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Abstract

Previous multimodal sentence representation
learning methods have achieved impressive per-
formance. However, most approaches focus
on aligning images and text at a coarse level,
facing two critical challenges: cross-modal
misalignment bias and intra-modal semantic
divergence, which significantly degrade sen-
tence representation quality. To address these
challenges, we propose DALR (Dual-level
Alignment Learning for Multimodal Sentence
Representation). For cross-modal alignment,
we propose a consistency learning module that
softens negative samples and utilizes semantic
similarity from an auxiliary task to achieve fine-
grained cross-modal alignment. Additionally,
we contend that sentence relationships go be-
yond binary positive-negative labels, exhibiting
a more intricate ranking structure. To better
capture these relationships and enhance repre-
sentation quality, we integrate ranking distilla-
tion with global intra-modal alignment learn-
ing. Comprehensive experiments on seman-
tic textual similarity (STS) and transfer (TR)
tasks validate the effectiveness of our approach,
consistently demonstrating its superiority over
state-of-the-art baselines.

1 Introduction

Sentence representation learning converts sen-
tences into low dimensional vectors to preserve
semantic information and is widely used in NLP
tasks, such as semantic similarity (Agirre et al.,
2012, 2013), information extraction (Wang et al.,
2022a; Zheng et al., 2024), and content analysis
(Ling et al., 2022; Wang et al., 2024; Zheng et al.,
2025). With the success of pre-trained language
models (PLMs) such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019), numerous meth-
ods (Gao et al., 2021; Wu et al., 2022b; Zhang et al.,
2022b; He et al., 2023; Seonwoo et al., 2023; He
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Figure 1: Illustration of a batch image-caption pairs
from the Flickr dataset. KDMCSE sets a threshold based
on sim(I, T ) to filter out false negatives. ✓: denotes
the sample is correctly classified as false negative or true
negative based on image-text similarity. ✗: indicates a
sample misclassified as a false negative and erroneously
filtered due to its high similarity with the anchor image.

et al., 2025) have achieved remarkable performance
by contrastive learning and different augmentation
strategies.

Unfortunately, the methods of constructing posi-
tive (Yan et al., 2021; Wu et al., 2022a; Zhuo et al.,
2023) and negative (Zhou et al., 2022; Deng et al.,
2023; Shi et al., 2023) samples are usually too
simple to capture nuanced semantic relationships
between sentences deeply. For example, although
“A man is skating” and “A man is gliding” are mutu-
ally exclusive in common sense, this contradiction
is not easily captured through text alone. However,
visual information can naturally reveal such con-
tradictions, providing a rich supervision signal for
better understanding (Wang et al., 2022b). Incor-
porating visual signals into language models has
been shown to improve performance across various
downstream tasks (Bordes et al., 2020; Tang et al.,
2021; Nguyen et al., 2023; Huang et al., 2023a).
MCSE (Zhang et al., 2022a) leveraged multimodal
contrastive learning for cross-modal alignment, and
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KDMCSE (Nguyen et al., 2024) further enhanced
alignment by filtering highly similar samples to
reduce false negatives and applying adaptive angu-
lar contrastive learning to better distinguish neg-
atives. Despite these advances, aligning text and
image through semantic similarity still faces two
key challenges: cross-modal misalignment bias and
intra-modal semantic divergence.

Cross-modal Misalignment Bias (CMB) stems
from the inherent asymmetry between modalities
when aligning image-text pairs. Text is typically
information-dense and selective, focusing on key
details, while images capture all components in-
discriminately, leading to significant redundancy.
As shown in the purple box in Figure 1, the focal
object of the image In is “a boat”, which occupies
only a small region, with most visual patches con-
taining irrelevant information. Moreover, due to
cognitive biases among annotators, a single image
may have multiple semantic descriptions (Chun
et al., 2021), further amplifying the heterogene-
ity between modalities. This mismatch causes se-
mantic similarity to misrepresent true alignment,
resulting in biased representations.

Intra-modal Semantic Divergence (ISD) refers
to the erroneous identification of semantically di-
vergent texts as highly similar due to their shared
reference to the same image. Studies (Chun et al.,
2022; Parekh et al., 2021) have noted that multiple
captions (or images) can describe the same image
(or caption) with differing focuses. For instance,
in Figure 1, given the anchor image I1, caption T1

(“Several boys playing football in blue and white
uniforms”) emphasizes the players’ appearance and
activity, while Tp (“A group of people are watching
a group of boys in football gear”) highlights the
spectators. Despite their semantic divergence, both
captions exhibit high image similarity, resulting
in false negatives. This misalignment undermines
intra-modal consistency and degrades sentence rep-
resentation quality.

To address these challenges, we propose DALR:
a Dual-level Alignment Learning Framework for
Multimodal Sentence Representation. First, for
cross-modal alignment, we introduce an auxiliary
cross-modal consistency task that enhances super-
vision by predicting image-text correspondence
through a binary classification framework. This
task extracts latent semantic features and constructs
a semantic similarity matrix as a soft target to unify
representations across modalities. Second, to mit-
igate intra-modal semantic divergence, we argue

that sample relationships are inherently continu-
ous rather than binary. We propose an intra-modal
alignment strategy, employing multi-teacher mod-
els to generate coarse-grained semantic rankings as
pseudo-labels. This strategy incorporates KL diver-
gence to ensure the student model captures global
information from the teachers, thereby achieving
robust intra-modal alignment.

Experiments on the widely-used STS and TR
tasks showcase the considerable effectiveness of
DALR. Ablation studies and visualization analysis
further validate the existence of CMB and ISD
issue and the necessity of joint modality alignment.
The main contributions are summarized as follows:

• We introduce DALR to enhance text represen-
tations through joint cross-modal and intra-
modal alignment.

• We propose a cross-modal alignment method
with auxiliary tasks to soften negative sam-
ples and improve alignment to mitigate CMB
issue.

• We adopt ranking distillation with global
alignment learning to capture fine-grained se-
mantic structures for ISD issue.

• Thorough experiments show that DALR im-
proves the performance over all metrics and
achieves state-of-the-art on two benchmarks1.

2 Related Work

2.1 Sentence Representation Learning

Sentence representation learning is a fundamental
task in natural language processing. Early meth-
ods, such as Skip-Thought (Kiros et al., 2015) and
FastSent (Hill et al., 2016), leverage contextual re-
lationships to learn sentence representations. With
the progression of PLMs and SimCSE (Gao et al.,
2021), the “PLMs + contrastive learning” paradigm
has become increasingly prevalent. Data augmen-
tation strategies (Yan et al., 2021; Wu et al., 2022b;
Zhuo et al., 2023; He et al., 2023) enhance rep-
resentation quality by generating diverse positive
samples. ConSERT (Yan et al., 2021) uses dropout
masking and token shuffling, while PCL (Wu et al.,
2022a) adopts multiple augmentation techniques.
WhitenedCSE (Zhuo et al., 2023) improves diver-
sity through inter-group whitening. Additionally,
advancements in negative sampling (Zhou et al.,

1https://github.com/Hekang001/DALR.
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2022; Deng et al., 2023) and hard negative con-
struction (Shi et al., 2023) further refine sentence
representation learning.

2.2 Modality Alignment

Research on modality alignment (Cheng et al.,
2023b; Liu et al., 2023b; Zhang et al., 2023; Han
et al., 2024) aims to unify feature representations
across modalities (e.g., image, text, audio) for en-
hanced representation learning (Li et al., 2021;
Huang et al., 2023b; Zhu et al., 2023), cross-modal
understanding (Yu et al., 2023; Li et al., 2023), and
generation tasks (Sung-Bin et al., 2023; Tian et al.,
2023). Methods like ALBEF (Li et al., 2021) align
image-text features through cross-modal attention,
while MVPTR (Li et al., 2022) focuses on multi-
level semantic alignment. MCSE (Zhang et al.,
2022a) integrates visual information into sentence
embeddings, and KDMCSE (Nguyen et al., 2024)
improves this by leveraging external models for
distillation and filtering false negatives. In contrast,
our approach balances cross-modal alignment with
intra-modal semantic consistency, enhancing visual
information utilization and improving sentence rep-
resentation quality.

3 Methodology

3.1 Preliminary Work

Unsupervised SimCSE Unsupervised SimCSE
(Gao et al., 2021) leverages dropout as a min-
imal data augmentation strategy. Given a sen-
tence set T = {ti}mi=1, each sentence is encoded
twice with different dropout masks, producing two
representations szi = gφθ

(fθ(ti, z)) and sz
′

i =
gφθ

(fθ(ti, z
′)), where fθ is a pre-trained language

encoder (e.g., BERT), and gφθ
is a projection head.

The [CLS] token is used as the final embedding,
and the objective is to maximize the similarity be-
tween paired representations:

Ltext = −
N∑

i=1

log
e
sim

(
szi ,s

z′
i

)
/τ

∑N
j=1 e

sim(szi ,sz
′

j )/τ
(1)

where N is the batch size and τ is a temperature
hyper-parameter. sim(h1,h2) =

hT
1 h2

∥h1∥·∥h2∥ is co-
sine similarity function.

Multimodal Contrastive Learning Given a
set of image-text pairs represented as C =
{vi, ti}Ni=1 ∈ D, MCSE (Zhang et al., 2022a)
projects text ti and image vi into a unified space:

szi = gφθ (fθ(ti, z) (2)

hv
i = gφv (fv(vi)), ht

i = gφt(ft(ti)) (3)

where fv(·) denotes a frozen image teacher en-
coder, and ft(·) refers to a frozen text teacher en-
coder. (More details for image and text teacher
encoder are in Section 4.1 and Appendix B.) z
denotes the dropout mask, gφθ

(·) is the projection
head of the language student model that projects the
sentence representation into a shared space, gφv(·)
and gφt(·) are the projection heads of the image
and text teacher models, respectively. Therefore,
the multimodal contrastive learning objective using
InfoNCE (Oord et al., 2018) is expressed as:

LInfo = −
N∑

i=1

log
esim(szi ,h

v
i )/τ

∑N
j=1 e

sim(szi ,hv
j )/τ

(4)

3.2 Cross-modal Alignment learning
Figure 2 illustrates the main workflow of DALR.
Image and text features exhibit a significant se-
mantic gap, making direct mapping into a shared
space for alignment challenging. We propose a
cross-modal alignment method with an auxiliary
consistency task to capture fine-grained image-text
semantics. The generated similarity matrix refines
negative samples, providing a guiding signal for
enhanced cross-modal contrastive learning.

Cross-modal consistency learning We formu-
late this module as a binary classification task to
predict image-text alignment based on multimodal
features. Given the original dataset D with aligned
image-text pairs, we construct a new dataset D′ by
shuffling images to create mismatched pairs. This
enables the model to learn to distinguish between
aligned and misaligned pairs. For each image-text
pair C ′ = {v′, t′} ∈ D′, we extract unimodal rep-
resentations using fv and fθ, which are then pro-
jected into a shared space via modality-specific
MLPs, obtaining shared representations hv

′
s and

sz
′

s as defined in Eq.2 and Eq.3. We use the co-
sine embedding loss function with margin m for
optimization as follows:

Lcons =

{
1− cos(hv′

s , sz
′

s ) if y′ = 1,

max(0, cos(hv′
s , sz

′
s )−m) if y′ = 0.

(5)

where cos(·) represents the normalized cosine sim-
ilarity, and m controls the margin for negative sam-
ples, typically set to 0.2 based on empirical find-
ings. The consistency learning task captures deeper
semantic relationships by refining the matching be-
tween images and texts. It enhances the model’s

3588



Two motorcycles 
and four riders are
on the road.

Image 
Encoder

Text
Encoder

Text
Encoder

D D'

M
LP C

la
ss

ifi
er

Update

hv

hv'

hs

sz

sz

sz'

ht

hv

Consistency Learning

M
LP

L

So
ftm

ax
So

ftm
ax

T2V

V2V

T2T

T2T

Rank Loss

KL Loss

KL Loss

Intra-modal Alignment

Cross-modal Alignment

Contrastive Learning

Closer

Apart

Positives

Negatives

Frozen Parameters

Trainable Parameters
Teacher Model
Student Model

Multiplication

Concatenation

gφv(·)

gφθ(·)

Rank Distribution
Projection head

gφt(·)

v'

ss
z'

...
...

...

...

...

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

Figure 2: The illustration of our proposed framework DALR, consisting of three components: (a) the multimodal
constrastive learning module uses the guidance of visual information to obtain sentence representations, (b) the
cross-modal alignment module further aligns cross-modal features, and (c) the intra-modal alignment module
enhances internal alignment through ranking distillation learning and KL divergence.

multimodal representation, improves the discrimi-
nation of negative samples, and reduces noise. No-
tably, this task can be learned in parallel with con-
trastive learning, generating cross-modal soft labels
to guide alignment.

Cross-modal alignment We use the representa-
tion szi obtained by the language student model and
hvi obtained by the visual teacher model to calculate
the cosine similarity, and perform normalization to
obtain the probability distribution P v2t

ij of pairing
vi with tj :

P t2v
ij =

esim(szj ,h
v
i )

∑N
k=1 e

sim(sz
k
,hv

i )
, P t2v

i =
(
P t2v
i1 , P t2v

i2 , ..., P t2v
iN

)

(6)

where P t2v
i is the probability distribution set com-

posed of P t2v
ij in the same batch. At the same time,

we compute the cosine similarity within the teacher
text model and normalize it to obtain the probabil-
ity estimate Qt2t

ij from the teacher model:

Qt2t
ij =

esim(ht
i,h

t
j)

∑N
j=1 e

sim(ht
i,h

t
j)
, Qt2t

i =
(
Qt2t

i1 , Qt2t
i2 , ..., Qt2t

iN

)

(7)

Similarly, the similarity between hvi and hvj is cal-
culated through the features obtained by the teacher
vision model to obtain Qv2v

i . In model training, we
promote the alignment between images and texts by
minimizing the KL divergence between the target
distribution (Qt2t

i , Qv2v
i ) and the predicted distri-

bution P t2v
i :

LCMA =
1

2

N∑

i=1

(DKL

(
Qt2t

i ||P t2v
i

)
+DKL

(
Qv2v

i ||(P t2v
i )T

)

(8)

where DKL(·) represents KL divergence. Mini-
mizing KL divergence is equivalent to maximizing
the mutual information between the teacher and
student distributions, which facilitates cross-modal
information transfer to some extent. Through the
aforementioned two parts, we can capture more
cross-modal detailed semantic information and fa-
cilitate the learning of sentence representation. The
final loss LCML of cross-modal contrastive learn-
ing is calculated as follows:

LCML = Lcons + LCMA (9)

3.3 Intra-modal Alignment Learning

Despite progress in cross-modal alignment, exist-
ing methods, such as KDMCSE (Nguyen et al.,
2024), overlook the sparsity of image information
and the variation in textual focus on different im-
age regions. This results in multiple low-similarity
texts aligning with a single image (Chun et al.,
2021; Parekh et al., 2021), undermining seman-
tic accuracy, a phenomenon we term “intra-modal
semantic divergence”.

To address this, we introduce an intra-modal
alignment method featuring two components: rank-
ing distillation for fine-grained semantic capture
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and KL-based inter-modal alignment for global
distribution learning. Ranking information, which
reflects subtle structural differences between sen-
tences, enhances modality alignment. We employ
multiple teachers (SimCSE and DiffCSE) to pro-
vide comprehensive ranking data, with a weighted
combination of [CLS] token embeddings yielding
the final representation. The teachers’ similarity
score lists act as pseudo-ranking labels, guiding the
intra-modal alignment. We apply ListMLE (Xia
et al., 2008) to refine ranking learning:

Lrank = −
N∑

i=1

log




M∏

j=1

exp
(
S(xi)πT

i (j)/τ
)

∑M
k=j exp

(
S(xi)πT

i (k)/τ
)




(10)

where S(xi) represents the list of similarity scores
generated by the student model for the text in-
put xi, πT

i (j) is the index of the j-th position in
the ranking πT

i generated by the teacher model,
and S(xi)πT

i (j) represents the score of the student
model for the j-th position in the ranking.

ListMLE directly optimizes ranking order but
neglects the probabilistic structure of the score dis-
tribution. This simplified approach may fail to
capture the global probability information from
the teacher model, limiting sentence representation
performance. To address this, we introduce KL di-
vergence to minimize the statistical distribution gap
between the teacher and student models, aligning
pseudo-labels with the student model’s predictions.
This reduces confusion between pseudo-labels and
model outputs, enhancing learning effectiveness.
Specifically, using Eq.6, we can derive the text
distribution probability P t2t

i of the student model:

P t2t
ij =

esim(szi ,s
z′
i )

∑N
j=1 e

sim(szi ,s
z′
j )

, P t2t
i =

(
P t2t
i1 , P t2t

i2 , ..., P t2t
iN

)

(11)

where z, z′ represent different dropouts, and P t2t
i

is a probability distribution set consisting of a set of
probability distributions P = {P t2t

ij }Nj=1. Finally,
we learn a more general distribution by optimizing
the KL divergence between the teacher distribu-
tion probability Qt2t

i and the student distribution
probability P t2t

i . The objective is as follows:

LIMA =
N∑

i=1

(DKL(Q
t2t
i ||P t2t

i ) (12)

By combining Lrank and LIMA, we can en-
sure that the student model not only matches the
overall similarity distribution (KL divergence),

but also preserves the critical ranking informa-
tion (ListMLE). Therefore, the goal of intra-modal
alignment learning is:

LIML = Lrank + LIMA (13)

3.4 Training Objectives

According to Eq.4, Eq.9 and Eq.13, we can add all
losses to a final loss:

Ltotal = LInfo + λLCML + µLIML (14)

where λ and µ are hyper-parameters for weights
balance.

4 Experiments

4.1 Experiments Setup

We evaluate our method on two sentence related
tasks: semantic textual similarity (STS) and trans-
fer (TR) task. For the STS tasks, we evaluate on
seven datasets: STS 2012-2016 (Agirre et al., 2012,
2013, 2014, 2015, 2016), STS Benchmark (Cer
et al., 2017) and SICK-Relatedness (Marelli et al.,
2014). We use the SentEval toolkit (Conneau and
Kiela, 2018) for evaluation and adopt the Spear-
man’s correlation coefficient (multiplied by 100) as
the reporting metric. For the TR tasks, we also use
SentEval to evaluate on seven datasets: MR (Pang
and Lee, 2005), CR (Hu and Liu, 2004), SUBJ
(Pang and Lee, 2004), MPQA (Wiebe et al., 2005),
SST-2 (Socher et al., 2013), TREC (Voorhees and
Tice, 2000) and MRPC (Dolan and Brockett, 2005).

Datasets According to MCSE (Zhang et al.,
2022a), we use Flickr (Young et al., 2014) and
MSCOCO (Lin et al., 2014) as multimodal sen-
tence embedding datasets. In addition, we follow
SimCSE (Gao et al., 2021) and use 1,000,000 sen-
tences randomly selected from Wikipedia as the
training dataset.

Baseline Models Following the standard proto-
col on the two benchmarks (Gao et al., 2021), we
compare our model with three baseline models:
SimCSE (Gao et al., 2021), MSE (Zhang et al.,
2022a), KDMCSE (Nguyen et al., 2024). More
details of baseline models are in Appendix A.

Implementation Details During model initializa-
tion, we utilize SimCSE and DiffCSE as two text
teachers and load the checkpoint of CLIP-ViT-B/32
as the image teacher model. During training, con-
sidering that the sizes of the pure-text dataset (with
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.↑

w
ik

i SimCSE-BERT♡ 67.8±1.6 80.0±2.1 72.5±1.7 80.1±0.8 77.6±0.8 76.5±0.8 70.1±0.9 74.9±1.1

SimCSE-RoBERTa♡ 68.7±1.0 82.0±0.5 74.0±1.0 82.1±0.4 81.1±0.4 80.6±0.3 69.2±0.2 76.8±0.5

w
ik

i+
fli

ck
r

SimCSE-BERT† 69.9±1.7 79.8±1.5 72.9±0.9 81.9±0.8 77.8±0.9 76.6±1.1 68.4±0.8 75.3±0.9

MCSE-BERT† 71.4±0.9 81.8±1.3 74.8±0.9 83.6±0.9 77.5±0.8 79.5±0.5 72.6±1.4 77.3±0.5

KDMCSE-BERT‡ 74.4±1.4 83.1±0.9 76.3±1.1 83.7±0.8 78.8±0.9 81.3±0.9 73.0±0.9 78.6±0.8

DALR-BERT 73.9±0.8 84.0±0.7 76.5±0.5 84.3±0.9 80.6±1.1 81.8±0.2 75.3±0.4 79.5±0.7

SimCSE-RoBERTa† 69.5±0.9 81.6±0.5 74.1±0.6 82.4±0.3 80.9±0.5 79.9±0.3 67.3±0.5 76.5±0.4

MCSE-RoBERTa† 71.7±0.2 82.7±0.4 75.9±0.3 84.0±0.4 81.3±0.3 82.3±0.5 70.3±1.3 78.3±0.1

KDMCSE-RoBERTa‡ 73.6±0.7 83.8±0.6 77.4±0.4 84.0±0.3 81.5±0.7 82.3±0.6 71.2±0.4 79.1±0.3

DALR-RoBERTa 73.6±0.4 84.4±0.2 77.2±0.6 84.9±0.7 82.0±0.4 82.6±0.2 74.6±0.7 79.9±0.5

w
ik

i+
co

co

SimCSE-BERT† 69.1±1.0 80.4±0.9 72.7±0.7 81.1±0.3 78.2±0.9 73.9±0.6 66.6±1.2 74.6±0.2

MCSE-BERT† 71.2±1.3 79.7±0.9 73.8±0.9 83.0±0.4 77.8±0.9 78.5±0.4 72.1±1.4 76.6±0.5

KDMCSE-BERT‡ 73.2±1.2 80.5±1.0 75.4±0.9 83.2±0.3 79.7±0.8 79.7±0.7 73.7±1.4 77.9±1.2

DALR-BERT 73.4±1.0 82.6±1.2 75.6±0.8 83.5±0.6 80.8±0.7 80.5±0.5 74.1±0.9 78.6±0.9

SimCSE-RoBERTa† 66.4±0.9 80.7±0.7 72.7±1.1 81.3±0.9 80.2±0.8 76.8±0.6 65.7±0.7 74.8±0.5

MCSE-RoBERTa† 70.2±1.7 82.0±0.7 75.5±1.2 83.0±0.6 81.5±0.7 80.8±1.0 69.9±0.6 77.6±0.8

KDMCSE-RoBERTa‡ 72.8±1.5 81.7±0.9 76.1±1.1 83.4±1.0 81.5±0.6 80.7±0.8 69.9±0.6 78.0±0.7

DALR-RoBERTa 73.1±0.3 83.2±0.7 76.5±0.9 83.9±1.0 82.2±0.4 81.2±1.1 72.0±0.7 78.9±0.8

Table 1: Sentence representation performance on STS tasks (Spearman’s correlation, “all” setting). Avg.: average
performance across 7 tasks. ♡: results from (Gao et al., 2021), †: results from (Zhang et al., 2022a), ‡: results from
(Nguyen et al., 2024). We train the models using different seeds and present the average and standard deviations of
our findings. We highlight the highest numbers among models with the same pre-trained encoder.

total size Nt) and the multimodal dataset (with to-
tal size Nm) are different, we employed a mixed
alternating sampling training strategy. Specifi-
cally, each epoch contains the total data from both
datasets. By setting the ratio Nt//Nm = a, we
load the data as follows: first, we load batches
of pure-text data, followed by one batch of mul-
timodal data. In each batch, the model’s loss is
updated. We evaluate on the development set of
STS-B every 125 steps during training and retain
the best checkpoint. All experiments are performed
on a NVIDIA Tesla A100 (80GB) GPU. More train-
ing details can be found in Appendix B.

4.2 Main Results

Results on STS Tasks Table 1 reports the aver-
age STS results over five runs with different ran-
dom seeds. It is clear that DALR significantly out-
performs the previous methods on all PLMs. For
example, in the wiki+flickr setting, compared with
KDMCSE, DALR improves BERTbase from 78.6%
to 79.5% (+0.9%) and RoBERTabase from 79.1%
to 79.9% (+0.8%). Compared to previous state-
of-the-art methods, DALR still achieves consistent
improvements, demonstrating that DALR provides
stronger discriminative representations on the STS
tasks. These results also dedicate the effectiveness
of our approach in leveraging visual information to
boost text representation learning.

Results on TR Tasks We train a logistic regres-
sion classifier under the premise of freezing the
sentence embedding and evaluate its classification
accuracy. As shown in Table 2, the experimental re-
sults show that our method achieves the best perfor-
mance across all tasks on all PLMs, and the overall
performance is better than other baselines. Specif-
ically, compared to MCSE, our method achieves
absolute improvements of 1.28% and 1.16% on the
wiki+flickr dataset. On the wiki+coco dataset, our
approach increases performance from 85.46% to
86.61% with BERT and from 85.85% to 86.73%
with RoBERTa. This further verifies the effective-
ness of our method in the transfer tasks.

4.3 Ablation Studies

To validate the effectiveness and necessity of the
proposed strategies in DALR, we conduct abla-
tion studies using the BERTbase on the mixed
“wiki+flickr” dataset. As shown in Table 3, when
cross-modal alignment learning (CML) is removed,
the performance drops significantly across all met-
rics. This highlights the importance of CML, in-
dicating that incorporating knowledge from other
modalities helps in learning more comprehensive
representations. A similar degradation is observed
when intra-modal alignment learning (IML) is re-
moved, which demonstrates that IML effectively
captures fine-grained semantic information and fa-
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Model MR CR SUBJ MPQA SST TREC MRPC Avg.↑

w
ik

i SimCSE-BERT♡ 82.92 87.23 95.71 88.73 86.81 87.01 78.07 86.64
SimCSE-RoBERTa♡ 83.37 87.76 95.05 87.16 89.02 90.80 75.13 86.90

w
ik

i+
fli

ck
r

MCSE-BERT♢ 82.07 87.28 94.96 89.61 86.58 84.04 74,93 85.64
KDMCSE-BERT♢ 82.78 87.89 95.37 90.08 87.61 86.08 75.88 86.53
DALR-BERT 82.95 88.10 95.89 90.83 88.04 86.60 76.06 86.92

MCSE-RoBERTa♢ 82.82 88.04 95.70 90.13 87.09 84.97 75.51 86.29
KDMCSE-RoBERTa♢ 83.21 88.16 95.73 90.46 88.05 86.30 76.18 86.87
DALR-RoBERTa 83.57 88.69 96.44 91.01 88.96 86.80 76.74 87.45

w
ik

i+
co

co

MCSE-BERT♢ 81.75 86.89 94.73 89.44 86.81 83.97 74,66 85.46
KDMCSE-BERT♢ 82.30 87.71 95.04 89.86 87.38 85.68 75.51 86.20
DALR-BERT 82.66 87.90 95.85 90.43 87.59 86.09 75.74 86.61

MCSE-RoBERTa♢ 82.24 87.53 95.22 89.76 87.08 84.15 74.96 85.85
KDMCSE-RoBERTa♢ 82.47 87.88 95.24 89.95 87.51 85.77 75.82 86.37
DALR-RoBERTa 82.71 88.02 96.10 90.21 87.85 86.38 75.84 86.73

Table 2: Transfer task results of different sentence representation models (measured as accuracy). Avg.: average
across 7 tasks. ♡: results from (Gao et al., 2021); ♢: reproduce the models (Zhang et al., 2022a; Nguyen et al.,
2024) based on publicly available code. We highlight the highest numbers among models with the same PLM.

STS (Avg.) ↑ TR (Avg.) ↑

w
ik

i+
fli

ck
r

DALR 79.49±0.7 86.92±1.0

w/o LInfo 78.24±0.9 85.95±0.4

w/o LCML 78.16±0.8 85.72±1.1

w/o Lconsistency 79.15±0.7 86.70±0.9

w/o LCMA 78.61±0.3 86.22±0.5

w/o LIML 78.82±0.4 86.43±0.7

w/o Lrank 79.06±0.6 86.63±1.0

w/o LIMA 78.91±0.8 86.50±1.1

w/o LIML&LCML 77.17±0.7 85.54±0.5

Table 3: Ablation study on our train loss. We quantify
the individual contributions of the components: tradi-
tional multimodal contrastive loss (LInfo), cross-modal
alignment loss (LCML), and intra-modal alignment loss
(LIML) (reported avg and std over 5 runs).

cilitates the learning of more accurate and nuanced
representations. Pairwise combinations of these
components also yield noticeable improvements,
highlighting the strength of our approach. Owing to
the constraints of space, an in-depth exploration of
experiments conducted on the “wiki+coco” dataset
is meticulously detailed in Appendix E.1. Addition-
ally, a comprehensive analysis of diverse teacher
models is presented in Appendix E.2.

4.4 Analysis and Discussion
Components Analysis To verify the impact of
cross-modal alignment (CML) in Eq.8, we inte-
grate the CML into KDMCSE and evaluate its per-
formance on retrieval tasks (details in Appendix
E.3). As shown in Table 4, “KDMCSE + CML”
outperforms “KDMCSE”, demonstrating that while
static threshold filtering reduces false negatives, it
fails to fully address cross-modal biases. These bi-

Model
image → text text → image

R@1 R@5 R@1 R@5

MCSE† 16.7 43.5 22.5 50.4
KDMCSE† 17.9 45.0 24.1 52.8

w/ CML† 19.1 46.4 25.6 54.0
DALR† 19.5 47.6 26.7 55.9

MCSE‡ 8.8 26.6 10.9 31.2
KDMCSE‡ 9.4 27.9 12.2 32.7

w/ CML‡ 9.7 28.6 13.3 33.9
DALR‡ 10.2 29.0 13.9 34.3

Table 4: Multimodal retrieval results on Flickr30k test
set based on BERTbase. † and ‡ denote the settings of
wiki+flickr and wiki+coco, respectively.

ases arise from modality heterogeneity, and simple
similarity thresholds are insufficient for aligning
global semantic features across modalities.

For deeper analysis, we test intra-modal align-
ment (IML) on text-based tasks such as re-ranking,
retrieval, and classification using the MTEB bench-
mark (Muennighoff et al., 2023). Table 5 shows
that incorporating IML (“KDMCSE + IML”) sig-
nificantly improves performance, underscoring the
importance of addressing ISD for better sentence
representations.

Visualization Analysis To deeply assess the im-
pact of each component effect, we conduct visu-
alize experiments using BERTbase with all com-
ponents included and with specific components
removed. We randomly sample 5,000 image-text
pairs from the MSCOCO test set and generate their
corresponding text embeddings. These embeddings
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w/o Rank w/o IMAOurs w/o CMA

Figure 3: The t-SNE of sentence representations learned by DLAR and its three deviants (w/o specific component)
using BERTbase. The points are embeddings of sentences sampled from the MSCOCO dataset(Xu et al., 2017). We
use K-Means clustering to group similar sentence embeddings and form 50 clusters. (Best viewed in color)

are then projected into a lower-dimensional space
using t-SNE (Reif et al., 2019), as shown in Figure
3. The visualization reveals that removing any com-
ponent disrupts the clustering of similar sentence
pairs (indicated by the same color), resulting in
poor separation. Conversely, with all components
jointly employed, similar samples are effectively
clustered, while dissimilar samples remain well-
separated. This highlights the ability of our method
to improve semantic clustering and reduce repre-
sentation bias.

Discussion with LLMs Sentence representation
methods based on LLMs often rely on supervised
signals, such as generating positive and negative
samples (Wang et al., 2023; Li et al., 2024) or us-
ing instruction tuning (Cheng et al., 2023a), which
may lead to unfair comparisons. For example, BGE
(Xiao et al., 2024) asymmetrically adds scene de-
scriptions to questions to improve generalization
and trains with a large batch size of 19,200, signif-
icantly boosting performance. Our study focuses
on enhancing sentence representations through im-
ages under an unsupervised paradigm similar to
SimCSE. Unlike resource-intensive LLM-based
approaches, our lightweight model is tailored for
retrieval and ranking tasks, prioritizing efficiency
and scalability. In many real-world applications,
LLMs are impractical due to high computational
costs and slower inference, making our method a
more efficient and scalable alternative.

More Evaluation Metrics To validate the robust-
ness and generalization ability of our method and
scientifically include more diverse experimental
evaluation metrics, we further evaluate its perfor-
mance on additional downstream tasks. As shown
in Table 5, our proposed method achieves superior
performance compared to baseline models across
multiple tasks, including reranking (Re-Rank), re-
trieval (Retrieval), and classification (CLF). Our

Model Re-Rank CLF Retrieval STS

SimCSE♡ 46.47 62.54 20.29 74.33
MCSE♢ 46.92 63.20 21.43 77.02
KDMCSE♢ 47.50 64.83 22.06 78.34

w/ IML 47.96 65.32 22.67 78.81
DALR (ours) 48.35 67.46 23.84 79.38

∆ +0.85 +2.63 +1.78 +1.04

Table 5: Downstream tasks performance among our
method and baselines on BERTbase using wiki+flickr. ♡:
results from (Muennighoff et al., 2023), ♢: reproduce
the models based on publicly available code.

Model
Alignment ↓ Uniformity ↓
flickr coco flickr coco

MCSE-BERT 0.293 0.267 -2.491 -2.350
KDMCSE-BERT 0.245 0.261 -2.387 -2.383
DALR-BERT 0.178 0.247 -2.215 -2.390

MCSE-RoBERTa 0.209 0.195 -1.721 -1.418
KDMCSE-RoBERTa 0.174 0.149 -1.952 -1.748
DALR-RoBERTa 0.153 0.136 -1.977 -1.785

Table 6: The alignment uniformity results of the models
when using BERT and RoBERTa. All models are trained
in the wiki-flickr setting.

comprehensive evaluations not only substantiate
the effectiveness of our approach but also guarantee
a diverse and exhaustive performance assessment.

Alignment and Uniformity Prior work (Wang
and Isola, 2020) has demonstrated that models with
better alignment and uniformity can achieve bet-
ter performance (detailed in Appendix D). We cal-
culate the alignment and uniformity loss on the
STS-B development set every 125 training steps.
As shown in Table 6, compared to the previous
baseline methods, DALR demonstrates superior
performance in both alignment and uniformity, par-
ticularly in alignment. This indicates that our align-
ment strategies significantly enhance the alignment
of sentence embeddings, thereby improving the
overall quality of the embeddings. To further ver-
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ify our results, we also conduct experiments on
eliminating anisotropy (detailed in Appendix F).

5 Conclusion

In this paper, we propose a dual-level alignment
framework (DALR) for multimodal sentence rep-
resentation learning. DALR extends traditional
multimodal contrastive learning by promoting both
cross-modal and intra-modal alignment for more
robust sentence representations. We introduce an
auxiliary task to refine negative sampling and gen-
erate similarity matrices for effective cross-modal
alignment. Intra-modal alignment is achieved
through a combination of ranking distillation and
KL divergence-based fine-grained calibration. Ex-
tensive experiments on STS and TR benchmarks,
supported by detailed analyses, show that DALR
consistently outperforms previous state-of-the-art
methods.

Limitations

In this paper, the limitations of our work are as fol-
lows. Firstly, there are significant differences in the
word token distributions and sizes between image-
text datasets like MSCOCO and Flickr30k and tra-
ditional language corpora (e.g., Wikipedia). While
Wikipedia contains billions of words, MSCOCO
only contains about 1 million words. Empirically,
performance improves with more training data.
Secondly, building sentence representation mod-
els suited for few-shot learning is a key direction
for future research, especially in scenarios where
collected data is scarce.
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A Baselines Model

We introduce a classic sentence embedding model
and two typical multimodal sentence embedding
models, which we implement using official code:

• SimCSE (Gao et al., 2021): conducts thor-
ough experiments in both unsupervised and
supervised settings using different dropout to
obtain positive pairs.

• MCSE (Zhang et al., 2022a): introduces vi-
sual information in sentence embedding to en-
hance SimCSE, and captures the consistency
of sentences and their related images in the
same space.

• KDMCSE (Nguyen et al., 2024): inherits the
knowledge of the teacher model to learn the
distinction between positive and negative sam-
ples, while also proposing an adaptive angu-
lar margin supervised contrastive learning ap-
proach to enhance discriminability by rein-
forcing margins in the angular space.

B Implementation

Teacher Image Model We employ CLIP as our
teacher model, which leverages contrastive learn-
ing to derive general visual and language repre-
sentations from large-scale image-text pairs. The
pre-trained weights are loaded from CLIP-ViT-
B/32, with the patch size set to 32. After loading
the model to obtain the image features, we feed
them into a MLP for projection into a shared 256-
dimensional space.

Teacher Text Model We propose using a multi-
teacher model weighting strategy to obtain the final
teacher representations. In this work, we follow
the same setup as RankCSE (Liu et al., 2023a),
utilizing SimCSE (Gao et al., 2021) and DiffCSE
(Chuang et al., 2022) as teacher models, and the
final teacher representation is obtained through
weighted aggregation. Additionally, the feature
representations are projected into a shared 256-
dimensional space. Moreover, other text teacher
models such as RankCSE and CLIP (Radford et al.,
2021) can also be substituted. A detailed compari-
son is provided in Appendix E.2.

Student Language Model The implementation
of the language encoder is based on the Trans-
formers library. We start with the checkpoints
of bert-base-uncased and roberta-base, fine-tuning
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KDMCSE DALR

wiki+flickr wiki+coco wiki+flickr wiki+coco

Batch size 128 128 128 128
Epoch 4 4 4 4
Total time 290 min 440 min 245 min 370 min

Table 7: Training Efficiency of KDMCSE and DALR
based on BERTbase.

the pre-trained models using our proposed train-
ing objective in Eq.14. For evaluation, we use the
768-dimensional [CLS] token output prior to MLP
pooling layer as the sentence embedding. For the
MLP projection head, in the plain text setting (us-
ing the Wiki1M dataset), the sentence embeddings
are projected into a 768-dimensional space. In the
multimodal setting, the feature representations are
projected into a shared 256-dimensional space.

More Implementation Details We preform
experiments with backbones of BERTbase and
RoBERTabase. We choose [CLS] embeddings as
the final representation. In the plain text setting
(using Wiki1M), sentence representations are pro-
jected into a 768-dimensional space. In the mul-
timodal setting, the student and teacher models’
feature representations are projected into a shared
256-dimensional space. We use two mixed text
and multimodal training scenarios: wiki+flickr and
wiki+coco. We evaluate on the development set of
STS-B every 125 steps during training and retain
the best checkpoint. We implement all experiments
with the deep learning framework PyTorch on a
NVIDIA Tesla A100 GPU (80GB memory). The
temperature parameter τ is set to 0.05, and the
weight parameters λ and µ are set to 0.1 and 0.2,
respectively. For BERTbase encoder, we use a learn-
ing rate of 2e-5 and a batch size of 128 for training;
for RoBERTabase, the learning rate is 1e-5 and the
batch size is also set to 128. The runtime for each of
our experiments is approximately 4 hours, which is
shorter than KDMCSE. More details are provided
in Appendix C.

C Training Efficiency

We compare the training efficiency of KDMCSE
and DALR using BERTbase, both tested on a single
NVIDIA Tesla A100 GPU (with 80GB of memory).
In the experiments, we set the batch size of KDM-
CSE and DALR to 128, and the training epochs to
4. As shown in Table 7, under the wiki+flickr and
wiki+coco experimental settings, DALR completes
training in 4 hours and 6.2 hours, respectively.

STS (Avg.) ↑ TR (Avg.) ↑

w
ik

i+
co

co

DALR 78.64±0.9 86.61±0.7

w/o LInfo 77.20±1.0 85.39±0.8

w/o LCML 77.48±0.6 85.53±0.8

w/o Lconsistency 78.19±0.4 86.42±0.7

w/o LCMA 77.85±0.5 85.70±0.9

w/o LIML 77.89±0.8 85.74±0.5

w/o Lrank 78.31±1.1 86.45±0.7

w/o LIMA 78.07±0.9 86.33±1.0

w/o LIML&LCML 76.75±0.6 85.07±1.2

Table 8: Ablation study on our train loss based on
wiki+coco. We quantify the individual contributions
of the components: traditional multimodal contrastive
loss (LInfo), cross-modal alignment loss (LCML), and
intra-modal alignment loss (LIML) (reported avg and
std over 5 runs).

D Alignment and Uniformity

Contrastive representation learning has two key
properties: (1) alignment of positive pairs; (2) uni-
formity on the hypersphere. Wang and Isola (2020)
argues that directly optimizing these two metrics
can lead to representations with performance com-
parable to or better than contrastive learning in
downstream tasks. Alignment measures the ex-
pected distance between normalized representa-
tions of positive pairs ppos:

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2, (15)

while uniformity measures the uniform distribution
of normalized representations:

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 , (16)

where pdata represents the distribution of sentence
pairs. Smaller values for both metrics are better,
which aligns closely with the objectives of con-
trastive learning: positive instances should be as
close as possible, indicating smaller alignment,
while random instances should be scattered on the
hypersphere, indicating smaller uniformity.

E Analysis

E.1 More Ablation studies
Due to space constraints, we present the ablation
study results on wiki+coco here. The results in
Table 8 demonstrate that all three components are
essential, as the absence of any of them leads to a
performance drop. Notably, the cross-modal align-
ment module has the most significant impact on
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Teacher Model STS(Avg.) TR(Avg.)
Image Text

CLIP SimCSE 77.84 85.17
CLIP DiffCSE 78.65 86.23
CLIP CLIP 79.42 86.89
CLIP SimCSE+DiffCSE 79.49 86.92
CLIP SimCSE+RankCSE 79.61 87.05

ResNet SimCSE 77.59 85.03
ResNet DiffCSE 78.28 85.97
ResNet CLIP 79.04 86.45
ResNet SimCSE+DiffCSE 79.32 86.76
ResNet SimCSE+RankCSE 79.36 86.80

Table 9: Comparisons of different image and text teach-
ers based on wiki+flickr setting using BERTbase.

performance, as it effectively leverages image in-
formation to provide supervisory signals for text
representation learning.

E.2 Teacher Model Selection
We conduct extensive experiments to explore the
impact of different teacher models (image and text)
on DALR’s performance. As illustrated in Fig-
ure 9, the results show that combining both cross-
modal and intra-modal information can generate
more discriminative sentence representations. By
comparing various teacher models, we found that
stronger teacher models lead to improved perfor-
mance, which aligns with our expectations. ResNet
is trained solely on image data and lacks multi-
modal capabilities. As a result, when used as an
image teacher model, the sentence representations
it helps learn tend to be slightly less effective. A
more powerful image teacher model can capture
finer details of visual information, while a more ad-
vanced text teacher model provides more accurate
ranking labels, facilitating more precise ranking
knowledge transfer. We also observe an interest-
ing phenomenon: using SimCSE and RankCSE
as teacher models yielded even better results than
those in our main experiments in Section 4.2. This
suggests that further investigation into the selection
of teacher models could provide valuable insights
for future research.

E.3 Cross-modal Retrieval
To comprehensively evaluate the performance of
cross-modal retrieval, we use the R@k metric as
the standard for assessing cross-modal retrieval
datasets. DALR is designed to learn high-quality
sentence embeddings, with a primary focus on se-
mantic similarity tasks. However, its integration

of cross-modal contrastive learning and alignment
modules also enhances performance in cross-modal
retrieval. This outstanding performance further
validates the effectiveness and robustness of our
model.

F Anisotropy Study

Recent research (Ethayarajh, 2019) has highlighted
the anisotropy issue in language representations,
wherein learned embeddings are confined to a nar-
row cone in vector space, severely restricting their
expressive capacity. Specifically, the anisotropy in
sentence representations results in vectors being
densely clustered in specific directions, diminish-
ing their ability to effectively distinguish between
different sentences.

To evaluate the impact of our method on miti-
gating anisotropy, we display the cosine similarity
between sentence pair representations calculated
on the STS-B test set, and compare them with
the gold-standard annotations on STS-B. The Y-
axis represents the cosine similarity of the sentence
pairs, while the X-axis corresponds to the anno-
tation scores (ranging from 0 to 5), with higher
annotation scores indicating greater similarity. In
other words, for sentence pairs annotated with a
score of 5, the computed cosine similarity should
be high. Each light-colored dot represents a sen-
tence pair, and due to the large number of samples,
overlapping dots may appear darker.

As shown in Figure 4, the results demonstrate
that, for low-scoring sentence pairs, the predicted
similarity by our model is significantly lower, out-
performing the SimCSE, MCSE, and KDMCSE
methods. This outcome also indicates that the
anisotropy issue has been alleviated to some ex-
tent.

G Qualitative Analysis

We conduct small-scale retrieval experiments us-
ing KDMCSE and DLAR based on BERTbase. We
use 30k captions from the Flickr30k (Young et al.,
2014) dataset as the retrieval data and randomly
select any sentence from them as a query to re-
trieve the Top-3 similar sentences (based on co-
sine similarity). As shown in Table 10, the re-
trieval results demonstrate that sentences retrieved
by DLAR are semantically closer to the query sen-
tences and of higher quality compared to those
retrieved by DKMCSE, further demonstrating the
effectiveness of DALR.

3600



Figure 4: Scatter plot of the ground truth similarity scores (x-axis) and the cosine similarities (y-axis) between
sentence pairs in the STS-B (test set). Each entry in the STS-B includes a text pair and a similarity score from 0 to 5
(gold standard).

Rank KDMCSE DALR (Ours)

Query: A group of men climb ladders outdoors.

#1 Two people standing on a roof while another climbs a ladder. Two people standing on a roof while another climbs a ladder.
#2 A firefighter climbs a ladder towards the fire above him. Two men sitting on the roof of a house while another one stands on a ladder.
#3 A person is climbing a wooden ladder up a rocky ledge. Three people in t-shirt, yellow helmets and harnesses begin to climb ladder.

Query: A man in a white cap and shirt plays the violin with other street performers.

#1 A man in a white shirt is playing the flute to someone in a red skirt. A man in a white shirt is playing the flute to someone in a red skirt.
#2 A man in a white shirt plays an electric violin. A man in a white shirt plays an electric violin.
#3 A man in a red shirt plays the guitar. A man with glasses wearing a tie plays the violin.

Query: A man in a black outfit poses in front of the eiffel tower.

#1 A man carrying trinkets with the Eiffel tower in the background. A man carrying trinkets with the Eiffel tower in the background.
#2 A man wearing black jacket poses with a smile. A man in formal wear is posing in front of a building.
#3 A man wearing a black long-sleeved shirt is taking a photo of a building. A man wearing a black long-sleeved shirt is taking a photo of a building.

Query: Two women wearing ceremonial costumes are walking outside a white building.

#1 Two women wearing blue jeans are walking outside. Two women wearing dresses are walking by a building.
#2 Two women wearing dresses are walking by a building. Two people are wearing flower costumes and walking down a street.
#3 Men in traditional dress stand outside . Two women wearing skirts and heels walking down a sidewalk.

Table 10: Retrieval examples of retrieved Top-3 sentences from queries by KDMCSE and DLAR from Flickr30k dataset (30k
sentences).
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