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Abstract

Humans continually engage in reasoning about
others’ mental states, a capability known as
Theory of Mind (ToM), is essential for social
interactions. While this social reasoning ca-
pability emerges naturally in human cognitive
development, how has the social reasoning ca-
pability of Large Language Models (LLMs)
evolved during their development process? Var-
ious datasets have been proposed to assess
LLMs’ social reasoning capabilities, but each
is designed with a distinct focus, and none
have explored how models’ social reasoning
capabilities evolve during model size scaling
or reasoning tokens scaling. In light of this,
we optimize the evaluation of LLMs’ social
reasoning from both data and model perspec-
tives, constructing progressively difficult lev-
els of social reasoning data and systematically
exploring how LLMs’ social reasoning capa-
bilities evolve. Furthermore, through an in-
depth analysis of DeepSeek-R1’s reasoning tra-
jectories, we identify notable cognitive "Aha
Moment" and the reasons for its reasoning er-
rors. Experiments reveal that long-thought log-
ical capabilities and cognitive thinking are key
to scaling LLMs’ social reasoning capabilities.
By equipping the Qwen2.5-32B-Instruct model
with long-thought logical capabilities and cog-
nitive thinking, we achieve an improvement of
19.0 points, attaining social reasoning perfor-
mance comparable to o1-preview model.

1 Introduction

With the advancement of LLM (Ouyang et al.,
2022; Touvron et al., 2023; Yang et al., 2024;
Dubey et al., 2024), they have demonstrated re-
markable language understanding and conversa-
tional abilities. The key driver behind this progress
is widely known Scaling Law (Kaplan et al., 2020;
Henighan et al., 2020), which suggests model per-
formance improves as Data Size and Model Size

* Corresponding author.

increases. Besides, many researchers have also re-
leased their deep thinking models, e.g., Deepseek-
R1 (Guo et al., 2025), OpenAI-o1 (Jaech et al.,
2024), which exhibit impressive reasoning capa-
bilities. However, most efforts focus on reasoning
within context of mathematics and coding, with
limited exploration of social reasoning.

Social reasoning, the capability to attribute and
reason about others’ mental states, known as The-
ory of Mind (ToM) (Premack and Woodruff, 1978;
Baron-Cohen et al., 1985; Perner and Wimmer,
1985; Perner et al., 1987; Gandhi et al., 2023; Hou
et al., 2024b), is the cornerstone of social cogni-
tion and interpersonal interaction. It focuses on
the capabilities in understanding social events, cog-
nitive logic, and cognitive skills, which is quite
different from previous mathematical reasoning,
relying upon mathematical logic and specialized
knowledge.

In the context of social reasoning, we are cu-
rious about how LLMs perform across different
social contexts with varying complexities, espe-
cially how the social reasoning capability of LLMs
has evolved with the scaling of model size, e.g.,
smaller and larger LLMs within the same family,
and evolved with reasoning tokens, i.e., more test-
time computation. More, are there scaling limits?

Existing researches have proposed various
benchmarks to evaluate the social reasoning ca-
pabilities of LLMs. While benchmarks such as
BigToM (Gandhi et al., 2023), FanToM (Kim et al.,
2023), HI-ToM (Wu et al., 2023), OpenToM (Xu
et al., 2024), ToMBench (Chen et al., 2024b) and
ExploreToM (Sclar et al., 2024) have made impor-
tant contributions, each is designed with a distinct
focus. A comprehensive structured assessment re-
mains absent—one that systematically tracks both
the progression of social reasoning context from
easy to difficult and the evolutionary development
of model capabilities in this domain.

In this paper, we optimize the assessment of
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Figure 1: Top and Middle: optimizing the evaluation of LLMs’ social reasoning capabilities through dual improve-
ments at both the data level and model level. Bottom: method for scaling LLMs’ social reasoning capabilities.

LLMs’ social reasoning capabilities through dual
improvements at both the data level and model
level. As illustrated in Figure 1, at the data level, we
re-organize existing social reasoning benchmarks
into progressively difficult social reasoning data
(context) to comprehensively investigate LLMs’
capabilities. It includes stories of varying lengths,
with or without advanced socio-cognitive events
(Happé, 1994; Strachan et al., 2024), and social
reasoning questions ranging from zeroth to fourth
order. At the model level, we consider the scaling
of model size and reasoning tokens, systematically
exploring how the social reasoning capabilities of
LLMs evolve as two factors change.

Our experiments reveal that: (1) scaling model
size helps solve relatively easy social reasoning
problems but has a limited impact on more chal-
lenging ones. (2) The effect of scaling reasoning
tokens is significantly greater than that of scaling
model size. (3) Advanced reasoning LLMs, e.g.,
Deepseek-R1 and OpenAI-o1, perform well on so-
cial reasoning problems of regular difficulty but
still have considerable room for improvement on
more challenging social reasoning problems.

We conduct an in-depth exploration and anal-
ysis of the reasoning trajectories exhibited by
the Deepseek-R1 model in social reasoning tasks.
Our investigation reveals that the model not only
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demonstrates conventional step procedures for solv-
ing social reasoning problems: tracking entity
states, capturing critical social events that create be-
lief gaps, and filtering out irrelevant social events,
but also demonstrates remarkable innovation in
constructing temporal spaces t1 to tn and form-
ing nested belief hierarchies, a phenomenon we
term the Cognitive "Aha Moment". However, our
analysis also uncovers a significant challenge in
its reasoning trajectory: the struggle between real
world state and character belief state, which results
in substantial waste of reasoning tokens. While the
model successfully converges on the correct charac-
ter belief state in less complex reasoning problems,
this struggle, when combined with high-difficulty
reasoning problems, can lead to erroneous outputs.

Through systematic evaluation of LLMs’ so-
cial reasoning capabilities and exploratory anal-
ysis of DeepSeek-R1’s reasoning trajectories, we
find that fundamental long-thought logical capa-
bilities are crucial for solving reasoning problems.
Moreover, sprinkling cognitive “Aha Moment” into
fundamental Long-thought logical capabilities can
bring the model good social reasoning performance.
We collect mathematical and coding-related prob-
lems requiring strong logical capabilities from s1
(Muennighoff et al., 2025) and LIMO (Ye et al.,
2025), and additionally incorporate imaginative
game-based problems (Hu et al., 2024) requiring
creative logic, along with their corresponding long-
thought solutions, to conduct Supervised Finetun-
ing on Qwen2.5-32B-Instruct to cultivate its funda-
mental long-thought logical capabilities. At test
time, we introduce cognitive thoughts into the
model’s reasoning trajectory to guide its cognitive
thinking. It is noteworthy that this is a completely
out-of-domain approach, as we did not utilize any
data related to social reasoning. Experimental
results demonstrate that the cultivation of long-
thought logical capabilities and cognitive thinking
has brought the Qwen2.5-32B-Instruct model a sig-
nificant improvement of up to 19.0 points, surpass-
ing a series of models including LLaMA-3.1-405B-
Instruct and GPT-4o, achieving social reasoning
performance comparable to the o1-preview model.

2 Background and Related Work

Benchmarks for Evaluating LLMs’ Social Rea-
soning Capabilities. Various benchmarks have
been proposed to evaluate the social reasoning ca-
pabilities of LLMs, such as ToMI (Le et al., 2019),

BigToM (Gandhi et al., 2023), FanToM (Kim et al.,
2023), HI-ToM (Wu et al., 2023), OpenToM (Xu
et al., 2024), ToMBench (Chen et al., 2024b), ToM-
Valley (Xiao et al.), EgoToM (Hou et al., 2024a),
SimpleToM (Gu et al., 2024) and ExploreToM
(Sclar et al., 2024). Although these benchmarks are
all used to evaluate LLMs’ social reasoning capabil-
ities, they differ in their story (or dialogue) design
and question formulation. For example, OpenToM
assigns personalities to agents in the stories and
ensures that the storylines are more reasonable and
logical. ExploreToM incorporates advanced socio-
cognitive events in its story design, such as com-
munication between agents and witnessing actions
in secret. ToMI focuses on second-order and lower-
social reasoning problems, while Hi-ToM focuses
on higher-order social reasoning problems.

Methods for Enhancing LLMs’ Social Reason-
ing Capabilities. Existing methods for enhanc-
ing the social reasoning capabilities of LLMs
can be broadly categorized into prompt-based ap-
proaches and those utilizing external tools for assis-
tance. Through the implementation of perspective-
taking strategies, Wilf et al. (2023) demonstrated
significant improvements in LLMs’ social reason-
ing abilities. Hou et al. (2024b) took a different ap-
proach by developing a Time-Aware Belief Solver
that operates within a temporal framework. Mean-
while, both Sclar et al. (2023) and Huang et al.
(2024) focused on state tracking mechanisms - the
former through state graphs and the latter through
world modeling - to monitor belief and entity states.

Scaling Test-time Compute. Test-time scaling
methods can be divided into 1) Sequential, where
later computations depend on earlier ones (e.g., a
long reasoning trace), and 2) Parallel, which relies
on multiple solution attempts generated in paral-
lel and selecting the best via majority voting or
reward model (process-based or outcome-based)
(Snell et al., 2024; Brown et al., 2024; Liu et al.,
2024b; Wang et al., 2024b; Zeng et al., 2024; Qi
et al., 2024). Recently, OpenAI’s O1 (Jaech et al.,
2024) and DeepSeek-R1 (Guo et al., 2025) explore
training LLMs using reinforcement learning to gen-
erate long-thought, offering promising solutions
to complex reasoning problems. Existing Test-
Time scaling research has primarily focused on
mathematical reasoning, such as PRIME-RL (Cui
et al., 2025), Rstar-Math (Guan et al., 2025), Math-
Shepherd (Wang et al., 2024a) and Math-SVPO
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Model [1-0] [2-0] [3-0] [1-1] [2-1] [3-1] [1-2] [2-2] ToMI AVG

Model Size Scaling

Qwen2.5-7B-Instuct 0.90 0.75 0.55 0.60 0.80 0.45 0.55 0.25 0.60 0.60
Qwen2.5-32B-Instruct 1.00 0.90 1.00 0.85 0.85 0.50 0.60 0.35 0.74 0.75
Qwen2.5-72B-Instruct 1.00 1.00 1.00 0.80 0.85 0.60 0.85 0.60 0.80 0.81
LLaMA-3.1-8B-Instruct 1.00 0.90 0.85 0.95 1.0 0.45 0.65 0.45 0.65 0.70
LLaMA-3.1-70B-Instruct 1.00 1.00 1.00 0.65 0.90 0.60 0.80 0.50 0.72 0.75
LLaMA-3.1-405B-Instruct 1.00 1.00 1.00 1.00 0.95 0.75 0.70 0.50 0.77 0.80

Advanced Foundation Model

GPT-4o 1.00 1.00 1.00 0.70 0.90 0.55 0.75 0.70 0.74 0.77
DeepSeek-v3 1.00 1.00 1.00 0.85 0.90 0.60 0.90 0.55 0.76 0.79

Reasoning Tokens Scaling

O3-mini 1.00 1.00 1.00 0.80 0.95 0.65 0.90 0.95 0.73 0.79
O1-preview 0.85 0.90 0.75 0.85 0.95 0.75 0.95 1.00 0.87 0.87
OpenAI-O1 1.00 1.00 1.00 1.00 0.95 0.80 0.90 0.90 0.91 0.92
DeepSeek-R1 1.00 1.00 1.00 1.00 0.95 0.80 0.95 0.75 0.93 0.93

Long-thought Logical Training + Cognitive Thinking (Ours)

Logic-32B 0.90 1.00 0.95 0.90 0.80 0.75 0.75 0.40 0.81 0.81 ↑0.06

Logic-32B + Cognitive Thinking 1.00 1.00 1.00 0.95 0.95 0.85 0.80 0.65 0.87 0.88 ↑0.13

Table 1: Evaluation results of all models on relatively simple social reasoning problems. “1-0” indicates a story
with 1 chapter and a 0th-order social reasoning problem, and so on. Logic-32B + Cognitive Thinking is the method
we propose — based on Qwen2.5-32B-Instruct as the backbone — for scaling a model’s social reasoning capability.

(Chen et al., 2024a). Under reinforcement learning
training for mathematical reasoning tasks, the spon-
taneous emergence of thoughts like self-reflection
and verification in DeepSeek-R1’s reasoning trajec-
tories is exciting. However, research on Test-time
Scaling for social reasoning tasks remains unex-
plored. For social reasoning, cognitive thoughts
such as constructing temporal space may be more
effective than self-reflection thought.

3 Structure Evaluation of LLMs’ Social
Reasoning Capabilities

3.1 Social Reasoning Data Formulation

In terms of story design, we systematically varied
two key dimensions: story length (ranging from
one to three chapters, as illustrated in Figure 1) and
the presence of advanced socio-cognitive events.
Both increasing the story length and including ad-
vanced socio-cognitive events raise the difficulty of
social reasoning. For question design, we consider
social reasoning questions ranging from zeroth-
order to fourth-order, where the depth of reason-
ing gradually increases as the order of the ques-
tions goes up. Specifically, we collect stories from
the Hi-ToM Benchmark ranging from one to three
chapters in length, along with corresponding social

reasoning questions covering five different orders.
Together, these form 15 distinct difficulty levels
of social reasoning data. The stories in Explore-
ToM and ToMI respectively include and exclude
advanced socio-cognitive events, yet they share the
same level of question difficulty, creating a nearly
perfect comparison. We also collect data from these
two benchmarks.

3.2 Model Selection

From the perspective of model size scaling, we
select the Qwen2.5 series of 7B, 32B, and 72B
Instruct models (Yang et al., 2024), as well as the
LLaMA3.1 series of 8B, 70B, and 405B Instruct
models (Dubey et al., 2024). From the perspective
of reasoning tokens scaling, we choose DeepSeek-
v3 (Liu et al., 2024a) and DeepSeek-R1 (Guo et al.,
2025), GPT-4o1 and OpenAI o1 for comparison,
and additionally evaluate the o1-preview2 and o3-
mini3 models.

1https://openai.com/index/hello-gpt-4o/
2https://openai.com/index/

learning-to-reason-with-llms/
3https://openai.com/index/openai-o3-mini/
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Model [3-2] [1-3] [2-3] [3-3] [1-4] [2-4] [3-4] ExploreToM AVG

Model Size Scaling

Qwen2.5-7B-Instuct 0.45 0.30 0.20 0.30 0.30 0.15 0.30 0.45 0.40
Qwen2.5-32B-Instruct 0.55 0.60 0.40 0.30 0.50 0.25 0.40 0.55 0.52
Qwen2.5-72B-Instruct 0.65 0.65 0.50 0.55 0.65 0.30 0.30 0.55 0.54
LLaMA-3.1-8B-Instruct 0.45 0.65 0.25 0.30 0.50 0.05 0.25 0.53 0.48
LLaMA-3.1-70B-Instruct 0.70 0.80 0.40 0.25 0.70 0.40 0.25 0.57 0.55
LLaMA-3.1-405B-Instruct 0.35 0.70 0.35 0.45 0.70 0.30 0.35 0.58 0.54

Advanced Foundation Model

GPT-4o 0.55 0.70 0.60 0.60 0.65 0.40 0.40 0.57 0.57
DeepSeek-v3 0.60 0.80 0.50 0.45 0.80 0.25 0.25 0.60 0.58

Reasoning Tokens Scaling

O3-mini 0.80 0.90 0.95 0.65 1.00 1.00 0.85 0.74 0.78
O1-preview 0.90 0.90 0.85 0.85 0.95 0.90 0.70 0.78 0.80
OpenAI-O1 0.85 0.95 0.95 0.90 1.00 0.95 0.80 0.82 0.85
DeepSeek-R1 0.75 0.85 0.90 0.85 0.95 0.95 0.75 0.79 0.81

Long-thought Logical Training + Cognitive Thinking (Ours)

Logic-32B 0.60 0.60 0.45 0.55 0.60 0.35 0.60 0.74 0.68 ↑0.16

Logic-32B + Cognitive Thinking 0.80 0.70 0.70 0.60 0.85 0.60 0.60 0.78 0.77 ↑0.25

Table 2: Evaluation results of all models on relatively difficult social reasoning problems. “3-2” indicates a story
with 3 chapters and a 2th-order social reasoning problem, and so on. Logic-32B + Cognitive Thinking is the method
we propose — based on Qwen2.5-32B-Instruct as the backbone — for scaling a model’s social reasoning capability.

3.3 Experiments

3.3.1 Setup and Metrics

We set the temperature coefficient to 0 for model
evaluation. All social reasoning problems have cor-
responding correct answers, and we use the pow-
erful DeepSeek-v3 (Liu et al., 2024a) model to
determine whether the model’s answers are correct
based on the correct answers and model outputs.
We evaluate model’s performance based on its ac-
curacy in answering problems. All prompts used
in the experiment can be found in Appendix A.1.

3.3.2 Main Results and Analysis

Tables 1 and 2 present the performance of all the
evaluated models. From the experimental results, it
can be observed that increasing the story length, in-
corporating advanced socio-cognitive events in the
story, and raising the order of reasoning questions
all lead to a decrease in model performance. This
finding aligns with our design rationale, namely
that these factors indeed increase the difficulty of
the social reasoning tasks. Based on the difficulty
of the questions, we present the evaluation results
for relatively easy questions in Table 1 and the eval-
uation results for relatively difficult questions in
Table 2, in order to better analyze the impact of

model size scaling and reasoning token scaling.

Scaling model size helps solve relatively easy
social reasoning problems but has a limited im-
pact on more challenging ones. As shown in
Table 1, the Qwen2.5 series models with 7B, 32B,
and 72B parameters achieve performance scores of
0.60, 0.75, and 0.81 respectively on relatively sim-
ple social reasoning problems while the LLaMA3.1
series models with 8B, 70B, and 405B parameters
obtain scores of 0.70, 0.75, and 0.80. The perfor-
mance gradually improves as model size scaling.
However, on more challenging social reasoning
problems, as illustrated in Table 2, the Qwen2.5
series models achieve scores of 0.40, 0.52, and
0.54, while the LLaMA3.1 series models obtain
scores of 0.48, 0.55, and 0.54. Scaling model
size did not yield performance gains (0.52→0.54,
0.55→0.54), indicating a significant performance
bottleneck. The visualization of model size scaling
can be found in Appendix A.4.

The effect of scaling reasoning tokens is signif-
icantly greater than that of scaling model size.
As shown in Table 1 and 2, Deepseek-v3 achieves
performance scores of 0.79 and 0.58 on relatively
easy and difficult social reasoning problems, re-
spectively. In contrast, the Deepseek-R1 model,
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Figure 2: Gold represents the DeepSeek-R1 model’s cognitive "Aha Moment". Green represents the DeepSeek-R1
model’s standard procedural steps to solve social reasoning problems. Red represents the flaws that occur in the
DeepSeek-R1 model’s social reasoning process.

which is based on Deepseek-v3, attains scores of
0.93 and 0.81, showing a clear performance gap.
A similar gap can also be observed between GPT-
4o and the OpenAI o1 model. Compared to scal-
ing model size, reasoning tokens scaling brings a
significant boost to social reasoning performance,
reaching notably high levels. All reasoning models,
including o3-mini and o1-preview, exhibit quite
good performance in social reasoning. The visual-
ization of reasoning tokens scaling can be found in
Appendix A.4.

DeepSeek-R1 and OpenAI-O1 perform well in
regular difficulty social reasoning but have room
for improvement on more challenging social rea-
soning. For relatively easy social reasoning prob-
lems, DeepSeek-R1 and OpenAI-o1 achieve favor-

able performance scores of 0.93 and 0.92, respec-
tively. For relatively more challenging social rea-
soning problems, they score 0.81 and 0.85. There
remains substantial room for further improvement
and optimization in these more difficult social rea-
soning problems.

3.4 Exploration of DeepSeek-R1 Model’s
Reasoning Trajectories

We conduct an in-depth exploration of the
DeepSeek-R1 model’s reasoning trajectory on so-
cial reasoning tasks to uncover the reasons behind
both its successes and its mistakes. As shown
in Figure 2, we found that DeepSeek-R1 model
not only masters the conventional procedure for
solving social reasoning problems—tracking en-
tity states, capturing critical social events that cre-
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ate belief gaps (Gopnik and Astington, 1988), and
filtering out irrelevant social events (Leslie et al.,
2004; Sclar et al., 2023) (corresponding to step-
by-step calculations in mathematical reasoning)
— but also astonishingly demonstrates advanced
cognitive thinking, such as constructing temporal
space t1 to tn and forming nested belief hierar-
chies (William → Charlotte → Logan → Evelyn)
(Badre, 2008). We refer to this as the model’s cog-
nitive "Aha Moment" (Kounios and Beeman, 2009;
Grosse Wiesmann et al., 2020), analogous to self-
reflection and verification thoughts in mathematical
reasoning.

Additionally, our exploration reveals a signifi-
cant flaw in its reasoning trajectory: the struggle
between the real-world state and the character’s
belief state, which leads to a substantial waste of
reasoning tokens. Although the model success-
fully settles on the correct character belief state in
relatively simple social reasoning problems, this
struggle — especially when combined with more
challenging social reasoning problems — can result
in erroneous outputs. At the bottom of Figure 2, we
show a false case produced by the DeepSeek-R1
model when dealing with a story of three chapters
and a fourth-order reasoning problem.

4 Scaling LLMs’ Social Reasoning
Capabilities

Through a structured evaluation of LLMs’ social
reasoning capabilities and an analysis of DeepSeek-
R1’s reasoning trajectory, we found that fundamen-
tal long-thought logical capabilities are crucial for
solving reasoning problems. Moreover, sprinkling
cognitive “Aha Moment” into fundamental Long-
thought logical capabilities can bring the model
good social reasoning performance. Building on
this insight, we use the Qwen2.5-32B-Instruct
model as our backbone and scale its social rea-
soning capabilities through a two-stage approach:
long-thought logical capabilities cultivation and
test-time cognitive thinking.

4.1 Long-thought Logical Capabilities
Cultivation

We collect mathematical and coding-related prob-
lems requiring strong logical capabilities from s1
(Muennighoff et al., 2025) and LIMO (Ye et al.,
2025), and additionally incorporates imaginative,
game-based problems (Hu et al., 2024) that de-
mand creative logic (The concrete example of ques-

tion can be found in Appendix A.2). Along with
these problems, we include their corresponding
long-thought solutions, which are generated by the
Google Gemini flash Thinking API (Team et al.,
2024). In total, there are 1,347 problems and their
long-thought solutions. These problems are highly
diverse and place significant demands on logical
capabilities. We use this dataset to perform su-
pervised finetuning of the Qwen2.5-32B-Instruct
model, thereby cultivating its fundamental long-
thought logical capabilities. We denote the result-
ing model as Logic-32B. It is worth noting that we
regard fundamental long-thought logical capability
as a transferable, general capability. Here, we adopt
a completely out-of-domain training approach to
cultivate this logical ability, without using any data
related to social reasoning.

4.2 Test-time Cognitive Thinking
At test time, we feed a social reasoning question
q ∈ Q (Q represents the space of reasoning prob-
lems) into the Logic-32B model M, which then
generates the corresponding long-thought solution
long_s. The process is expressed as follows:

long_s = M(q). (1)

Then we append the cognitive thoughts c to long_s,
and together with the original social reasoning ques-
tion q, feed them into the Logic-32B model M.
The process is expressed as follows:

long_sfinal = M(q||long_s||c). (2)

Here, || denotes concatenation, and long_sfinal
represents the final long-thought solution to the so-
cial reasoning question q. The content of cognitive
thoughts is: [Let’s carefully consider the events
in the story; the events occur in temporal space.
Focus on the belief states of the questioning char-
acters and the entity states. The use of cognitive
strategies may be helpful.] This encourages the
LLM to engage in cognitive thinking for the social
reasoning question q, integrating cognitive think-
ing into the LLM’s long-thought logic process. We
refer to this two-stage complete process as Logic-
32B + Cognitive Thinking.

4.3 Experiments
4.3.1 Setup and Metrics
We used LLaMA-Factory (Zheng et al., 2024)
to fine-tune Qwen2.5-32B-Instruct via supervised
fine-tuning to obtain the Logic-32B model. The
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Figure 3: The performance comparison of Logic
32B, Logic 32B + Cognitive Thinking, Qwen2.5-32B-
Instruct, LLaMA-3.1-405B-Instruct, DeepSeek-v3, and
O1-preview model. The two horizontal gray dashed
lines represent the performance of the O1-preview
model on relatively easy and difficult social reasoning
problems, respectively.

training process employs full-parameter fine-tuning
with DeepSpeed ZeRO-3 optimization (Rajbhan-
dari et al., 2020). We conducted five epochs of
training in bfloat16 precision, with a learning rate
of 1e-5, a per-device train batch size of 1, and a
cutoff length of 32768.

We separately evaluate Logic-32B and Logic-
32B + Cognitive Thinking on social reasoning prob-
lems. Similarly, we used DeepSeek-v3 (Liu et al.,
2024a) to assess their outputs and obtain their ac-
curacy performance.

4.3.2 Main Results
As shown in Tables 1 and 2, we can see that Logic-
32B + Cognitive Thinking achieved scores of 0.88
and 0.77 on relatively easy and difficult social rea-
soning problems, respectively, outperforming its
backbone model Qwen2.5-32B-Instruct by 0.13
and 0.25 (for an average significant improvement
of 0.19). In addition, as illustrated in Figure 3,
Logic-32B + Cognitive Thinking also surpassed
the large-scale LLaMA-3.1-405B-Instruct model
and the advanced DeepSeek-v3 model, attaining
social reasoning performance comparable to the
o1-preview model (0.88, 0.77 vs. 0.87, 0.80). How-
ever, there remains a noticeable gap when com-
pared to the DeepSeek-R1 and OpenAI-O1 models.

4.3.3 Ablation Study
As shown in Tables 1 and 2, the Logic-32B model
achieves scores of 0.81 and 0.68 on relatively easy
and difficult social reasoning problems, respec-
tively. These scores surpass those of its backbone

model, Qwen2.5-32B-Instruct, by 0.06 and 0.16, re-
sulting in an average improvement of 0.11. This in-
dicates that merely training for long-thought logical
capabilities can enhance the backbone model’s so-
cial reasoning capability and reach a fairly competi-
tive level (Logic-32B (0.81, 0.68) vs. DeepSeek-v3
(0.79, 0.58)).

As illustrated in Figure 3, by introducing cog-
nitive thoughts at test time within the Logic-32B
model to guide cognitive thinking, we can further
enhance its social reasoning capabilities. This leads
to performance improvements of 0.07 and 0.09
on relatively easy and difficult social reasoning
problems, respectively. Overall, our ablation study
demonstrates the effectiveness of both long-thought
logic capabilities cultivation and test-time cognitive
thinking.

5 Conclusion

We conducted a comprehensive and structured eval-
uation of LLMs’ social reasoning capabilities, sys-
tematically tracking both the progression of social
reasoning data from easy to difficult and the evolu-
tionary development of model capabilities (model
size scaling and reasoning token scaling). Our ex-
perimental results reveal that:

1. Increasing the model size helps solve rela-
tively easy social reasoning problems but has
a limited impact on more challenging ones.

2. The effect of scaling reasoning tokens is sig-
nificantly greater than scaling model size.

3. DeepSeek-R1 and OpenAI-O1 perform well
on social reasoning tasks of regular difficulty
but still have room for improvement on more
challenging tasks.

Besides, we conducted an in-depth exploration
of the DeepSeek-R1 model’s reasoning trajectory:

1. Masters the conventional logical procedure
for solving social reasoning problems.

2. Demonstrates advanced cognitive thinking
(cognitive "Aha Moment").

3. Struggles between the real-world state and the
character’s belief state.

Finally, building upon these insights, we propose
a two-stage scaling approach: long-thought logi-
cal capabilities cultivation and test-time cognitive
thinking that effectively scales the Qwen2.5-32B-
Instruct model’s social reasoning capabilities.
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Limitations

There are two major limitations in our work. (1)
In our scaling experiments, we used the Qwen2.5-
32B-Instruct Model as the backbone. When the
backbone model is switched to a smaller 7B or a
larger 72B variant, or when replaced by a LLaMA-
series model, the experimental results merit further
exploration. However, doing so demands signifi-
cantly greater computational resources. (2) Addi-
tionally, visual modality information is also cru-
cial for social reasoning. When we take the visual
modality into account, new cognitive thoughts may
emerge. We leave this intriguing direction for fu-
ture work.
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A Appendix

A.1 Evaluation Prompt
Below are the prompts for evaluating ToMI, dif-
ferent combinations of story lengths and reasoning
question orders, ExploreTom, and the DeepSeek-
v3 Judge prompt.
Evaluation for ToMI:
baselinePrompt = """\
{story}
{question}
Choose from the following:
{containers0}, {containers1}.
"""

Evaluation for StoryLength, QuestionOrder:
baselinePrompt = """\
{story}
{question}
Choose from the following:
{containers0}, {containers1}
{containers2}, {containers3}
{containers4}, {containers5}
{containers6}, {containers7}
{containers8}, {containers9}
{containers10}, {containers11}
{containers12}, {containers13}
{containers14}.
"""

Evaluation for ExploreToM:
baselinePrompt = """\
{story}
{question}
Give the answer to this question.
"""

DeepSeek-v3 Judge Prompt:
prompt = """\
[Question: {question}]

***[ Response Answer: {prediction}]***

***[ Correct Answer: {label}}]***

Only based on the ***[ Correct Answer
]***, judge whether the ***[ Response
Answer ]*** is correct. Output ’True ’or ’
False ’ only.
"""

In the process of evaluating the social reasoning
capabilities of LLMs, we also established a compre-
hensive logging system that meticulously records
the model’s reasoning output for each question,
question type, question difficulty, the number of to-
kens consumed during reasoning, and various other
fine-grained metrics.

A.2 Imaginative Game-based Problems
AI Akinator Game: An LLM attempts to determine
which object the player is thinking of by asking up
to 20 yes-or-no questions. This game demands both

Figure 4: Logging system.

Figure 5: Imaginative game-based problems that de-
mand creative logic.

deductive and inductive logic capabilities, requires
the LLM to think creatively and logically based
on the information at hand. We convert the game
data into a reasoning problem format, as shown in
Figure 5.

A.3 DeepSeek-R1 Model’s Reasoning
Trajectory

The DeepSeek-R1 model has an extremely long
reasoning trajectory, and the number of reasoning
tokens consumed increases significantly as the dif-
ficulty of the reasoning problem rises. We have
provided the log files in the Data Zip folder.

A.4 Visualization of model size scaling and
reasoning tokens scaling

To better visualize the development in social rea-
soning capabilities during the evolution of model
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Figure 6: The visualization of model size scaling.
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Figure 7: The visualization of reasoning tokens scaling.

size and reasoning tokens, we present the results in
Figures 6 and 7.
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