
Findings of the Association for Computational Linguistics: ACL 2025, pages 3412–3422
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

GRAMMAR-LLM: Grammar-Constrained Natural Language Generation

Gabriele Tuccio1,2, Luana Bulla1,2, Maria Madonia1, Aldo Gangemi2,3,
Misael Mongiovì1,2,

1University of Catania, Italy, 2ISTC - National Research Council, Italy , 3University of Bologna, Italy
Correspondence: misael.mongiovi@unict.it

Abstract
Large Language Models have achieved impres-
sive performance across various natural lan-
guage generation tasks. However, their lack
of a reliable control mechanism limits their ef-
fectiveness in applications that require strict
adherence to predefined taxonomies, syntactic
structures, or domain-specific rules. Existing
approaches, such as fine-tuning and prompt-
ing, remain insufficient to ensure compliance
with these requirements, particularly in low-
resource scenarios and structured text genera-
tion tasks.

To address these limitations, we introduce
GRAMMAR-LLM, a novel framework that in-
tegrates formal grammatical constraints into the
LLM decoding process. GRAMMAR-LLM en-
forces syntactic correctness in linear time while
maintaining expressiveness in grammar rule
definition. To achieve this, we define a class
of grammars, called LL(prefix), – which we
show to be equivalent to LL(1) – specifically
designed for their use with LLMs. These gram-
mars are expressive enough to support com-
mon tasks such as hierarchical classification,
vocabulary restriction, and structured parsing.
We formally prove that LL(prefix) grammars
can be transformed into LL(1) grammars in
linear time, ensuring efficient processing via
deterministic pushdown automata. We evaluate
GRAMMAR-LLM across diverse NLP tasks,
including hierarchical classification, sign lan-
guage translation, and semantic parsing. Our
experiments, conducted on models such as
LLaMA 3 (for classification and translation)
and AMRBART (for parsing), demonstrate that
GRAMMAR-LLM consistently improves task
performance across zero-shot, few-shot, and
fine-tuned settings1.

1 Introduction

Large Language Models (LLMs) have shown re-
markable performance across a wide range of natu-

1the source code and other materials are available at:
https://github.com/misaelmongiovi/grammarllm

ral language generation tasks, including machine
translation, text summarization, and open-domain
text generation (Naveed et al., 2023). Despite these
advancements, generative models inherently lack
constraints that align their outputs with predefined
taxonomies (Geng et al., 2025). Many real-world
applications necessitate fine-grained control over
generated text, such as enforcing specific syntac-
tic structures or adhering to domain-specific con-
straints. Consequently, these models often prove
inadequate for tasks that demand strict lexical and
structural conformity, such as classification and
question answering over predefined choices. Fur-
thermore, given that LLMs are highly dependent
on the data seen during their training phase, they
exhibit significant performance degradation when
tasked with generating text for languages or modal-
ities that fall outside the distribution of their train-
ing data. This limitation is particularly evident
when generating text in low-resource scenarios,
such as for under-represented languages (e.g., sign
language or ancient languages), where insufficient
training data hinders the model’s ability to learn
necessary structures. Ensuring that Language Mod-
els (LMs) adhere to predefined structural and lexi-
cal constraints remains a significant challenge.

To address these challenges, we introduce
GRAMMAR-LLM, a novel approach that inte-
grates formal grammars directly into the LLM
decoding process (Fig. 1). Rather than rely-
ing on post-hoc validation or heuristic filtering,
GRAMMAR-LLM treats text generation as an
automaton-driven process, ensuring that the gener-
ated output adheres to a predefined Context-Free
Grammar (CFG) (Hopcroft et al., 2001)

Integrating grammatical constraints into LLMs
introduces several challenges, primarily due to
the intrinsic complexity of formal grammars and
the trade-off between expressiveness and compu-
tational efficiency. While highly expressive gram-
mars provide greater control over text generation,

3412

mailto:email@domain
https://github.com/misaelmongiovi/grammarllm

Figure 1: GRAMMAR-LLM enforces LLMs to adhere to a predefined grammar, thus avoiding verbose answers
when a structured output is required

they often introduce computational intractability
when applied sequentially in an autoregressive man-
ner. An alternative is to restrict the system to gram-
mars that can be processed in linear time, such
as LL(1) (Aho et al., 2006). However, construct-
ing an LL(1) grammar that treats tokens as termi-
nals is extremely challenging—especially when
using subword tokenization, as is common with
LLMs—since token sequences on the right-hand
side of rules may violate LL(1) constraints. To mit-
igate this, we define a novel notation for traditional
LL(1) grammars – which are efficiently parsable in
a left-to-right manner – called LL(prefix), which
enables users to define grammars without delving
into the details of tokenization. We then constrain
the model to generate only tokens that comply with
a given LL(prefix) grammar by leveraging a Push-
Down Automaton (PDA) (Deutsch et al., 2019)
automatically derived from the input grammar. Our
approach is adaptable to different LM architectures,
including GPT-based and BART-based models, and
guarantees that the generated output strictly con-
forms to predefined grammatical structures.

To assess the performance of our method across
different Natural Language Processing (NLP) tasks,
we focus on three key domains: hierarchical clas-
sification (Silla and Freitas, 2011), sign language
translation (Núñez-Marcos et al., 2023), and seman-
tic parsing (Kamath and Das, 2018). Each of these
tasks presents challenges in generating structured
outputs that conform to predefined taxonomies or
specialized lexicons, which can be effectively repre-
sented using a CFG. Specifically, hierarchical clas-
sification requires the generation of outputs that ac-
curately preserve hierarchical relationships, ensur-
ing the validity of generated taxonomy paths. Sign
language translation presents the additional chal-
lenge of bridging the modality gap between sign
notation and natural language, particularly in data-

scarce scenarios. Meanwhile, semantic parsing
demands strict adherence to predefined semantic
schemas. To assess the impact of different model ar-
chitectures and parameter scales on structured text
generation, we test 1B, 8B, and 70B variants of
the LLaMA-3 model (Dubey et al., 2024), as well
as a BART-based model (Bai et al., 2022). Across
all tasks and learning settings, GRAMMAR-LLM
consistently outperforms baseline models, yielding
substantial improvements in classification accuracy,
translation quality, and adherence to structured con-
straints. These findings highlight the effectiveness
of integrating formal grammars into language mod-
els, particularly in scenarios that demand structured
and highly precise output.

The main contributions of this work are:

• We present GRAMMAR-LLM, a novel frame-
work that integrates formal grammars into the
generation process of language models. This
approach ensures that generated output strictly
adhere to predefined syntactic and structural
requirements, addressing the limitations of ex-
isting methods in enforcing fine-grained con-
trol over text generation.

• We propose LL(prefix), a novel formalization
that generalizes the LL(1) class of CFG gram-
mars enabling the user to define grammars
without delving into the details of LLM tok-
enizers, thus enhancing expressiveness with-
out sacrificing efficiency.

• We present an algorithm that turns an
LL(prefix) grammar into an LL(1) grammar,
therefore showing theoretical equivalence and
enabling real-time, token-by-token guidance
during autoregressive generation.

• We demonstrate the adaptability of
GRAMMAR-LLM across a variety of
tasks (namely hierarchical classification, sign

3413

language translation, and AMR translation)
and model architectures (LLaMA-3, AMR-
BART). Our method consistently improves
performance in zero-shot, one-shot, few-shot,
and fine-tuned settings, highlighting its broad
applicability.

The paper is structured as follows: Section 2
outlines related work. In Section 3, we intro-
duce related background literature and describe our
GRAMMAR-LLM framework. Section 4 presents
an experimental analysis highlighting the gain in
performance introduced by the proposed approach.
Finally, Section 5 and 6 conclude the paper and
discuss limitations.

2 Related Works

Recently, several Grammar-Constrained Decod-
ing (GCD) frameworks (Geng et al., 2023; Koo
et al., 2024; Li et al., 2024; Park et al., 2024, 2025;
Scholak et al., 2021; Shin et al., 2021; Willard
and Louf, 2023; Deutsch et al., 2019) have been
developed to constrain decoding. These methods
primarily leverage finite state automata, CFGs, and
deterministic parsing strategies to enforce struc-
tured output constraints.

Koo et al. (2024) and Park et al. (2025) lever-
age automata-based methods to enforce structural
compliance while improving computational effi-
ciency. Koo et al. employ finite-state transducers
(FSTs) alongside Finite State Machines (FSMs),
providing a closed-form solution for regular lan-
guages and extending to deterministic context-free
languages via PDAs. Their method achieves a sub-
stantial speedup in constraint enforcement and en-
ables modular adaptation across structured gener-
ation tasks. Park et al. refine this approach by
introducing a token spanner table, which efficiently
maps LLM tokens to sequences of grammar ter-
minals, optimizing both offline preprocessing and
online constrained decoding.

Li et al. (2024) propose Formal-LLM, which
constrains plan generation by non-deterministic
PDAs. The approach enables building PDAs di-
rectly from natural language and integrating transi-
tions directly into LLM prompts to guide the text
generation. This approach does not intervene in
the decoding process, where specific conditions are
required.

Willard and Louf (2023) propose Efficient
Guided Generation, which models text generation
as a sequence of FSM state transitions, enabling

constraints enforcement with O(1) complexity per
token. While computationally efficient, this ap-
proach is inherently limited to regular languages,
restricting its applicability to more complex struc-
tures. Geng et al. (2023), PICARD (Scholak
et al., 2021), and Shin et al. (2021) instead em-
ploy grammar-based decoding methods that rely
on input-dependent grammars (IDGs) or external
parsing mechanisms for structured text generation,
particularly in semantic parsing.

Park et al. (2024) introduce Grammar-Aligned
Decoding (GAD), which tends to preserve the
LLM’s distribution among valid outputs, and em-
ploy the formal framework proposed by Geng
et al. (2023), making it complementary to our ap-
proach. Similarly, Ahmed et al. (2024) employ
logic circuits to express constraints and locally con-
strained resampling to enforce constraints while
maintaining expressiveness, correcting biased sam-
ples through importance weighting and resampling.
Zhang et al. (2024, 2023) integrate Hidden Markov
Models (HMMs) to impose logical constraints on
LLM outputs, using probabilistic reasoning to esti-
mate token validity and efficiently compute condi-
tional probabilities during the generation process.

Unlike FSM-based methods, GRAMMAR-LLM
supports a wider class of context free gram-
mars. Unlike probabilistic and external parsing
approaches, it guarantees strict adherence to gram-
mar rules without requiring complex data struc-
tures, inefficient superlinear processing or post-
filtering mechanisms. This makes GRAMMAR-
LLM a more scalable and adaptable solution for
constrained text generation.

Deutsch et al. (2019) present a general-purpose
algorithm for constrained sequential inference,
which integrates constraints into the decoding pro-
cess using deterministic pushdown automata. They
consider the automata as an input and do not de-
fine the class of grammars which can be efficiently
handled by their approach.

Dong et al. (2024) present XGrammar, a struc-
tured generation engine for LLM that enables ef-
ficient and flexible constrained decoding using
context-free grammars. By partitioning the vo-
cabulary into context-independent tokens, XGram-
mar reduces the computational overhead typi-
cally associated with grammar-based decoding.
However, XGrammar does not guarantee linear-
time overhead, as it relies on a non-deterministic
PDA to manage grammar ambiguities. This
non-determinism necessitates maintaining multi-

3414

ple stacks – which may be intractable – to handle
grammar ambiguities.

GRAMMAR-LLM enforces constraints directly
at the decoding level using deterministic pushdown
automata, which are automatically constructed
from LL(prefix) grammars, ensuring that gener-
ated outputs strictly adhere to predefined syntac-
tic structures. Unlike more general approaches,
GRAMMAR-LLM ensures efficiency by provid-
ing a theoretical guarantee that the overhead grows
linearly with the length of the generated text.

3 A Novel Framework for Grammar-
Constrained LLM Decoding

Our method builds upon the literature on context-
free grammars to design an efficient mecha-
nism that enforces LLMs to generate grammar-
compliant output. We first introduce the literature
on LL(1) grammars and their implementation by
means of pushdown automata, which enable left-
to-right processing in linear time and are therefore
suitable for integration with LLMs. Then, we in-
troduce a novel and more expressive formalization,
named LL(prefix), which is well-suited for rep-
resenting sequences of tokens in a user-friendly
way, and give an algorithm to transform LL(prefix)
grammars into LL(1) grammars. Eventually, we
show how to integrate a deterministic pushdown
automaton with a transformer decoder to enforce
text generation that adheres to the input LL(prefix)
grammar. An overview of our pipeline is shown in
Figure 2.

Figure 2: Overview of our GRAMMAR-LLM pipeline.

3.1 Background

In this section we briefly introduce LL(1) grammars
and its use for verification by means of pushdown
automata.

We begin with the definitions of CFGs and LL(1)
grammars (Hopcroft et al., 2001).

Definition 1 A grammar G = (Σ, N, P, S) is
context-free if all its production are of the form
A → α with A ∈ N and α ∈ (Σ ∪N)∗.

A significant subclass of the family of context-
free grammars is the set of LL(1) grammars. The
definition of LL(1) grammar is based on two func-
tions FIRST and FOLLOW associated with the
grammar. For any α ∈ (Σ ∪N)∗, FIRST (α) is
the set of terminals that begin the strings derived
from α. If α → ϵ then ϵ ∈ FIRST (α).

For any A ∈ N , FOLLOW (A) is the set of ter-
minals a that can appear immediately to the right of
A in some sentential form (i.e. the set of terminals
a such that there exists a derivation of the form
S ⇒∗ αAaβ). If A can be the rightmost symbol in
some sentential form, the $ is in FOLLOW (A),
where $ is an endmarker symbol.

Definition 2 A context-free grammar G =
(Σ, N, P, S) is LL(1) if whenever A → α | β are
two distinct productions of G, the following condi-
tions hold:

1) For no terminal a ∈ Σ, both α and β derive a
string beginning with a (i.e. no terminal a ∈ Σ is
in FIRST (α) ∩ FIRST (β))

2) At most one of α and β can derive ϵ
3) If β ⇒∗ ϵ, then α does not derive any string

beginning with a terminal in FOLLOW (A) (i.e.
if α ⇒∗ aα1 then a /∈ FOLLOW (A)).

Languages accepted by LL(1) grammars can be
recognized using pushdown automata (PDAs). We
now give a formal definition of a PDA, followed
by a description of the algorithm to construct the
automaton.

A pushdown automaton, PDA, for short, is a
system M = (Q,Σ,Γ, δ, q0, Z0, F) where Q is a
finite set of states, Σ is the input alphabet, Γ is the
stack alphabet, q0 ∈ Q is the initial state, Z0 ∈ Γ
is the start symbol, F ⊆ Q is the set of final sates
and δ, the transition function, is a mapping from
Q× (Σ ∪ {ϵ})× Γ to finite subsets of Q× Γ∗.

The interpretation of δ(q, a, Z) =
{(p1, γ1), . . . (pm, γm)}, with q, p1 . . . pm ∈ Q,
a ∈ Σ, Z ∈ Γ and γ1 . . . γm ∈ Γ∗, is that the
PDA in the state q, with input symbol a and
symbol Z at the top of the stack, can for any i
enter state pi, replace symbol Z by γi and advance
the input head one symbol. The interpretation
of δ(q, ϵ, Z) = {(p1, γ1), . . . (pm, γm)} is that
the PDA in the state q, independent of the input
symbol being scanned and symbol Z at the top of
the stack, can enter state pi, replace symbol Z by

3415

γi. In this case the input head is not advanced. For
a PDA the language accepted by empty stack is
defined in terms of instantaneous descriptions, ID
for short, that formally describe the configurations
of a PDA at a given instant: an ID is a triple
(q, w, γ) where q ∈ Q is the current state, w ∈ Σ
is the "unexpended input" and γ ∈ Γ∗ is the
stack content. Given two ID, I1 and I2, we write
I1 ⊢∗ I2 if I2 can be reached from I1 after 0 or
more steps. Then, for a PDA M , the language
accepted by empty stack is N(M) = {w ∈
Σ∗ | (q0, w, Z0) ⊢∗ (p, ϵ, ϵ) for some p ∈ Q}. A
PDA is said deterministic if at most one move is
possible from any ID.

It is known, that any language generated by a
context-free grammar can be accepted, by empty
stack, by a PDA M (Hopcroft et al., 2001); but,
here, since we consider LL(1) context-free gram-
mars and since we need deterministic PDA, we
present a different algorithm for the construction
of M (see Algorithm 1) inspired by the construc-
tion of a Parsing Table for an LL(1) grammar (Aho
et al., 2006).

Algorithm 1 Construction of a PDA, M , from an
LL(1) grammar G
Require: An LL(1) grammar G = (Σ, N, P, S)
Ensure: A pushdown automaton M = (Q,Σ ∪
{$},Γ, δ, q0, Z0, ∅) equivalent to G

1: init. Q← {qa | a ∈ Σ} ∪ {q0, q$}
2: init. Γ← Σ ∪N ∪ {$}
3: init. Z0 ← $S
4: For any a ∈ Σ∪{$} and Z ∈ N ∪{$} do δ(q0, a, Z)←

(qa, Z)
5: For any a ∈ Σ ∪ {$} do δ(qa, ϵ, a)← (q0, ϵ)
6: for all productions A→ α in P do
7: For each terminal a ∈ FIRST (α) δ(qa, ϵ, A) ←

(qa, α)
8: If ϵ ∈ FIRST (α), for any b ∈ FOLLOW (A),

δ(qb, ϵ, A)← (qb, α)
9: If ϵ ∈ FIRST (α) and $ ∈ FOLLOW (A),

δ(q$, ϵ, A)← (q$, α)
10: end for
11: Return M

Theorem 1 Algorithm 1, with an LL(1) grammar
G in input, produces in linear time a deterministic
PDA, M , that is equivalent to G, i.e. N(M) =
L(G)$, where L(G)$ is the set of strings in L(G)
followed by an endmarker $.

Note that, since G is LL(1) then |δ(q, a,A)| ≤ 1,
for any a ∈ Σ ∪ {$, ϵ} and A ∈ Γ. Moreover,
if δ(q, ϵ, A) ̸= ∅, then δ(q, a,A) = ∅, for any
a ∈ Σ ∪ {$}. Hence M is a deterministic PDA. At
last, one can show, that N(M) = L(G)$.

3.2 A Novel Expressive Grammar Notation
for Constraining LLM Output

Despite implementable with pushdown automata,
LL(1) grammars exhibit limited expressiveness
when applied to LLMs. This limitation arises be-
cause grammars are traditionally defined in terms
of symbols, which can correspond to words or char-
acters. However, the fundamental semantic unit for
LLMs is the token, which often represents subword
segments rather than entire words. Using tokens
as terminal symbols in a grammar would make
defining rules cumbersome for users, making this
approach impractical. While words or entire sen-
tences in a grammar can be easily converted into
sequences of tokens, this conversion may violate
the constraints of an LL(1) grammar. To illustrate
this issue, consider the following grammar:
S → uncertain S | undefined S | ϵ
If we consider the words "uncertain" and "unde-

fined" as terminals, this grammar is LL(1). How-
ever if we adopt subword tokenization where the
prefix "un" is separated by the rest of the word, the
grammar turns into:
S → un certain S | un defined S | ϵ
which is violates condition 1) of LL(1) gram-

mars (Def. 2) since the RHS of two different rules
with the same LHS begin with the same terminal
"un".

To overcome this limitation, we define a class
of grammars, – which we show to be equivalent in
generative capacity to LL(1) – named LL(prefix),
which allows multiple rules to share sequences
of symbols in the initial portion of the RHS of
production rules. The definition generalizes tradi-
tional LL(1) grammars by accommodating prefix-
sharing structures. We then demonstrate that any
LL(prefix) grammar can be transformed into
an equivalent LL(1) grammar in linear time and
space (Theorem 2 below). This transformation
ensures that LL(prefix) grammars remain effi-
ciently parseable and can be verified using push-
down automata, maintaining integrability with
LLMs, as we show in Sect. 3.3.

Definition 3 A context-free grammar G =
(Σ, N, P, S) is LL(prefix) if whenever A →
ω α | ω β are two distinct productions of G with
ω ∈ Σ∗ and α and β starting with a different sym-
bol, the following conditions hold:

1) For no terminal a ∈ Σ, both α and β derive a
string beginning with a (i.e. no terminal a ∈ Σ is
in FIRST (α) ∩ FIRST (β))

3416

2) At most one of α and β can derive ϵ

3) If β ⇒∗ ϵ, then α does not derive any string
beginning with a terminal in FOLLOW (A) (i.e.
if α ⇒∗ aα1 then a /∈ FOLLOW (A)).

In short, with respect to LL(1) grammars, Defi-
nition 3 admits prefixes of terminals of any length
to be shared among different rules with the same
LHS.

We give an algorithm to transform an LL(prefix)
grammar into an LL(1) grammar and prove that it
correctly generates an equivalent LL(1) grammar
in linear time and space.

Algorithm 2 Transforming an LL(prefix) grammar
into an LL(1) grammar
Require: An LL(prefix) grammar G = (Σ, N, P, S)
Ensure: An equivalent LL(1) grammar G′

1: while there are pairs of productions of the type A→ a α
and A→ a β for some A ∈ N and a ∈ Σ do

2: Take all productions of the kind A → a αi for every
αi ∈ (Σ ∪N)∗ and substitute them with: A → a B
and B → αi for every αi, where B is a newly gener-
ated non-terminal

3: Add B to N
4: end while
5: Return G′ = (Σ, N, P, S)

Theorem 2 Algorithm 2 produces an LL(1) gram-
mar G′ that is equivalent to the input LL(prefix)
grammar G with time and space complexity O(n ·
m) where n is the number of production rules and
m is the maximum length of production rules.

The proof of the theorem is available in the sup-
plemental material.

3.3 Grammatically-Compliant Text
Generation

We show how to use a pushdown automaton to
enforce a Transformer decoder to generate valid
text conforming to an LL(prefix) grammar. As de-
scribed in Section 3.2, any LL(prefix) grammar can
be transformed into an equivalent LL(1) grammar.
In turn, an LL(1) grammar can be recognized by a
pushdown automaton, as discussed in Section 3.1.
In the following, we describe how to integrate a
pushdown automaton into the generation process
of an LLM to ensure grammar compliance.

LLMs generate tokens one by one following an
autoregressive decoding approach, where each new
token is predicted based on input and previously
generated tokens. To do so, the output from the
last decoder layer is transformed to the vocabu-
lary space using a linear projection and a softmax

function:

P (yt | x1, . . . , xn, y1, . . . , yt−1) =

= softmax(WoHt + bo)
(1)

where Ht is the output from the last decoder
layer and Wo, bo are learnable parameters. The
process repeats iteratively until a stopping criterion
is met.

We show that a pushdown automaton can be inte-
grated with the decoding process to force the LLM
to follow the input grammar. Our automaton con-
siders tokens as terminal symbols. The generation
process is described in Algorithm 3.

Algorithm 3 Autoregressive Token Generation
Require: Initial sequence of tokens X = {x1, x2, . . . , xn},

pushdown automaton M = (Q,Σ,Γ, δ, q0, γ0, F),
model parameters θ

Ensure: Generated token sequence Y = {y1, y2, . . . , ym}
1: init. Y ← X
2: init. PDA configuration (q, γ)← (q0, γ0)
3: while γ is not empty do
4: Ht ← Transformer(Y, θ)
5: P (yt | Y) ← softmax(WoHt + bo) ◦

next_terminals((q, γ))
6: sample next token yt and append it to Y
7: do transition (q, γ)← δ(q, yt, top(γ))
8: while q ̸= q0 do
9: do transition (q, γ)← δ(q, ϵ, top(γ))

10: end while
11: end while
12: return Y

The differences with respect to standard decod-
ing are in lines 2,3,5 and 7-10. Line 2 initializes the
automaton. The exit condition in Line 3 is actually
equivalent to standard decoding since the stack is
empty when the end of sentence symbol $ is gener-
ated. Line 5 generates the probability distribution
for the next token considering forbidden tokens.
next_terminals(q, γ) generates the set of valid to-
kens given the current automaton configuration and
return them as a one-hot vector. The operator ◦ per-
forms the element-wise product between two vec-
tors. For LL(1) grammars, next_terminals((q, γ))
simply return FIRST (γ). Lines 7-10 perform au-
tomaton transitions based on its current state, the
newly generated token and the top of the stack.
The first transition consumes the generated token
and moves the automaton to a token-specific state.
Transitions are performed until the automaton re-
turns to the initial state, i.e. it is ready to accept
another token.

3417

4 Results and Evaluation

To assess the effectiveness of our method, we
conduct experiments across three distinct NLP
tasks (i.e. hierarchical classification, sign language
translation and semantic parsing), each chosen to
test different aspects of constrained text genera-
tion. Specifically, in the hierarchical classifica-
tion task (Silla and Freitas, 2011), we assess the
model’s capability to generate text that conforms
to predefined taxonomies, a critical requirement in
structured data generation and classification sce-
narios. Sign language translation (Núñez-Marcos
et al., 2023) refers to the translation from natural
language to glosses, where sign language is en-
coded using gloss notation. This notation aligns
signs with words or phrases from a spoken lan-
guage, serving as a structured, text-based anno-
tation rather than a direct translation. This task
poses a unique challenge due to the inherent modal-
ity gap between natural language and gloss-based
representations, as well as the scarcity of high-
quality parallel data. We employ this case study to
highlight the effectiveness of GRAMMAR-LLM in
low-resource and modality-specific contexts, where
conventional LLMs often struggle with distribu-
tional mismatches. The semantic parsing (Ka-
math and Das, 2018) demands specific alignment
between generated text and predefined semantic
schemas, making it a robust benchmark for assess-
ing GRAMMAR-LLM’s ability to enforce formal
grammatical constraints. This task underscores the
model’s adaptability to fine-tuned structured gen-
eration tasks, ensuring that outputs maintain both
semantic accuracy and syntactic coherence2.

Table 1 presents the results for the hierarchical
classification task in terms of micro F1 score. Ad-
ditionally, we report the percentage of outputs that
conform to the requirements to highlight the impact
of constraint enforcement. We test our method on
the Web of Science (WoS) dataset (Kowsari et al.,
2017), which consists of approximately 50,000 re-
search abstracts annotated with a two-level tax-
onomy consisting of 7 and 134 labels at Levels
1 and 2, respectively. For evaluation, we select
2,000 instances using a stratified sampling strategy
at Level 1 to ensure proportional representation,
while employing random sampling at Level 2. In
all cases, the prompt explicitly specifies the full

2Further details on the prompts used in the experiments
(Tables 1 and Table 3) and the grammars implemented for the
three case studies are provided in the supplementary materials.

taxonomy and the expected output format. We
assess the performance of the LLaMA-33 model
in three configurations (1B, 8B, and 70B) across
zero-shot, one-shot, and few-shot scenarios. In the
few-shot setting, we provide 10 examples, selected
using the same sampling criteria as the test set.
As a baseline, we compare these models with and
without our GRAMMAR-LLM (Sect. 3) approach
(which we name G-LlaMa) to quantify its impact
on classification performance. We employ a simple
grammar that forces the model to first generate a
Level 1 class, then generate a Level 2 class that is
compatible with the Level 1 class.

As shown in Table 1, G-LLaMA outperforms un-
constrained LLaMA models across all experimen-
tal settings. The G-LLaMa model achieves the best
results in the zero-shot scenario, with F1 scores of
0.734 and 0.504 at the first and second taxonomy
levels, respectively. An analysis of Level 1 classi-
fication reveals that the most significant improve-
ments occur in the smallest model (i.e. LLaMA-
1B). In this case, the constrained model achieves
an F1 score improvement of 30 and 28 percent-
age points over the unconstrained baseline in the
zero-shot and one-shot configurations, respectively,
showing comparable performance in the few-shot
settings. These findings suggest that larger models
with more parameters benefit less from the con-
straints at the first taxonomy level, as it is easier
to classify due to broader, distinct categories. In
contrast, smaller models benefit more from the
grammar-based module, which enables them to
generate valid, concise outputs and improves accu-
racy, as demonstrated by LLaMA-1B’s zero-shot
and one-shot performance. At a more granular
taxonomy level (i.e. Level 2), the constrained mod-
els exhibit more pronounced improvements over
the baseline models across all configuration set-
tings. Specifically, G-LlaMa-1B outperforms the
unconstrained model by 12, 16, and 8 percentage
points in the zero-shot, one-shot, and few-shot set-
tings, respectively. A similar trend is observed for
LLaMA-8B and LLaMA-70B, where the grammar-
based models yield an F1 score improvement of
5, 4, and 6 percentage points for the Llama-8B,
and 4, 2, and 2 points for Llama-70B, respectively,
across the zero-, one- and few-shot settings. At the

3We chose LLama-3 as a representative LLM since it is
one of the most popular open-source model and it achieves
competitive performances with respect to commercial models.
Most commercial models (e.g. GPT-4) cannot be employed
since we cannot intervene in their decoding process.

3418

second-level taxonomy, the grammar-based con-
straints lead to more significant improvements, mit-
igating the generative models’ verbosity. This en-
sures adherence to a valid hierarchical path and
avoids the generation of invalid taxonomy labels4.

Notably, the percentage of outputs conform to
the requirements (i.e. referred to as validity in Ta-
ble) closely follows the improvements in F1 score.
The constrained models consistently achieve a
100% validity rate across all configurations, which
indicate outputs that fully comply with the target
taxonomy. In contrast, unconstrained models yield
substantially lower validity rates, with performance
varying significantly across model sizes. Specifi-
cally, LLaMA-1B, LLaMA-8B, and LLaMA-70B
achieve best validity rates of 27%, 69%, and 85%,
respectively, showing an improvement as the num-
ber of examples in the prompt increases. Never-
theless, none of the unconstrained models reach
full validity, adversely affecting their overall per-
formance.

To assess the types of errors that our approach
mitigates, Table 2 presents the main error cate-
gories produced by unconstrained models in the
classification task across all prompt configurations.
We classify three mutually exclusive main cate-
gories of invalid outputs: invalid taxonomy labels
(i.e. cases where a label is appropriate at a general
level but incorrectly assigned at a more specific
level); incorrect number of labels (i.e. outputs with
excessive hierarchical levels w.r.t. the predefined
taxonomy, while remaining accurate at the first
two levels), and others (i.e. verbose or free-form
responses that do not adhere to the expected clas-
sification format). As shown in Table 2, the most
frequent error across all models involve the inclu-
sion of invalid taxonomy labels or the omission of
required ones. The only exception is observed in
LLaMA-1B under the zero- and one-shot settings,
where non-conforming outputs predominate. This
depends on model’s tendency towards verbosity
in the absence of sufficient instructional context,
often producing too long responses or generating
content that is not related to the task. However, in
the few-shot configuration, LLaMA-1B aligns with
the error profile of larger models. The inclusion of
additional examples in the prompt offers more ex-
plicit guidance, facilitating a deeper understanding

4As shown in Table 1, LLaMA-70B performs best in the
zero-shot setting, likely due to its extensive parameterization.
In contrast, few-shot prompting may limit generalization by
overly anchoring the model to provided examples

Model Zero-shot One-shot Few-shot
L1 L2 Validity L1 L2 Validity L1 L2 Validity

LlaMa-1B .002 .001 0% .313 .071 16% .501 .092 27%
G-LlaMa-1B .308 .124 100% .539 .231 100% .504 .173 100%
LlaMa-8B .569 .229 62% .650 .258 69% .680 .255 62%
G-LlaMa-8B .575 .282 100% .650 .298 100% .680 .310 100%
LlaMa-70B .720 .464 80% .740 .437 83% .700 .362 85%
G-LlaMa-70B .734 .504 100% .742 .456 100% .702 .378 100%

Table 1: Performance on hierarchical classification us-
ing the WoS dataset, evaluated in terms of micro F1
score for Level 1 (L1) and Level 2 (L2) classification,
as well as the overall validity rate (%) for each model
and configuration.

of the task structure and substantially reducing the
occurrence of unstructured outputs. LLaMA-8B
and LLaMA-70B exhibit invalid taxonomy labels
as the primary error, with LLaMA-70B producing
virtually no other error category.

Table 3 provides an analysis of the performance
of the constrained and unconstrained LlaMa mod-
els at varying model size (i.e. 1B, 8B and 70B)
for the sign language translation task in a few-
shot setting. We test models on 2,000 randomly
sampled instances from the Synthetic English-ASL
Gloss Parallel Corpus (Othman and Jemni, 2012),
which comprises 87,710 text-gloss pairs, generated
through the application of syntactic transformation
rules to English text. For each input sentence, we
prompt models in few-shot by selecting relevant ex-
amples based on cosine similarity (Li and Li, 2023).
Specifically, we retrieve the 30 most similar text-
gloss pairs and the 50 most similar glosses from
the training set. This approach ensures that the
prompt remains contextually relevant to the input.
For our method we adopt a simple grammar that en-
forces producing sequences of entries from the set
of admissible glosses. We present results in terms
of BLEU (Papineni et al., 2002), ChrF (Popović,
2015), F1 score. In addition, we report the num-
ber of valid outputs in terms of percentage as in
Table 1. BLEU measures the precision of n-grams
between the predicted and reference translations,
while ChrF focuses on character level to evaluate
more granular alignment. The F1 score reflects the
balance between precision and recall over the gloss
vocabulary, treating the task as multi-label classifi-
cation and hence discarding the order of glosses.

As shown in Table 3, model performance in-
creases consistently with model size. This effect
is more pronounced for smaller models (i.e. 1B
and 8B), where the need for improvement is higher.
We observe performance gains of 14, 5 and 4 per-
centage points in terms of F1 score for the 1B, 8B
and 70B models, respectively, w.r.t. LlaMa base-

3419

Model Zero-shot One-shot Few-shot
Incorrect
number
of labels

Invalid
taxonomy

labels
Others

Incorrect
number
of labels

Invalid
taxonomy

labels
Others

Incorrect
number
of labels

Invalid
taxonomy

labels
Others

LlaMa 1B 0% 0% 100% 2% 30% 53% 0% 70% 3%
LlaMa 8B 2% 23% 13% 0% 28% 3% 0% 38% 0%
LlaMa 70B 0% 17% 2% 0% 17% 0% 0% 14% 0%

Table 2: Error analysis of unconstrained models across all prompt configurations in the classification task.

Model BLEU ChrF F1 Validity

LlaMa-1B 0.31 0.72 0.65 9%
G-LlaMa-1B 0.47 0.76 0.79 100%
LlaMa-8B 0.70 0.90 0.89 39%
G-LlaMa-8B 0.81 0.93 0.94 100%
LlaMa-70B 0.79 0.93 0.92 49%
G-LlaMa-70B 0.86 0.95 0.96 100%

Table 3: Performance of the models on the text-to-gloss
ASL translation task, evaluated on the Synthetic English-
ASL Gloss Parallel Corpus in terms of BLEU, ChrF, and
F1 scores. We report the overall validity rate (%) for
each model and configuration.

lines. These findings are consistent with the results
reported for the classification task (cf. Table 1).
We observe comparable trends in terms of ChrF2
and BLEU metrics. The analysis of output validity
mirrors these trends, with all constrained models
achieving 100% output validity, in contrast to sig-
nificantly lower rates for their unconstrained coun-
terparts. This discrepancy depends on the tendency
of unconstained models to generate non-existent
glosses, that is not possible with the structural con-
straints imposed in G-LLaMA models.

These findings highlight the impact of
GRAMMAR-LLM in enhancing model perfor-
mance, especially in translation tasks involving
limited data and underrepresented domains.
Specifically, the grammatical module contributes
to selecting glosses that consistently align with
the vocabulary, thereby avoiding errors due to the
generation of invalid labels.

Table 4 evaluates the performance of constrained
and unconstrained BART-based models (AMR-
BART-base - 139M - and AMR-BART-large -
406M (Bai et al., 2022)) for Abstract Meaning
Representation (AMR) (Banarescu et al., 2013)
parsing, a semantic framework representing sen-
tence meaning as directed graphs. We test mod-
els on 100 randomly selected samples from the
LDC dataset (Bonn et al.), which contains 39,260
sentence-AMR pairs. We compare models with and
without the GRAMMAR-LLM module in terms
of SMATCH F1 score (Cai and Knight, 2013),
which measures structural similarity between AMR
graphs, and report the percentage of valid graphs

Model Smatch Validity

AMRBART-base 0.559 94%
G-AMRBART-base 0.577 100%
AMRBART-large 0.789 100%
G-AMRBART-large 0.790 100%

Table 4: Performance of the models on the AMR seman-
tic parsing task, evaluated on the LDC dataset in terms
of Smatch metric.

generated after fine-tuning and postprocessing,
as AMR-BART useS a rule-based approach to
rectify invalid outputs. As shown in Table 4,
our G-AMRBART-base outperforms its uncon-
strained counterpart (AMRBART-base) by 2 per-
centage points. Meanwhile, G-AMRBART-large
exhibits comparable performance to AMRBART-
large, achieving a SMATCH F1 score of 0.789
compared to 0.79. The improved performance of
the larger model can be attributed to its increased
parameter count and extensive training data, en-
abling more effective fine-tuning and enhanced
ability to process and learn the syntactic structure
of AMR graphs. In this scenario, our method shows
comparable performance with the unconstrained
fine-tuned model, as no significant further enhance-
ments are attainable. In contrast, the AMRBART-
base model, constrained by its reduced parameter
count, struggles to learn the syntactic rules, lead-
ing to invalid graph outputs in 6% of cases. Here,
the integration of a grammar module ensures the
generation of semantically valid outputs, thereby
outperforming the baseline model.

5 Conclusion

We present GRAMMAR-LLM, a novel framework
that integrates formal grammatical constraints into
the decoding of language models using LL (pre-
fix) grammars. Our approach dynamically enforces
syntactic constraints during generation in real-time,
with minimal computational cost. We tested our ap-
proach in hierarchical classification, sign language
translation, and semantic parsing, demonstrating
significant improvements in classification accuracy,
translation quality, and adherence to structured out-
put constraints.

3420

6 Limitations

Our approach inherits the autoregressive nature of
LLMs, where each token generated affects the prob-
ability distribution of subsequent outputs. This se-
quential dependency can lead to error propagation,
as early-stage mistakes may significantly impact
the quality of later tokens. Our approach could, in
certain cases, amplify early-stage mistakes since
validity constraints might intervene later on, pre-
venting the generation of tokens which are nec-
essary to complete a meaningful (though invalid)
sentence. Techniques such as those proposed in
Park et al. (2024) mitigate early-stage errors by
reshaping token distributions. We consider this
work complementary to ours and advocate for the
synergistic use of both approaches as future work.

Another limit is given by the expressiveness
of our class of LL(prefix) grammars. Although
more expressive than traditional LL(1) grammars,
LL(prefix) grammars remain less expressive than
CFGs. CFGs allow for grammar ambiguity and can
model more complex syntactic structures, which
may be necessary for certain advanced natural lan-
guage generation tasks. This limitation means
that while LL(prefix) grammars are well-suited for
many structured generation tasks, they may strug-
gle with highly recursive or nested language con-
structs that require the full power of CFGs. The
downside of using the entire class of CFGs is that
their languages cannot be accepted left-to-right by a
deterministic PDA. Consequently, integrating them
with LLMs (Geng et al., 2023) would introduce
complex data structures and a superlinear overhead,
with the exponent depending on the specific gram-
mar (Angelov, 2009).

Furthermore, our current implementation does
not incorporate an end-to-end fine-tuning phase
that integrates the grammar module into the train-
ing loop. As a result, our findings may not fully
capture the potential behavior of LLMs when fine-
tuned on extensive datasets, particularly in scenar-
ios where the grammar constraints are deeply em-
bedded in the model’s learning process. Exploring
grammar-constrained fine-tuning remains an av-
enue for future research.

Acknowledgement

We acknowledge financial support from the Next
Generation EU Program with the Future Artifi-
cial Intelligence Research (FAIR) project, code
PE00000013, CUP 53C22003630006, and by the

PNRR project Learning for All (L4ALL) funded by
the Italian MIMIT (number: F/310072/01-05/X56).
We thank Lorenzo Anastasi for his valuable support
in setting up the infrastructure for our experiments.

References
Kareem Ahmed, Kai-Wei Chang, and Guy Van den

Broeck. 2024. Controllable generation via lo-
cally constrained resampling. arXiv preprint
arXiv:2410.13111.

Alfred V Aho, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools. Pear-
son Education, Inc.

Krasimir Angelov. 2009. Incremental parsing with par-
allel multiple context-free grammars. In Proceedings
of the 12th conference of the European chapter of the
ACL (EACL 2009), pages 69–76.

Xuefeng Bai, Yulong Chen, and Yue Zhang. 2022.
Graph pre-training for amr parsing and generation.
arXiv preprint arXiv:2203.07836.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguis-
tic annotation workshop and interoperability with
discourse, pages 178–186.

Julia Bonn, Skatje Myers, Jens Van Gysel, Lukas Denk,
Meagan Vigus, Jin Zhao, Andrew Cowell, William
Croft, Jan Hajic, Martha Palmer, et al. Abstract mean-
ing representation (amr) annotation release 3.0.

Shu Cai and Kevin Knight. 2013. Smatch: an evaluation
metric for semantic feature structures. In Proceed-
ings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 748–752.

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. 2019.
A general-purpose algorithm for constrained sequen-
tial inference. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 482–492.

Yixin Dong, Charlie F Ruan, Yaxing Cai, Ruihang
Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen. 2024.
Xgrammar: Flexible and efficient structured genera-
tion engine for large language models. arXiv preprint
arXiv:2411.15100.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Saibo Geng, Hudson Cooper, Michał Moskal, Samuel
Jenkins, Julian Berman, Nathan Ranchin, Robert

3421

West, Eric Horvitz, and Harsha Nori. 2025. Generat-
ing structured outputs from language models: Bench-
mark and studies. arXiv preprint arXiv:2501.10868.

Saibo Geng, Martin Josifoski, Maxime Peyrard, and
Robert West. 2023. Grammar-constrained decoding
for structured nlp tasks without finetuning. arXiv
preprint arXiv:2305.13971.

John E Hopcroft, Rajeew Motwani, and Jeffrey D Ull-
man. 2001. Introduction to automata theory, lan-
guages and computation. Addison-Wesley.

Aishwarya Kamath and Rajarshi Das. 2018. A
survey on semantic parsing. arXiv preprint
arXiv:1812.00978.

Terry Koo, Frederick Liu, and Luheng He. 2024.
Automata-based constraints for language model de-
coding. arXiv preprint arXiv:2407.08103.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S Gerber,
and Laura E Barnes. 2017. Hdltex: Hierarchical deep
learning for text classification. In 2017 16th IEEE
international conference on machine learning and
applications (ICMLA), pages 364–371. IEEE.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. arXiv preprint arXiv:2309.12871.

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024. Formal-llm: Integrating for-
mal language and natural language for controllable
llm-based agents. arXiv preprint arXiv:2402.00798.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad
Saqib, Saeed Anwar, Muhammad Usman, Naveed
Akhtar, Nick Barnes, and Ajmal Mian. 2023. A
comprehensive overview of large language models.
arXiv preprint arXiv:2307.06435.

Adrián Núñez-Marcos, Olatz Perez-de Viñaspre, and
Gorka Labaka. 2023. A survey on sign language ma-
chine translation. Expert Systems with Applications,
213:118993.

Achraf Othman and Mohamed Jemni. 2012. English-
asl gloss parallel corpus 2012: Aslg-pc12. In 5th
Workshop on the Representation and Processing of
Sign Languages: Interactions between Corpus and
Lexicon LREC.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Kanghee Park, Jiayu Wang, Taylor Berg-Kirkpatrick,
Nadia Polikarpova, and Loris D’Antoni. 2024.
Grammar-aligned decoding. arXiv preprint
arXiv:2405.21047.

Kanghee Park, Timothy Zhou, and Loris D’antoni. 2025.
Flexible and efficient grammar-constrained decoding.

Maja Popović. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the tenth
workshop on statistical machine translation, pages
392–395.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093.

Richard Shin, Christopher H Lin, Sam Thomson,
Charles Chen, Subhro Roy, Emmanouil Antonios
Platanios, Adam Pauls, Dan Klein, Jason Eisner,
and Benjamin Van Durme. 2021. Constrained lan-
guage models yield few-shot semantic parsers. arXiv
preprint arXiv:2104.08768.

Carlos N Silla and Alex A Freitas. 2011. A survey of
hierarchical classification across different application
domains. Data mining and knowledge discovery,
22:31–72.

Brandon T Willard and Rémi Louf. 2023. Efficient
guided generation for large language models. arXiv
preprint arXiv:2307.09702.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy
Van den Broeck. 2023. Tractable control for autore-
gressive language generation. In International Con-
ference on Machine Learning, pages 40932–40945.
PMLR.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida,
Guy Van den Broeck, and Nanyun Peng. 2024.
Adaptable logical control for large language mod-
els. arXiv preprint arXiv:2406.13892.

3422

https://api.semanticscholar.org/CorpusID:276235743

