rics: (1) Length computes the number of tokens
in the rationale. (2) Relevance (Wang et al., 2023)
measures the degree to which the rationale merely
explains the question or the predicted answer given
the question. (3) Explicitness captures whether at
least one reasoning step is explicitly conclusive
(e.g., "... is the most appropriate answer."). We ob-
serve it has a strong influence on subsequent reason-
ing if presented in the middle steps and the final pre-
diction (Appendix A.4); (4) Informativeness, based
on the point-wise mutual information (Bosselut
et al., 2020; Holtzman et al., 2021), measures how
much additional information the rationale provides
to improve the CoT prediction; (5) Sufficiency eval-
uates whether the rationale contains enough infor-
mation to answer the question without the presence
of the question. We also include (6) RelevanceNeg
and (7) ExplicitnessNeg, with focuses on how ratio-
nale excludes alternative answers. Detailed com-
putations are included in Appendix Table S3. All
metrics are hypothesized to correlate with CoT per-
formance.

Since errors can arise at both reasoning stages, it
would be insufficient to solely rely on end-to-end
performance, PerformanceE2E, to conduct the anal-
ysis. We thereby extract Ainter as the intermediate
answer supported by the rationale. It is obtained
via majority voting from the predicted answers of
four advanced LLMs (Appendix A.2.2). It is used
to evaluate the stage-one beliefs consistency (8)
ConsistencyInter = I (argmaxiP (Ai|Q) = Ainter), and
the stage-two performance (9) PerformanceInter =
I (argmaxiP (Ai|Q,R) = Ainter).

3.3 Stratified Correlation Analysis

Based on the quantification of B and the measured
attributes of R, we perform a correlation analysis
to explore patterns of confirmation bias within CoT.
Directly applying correlation analysis to the data
has several issues. First, the target factor values
may be unevenly distributed, leading to correlation
analysis that are biased towards the examples with
dominant values. For instance, in our experiments,
Mistral-7B (Jiang et al., 2023) has exhibited high
confidence (i.e., low entropy) to a large number
of questions in CommonsenseQA (Talmor et al.,
2019). Analysis involving entropy may overlook
patterns for high entropy questions. Second, the
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Datasets
Mistral-7B Llama3-8B OLMo2-7B

Direct CoT Direct CoT Direct CoT
CommonsenseQA (Talmor et al., 2019) 0.711 0.690 0.705 0.742 0.623 0.766
SocialIQA (Sap et al., 2019) 0.651 0.653 0.564 0.631 0.542 0.643
PIQA (Bisk et al., 2020) 0.804 0.796 0.721 0.757 0.666 0.713
StrategyQA (Geva et al., 2021) 0.594 0.629 0.642 0.668 0.572 0.607
StrategyQA+F (Geva et al., 2021) 0.734 0.808 0.760 0.817 0.712 0.738
AQuA (Ling et al., 2017) 0.217 0.343 0.291 0.480 0.244 0.528

Table 1: An overview of chain-of-thought improvement. The underlined scores represent cases where the CoT
improvement is either marginal or negative.

question itself is a confounding factor that affects
the attributes of R, adding noise to the correlation
analysis involving R. Third, since we hypothe-
size that the strength of B (i.e. entropy) may be
a dominant factor influencing both R’s attributes
and performance, directly examining correlations
among factors other than entropy could introduce
additional confounding effects and lead to a mis-
guided analysis.

To approach these issues, we propose to perform
a stratified correlation analysis. Specifically, the
factor of interests z is first discretized into k groups
G with equal-width internal (zmax−zmin)/k. The
group assignment is defined as g(zi) = j if zi ∈
Gj . Once the grouping is established, we perform
either inter-group or intra-group correlation anal-
ysis. Inter-group analysis mainly tackles the chal-
lenges of imbalanced factor values and data noise.
Based on the grouping, factor x are first aggregated
into group-level features:

x̄i =
1

|Sj |
∑

i∈Sj

xi

where Sj = {i | g(zi) = j} is the set of indices
for observations in group Gj . Aggregation essen-
tially ensures that the target factor (e.g., entropy)
becomes more uniformly distributed, thereby re-
ducing bias from unbalanced data. Additionally, it
helps smooth out the noise originating from indi-
vidual questions. To avoid overly smoothing the
data, we set the number of groups to be sufficiently
high, such that the average number of data points
within each group is less than 1%. We then perform
correlation analysis with respect to factor z using
the aggregated observations.

Intra-group analysis focus more on the third chal-
lenge. Confounding factor z is first discretized
into k group, and correlation analysis is conducted
within each subgroup, considering only questions

with similar z values. This allows for a clearer ex-
amination of the relationship between key factors,
while minimizing the influence of z. It also enables
us to further investigate how correlation patterns
evolve across different levels of z.

4 Experimental Setup

4.1 Datasets

We experiment with five datasets of varying reason-
ing types: CommonsenseQA (Talmor et al., 2019),
SocialIQA (Sap et al., 2019), PIQA (Bisk et al.,
2020), StrategyQA (Geva et al., 2021), and AQuA
(Ling et al., 2017). We also evaluate StrategyQA+F,
where the implicit facts to solve the question are
given. Hypothetically, explicitly providing factual
knowledge to the models will mitigate confirma-
tion bias from implicit knowledge retrieval, hence
leading to larger CoT improvement.

4.2 LLMs

We choose Mistral-7B (Jiang et al., 2023), Llama3-
8B (Grattafiori et al., 2024), and OLMo2-7B
(OLMo et al., 2025), three of the most popular
and advanced white-box LLMs, for CoT Analysis.

4.3 QA Details

To compute the direct question-answering predic-
tion, we first apply the softmax function to the
average log probability of the answer tokens given
the question as P (A|Q). We then select the an-
swer with the highest probability as the predic-
tion. For the CoT prediction, we first generate
the rationale from P (R|Q). The zero-shot CoT
prompt used in this work is adapted from Fu
et al. (2023) (Appendix A.2.1). We then compute
P (A|Q,R) in the same manner and extract the
CoT prediction. The end-to-end accuracy, denoted
as PerformanceE2E, measures whether the predic-
tion matches A∗. Additionally for CoT evalua-
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Figure 2: Shift in PerformanceE2E from direct to CoT
prediction in relation of entropy and empirical difficulty.

tion, we measure whether the prediction aligns with
AInter (i.e., the intermediate answer extracted from
the rationale), regardless of whether it matches
A∗. This serves as the stage-two accuracy (i.e.,
PerformanceInter) of the model’s ability to faithfully
follow the rationale.

5 Results

Table 1 shows the overall CoT performance. It can
be seen that the CoT improvement on non-symbolic
reasoning tasks in general falls far behind its im-
provement on symbolic reasoning problems like
AQuA. Mistral-7B even performs worse on Com-
monsenseQA and PIQA with CoT. This observa-
tion aligns well with the findings in (Sprague et al.,
2025) that CoT primarily improves performance on
symbolic and mathematics reasoning tasks. In the
following section, we conduct a thorough statistical
analysis to understand the performance difference.
The following question will be addressed. RQ1.
How does confirmation bias affect CoT behavior.
RQ2. Why does its influence vary across different
questions, reasoning types, and models?

5.1 RQ1: Confirmation bias in P (A,R|Q,B)

To examine internal beliefs in CoT reasoning, we
first conduct analysis on the end-to-end CoT per-
formance (PerformanceE2E). In this setting, the
model is expected to generate both the rationale
and answer given the question, which is the typical
CoT setup. We primarily study the CoT behavior
of Mistral-7B on CommonsenseQA, which serves
as a typical setting for confirmation bias, which we
will illustrate in the later section. Additional analy-
ses on other settings are provided in Appendix A.6,
which show similar patterns.

We first visualize the direct PerformanceE2E and
CoT PerformanceE2E with respect to Entropy and
question Empirical Difficulty in Figure 2. It is clear

Figure 3: Separation of the PerformanceInter (i.e., perfor-
mance of QR → A) from PerformanceE2E (i.e., perfor-
mance of Q → R and QR → A) with stratified analysis
on empirical difficulty. The grey dashed line represents
the perfect performance.

to see that questions with stronger beliefs B (lower
entropy) are more likely to retain their correctness
level regardless of the question difficulty level, sug-
gesting signs of confirmation bias. This partially
explains the ineffectiveness of CoT, particularly
in regions where the model is confidently wrong
initially (as indicated by the red dashed circle). In
contrast, questions with weaker beliefs are more
prone to fluctuations in predictions. We observe
that this behavior arises because questions with
weaker beliefs B (higher entropy) are more sensi-
tive to the quality and structure of the generated
reasoning, as we will discuss later.

We further separate CoT PerformanceInter from
CoT PerformanceE2E and visualize them against
the empirical difficulty in Figure 3. As difficulty in-
creases, PerformanceE2E exhibits a consistent drop,
whereas PerformanceInter remains much more sta-
ble. The widening gap between the red and or-
ange lines indicates that errors from the first rea-
soning stage (Q → R) become more dominant as
the model becomes more confidently wrong (i.e.,
Difficulty↑). The gap between the orange and grey
(perfect performance) lines reflects the stage-two
errors, where the model mis-predicts despite fol-
lowing the "correct" rationale. This is especially
true for high entropy questions, as indicated by the
red circle.

5.2 RQ1: Confirmation bias disentangled

To disentangle the impact of confirmation
bias, we perform a more detailed analysis
of P (A,R|Q,B) = P (A|Q,R,B)P (R|Q,B).
Stage 1 analyzes the generated rationale from
P (R|Q,B), and stage 2 evaluates the model’s per-
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Figure 4: Correlation trends of base entropy (proxy for model’s internal beliefs) with CoT Length, ConsistencyInter,
and Sufficiency. (Mistral-7B on CommonsenseQA)

Figure 5: Correlation of Entropy, proxy for strength
of model’s internal beliefs B, with other factors using
behaviors of Mistral-7B on CommonsenseQA.

formance in faithfully following the generated ra-
tionale (PerformanceInter) from P (A|Q,R,B).

Stage 1: B in generated rationale To investi-
gate how internal beliefs B influence the first stage
of P (R|Q,B), we perform the stratified correla-
tion analysis between the entropy values (proxy for
the strength of B) and R’s attributes. As shown
in Figure 5, the correlation matrix reveals that the
Entropy exhibit strong correlations with six out of
eight factors. For questions with strong beliefs (low
entropy), models tend to generate shorter reason-
ing steps, focusing more on explaining the interme-
diate answer Ainter (Relevance↑) while providing
fewer justifications for rejecting alternative choices
(RelevanceNeg↓). Rationale also tends to be more
explicitly conclusive (Explicitness↑) for low en-
tropy (strong beliefs B) questions, and more likely
to explicitly rule out options (ExplicitnessNeg↓) as
B weaken. The negative correlation with Suffi-
ciency may result from the confounding effects of
other factors, suggesting that B also affects the
overall quality of R. We also visualize the dis-
tribution of the top three correlated attributes in
Figure 4.

Another key observation is that CoT is more
likely to reinforce its original prediction for low
entropy questions (ConsistencyInter↑). This pro-
vides strong evidence of confirmation bias, where
prior beliefs affect reasoning outcomes. This may
also explain why CoT prompting is more helpful

in math reasoning compared to tasks requiring im-
plicit knowledge retrieval (Sprague et al., 2025),
as internal belief plays a more significant role in
the latter. In order to improve CoT reasoning per-
formance, mitigating the effects of internal belief
becomes a crucial problem.

(a) Correlation of Informativeness with other factors.

(b) Evolutionary correlation patterns of Informativeness with
other factors across different Entropy groups.

Figure 6: Correlation analysis of the role of B in the
second reasoning stage of P (A|Q,R,B), using behav-
iors of Mistral-7B on CommonsenseQA.
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Stage 2: B in rationale-guided answering In
this stage, we primarily study the role of B in influ-
encing PerformanceInter. We use Informativeness
as the main performance metric for the stratified
correlation analysis, as it provides a continuous as-
sessment of models’ ability to faithfully following
R for predictions. We first examine the general
correlation between rationales’ attributes and In-
formativeness. As shown in Figure 6a, Informa-
tiveness appears to be particularly correlated with
Relevance and Explicitness on CommonsenseQA
by Mistral-7B, which is expected. However, as we
already know that entropy (i.e., strength of B) also
has huge impact on these attributes, we cannot dis-
entangle the effects of R and B in P (A|Q,R,B)
from this result.

To address this issue, we conduct the intra-group
stratified correlation analysis, where the primary
grouping is based on Entropy values. For each sub-
group, we perform the inter-subgroup analysis on
Informativeness. The correlation matrix is shown
in Figure 6b, where each row represents the corre-
lation between Informativeness and other factors
among questions that share similar levels of En-
tropy. The side column displays the Entropy distri-
bution within each subgroup. One key observation
is that the importance of reasoning Relevance, Ex-
plicitness, and Sufficiency consistently increases
for improved Informativeness as B weaken (ques-
tions with higher Entropy). In other words, the
model tends to overlook the presentation of the
rationale for questions of high confidence, but re-
lying more on its internal beliefs B to infer the
answer. The other factors (Length, RelevanceNeg,
ExplicitnessNeg), on the other hand, do not show
clear evolutionary patterns, and are consistently
less important. The correlation between Infor-
mativeness and PerformanceInter is lower for low-
entropy questions, which results from the cases
where high Informativeness is still insufficient to
correct an initially confident but incorrect answer.

5.3 RQ2: Confirmation Bias Across Settings
In this section, we provide a comprehensive ex-
planation in why confirmation bias affects CoT
performance differently across reasoning types and
LLMs. Based on the task subjectivity level and
the amount of implicit knowledge required for
problem-solving, we rank the datasets based on
their vulnerability to confirmation bias as: Com-
monsenseQA > SocialIQA ≫ PIQA ≈ Strate-
gyQA > StrategyQA+F ≫ AQuA, where the left

represents the highest vulnerability (Appendix A.1).
The CoT improvement of Mistral-7B strictly fol-
lows this pattern. In addition, the difference in
CoT improvement between StrategyQA and Strate-
gyQA+F further highlights the presence of con-
firmation bias, such that the removal of poten-
tially biased process of implicit knowledge retrieval
leads to greater CoT improvement. Even though
the performance of Llama3-8B and OLMo2-7B
does not seem to follow the vulnerability hypoth-
esis, this can be explained by the belief differ-
ences across models. Since entropy alone can-
not distinguish between equally likely and equally
unlikely options, we use log-sum-exp (LSE =
log

(∑
i e

logP (Ai|Q)
)
) for a finer-grained estima-

tion of beliefs B for cross-model comparison. High
entropy with high LSE indicates that the model un-
certainty is due to all options are plausible, whereas
high entropy with low LSE indicates uncertainty
because none of the options are plausible.

We begin by plotting the Entropy and LSE dis-
tribution of the three models against the six rea-
soning tasks. As shown in Figure 7, Mistral-7B
demonstrates much lower entropy (stronger B) for
questions in almost all datasets. In other words,
Llama3-8B and OLMo2-7B are inherently less
prone to confirmation bias, and are more likely
to effectively leverage CoT to improve predictions.
This aligns with the correlation results in Figure 5,
where Entropy and Informativeness are positively
correlated. Another observation is that the En-
tropy distribution of all models shift slightly to the
right from StrategyQA to StrategyQA+F, support-
ing the argument that confirmation bias weakens
when implicit knowledge is provided. The reason
why OLMo2-7B has marginal CoT improvement
on StrategyQA+F can be explained by its LSE dis-
tribution. Its overall LSE scale is smaller than that
of other models, suggesting that its low confident
questions mainly come from equally likely rather
than equally unlikely options. This could be an-
other factor between confirmation bias and CoT
behavior that requires further research.

5.4 Cross-model Debiasing
Given that different models have different beliefs
due to their training processes, another interest-
ing experiment is to evaluate how each model per-
forms using the CoT generated by others. This
can be viewed as one model attempting to "de-
bias" the beliefs of another. For convenience, the
CoT-generating model is called the author, while
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Figure 7: Comprehensive comparison of the question-answering entropy distribution from P (Ai|Q) across the
Mistral-7B, Llama3-8B, and OLMo-7B models on six reasoning tasks. Mistral-7B exhibits much lower entropy
(stronger beliefs) on large number of questions across nearly all datasets.

Dataset Au Ex
Performance

Strong Neural Weak

CQA
M O 0.5 0.636 0.776
O M 0.510 0.718 0.833

SIQA
M O 0.417 0.425 0.565
O M 0.38 0.567 0.698

Table 2: Performance of Executor using Author’s CoT
response (CQA=CommonsenseQA, SIQA=SocialIQA,
M=Mistral-7B, O=OLMo2-7B).

the one using the CoT for predictions is called
the executor. The CoT formulation then becomes
P (A|Q,Rau, Bex)P (Rau|Q,Bau). If the executor
has a different and strong belief (Bex) than what
the author’s rationale supports (Ainter, au), execu-
tor’s prediction will likely to deviate from Ainter, au,
even when Rau is claimed to be sufficient.

We first select questions where the zero-shot
direct prediction of P (Ai|Q,Bex) mismatches
Ainter, au, and where Rau is deemed sufficient.
We then group these questions into three con-
fidence levels based on the executor’s Entropy
values and compute the average performance,
I(argmaxiP (Ai|Q,Rau, Bex) = Ainter, au), for
each group. We use Mistral-7B and OLMo2-7B
interchangeably as the author and executor, and
choose CommonsenseQA and SocialIQA as two
datasets that are most vulnerable to confirmation
bias. As shown in Table 2, the executor consis-
tently struggles to follow rationales that contradict
its internal beliefs, especially when the beliefs are
strong. Even when internal beliefs are weak, the
performance still remains suboptimal. This sug-
gests that "debiasing" internal beliefs may be even
more challenging than expected.

6 Related Works

6.1 CoT Prompting

Chain-of-thought (CoT) prompting (Wei et al.,
2022) was introduced to enhance multi-step reason-
ing in LLMs by explicitly guiding them to generate
intermediate reasoning steps, which is proven to be
effective in complex reasoning tasks (Kojima et al.,
2022; Nye et al., 2022; Zhou et al., 2023). Since
then, numerous studies have emerged to examine
the key factors behind CoT effectiveness. Specifi-
cally, researchers (Sprague et al., 2025; Feng et al.,
2023) found that CoT is particularly useful for sym-
bolic and mathematics reasoning tasks, whereas it
only improves marginally on non-symbolic tasks
like commonsense reasoning. Liu et al. (Liu et al.,
2024) further drew a parallel between CoT and
human performance, such that CoT can hinder per-
formance on tasks where deliberate reasoning is
counterproductive for humans. Meanwhile, the
work in (Madaan et al., 2023) identified consistent
patterns and high-quality exemplars in few-shot
prompts as two key factors for CoT effectiveness.
Several automatic metrics for evaluating reasoning
chains were also proposed (Golovneva et al., 2023;
Prasad et al., 2023). It is observed that CoT per-
formance is influenced more by query relevance
and the ordering of reasoning steps, rather than the
validity of the reasoning itself (Wang et al., 2023).

6.2 LLMs Faithfulness

Another line of works study the model’s faithful-
ness. It examines how well the model’s prediction
its true reasoning process, which is also viewed
as the model’s self-consistency between the pre-
diction and explanation (Parcalabescu and Frank,
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2024; Bentham et al., 2024). This aligns with the
stage-2 performance (i.e., PerformanceInter) con-
sidered in this work. It is observed that unfaithful
behavior of CoT is prevailing across tasks and mod-
els, and is related to model sizes (Bentham et al.,
2024; Lanham et al., 2023), the question-relevant
information considered in CoT (Li et al., 2025),
and the CoT information interacting with the an-
swer (Li et al., 2025; Wang et al., 2023). However,
these conclusions are only established after CoT
rationale is given, while ignoring why CoT is gener-
ated differently across questions, tasks and models
in the first place. In this work, we also observe
that factors like Relevance strongly affect unfaith-
ful behavior in stage-2 prediction. Additionally,
our study further highlights the importance of con-
firmation bias as a strong confounding factor that
affects both the CoT generation in the first place
and the relationship between rationales’ attributes
and model faithfulness.

The work by Bao et al. (Bao et al., 2025) is
the closet to ours, which studies the CoT consis-
tency and faithfulness by decomposing CoT into
explicit problem instruction, CoT generation, and
answer prediction. The authors build four types
of structural causal model (SCM) among the three
parts, and realize that LLMs may have mixed CoT
behavior between reasoning and explanation. It
further leads to reasoning errors between CoT and
predicted answer, and between CoT and the true
reason. This is consistent with our findings, and is
also closely related to the post-hoc reasoning issue
of LLMs. However, our study focuses more on
the effects of models’ internal beliefs instead of
the explicit instruction given to the model. On the
other hand, Bao et al. examines only tasks that rely
on formal rules (e.g., mathematical reasoning and
logical reasoning), whereas our analytic framework
can be applied to a wider range of tasks and models,
as long as we can quantify the model confidence
before performing any reasoning process.

6.3 Post-hoc Reasoning
Researchers also discover that the reasoning pro-
cess may be post-hoc (Lanham et al., 2023;
Holzinger et al., 2017), where the reasoning pro-
cess is generated after a conclusion is made. It
is observed that post-hoc reasoning is closely re-
lated to the unfaithful behavior of CoT. One of the
typical assumptions is that the reasoning is more
likely to be post-hoc if the models reach the same
predictions with and without CoT (Lanham et al.,

2023; Holzinger et al., 2017). Then, CoT reliance
can be used as a proxy for unfaithfulness. Our ex-
periments also show a similar but more complex
pattern of post-hoc reasoning with CoT reliance.
We observe that unfaithfulness alone is more likely
to happen for questions with weak beliefs, whereas
the prediction consistency with CoT (i.e., inverse
of CoT reliance) occurs mostly for questions with
strong beliefs. It indicates that post-hoc reasoning
may not be directly correlated with CoT unfaithful-
ness, but again through the confounding effect of
confirmation bias.

7 Conclusion

In this work, we provide a novel perspective on
CoT behavior through the lens of confirmation bias
from cognitive psychology. We demonstrate that
confirmation bias is pervasive in LLMs, and can
substantially impact both reasoning generation and
reasoning-guided predictions in the CoT process.
In addition, we show that confirmation bias can
help explain performance variance across different
models and datasets. However, our findings also
demonstrate the challenges of "debiasing" confir-
mation bias, particularly when model beliefs are
confidently wrong, underscoring the need for fur-
ther research.

8 Limitation

The current work has certain limitations. First, we
mainly use the entropy value of zero-shot direct pre-
dictions as a proxy for the strength of model beliefs,
which limits our analysis to white-box LLMs and
multiple-choice questions. A promising extension
would be to explore confirmation bias using confi-
dence measures applicable to black-box LLMs and
open-ended questions. Hypothetically, open-ended
questions could offer a more precise assessment of
confirmation bias. The main challenge comes from
the need of a precise measurement of the model’s
confidence over its answer before proceeding any
reasoning process for open-ended questions. Un-
fortunately, uncertainty calibration of LLMs for
open-ended generation are much less studied than
the multiple-choice QAs. One walkaround is to
use LLMs ensembles to generate a pool of candi-
date answers and perform the analysis as if it were a
multiple-choice question (Li et al., 2024). However,
the generated pool of answers will introduce addi-
tional noise and bias. Since we hypothesize that
confirmation bias arises due to LLM memorization,
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a promising direction for future work is to develop
a more appropriate metric that quantifies internal
beliefs based on memorization patterns. Second,
our experiments only focus on one round of CoT,
which overlooks the thought-switching behavior
in o1-alike models (OpenAI, 2024; DeepSeek-AI,
2024). Studying iterative CoT could provide deeper
insights into how LLMs revise or reinforce their
beliefs.

References
Nishant Balepur, Shramay Palta, and Rachel Rudinger.

2024. It‘s not easy being wrong: Large language
models struggle with process of elimination reason-
ing. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 10143–10166,
Bangkok, Thailand. Association for Computational
Linguistics.

Guangsheng Bao, Hongbo Zhang, Cunxiang Wang,
Linyi Yang, and Yue Zhang. 2025. How likely do
LLMs with CoT mimic human reasoning? In Pro-
ceedings of the 31st International Conference on
Computational Linguistics, pages 7831–7850, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Oliver Bentham, Nathan Stringham, and Ana Marasović.
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A Appendix

A.1 Datasets Details

Statistics We provide the detailed information of
the datasets used in this work in Table S1, including
the basic statistics of the datasets used in this work,
the knowledge type each dataset focuses on, and
the primary reasoning capability required for the
task.

Spectrum of vulnerability to confirmation bias
On the spectrum of vulnerability to confirmation
bias, where the left represents the highest vulner-
ability, we argue that the approximate ordering of
the datasets is: CommonsenseQA > SocialIQA ≫
PIQA ≈ StrategyQA > StrategyQA+F ≫ AQuA.
For starters, confirmation bias is more influential in
tasks that required subjective interpretation rather
than objective inference (Berthet et al., 2024). This
makes AQuA the least susceptible to confirmation
bias, as it relies on formal logic and structured
systems to solve the problems. In addition, mathe-
matical reasoning problems typically have a single
correct answer, leaving little room for confirmation
bias to distort the reasoning process. StrategyQA
and PIQA depend on factual and physical knowl-
edge, making them more objective than subjective.
However, confirmation bias can still influence how
knowledge is implicitly and selectively retrieved,
making both datasets more susceptible to confirma-
tion bias compared to AQuA. On the other hand,
StrategyQA+F, where the implicit knowledge re-
quired for solving StrategyQA is explicitly pro-
vided, is reduced to a pure logical reasoning prob-
lem. In contrast, both CommonsenseQA and So-
cialIQA rely on implicit and subjective understand-
ing of everyday commonsense knowledge, social
norms, and cultural conventions, making them the
most vulnerable to confirmation bias. Moreover,

commonsense reasoning problems may often in-
volve multiple reasoning pathways, where different
perspectives can lead to different yet plausible con-
clusions (Cheng et al., 2024). This further increases
the susceptibility to confirmation bias. Common-
senseQA is slightly more affected than SocialIQA
due to the way we approximate the strength of in-
ternal beliefs B. Since we use entropy to measure
the confidence or strength of B, the computation
becomes more reliable when more answer options
are available.

A.2 Implementation Details
All experiments in this work are conducted us-
ing the Huggingface framework (Wolf et al.,
2020). Specifically, we use the mistralai/Mistral-
7B-Instruct-v0.2 snapshot for Mistral-7B, meta-
llama/Meta-Llama-3-8B-Instruct for Llama3-8B,
and allenai/OLMo-2-1124-7B-Instruct for OLMo2-
7B. We use greedy decoding to generate the ratio-
nale used for the performance Table 1. Meanwhile,
we use nucleus sampling to generate 10 different
CoT responses for the analysis of confirmation
bias. For nucleus sampling, both temperature and
top_p values are set to 0.9. We use the roberta-
large-mnli snapshot for the entailment model used
for CoT evaluation (Table S3).

A.2.1 Chain-of-thought Prompts
The zero-shot chain-of-thought prompt used in this
work is modified from the work in (Fu et al., 2023):

You will be given a question at the end, for
which you are to select the most appropriate
answer by indicating the associated letter.
Please first output step-by-step reasoning
about how to solve the question. Then, in the
last sentence, output which answer is correct
in the format of "Therefore, the answer is
...".

Question: <question>
Answer choices: (a) <choice a> (b) <choice b>
(c) <choice c> ...

Let’s think step by step. To solve the
question, we need to

Even though models are instructed to predict the
answer in the given format, the generated results
may still deviate from it, making it challenging to
extract the prediction precisely. Therefore, to better
measure P (A|Q,R), we remove the last conclu-
sive sentence from R and compute the answering
probability by applying the softmax function to the
average log probability of the answer tokens.
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Dataset Knowledge Type Reasoning Type Splits #Questions #Options
CQA (Talmor et al., 2019) Commonsense Commonsense Inference validation 1221 5

SocialIQA (Sap et al., 2019) Social/Cultural
Social Inference
Theory of Mind

Casual Reasoning
validation 1954 3

PIQA (Bisk et al., 2020) Physics Casual Reasoning validation 1838 2
StrategyQA (Geva et al., 2021) Factual Logical Reasoning development 229 2
StrategyQA+F (Geva et al., 2021) - Logical Reasoning development 229 2

AQuA (Ling et al., 2017) Formal Mathematic Reasoning
Logical Reasoning validation 254 5

Table S1: Details of the datasets used in this study. "Knowledge Type" indicates the category of knowledge that
needs to be implicitly retrieved for solving the task. CQA stands for CommonsenseQA.

A.2.2 Extraction of Intermediate Answer

Since errors can occur in the second reason-
ing stage of QR → A, we extract Ainter as
the intermediate answer choice supported by the
reasoning process and measure both stage-one
ConsistencyInter and stage-two PerformanceInter.
The extraction is performed by prompting ad-
vanced LLMs to select answer based on the ques-
tion and the generated CoT. In this work, we
leverage four advanced LLMs with majority vot-
ing to extract Ainter: 1. GPT-4o-mini (OpenAI,
2024) 2. Llama-3.3-70b-instruct (Grattafiori et al.,
2024) 3. Claude-3.5-Sonnet, and 4. DeepSeek-V3
(DeepSeek-AI, 2024). We use the OpenRouter plat-
form (OpenRouter, 2025) to access these LLMs.
Since most of these models are black-box LLMs,
we prompt the models to output answers directly
with additional instructions shown below. Even
though these models can still make mistakes, we
believe their advanced reasoning capabilities, com-
bined with the majority voting protocol, can mini-
mize errors at best.

Question: <question>
Answer choices: (a) <choice a> (b) <choice b>
(c) <choice c> . . .
Rationale: <generated chain-of-thought
reasoning>

Select the most appropriate answer that
can be concluded from the given rationale.
You must choose only ONE answer. Directly
output in the format of "Therefore, the answer
is ...".’

A.3 Computation Budget

The total computation time for CoT experiments,
including both CoT generation and CoT evalua-
tion, takes about 200 computation hours on a single
A100 GPU.

A.4 Explicitness versus Performance

We observe that rationale explicitness is key fac-
tor in the model’s ability to follow the reasoning
path P (A|Q,R). We first group the questions
based on their Explicitness and ExplicitnessNeg
levels, and compare their average stage-two per-
formance (PerformanceInter). We evaluate perfor-
mance under three settings: Mistral-7B on Com-
monsenseQA and SocialIQA, and OLMo2-7B on
CommonsenseQA. As shown in Table S2, ques-
tions in general yield higher performance when at
least one of the reasoning steps is explicitly conclu-
sive. On the other hand, being explicit towards why
the alternative options are wrong (ExplicitnessNeg)
shows mixed patterns. This can be explained by
LLMs’ difficulty in applying the process of elimi-
nation (Balepur et al., 2024).

A.5 Informativeness versus Performance

As shown in Figure S1, the measured Informative-
ness is positively correlated with PerformanceInter
using CoT. The correlation is not perfect due to
the cases where high informativeness still fails to
correct predictions where the model is confidently
wrong at the beginning.

A.6 Additional Analyses

To further strengthen the empirical correlation re-
sults, we replicate our analysis in two additional
settings. We first analyze Mistral-7B’s CoT be-
havior on SocialIQA, which has a similar level
of vulnerability to confirmation bias as Common-
senseQA. Second, we evaluate the CoT behavior of
OLMo2-7B on CommonsenseQA, using OLMo2-
7B as a representative model with weaker internal
beliefs (Figure 7).
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Figure S1: The relationship between Informa-
tiveness and PerformanceInter across six different
settings from the stratified correlation analysis
(CQA=CommonsenseQA, SIQA=SocialIQA).

Figure S2: Correlation of Entropy, proxy for strength
of model’s internal beliefs B, with other factors using
behaviors of Mistral-7B on SocialIQA.

A.6.1 Mistral-7B on SocialIQA

We replicate the correlation analysis in the main
text and evaluate the CoT behavior of Mistral-7B
on SocialIQA. Figure S2 and Figure S6 show the
stage-one correlation between Entropy (strength
of beliefs B) and key attributes of rationales gen-
erated via P (R|Q,B). Most factors are strongly
correlated with Entropy, providing strong evidence
of confirmation bias during the first stage of rea-
soning generation (Q → R). We also include the
correlation analysis of stage-two performance in
Figure S3. Similarly, Figure S3b demonstrates evo-
lutionary correlation patterns of Relevance, Explic-
itness, and Sufficiency with Informativeness across
different Entropy groups. These results further
strengthen the observations discussed in the main
text. Even though the exact correlation patterns
in Figure S2 and Figure S3 are slightly different
from those in Figure 5 and Figure 6, this can be
attributed to the intrinsic differences in the required
reasoning abilities and problem-solving protocols
across datasets.

(a) Correlation of Informativeness with other factors.

(b) Evolutionary correlation patterns of Informativeness with
other factors across different Entropy groups.

Figure S3: Correlation analysis of the role of B in the
second reasoning stage of P (A|Q,R,B), using behav-
iors of Mistral-7B on SocialIQA.

Figure S4: Correlation of Entropy, proxy for strength
of model’s internal beliefs B, with other factors using
behaviors of OLMo2-7B on CommonsenseQA.

A.6.2 OLMo2-7B on CommonsenseQA

We further examine the CoT behavior of OLMo2-
7B on CommonsenseQA. Figure S4 and Fig-
ure S7 show the stage-one correlation between
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(a) Correlation of Informativeness with other factors.

(b) Evolutionary correlation patterns of Informativeness with
other factors across different Entropy groups.

Figure S5: Correlation analysis of the role of B in the
second reasoning stage of P (A|Q,R,B), using behav-
iors of OLMo2-7B on CommonsenseQA.

Entropy (strength of beliefs B) and key attributes
of rationales generated via P (R|Q,B). Even
though OLMo2-7B has shown to have weaker be-
liefs (more high entropy questions) in Common-
senseQA compared to Mistral-7B (Figure 7), its
Entropy values still correlate substantially with
Length, Relevance, Informativeness, Sufficiency,
and ConsistencyInter, indicating signs of confirma-
tion bias. We also include the correlation analysis
of stage-two performance in Figure S5. In con-
trast to Mistral-7B, OLMo2-7B displays less ob-
vious evolutionary correlation patterns, with only
Explicitness and RelevanceNeg demonstrating clear
patterns. This could be attributed to the fact that
OLMo2-7B is inherently less prone to confirma-
tion bias. Again, although the exact correlation
patterns between Mistral-7B and OLMo2-7B are
not the same, it can be explained by differences
in the models’ problem-solving approaches, which
stem from variations in their respective training
processes.
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Dataset Model Explicitness ExplicitnessNeg > 0 PerformanceInter

CommonsenseQA Mistral-7B

False False 0.821
False True 0.783
True False 0.963
True True 0.965

SocialIQA Mistral-7B

False False 0.813
False True 0.830
True False 0.955
True True 0.948

CommonsenseQA OLMo2-7B

False False 0.873
False True 0.842
True False 0.977
True True 0.953

Table S2: Average reasoning-following performance (QR → A), PerformanceInter, with respect to rationales’
Explicitness and ExplicitnessNeg levels.

Figure S6: Correlation trends of base entropy (proxy for model’s internal beliefs) with CoT Length, ConsistencyInter,
and Sufficiency. (Mistral-7B on SocialIQA)

Figure S7: Correlation trends of base entropy (proxy for model’s internal beliefs) with CoT Length, ConsistencyInter,
and Sufficiency. (OLMo2-7B on CommonsenseQA)
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Attribute Description
Length We mainly measure the token-level length of the reasoning.

Formulation: N
Relevance The query relevance score (Wang et al., 2023) measures whether the reasoning step merely explains

the question itself or reasons towards the connection between the question and the answer Ainter.
In this work, query relevance is first computed at the step-level using textual entailment between
each reasoning step Ri and a predefined explanation hypothesis in the form of "the sentence is
talking about ...". The step-level entailment probabilities are then averaged to obtain the overall
rationale-level relevance score.
Formulation: 1

T

∑T
i Ri |= explain(Ainter)

RelevanceNeg The Negative relevance score measures whether the reasoning step explains why alterative options
other than Ainter are wrong. To compute this, we first measure the entailment probability between
each reasoning step and the alternative answer choices. The final rationale-level score is obtained by
averaging these entailment probabilities across both the answer choices and the reasoning steps.
Formulation: 1

M−1
1
T

∑
Aj ̸=Ainter

∑T
i Ri |= explain(Aj)

Explicitness It is common for models to state explicit conclusion (e.g., "... is the most appropriate answer.")
in the middle of step-by-step reasoning. We observe that it has a strong influence on subsequent
reasoning and the final prediction (Appendix A.4). Similar to relevance, explicitness is first measured
at step-level using textual entailment between Ri and the conclusion hypothesis of Ainter in the form
of "the answer is ...", and aggregated into the rationale-level explicitness score. Note that this score
is a more extreme form of relevance score.
Formulation: 1

T

∑T
i Ri |= conclude(Ainter)

ExplicitnessNeg The main idea of this score is similar to the explicitness score but focuses on explicit rejection (e.g.,
"... is impossible."). Again, we first measure textual entailment between each reasoning step Ri

and the rejection of answer choices in the form of "the answer is not ...". The final rationale-level
rejection score is then obtained by averaging the entailment probabilities across both the answer
choices and reasoning steps.
Formulation: 1

M−1
1
T

∑
Aj ̸=Ainter

∑T
i Ri |= reject(Aj)

Informativeness We leverage the concept of point-wise mutual information (PMI), following the work in (Bosselut
et al., 2020; Holtzman et al., 2021), to quantify how much additional information the reasoning
process provides in supporting the decision of answer Ainter. A highly PMI value indicates that the
CoT is more likely to conclude with Ainter. This metric is highly correlated with PerformanceInter
(Appendix A.5).
Formulation: logP (Ainter|Q,R)/P (Ainter|Q)

Sufficiency The reasoning sufficiency is evaluated by predicting the answer using only the rationale (R → A).
We argue that, if the reasoning is sufficient enough, it should yield the same answer as the full
reasoning QR → A, even without accessing the question.
Formulation: I (argmaxiP (Ai|R) = argmaxiP (Ai|Q,R))

ConsistencyInter Intermediate (Inter) reasoning consistency examines whether the answer choice supported by the
rationale, Ainter, aligns with the model’s initial prediction from Q → A. In other words, it evaluates
whether the rationale reinforces the model’s original belief or causes a shift in its answer choice.
Formulation: I (Ainter = argmaxiP (Ai|Q))

PerformanceInter This metric measures whether the predicted answer choice, given the rationale, matches the answer
Ainter supported by the rationale. In other words, it solely assesses the performance of the stage
QR → A.
Formulation: I (argmaxiP (Ai|Q,R) = Ainter)

PerformanceE2E* This is the conventional performance metric that measure whether the predicted answer choice
matches the ground truth label.
Formulation: I (argmaxiP (Ai|Q,R) = A∗)

Table S3: Evaluation metrics for rationale. The asterisk (*) denotes that the metric requires access to the annotated
ground truth label.
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