
Findings of the Association for Computational Linguistics: ACL 2025, pages 3032–3046
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

InfiniSST: Simultaneous Translation of Unbounded Speech with Large
Language Model

Siqi Ouyang, Xi Xu, Lei Li
Carnegie Mellon University, Language Technologies Institute

{siqiouya, xixu, leili}@andrew.cmu.edu

Abstract
Simultaneous translation of unbounded stream-
ing speech remains a challenging problem due
to the need for effectively processing the his-
torical speech context and past translations so
that quality and latency, including computa-
tion overhead, can be balanced. Most prior
works assume pre-segmented speech, limiting
their real-world applicability. In this paper,
we propose InfiniSST, a novel approach that
formulates SST as a multi-turn dialogue task,
enabling seamless translation of unbounded
speech. We construct translation trajectories
and robust segments from MuST-C with multi-
latency augmentation during training and de-
velop a key-value (KV) cache management
strategy to facilitate efficient inference. Ex-
periments on MuST-C En-Es, En-De, and
En-Zh demonstrate that InfiniSST reduces
computation-aware latency by 0.5 to 1 second
while maintaining the same translation quality
compared to baselines. Ablation studies further
validate the contributions of our data construc-
tion and cache management strategy1.

1 Introduction

Simultaneous speech translation (SST) is the task
of translating partial speech input from a source
language into text in a target language, with a wide
range of applications, including conference inter-
pretation and live-streaming translation (Ma et al.,
2020b; Ren et al., 2020). Most prior research on
SST focuses on translating pre-segmented speech
(SST-S), assuming that ground-truth segmenta-
tion is provided (Liu et al., 2021; Zeng et al.,
2021; Dong et al., 2022; Papi et al., 2023, 2024b).
However, translating unbounded, streaming speech
(SST-U) remains underexplored.

Unbounded speech presents a major challenge
that the model has to effectively process the histori-
cal speech context and past translations so that qual-
ity and latency, including computation overhead,

1https://github.com/LeiLiLab/InfiniSST

can be balanced. Large language model (LLM)
is a promising solution for long-context model-
ing with the recent advancements (Su et al., 2021;
Han et al., 2024). Moreover, LLM-based architec-
tures have been shown to improve SST-S perfor-
mance (Xu et al., 2024). However, conventional
SST-S approaches suffer from high computational
costs, as they require recomputing features for past
speech and generated text every time a new speech
chunk arrives. Some studies mitigate this issue by
framing SST as a multi-turn dialogue task, either
explicitly (Yu et al., 2025; Wang et al., 2024) or
implicitly (Ouyang et al., 2024; Raffel et al., 2024),
leveraging key-value (KV) caching to improve effi-
ciency. While effective for segmented speech and
text, these methods do not seamlessly extend to
unbounded speech.

In this paper, we propose InfiniSST, a method for
simultaneous translation of unbounded speech us-
ing a multi-turn dialogue format. We construct SST
trajectories and derive robust speech segments for
training from the MuST-C dataset, enhancing them
with a multi-latency strategy to increase diversity.
During inference, we employ a KV cache man-
agement strategy, inspired by Han et al. (2024), to
enable seamless extrapolation to unbounded speech
input. Experiments on MuST-C En-Es, En-De,
and En-Zh (Di Gangi et al., 2019) show that In-
finiSST reduces computation-aware latency by 0.5
to 1 second while maintaining the same BLEU
score as baselines. A detailed ablation study fur-
ther validates the effectiveness of our data con-
struction and cache management strategies during
inference.

2 Related Works

2.1 SST on Unbounded Speech

Cascade Approaches Cascade-based methods
typically use an automatic speech recognition
(ASR) model to segment and transcribe the in-
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put, followed by a machine translation model that
translates the transcription (Fugen et al., 2006;
Yoshimura et al., 2020; Huang et al., 2022; Donato
et al., 2021; Iranzo-Sánchez et al., 2024). How-
ever, segmentation errors and the lack of punctua-
tion degrade translation quality, which complicates
maintaining low latency and high quality.

Direct SST on Unbounded Speech Several
works explore end-to-end approaches for SST on
unbounded speech (Schneider and Waibel, 2020;
Papi et al., 2024a). These methods avoid external
segmentation by dynamically preserving relevant
audio context and previously generated text while
discarding older information. Papi et al. (2024a)
extends AlignAtt to unbounded speech by storing
text and audio history in a fully streaming way,
which helps reduce latency and maintain contextual
awareness. Despite these advances, balancing trans-
lation quality, latency, and computational demands
remains a challenge. Our approach addresses these
issues by managing unbounded speech input with-
out loss in translation accuracy and with improved
computational efficiency.

2.2 Length Extrapolation of LLM

Recent advances in positional encoding (Su et al.,
2021; Press et al., 2021; Sun et al., 2023) have en-
abled models to handle longer sequences with little
or no additional training. ReRoPE (Su, 2023) in-
troduces an NTK-aware Scaled RoPE that extends
context length to infinite without fine-tuning. Han
et al. (2024) and Xiao et al. (2024) propose on-
the-fly length generalization based on a Λ-shaped
attention window, allowing nearly unlimited input
length with no fine-tuning. InfiniSST is a success-
ful application of RoPE and Λ-shaped attention
window in SST-U.

3 Method

3.1 Problem Formulation

Let s1:t = (s1, s2, . . . , st) be the partial input of
an unbounded input speech sequence and y1:i =
(y1, y2, . . . , yi) represent the partial text translation.
Here s1:t is the waveform with a specific sampling
rate. Define π(s1:t,y1:i) ∈ [0, 1] as the policy to
determine whether to take more speech input (=0)
or to generate target translation tokens (=1). When-
ever π(s1:t,y1:i) = 1, we define gi+1 = t as the
delay of i+1-th token. Let g0 = 0. In addition, let
θ be the model parameter, we define the probability

of generating next token given a partial speech in-
put as Pθ(yi+1 | s1:t,y1:i). In our formulation, we
use a simple policy by checking whether the current
generated token yi is a special ending token T0 (e.g.
stop writing translation and read speech input when
encountering “⟨EOT⟩” token in Llama (Grattafiori
et al., 2024)).

π(s1:t,y1:i) =

{
0, if yi = T0

1, otherwise
(1)

Given s, we define the conditional probability
of generating a translation sequence y1:i with asso-
ciated delays for each token g1:i as:

P (y, g|s) =
|y|∏

i=1

(
Pθ(yi|s1:gi ,y1:i−1) (2)

π(s1:gi ,y1:i−1)

gi−1∏

j=gi−1

(
1− π(s1:j ,yi−1)

))

The translation quality and latency are subse-
quently evaluated based on s, y and g.

3.2 Model Architecture
We design InfiniSST, a simultaneous speech trans-
lation model that can take unbounded streaming
speech input and generate target text efficiently.
The InfiniSST consists of 1) a streaming speech
encoder to incrementally compute representations
of partial speech input without recomputation, 2)
a speech-to-token embedding adapter to match
speech representations to LLM’s token embedding
space, and 3) an multi-turn LLM decoder to inter-
actively take speech input and generate translation
as needed (Figure 1).

Streaming Speech Encoder We modify a pre-
trained wav2vec2 (Baevski et al., 2020)2 speech
encoder to encode the unbounded streaming speech
input. However, there is a major limitation of the
original wav2vec2. It uses bidirectional attention
and bidirectional convolutional position embed-
ding, which needs to recompute the representa-
tions for every new segment of streaming speech
input. To handle unbounded speech input, we in-
troduce three modifications to the speech encoder.
Firstly, we replace the wav2vec2’s convolutional
positional embedding with a rotary positional em-
bedding (RoPE) (Su et al., 2024) because it shows

2Wav2Vec 2.0 Large (LV-60) + Self Training on Lib-
riSpeech. https://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_vox_960h_pl.pt
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I bought a book today

<INSTRUCTION>: Translate the following speech from English to Chinese.
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Figure 1: Model architecture of InfiniSST. InfiniSST first encodes speech using a chunkwise-causal speech encoder,
then compresses the speech features into embeddings via an adapter. The large language model (LLM) processes the
input by first reading a system instruction, then alternating between consuming speech embeddings and generating
translations. The translation process stops when the LLM generates an EOT token. During inference, we employ a
sliding window of size wt for the LLM, conditioning the translation on the most recent wt KV caches along with
the KV cache of the system instruction, enabling extrapolation to unbounded speech input.

better extensibility for long sequences. Secondly,
we replace bidirectional attention with chunk-wise
causal attention (Deng et al., 2022). Each chunk
contains 48 frames in wav2vec2, with a total dura-
tion of 960ms. The multihead attention within each
chunk remains bidirectional while attention across
chunks is causal. This is achieved by adding block-
wise masking to the attention weights. Thirdly, we
apply a sliding window mechanism with window
size ws to maintain a finite context length, restrict-
ing chunk i to attend only to hidden states of chunks
[i−ws+1, i]. In practice, we use ws = 10 so each
speech embedding is computed from roughly 9.6
seconds of the preceding speech input.

Speech-to-Token Embedding Adapter The
speech encoder yields a sequence slightly longer
than the transcript and with embeddings that dif-
fer from the LLM’s token embeddings. Follow-
ing Zhang et al. (2023), we downsample the en-
coder output with two 1-D convolutions (kernel
size 2, stride 2, no padding) and linearly project the
result into the LLM embedding space, so 48 input
frames produce 12 embedding vectors.

Multi-turn LLM Decoder Our decoder needs
to produce target text and a special token to in-
dicate the switching from generation to taking
speech input. To this end, we use Llama-3.1-8B-
Instruct (Grattafiori et al., 2024)3 and employ a
multi-turn dialogue format to formulate the input.
We first feed a system instruction

Translate the following speech
from <LangX> to <LangY>.

We then add a special USER token to indicate
that the following 12 embeddings and a trailing
EOT (End-Of-Turn) token are for speech input. We
then prompt the LLM with a special ASSISTANT
token to force LLM to generate tokens. We add a
policy module to check generated tokens. When
the policy module encounters the special EOT to-
ken, it will feed a special USER token and take 12
new streaming speech embeddings with a trailing
EOT token as new input to the LLM. We will de-
scribe later our inference method to incrementally
compute embeddings and generate target tokens
for infinite speech input.

3https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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Figure 2: Trajectory construction process. We first align
speech to its transcript using forced alignment, then
align the transcript to its translation using SimAlign.
The resulting alignments are monotonized and grouped
by speech chunks.

3.3 Training Data Construction

SST Trajectory Common speech translation
datasets like MuST-C are segmented from com-
plete talks (Di Gangi et al., 2019). To train an SST
model in a multi-turn dialogue format, we trans-
form segmented ST triplets (speech s, transcript
x, translation y) from MuST-C dataset into SST
trajectories. An SST trajectory represents an al-
ternating action sequence of speech reading and
translation writing.

As shown in Figure 2, we first align speech utter-
ances with their corresponding transcripts using the
Montreal Forced Aligner (MFA) (McAuliffe et al.,
2017)4. Let msx

k denote the right boundary of the
speech segment corresponding to the transcript to-
ken xk. Also, we utilize SimAlign (Jalili Sabet
et al., 2020) with the LaBSE model (Feng et al.,
2022) to align words between the transcript and
translation. We then monotonize these alignments
following Wang et al. (2024). Let xmxy

i
be the tran-

script token that corresponds to translation token
yi. By combining msx and mxy, we establish a
mapping from translation token yi to its speech
boundary msy

i = msx
mxy

i
, meaning that yi is gener-

ated after reading s1:msy
i

.
Finally, we cut the speech utterance into

fixed-length chunks, each lasting 960 ms. We
then concatenate translation tokens whose cor-
responding speech boundaries fall within the
same chunk, forming a sequence of trajectory
(sC1 ,yC1), (sC2 ,yC2), . . ..

4https://github.com/MontrealCorpusTools/
Montreal-Forced-Aligner

Robust Segments for Training Segmented
speech utterances primarily consist of human
speech; however, non-linguistic sounds (e.g., laugh-
ter, applause) are also present. To enhance the
robustness of the SST dataset, we cut the entire
talk evenly into robust segments that each span 30
speech chunks. If a robust segment starts in the
middle of a segmented speech utterance, we shift
the robust segment to start with this utterance. The
trajectories for a robust segment can then be built
by concatenating the trajectories of segmented ut-
terances within this robust segment according to
their timestamps and filling the rest translation en-
tries of the trajectory as empty strings.

Multi-Latency Augmentation To further en-
hance trajectory diversity during training, we pro-
pose a simple yet effective multi-latency augmen-
tation strategy. Specifically, given a trajectory
(sC1 ,yC1), (sC2 ,yC2), . . ., we randomly select a
latency multiplier m ∈ [1,M ] and merge every
m consecutive chunks of speech with their corre-
sponding translations. The i-th step in the aug-
mented trajectory is then represented as

(sCim,...,C(i+1)m−1
,yCim,...,C(i+1)m−1

).

We also multiply the chunk size of speech encoder
with m, i.e., number of frame in a chunk becomes
48m.

3.4 Training

We train InfiniSST with standard cross-entropy loss
on translation tokens, including EOT, of the aug-
mented trajectory from robust segments. In the
first stage, we freeze the LLM and train only the
speech encoder and adapter. In the second stage,
we freeze the speech encoder and adapter, training
only the LLM.

3.5 Inference on Unbounded Speech

During inference, we cut the unbounded input
speech into 960 ms chunks. The latency multi-
plier m during inference regulates latency by en-
suring that translation begins only after every m
new chunks have arrived.

At the i-th step, suppose the newly received
speech chunks are Cim, . . . , C(i+1)m−1. Both the
speech encoder and the LLM maintain a key-value
(KV) cache to prevent redundant computations.
Notably, the stored key and value features are ex-
tracted before applying RoPE, ensuring that no
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Language LAAL

En-Zh 1171 ms
En-De 924 ms
En-Es 850 ms

Table 1: The latency of constructed trajectories for
MuST-C En-Zh/De/Es sentence-level utterances evalu-
ated with LAAL.

positional information is embedded within the KV
cache.

The speech encoder processes the m new chunks
into 48m speech features, utilizing the KV cache
from chunks Cim−ws+1, . . . , Cim−1, where ws is
the sliding window size defined in Section 3.2. The
adapter then downsamples the 48m features into
12m embeddings, which are passed to the LLM.

As shown in Figure 1, the LLM employs a slid-
ing window of size wt. By default, wt = 1000.
Inspired by Han et al. (2024), we concatenate the
KV cache of instruction with those of the most
recent wt tokens and apply RoPE on top of them.
Then the LLM generate translations conditioned
on this combined KV cache.

4 Experiment Setups

4.1 Data

We conduct experiments on the En-Es (v1), En-
De (v1), and En-Zh (v2) directions of the MuST-C
dataset (Di Gangi et al., 2019). Due to the poor
alignment quality in the En-Zh training set, we filter
out misaligned ST triplets using CometKiWi (Rei
et al., 2022) and retranslate them using TowerIn-
struct (Alves et al., 2024). Then, we construct
trajectories and robust segments as described in
Section 3.3. Examples of trajectory are shown in
Figure 10. The latency of trajectories are shown
in Table 1. Further statistics can be found in the
Appendix A.

4.2 Training

For all three language directions, we set maximum
latency multiplier M = 12. We adopt a two-stage
supervised fine-tuning approach. In the first stage,
we freeze the LLM and train only the speech en-
coder and adapter for 6 epochs with an effective
batch size of 57.6K tokens. We use Adam opti-
mizer (Kingma and Ba, 2017) with learning rate
2 × 10−4 and 1000 warmup steps. In the second
stage, we fine-tune the entire LLM for 1 epoch with

an effective batch size of 76.8K tokens, a learning
rate of 7× 10−6 and 100 warmup steps. We apply
gradient clipping with a norm of 1.0. We employ
DeepSpeed Zero Stage-2 optimization5, and enable
optimizer and parameter offloading during the sec-
ond training stage. All models referred to in this
paper are trained on a single node of 8 L40S GPU.

4.3 Inference
We use beam search with beam width 4 for all
methods. We set no_repeat_ngram_size=5 and
repetition_penalty=1.2 to suppress repetition6.
The sliding window size of LLM is set to 1000 to-
kens and that of speech encoder is set to 10 speech
chunks. We vary the latency multiplier m from 1 to
5 for InfiniSST to obtain a quality-latency trade-off.

4.4 Evaluation
We evaluate SST on complete TED Talks from
the MuST-C tst-COMMON set, which consists of
27 TED Talks with durations ranging from 3 to
23 minutes. To assess translation quality, we use
SacreBLEU (Post, 2018) and COMET (Guerreiro
et al., 2024). Following the WMT24 practice (Fre-
itag et al., 2024), we compute the COMET score
by averaging the scores from XCOMET-XL and
XCOMET-XXL. For latency evaluation, we use
Length-Adaptive Average Lagging (LAAL) (Papi
et al., 2022) for segmented speech baselines and
StreamLAAL (Papi et al., 2024a) for unbounded
speech, both implemented within the SimulEval
framework (Ma et al., 2020a). Computation cost
is measured using both computation-aware Stream-
LAAL (StreamLAAL_CA) and the Real-Time Fac-
tor (RTF), defined as the ratio of wall-clock com-
putation time to speech duration.

4.5 Baselines
We compare our method against the following base-
lines:

AlignAtt (Papi et al., 2023) is a state-of-the-art
SST policy applied to offline ST models, translat-
ing based on attention scores between translation
outputs and speech utterances. It is designed for
SST on segmented speech, and we include its re-
sults as a reference. We train an offline ST model
using segmented ST triplets from MuST-C and ro-
bust segments that we constructed. The offline

5https://github.com/deepspeedai/DeepSpeed
6https://huggingface.co/docs/transformers/

en/main_classes/text_generation#transformers.
GenerationConfig
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Figure 3: Quality-latency trade-off of InfiniSST compared to the baselines on complete TED talks from the MuST-C
tst-COMMON dataset in the En-Es, En-De, and En-Zh directions. Translation quality is measured using BLEU and
COMET scores, while latency is evaluated using the computation-aware StreamLAAL metric. For reference, we
also include offline translation quality and results from AlignAtt tested on segmented speech. InfiniSST achieves
significantly lower computation-aware latency compared to StreamAtt at the same quality.

ST model uses the LST architecture (Zhang et al.,
2023), where the LLM inputs are organized as (in-
struction, speech history, translation history) rather
than interleaving speech and translation as in In-
finiSST. We use the attention scores from layer 14
of the LLM and vary the number of frames from 1
to 8.

StreamAtt (Papi et al., 2024a) extends AlignAtt
to unbounded speech by maintaining both text and
audio history through attention-based selection. We
adopt the Fixed-Word approach from StreamAtt,
preserving 40 words in the text history. To pre-
vent excessively long preserved speech, we apply
truncation when the duration exceeds 28.8 seconds.

StreamAtt+ We observe that the vanilla trunca-
tion strategy sometimes removes too much audio,
leading to critical misalignment between the pre-
served speech and its translation. To mitigate this
issue, we modify StreamAtt by ensuring that au-
dio segments shorter than 10 seconds are never
truncated.

5 Main Results

Lower Computation Cost We run all inference
experiments on a single NVIDIA L40S GPU and
an AMD EPYC 9354 32-Core CPU. Results evalu-
ated with StreamLAAL_CA are shown in Figure
3. InfiniSST achieves 0.5 to 1 second lower com-
putation aware latency compared to StreamAtt and
StreamAtt+ at the same quality level. We also com-
pare the Real-Time Factor (RTF) of InfiniSST and
StreamAtt+ in Figure 8. The RTF of InfiniSST is
significantly lower than StreamAtt+, indicating that
the computation overhead of InfiniSST is less than
half of the StreamAtt+.

Competitive Translation Quality at the Same
Theoretical Latency Results evaluated with non-
computation-aware StreamLAAL are shown in Fig-
ure 4. When StreamLAAL is no more than 1.5
second, InfiniSST achieves slightly higher BLEU
scores (0.5 ∼ 1.0) and similar COMET scores
than StreamAtt+ on all three language directions.
When StreamLAAL is more than 1.5 second, In-
finiSST still achieves higher BLEU score on En-Zh
direction and competitive with StreamAtt+ on the
En-De and En-Es directions. We note that Alig-
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Figure 4: Quality-latency trade-off of InfiniSST compared to the baselines on complete TED talks from the MuST-C
tst-COMMON dataset in the En-Es, En-De, and En-Zh directions. Translation quality is measured using BLEU and
COMET scores, while latency is evaluated using the non-computation-aware StreamLAAL metric. For reference,
we also include offline translation quality and results from AlignAtt tested on segmented speech. InfiniSST achieves
slightly better translation quality than StreamAtt at latency ≤ 1.5 seconds and remains competitive at higher latency
levels.

nAtt tested on segmented speech exhibit significant
higher COMET scores but not BLEU scores than
both InfiniSST and StreamAtt on all three language
directions. A possible reason is that StreamLAAL
uses mWERSegmenter (Matusov et al., 2005) to
find alignment between translation of the complete
talk and segmented references, and COMET is
more sensitive to such misalignment than BLEU.

6 Ablation Studies

The default model we use in the ablation study is
trained with robust segments and a maximum la-
tency multiplier of M = 4 on the En-Zh direction.

6.1 Data

Robust Segments We evaluate the effectiveness
of robust segments by comparing InfiniSST trained
on trajectories of robust segments with In-
finiSST trained on trajectories of original MuST-
C segmented speech. Both models are evaluated
on tst-COMMON En-Zh with latency multipliers
m ∈ [1, 4], and the results are presented in Table 2.

The model trained on trajectories of non-robust
segments exhibits abnormal latency scores and

Robust Non-Robust Non-Robust
Segments Segments Segments*

69.2 / 1.1 50.5 / -220 51.0 / -207
71.9 / 1.5 53.4 / -116 58.1 / -58
72.3 / 1.9 68.4 / 2 65.7 / -22
73.0 / 2.4 66.8 / -12 67.2 / -6

Table 2: Impact of robust segments evaluated on MuST-
C En-Zh tst-COMMON with latency multipliers m =
1, 2, 3, 4. A / B stands for COMET / LAAL (in second).
The model trained on non-robust segments fails to trans-
late unbounded speech. *We suppress the non-linguistic
sound tokens but still the model fails to generalize.

lower translation quality compared to the model
trained on trajectories of robust segments. Manual
examination of translation instances reveals that
the segmented speech model frequently falls into
repetition of non-linguistic tokens such as （笑
声） (meaning laughter) whenever non-linguistic
sounds appear in the audio.

We attempted to suppress these tokens, and the
results are reported in the last column of Table 2.
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Figure 5: InfiniSST trained with maximum latency mul-
tipliers M = 1, 2, 4, 12 and evaluated with m ≤ M +2.
Larger maximum latency multipliers during training
lead to improved quality-latency trade-offs.

Instead of producing repetitive tokens, the model
stops generating translations upon encountering
non-linguistic sounds. These findings highlight the
importance of training with robust segments.

Multi-Latency We evaluate the effectiveness of
multi-latency augmentation by training models
with maximum latency multipliers M = 1, 2, 4,
and 12, and performing inference with m ≤ M+2.
Results are shown in Figure 5.

Larger M consistently leads to better quality-
latency trade-offs. Within the training range (m ≤
M ), translation quality improves with higher m;
beyond it (m > M ), quality degrades since it is
out of the model’s training distribution. However,
models trained with larger M degrade less when
extrapolated to m > M .

These results highlight the importance of train-
ing with a sufficiently large M while keeping
m ≤ M at inference for optimal performance.

6.2 Speech Encoder

Inference Cache Window We first evaluate how
the speech encoder’s cache window during infer-
ence affects model performance. The model is
trained with ws = 10 and tested with ws =
5, 10, 20, and 40. The results, presented in Table 3,
indicate that using a different cache window size
during inference than the one used during training
degrades translation quality.

Training Cache Window Furthermore, we train
models with different cache window sizes ws =
10, 20, 30 while ensuring that the cache window
size matches between training and inference. Since
each robust segment has a size of 30, training with
ws = 30 disables the sliding window mechanism.

Speech Cache LLM Cache
Quality / Latency

Window ws Window wt

10 1000 69.2 / 1.1

5
1000

68.7 / 1.1
20 68.3 / 1.0
40 66.1 / 0.9

10
500 69.0 / 1.0
2000 69.4 / 1.2
4000 69.4 / 1.2

Table 3: Impact of cache size during inference. Quality
is evaluated with COMET and latency is evaluated with
StreamLAAL (unit is second). Model is trained with
speech encoder sliding window ws = 10 and no sliding
window for LLM. Latency multiplier is set to m = 1.

The results, shown in Figure 7, reveal a surpris-
ing observation: the model trained with ws = 30
successfully scales to unbounded speech during in-
ference despite not using a sliding window during
training. It also achieves a slightly better quality-
latency trade-off compared to the model trained
with ws = 10. These findings suggest using the
largest possible speech cache window that GPU
memory allows.

6.3 LLM

Cache Instruction As described in Section 3.5,
we explicitly preserve the KV cache of the trans-
lation instruction at the beginning (i.e., the system
prompt). If this cache is not retained, the LLM
stops translating once the window starts sliding.

Cache Window wt We evaluate the impact of
the LLM’s cache window size during inference
on model performance. Notably, the sliding win-
dow mechanism is not applied to the LLM dur-
ing training. We vary the LLM cache window
size as wt = 500, 1000, 2000, 4000, and the re-
sults are presented in Table 3. Increasing the KV
cache size slightly improves translation quality
(69 → 69.4) at the cost of marginally higher la-
tency (1.0 → 1.2). Compared to the speech en-
coder, the LLM demonstrates greater robustness to
different KV cache window sizes.

Base LLM Context Length Throughout our ex-
periments, we use Llama-3.1-8B-Instruct as the
base LLM, which supports a context length of up
to 128K tokens. To assess whether InfiniSST gen-
eralizes to an LLM with a shorter context limit,
we replace it with Llama-3-8B-Instruct, which has
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Model Talks ≤ 10min Talks > 10min

Llama-3-8K 70.9 / 1.0 67.1 / 1.1
Llama-3.1-128K 71.6 / 1.0 68.0 / 1.1

Table 4: Impact of LLM context length. A / B stands for
COMET / LAAL (in second). Llama-3 with 8K context
length is still able to generalize to talks longer than 10
minutes.

an 8K context length7. The results, presented in
Table 4, indicate that while Llama-3 exhibits lower
translation quality compared to Llama-3.1, it is still
capable of generalizing to unbounded speech with
InfiniSST.

7 Conclusion

We propose InfiniSST that enables simultaneous
translation of unbounded speech with state-of-the-
art quality latency trade-off on three language di-
rections of MuST-C dataset. Our ablations demon-
strate the effectiveness of our carefully constructed
data, including robust segments and multi-latency
augmentation, and cache management strategy dur-
ing inference.

Limitations

On the higher theoretical latency level, In-
finiSST still falls behind AlignAtt and StreamAtt
in some cases. This can be attributed to the lim-
ited bidirectional attention of the chunkwise-causal
speech encoder. Also, we evaluated on En-X direc-
tions but not on other directions like X-En and X-X.
We have not experimented with other pretrained
speech encoders and non-Llama LLMs due to com-
putation budget. Besides, the StreamLAAL metric
is not perfectly reliable due to alignment errors of
mWERSegmenter. Finally, we have not conducted
human evaluation on user experience of different
SST models, which might reveal undetected flaws
in current models.
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A Additional Data Details

A.1 QE filtering and forward translation

We first use Whisper to perform automatic speech
recognition (ASR) on all training segments. We
then apply CometKiwi8 to estimate the quality of
ASR outputs by computing quality estimation (QE)
scores between the ASR results and the reference
text. As shown in Figure 6, we retain only instances
where the QE score is greater than 0.5, which ac-
counts for 78.64% of the data, resulting in a total
of 280K instances.

Upon further inspection, we observed that many
filtered-out cases exhibited acceptable word error
rates (WER) between the ASR outputs and the
source text. To recover these cases, we performed
forward translation using the 7B version of Tow-
erInstruct 9on the source text using TowerInstruct
with the following decoding settings: temperature
= 0.0 and frequency penalty = 0.1. The translations
were generated using vLLM.

8https://huggingface.co/Unbabel/
wmt23-cometkiwi-da-xxl

9https://huggingface.co/Unbabel/
TowerInstruct-7B-v0.2
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Figure 9: Reference length distribution of SST trajectories on MuST-C En-Zh, En-Es, and En-De.

A.2 Dataset Statistics

The MuST-C dataset used in our experiments con-
sists of 105,647 instances for En-Zh, 88,725 for
En-Es, and 70,037 for En-De.

Figure 9 shows the reference length distribution
across these language pairs.

For En-Zh, the reference text length averages
124.32 characters, with a maximum of 444. En-
Es has significantly longer references, averaging
400.06 characters and reaching a maximum of
1,116. En-De also exhibits long references, with
an average of 419.47 characters and a maximum of
957. Spanish reference lengths in word count aver-
age 67.1 words, with a median of 70.0 and a 90th
percentile of 90.0. German references are slightly
shorter, averaging 63.6 words, with a median of
65.0 and a 90th percentile of 87.0.

En-Zh segments average 26.85 seconds, En-Es
25.25 seconds, and En-De 26.11 seconds, all with a
maximum of 28.80 seconds, reflecting speech-text
alignment across languages.

A.3 Examples of Trajectory

We show additional examples of trajectory in Fig-
ure 10.

B Additional Experiment Results

Impact of speech encoder window size during train-
ing ws is shown in Figure 7. The RTF of InfiniS-
STand baseline StreamAtt+ is shown in Figure 8.
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We need to go
Wir müssen
We need to go for more
Wir müssen uns für mehr
We need to go for more research funding.
Wir müssen uns für mehr Forschungsgelder einsetzen.

If you gave me
Wenn Sie mir
If you gave me only one wish for the
Wenn Sie mir nur einen Wunsch für die
If you gave me only one wish for the next 50 years
Wenn Sie mir nur einen Wunsch für die nächsten 50 Jahre
If you gave me only one wish for the next 50 years — I could pick
Wenn Sie mir nur einen Wunsch für die nächsten 50 Jahre
If you gave me only one wish for the next 50 years — I could pick who's president,
Wenn Sie mir nur einen Wunsch für die nächsten 50 Jahre gestatten, ich könnte den Präsidenten auswählen.

These breakthroughs,
Diese Durchbrüche
These breakthroughs, we need to
Diese Durchbrüche müssen wir
These breakthroughs, we need to move those at full
Diese Durchbrüche müssen wir mit Vollgas verfolgen
These breakthroughs, we need to move those at full speed, and we can
Diese Durchbrüche müssen wir mit Vollgas verfolgen und
These breakthroughs, we need to move those at full speed, and we can measure that in terms of
Diese Durchbrüche müssen wir mit Vollgas verfolgen und das können wir messen: in
These breakthroughs, we need to move those at full speed, and we can measure that in terms of companies,
Diese Durchbrüche müssen wir mit Vollgas verfolgen und das können wir messen: in Firmenzahlen,
These breakthroughs, we need to move those at full speed, and we can measure that in terms of companies, pilot projects,
Diese Durchbrüche müssen wir mit Vollgas verfolgen und das können wir messen: in Firmenzahlen, in Pilotprojekten
These breakthroughs, we need to move those at full speed, and we can measure that in terms of companies, pilot projects, regulatory
Diese Durchbrüche müssen wir mit Vollgas verfolgen und das können wir messen: in Firmenzahlen, in Pilotprojekten
These breakthroughs, we need to move those at full speed, and we can measure that in terms of companies, pilot projects, regulatory 
things that have been changed.
Diese Durchbrüche müssen wir mit Vollgas verfolgen und das können wir messen: in Firmenzahlen, in Pilotprojekten und 
Regulierungsänderungen.

Figure 10: Three examples of En-De trajectory.
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