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Abstract

Data Augmentation (DA) has emerged as a
promising solution to address the scarcity of
high-quality annotated data in low-resource re-
lation extraction (LRE). Leveraging large lan-
guage models (LLMs), DA has significantly im-
proved the performance of RE models with con-
siderably fewer parameters. However, existing
DA methods struggle with diversity misalign-
ments, as they neglect the diversity required
by the model and generate homogeneous aug-
mentations that do not cover the inter-sample
and inter-relation variability, leading to subop-
timal performance. Inspired by the Observe-
Orient-Decide-Act (OODA) framework, which
provides a robust theoretical foundation for it-
erative decision-making under dynamic condi-
tions, we propose an OODA-driven Diverse DA
method (ODDA), guiding the data generation
and selection process. ODDA first observes the
RE model’s behavior to select effective demon-
strations for LLMs. Next, it orients LLMs
towards generating diverse data by replacing
schema constraints with attribute constraints.
Then ODDA decides on the final augmented
dataset with overall diversity from a global
search and finally acts to train the RE model.
Extensive experiments on three widely-used
benchmarks demonstrate that ODDA consis-
tently outperforms state-of-the-art baselines,
achieving average F1 improvements of 3.1%
across various LRE scenarios while maintain-
ing enhanced model stability.

1 Introduction

Relation Extraction (RE) aims to identify semantic
relations between given entity pairs and converts
unstructured text into structured triplets. It supports
critical applications like knowledge graph construc-
tion (Zhong et al., 2025) and intelligent question
answering (Molfese et al., 2024). Training well-
designed RE models with a supervised paradigm
is currently the mainstream and effective strategy.

However, obtaining large-scale high-quality anno-
tated data is laborious and expensive, which limits
the applicability of supervised RE systems in low-
resource scenarios (LRE) (Deng et al., 2024).

Data Augmentation (DA) offers a direct and
efficient approach for LRE compared to meta-
learning (Veyseh et al., 2023) or transfer learn-
ing (Gururaja et al., 2023). Despite Large Lan-
guage Models (LLMs) possessing zero/few-shot
capabilities, they still struggle on RE tasks (Li
et al., 2023a; Han et al., 2023) with rich pre-defined
patterns, complex classification spaces (Xu et al.,
2023b), and high computational costs. By leverag-
ing LLMs’ ability to perform the inverse task of
generating sentences from triples (Ma et al., 2024),
DA forms a bridge between LLMs and RE models,
ultimately boosting LRE performance.

The effectiveness of DA heavily depends on its
quality and diversity, which plays a pivotal role
in RE performance (Yu et al., 2023), particularly
in capturing complex relation patterns and seman-
tic variations. This paper addresses the critical
challenge of generating highly diverse and seman-
tically valid data for LRE tasks. Traditional DA
methods (Cai et al., 2020; Min et al., 2020), relying
on surface-level operations like token replacement
ad deletion, often yield suboptimal data quality
and limited diversity. GDA (Hu et al., 2023) ad-
vances this field by introducing generative models
and establishing diversity as a crucial considera-
tion in DA. Subsequent work enhances data di-
versity through structured guidance, incorporating
schema (Xu et al., 2023b) and keywords (Zheng
et al., 2024) into LLM-based generation.

Generally, the LLM-based DA methods consist
of three parts: demonstration selection which se-
lects examples to guide the LLMs, data generation
which activates the LLMs to generate candidate
sentences and data selection which picks candidate
data to build the final augmented dataset. As shown
in Figure 1, they suffer from two key misalignments
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Figure 1: Comparison of existing DA methods, which
have two diversity misalignments, and the proposed
method based on the OODA framework.

that hinder the diversity of the augmented dataset.
Misalignment 1: The diversity injected by the
method design does not match the diverse data
needed by the target RE model. The human-
driven selection for demonstrations and schema-
constrained prompting during generation introduce
LLMs’ inherent preferences and prevent producing
truly varied candidate augmented data.
Misalignment 2: Focusing solely on individual
sample diversity leads to what we term as ‘homo-
geneous diversity’, thereby neglecting the overall
inter-sample and inter-relation variability.

The misalignments motivate our solution driven
by the Observe-Orient-Decide-Act (OODA) the-
ory, which asserts that both generation and selec-
tion processes must be dynamically guided by the
RE model’s learning behavior and overall situation.
Therefore, we introduce an OODA-driven Diverse
DA method, called ODDA, that enhances the di-
versity and quality of augmented datasets for LRE.
ODDA adapts the decision-making paradigm by
observing the target model’s behavior, orienting the
data generation process via attribute constraints, de-

ciding upon the most diverse and effective samples,
and ultimately acting by training the RE model.
Specifically, we propose three key components:
1) Selective Demonstration Filtering that identi-
fies samples with a moderate learning difficulty to
guide LLMs effectively; 2) Attributed-Constrained
Data Generation that incorporates diverse linguis-
tic variations (e.g. syntactic structures, semantic
patterns); and 3) Overall Diversity Data Selection
that optimizes both inter-sample and inter-relation
diversity through global optimization. ODDA also
enables continuous optimization of the augmented
data and the RE model by restarting the whole
OODA loop. We carefully analyze the diversity
and quality of the augmented data and experiments
validate that ODDA produces more diverse data
and achieves superior performance in LRE scenar-
ios. The contributions of this paper are as follows:

• We identify two critical misalignments in ex-
isting DA methods for LRE tasks that limit
data diversity. Then we propose the first di-
verse DA method guided by OODA-theory.

• We design a demonstration selection mecha-
nism based on model behavior coupled with
attribute-constrained prompting to generate
data the RE model truly needs.

• We select the candidate augmented data un-
der an overall perspective that enhances inter-
sample and inter-relation variability.

• Comprehensive experiments on three widely
used benchmarks show that ODDA consis-
tently achieves state-of-the-art and stable per-
formance (∼4% F1↑ in 8-shot settings) with
diverse augmented samples.

2 Related Work

Various approaches are explored in recent years to
address LRE challenges (Gao et al., 2025; Oida-
Onesa and Ballera, 2024): meta-learning (Hu et al.,
2021; Liu et al., 2022b; Veyseh et al., 2023),
transfer learning (Sarhan and Spruit, 2020; Gu-
ruraja et al., 2023), instruction prompting (Li
et al., 2023b), and data augmentation (Zhang et al.,
2024). For DA, traditional methods augment
data by substituting tokens, like synonym replace-
ment (Mueller and Thyagarajan, 2016) or token-
level operations like random insertion, swap, and
deletion (Wei and Zou, 2019), which is further
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Figure 2: The proposed ODDA framework for RE and we implement the OODA loop through: 1) Model-guided
observation for demonstration filtering, extending beyond the existing methods’ selection A = Observe([Do, · · · ]);
2) Attribute-constrained generation with filtered demonstrations and generation conditions; 3) Diversity-optimized
augmented instance selection with global search while existing methods only consider G⋆ =

⋃
g∈G Decide(g); 4)

Model training with iterative refinement capability. Each stage contributes to addressing the diversity misalignments.

enhanced by leveraging word embeddings to gen-
erate contextually similar replacement (Jiao et al.,
2020). While these methods lack diversity, later
work like Back-translation (Fabbri et al., 2021),
masked language modeling (Lowell et al., 2021),
and GPT-2 fine-tuning (Anaby-Tavor et al., 2020)
utilize generative models but struggle with relation
consistency (Chen, 2024). Recent research, includ-
ing GDA (Hu et al., 2023), ConsistRE (Zheng et al.,
2024), and UnleashLLMRE (Xu et al., 2023b), em-
ploy LLMs to generate data based on the given
triplets. They utilize schema constraints to guide
LLMs along with an arbitrary selection of data,
resulting in a lack of data diversity.

3 Preliminary

Given an original dataset D consisting of n in-
stances {x1, · · · , xn}, each instance x is annotated
with a triplet (r, h, t), representing the relation type,
head entity, and tail entity, respectively. For any re-
lation type c, we denote the subset of instances with
this relation as Rc = {x|r = c}. In low-resource
scenarios, the k−shot setting restricts the size of
each Rc to at most k. The goal of the data augmen-
tation (DA) is to generate µ new instances x′ for
each origin instance x while keeping the annota-

tions (r, h, t) unchanged. Ultimately, all instances
x and their augmented data x′ are then used to train
a relation extraction (RE) model M .

4 Methodology

4.1 Overview

Figure 2 shows the workflow of ODDA with the
OODA framework. ODDA first selects demon-
strations by observing the RE model’s behavior.
Next, it achieves candidate data from attribute-
constrained generation. Then, the final diverse
augmented dataset is decided from a global search.
Finally, the augmented and seed data are used to
train the RE model. We could initialize a new loop
with the augmented data and model after training.

4.2 Selective Demonstration Filtering

Observe stage: A subset of seed data most effective
for the RE model’s learning is identified as demon-
strations from the behavior during the model training.

The goal of this stage is to select demonstrations
that are beneficial to the model’s learning process.
Previous methods depend on experts’ subjective in-
terpretations of diversity to guide data generation,
without confirming the data effectively optimizes
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the target RE model. Such diversity misaligns with
the RE model’s actual needs, undermining the bene-
fits of DA. Inspired by the Data Map (Swayamdipta
et al., 2020) that dynamically characterizes and di-
agnoses a dataset during training, offering fresh
insights for dataset optimization, we propose a se-
lective demonstration filtering (SDF) strategy. SDF
leverages the target model’s behavior to avoid gen-
erating data that could impair learning.

Specifically, given an available dataset D0, we
train the target model M for a few hundred steps
- typically just a few minutes - and record the log-
its of labeled relation type for each instance at set
intervals. By analyzing the mean confidence and
variance variability of the logits throughout train-
ing, we assign each instance x a value V (x) =
(varx, conx) to create the Data Map. This allows
us to categorize instances as easy-to-learn, ambigu-
ous, or hard-to-learn. Since M shows little im-
provement on both easy-to-learn and hard-to-learn
instances, we filter these out to produce an ambigu-
ous data subset A = {x|(τ, τ) ≤ V (x) ≤ (ϵ, ϵ)},
where τ and ϵ are thresholds. We then generate
more effective data by referencing A in the ICL.

4.3 Attribute-Constrained Data Generation

Orient stage: LLMs generate candidate dataset from
seed dataset, guided by attribute-constrained pro-
vided demonstrations and generation conditions.

The goal of this stage is to generate diverse aug-
mented data for each seed data while reducing per-
son’s and LLMs’ biases. Relying solely on class-
conditional prompts or schema-constrained genera-
tion (Xu et al., 2023b) (i.e. offering relation type
or expected triplets) as guidelines for LLMs can
introduce LLMs’ inherent biases (Yu et al., 2023),
limiting data diversity. Thus, we propose attribute-
constrained generation, which guides LLMs using
multiple independent attributes that influence both
demonstration and generation conditions.

For demonstration provision, we select demon-
strations from four attributes for each seed instance
(x, r, h, t): relation, entity, semantic, and syntax.
For relation-aware demonstrations, we choose
two random instances from the ambiguous subset
A that share the same relation type r to form Et

x.
For entity-aware demonstrations, we first calcu-
late the dependency path between the head and tail
entity of each instance in A and instance x. Then
we select three instances with the shortest, longest,
and identical dependency path length to x from A

to create Ee
x. The dependency path and the cor-

responding tokens are highlighted in the prompt.
For the semantic and syntax demonstrations, we
extract the semantic1 and syntactic2 features for x
and each instance in A. To enhance instance cov-
erage and diversity, we cluster the instances in A
and select one instance from both the closest and
furthest clusters to x, forming Es

x and El
x respec-

tively. The prompt instructs LLMs to emphasize
the semantics or syntactic structures outlined in
these demonstrations. All selected demonstrations
{Et

x, E
e
x, E

s
x, E

l
x} are provided to the final prompt.

For generation conditions, we not only preserve
the consistency of (r, h, t) but also integrate several
attributes as constraints. To ensure these attributes
are both rational and comprehensive, we employ a
human-ai collaboration scheme (Liu et al., 2022a;
Wiegreffe et al., 2022) to select the most suitable,
high-quality attributes for the RE task. We prompt
the LLM with questions such as “What do you
think are important attributes to generate diverse
sentences under ...?” to identify the best candi-
dates. Using attribute-constrained demonstrations
and generation conditions, along with schema in-
struction, LLMs generate a highly enriched candi-
date augmented dataset G⋆ (More details and the
prompt format are provided in Appendix C).

4.4 Overall Diversity Data Selection

Decide stage: Select data from the candidate aug-
mented dataset with an overall perspective to con-
struct the final diverse augmented dataset.

The goal of this stage is to build a diverse aug-
mented dataset. Data selection is crucial for DA,
yet existing methods primarily filter an individual
seed sample’s augmented data without addressing
overall augmented dataset diversity. Selecting ho-
mogeneous samples from different seed samples
reduces the dataset diversity. Thus, we propose an
overall diversity data selection approach that con-
siders both inter-sample and inter-relation diversity.

We apply a global search strategy and leverage
Monte Carlo Tree Search (MCTS) to explore vari-
ous sample combinations and optimize for diversity.
MCTS evaluates multiple possibilities and guides
the selection toward maximizing dataset diversity.

1The semantic features are obtained from sentence-BERT
or Embedding APIs (such as text-embedding-3-small).

2The syntactic features are constructed by the depth of the
syntax tree, the size of subtrees, the distribution of dependency
paths among sentence tokens, the distribution of dependency
types, sentence length, and the count of punctuation marks.
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Accordingly, we design a specialized reward func-
tion to represent the overall diversity.

Let the features of an augmented sample be zi
(for both semantic and syntactic features). To en-
sure sufficient intra-class diversity for relation
type c, the differences among the samples must be
substantial, which can be formulated as:

Rintra
div (c) =

2

|Rc||Rc − 1|
∑

(i,j)∈Rc

d(zi, zj), (1)

where d(·) calculates the distance between two
features. Since samples from different relation
types should maintain discernibility, we introduce a
penalty term for intra-class separation to prevent
excessive dispersion among them:

Rintra
sep (c) =

1

|Rc|
∑

i∈Rc

d(zi, µc), (2)

where µc represents the average features of all sam-
ples belonging to the relation type c. To promote
greater differences between distinct relation types,
we encourage larger inter-class diversity:

Rinter
div = min

c ̸=l
d(µc, µl). (3)

Combining these considerations, we arrive at our
reward function Rtotal = exp(Rinter

div +Rintra
div −

Rintra
sep ). Finally, we achieve the augmented dataset

G⋆ that preserves overall diversity, ensuring better
performance for the RE model.

4.5 Model Training

Act stage: The diverse augmented dataset and seed
dataset are combined to train a reliable and stable M .

We combine the selected augmented dataset G⋆

with the k−shot dataset D0 to form the final train-
ing dataset D⋆ = G⋆ ∪D0, which is used to train
the RE model M . Notably, the proposed method
allows for continuous optimization of both the aug-
mented data and the model. Thus, D⋆ can serve as
the new initial dataset to restart the OODA loop.

5 Experiments

5.1 Experimental Settings
Datasets. We conduct experiments on three pub-
lic relation extraction datasets: TACRED (Zhang
et al., 2017), Re-TACRED (Stoica et al., 2021), and
SemEval (Hendrickx et al., 2019). The statistics of
the datasets are presented in Table 1. More details
about the datasets can be found in Appendix A.

Dataset # Rel # Train # Val # Test
8-shot 16-shot 48-shot All

TACRED 42 334 662 1954 68124 22631 15509
ReTACRED 40 318 630 1858 58465 19584 13418
SemEval 19 144 288 860 6507 1493 2717

Table 1: Numbers of instances in our experimental
datasets. k-shot denotes sampling n instances from each
relation type. When a relation type has fewer than k
instances, we sample all available data. All refers to the
complete training dataset.

In this study, we sample 8, 16, and 48 instances
for each relation type to simulate low-resource sce-
narios, following (Xu et al., 2023b; Zheng et al.,
2024). All methods generate augmented data with
an 8× expansion on the sampled instances. Each
result is reported over five runs with different seeds.
Metrics. For evaluating RE performance, we adopt
the widely used Micro-F1. To assess the diversity
of the generated samples, we evaluate from both
lexical and semantic perspectives. For lexical diver-
sity, we employ Type-Token Ratio (TTR) (Tweedie
and Baayen, 1998), Distinct-N (Li et al., 2016), and
Self-BLEU (Zhu et al., 2018), while semantic di-
versity is measured using Average Pairwise sample
Similarity (APS) (Mishra et al., 2020) by comput-
ing inter-class and intra-class APS scores. Beyond
sufficient diversity, we also evaluate sample quality
using MAUVE⋆ and Front-Integral⋆ (Pillutla et al.,
2023). More details can be found in Appendix B.
Compared Methods. We choose 5 DA methods
for comparison. (1) WordNet Synonym Substitu-
tion (WSS) (Mueller and Thyagarajan, 2016): re-
placing tokens with synonyms from WordNet; (2)
Word Embedding Substitution (WES) (Jiao et al.,
2020): replacing tokens with contextual embed-
dings from BERT; (3) LAMBADA (Anaby-Tavor
et al., 2020): fine-tuning generative models to gen-
erate candidate examples. Additionally, we include
LLM-based DA methods: (4) UnleashLLMRE (Xu
et al., 2023b): introducing data generation with
LLM to boost previous RE solutions; (5) Con-
sistRE (Zheng et al., 2024): utilizing LLM to gen-
erate consistent and triplet-preserving samples.

As DA methods are data-centric, we keep the RE
baseline models simple yet competitive (Xu et al.,
2023a). In line with previous work, we select two
RE models to ensure a fair comparison of each DA
method. (1) TYPMarker (Zhou and Chen, 2022):
a fine-tuning method that leverages entity typed
markers; (2) KnowPrompt (Chen et al., 2022): a
prompt-tuning method that uses knowledge-aware
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Method TACRED ReTACRED SemEval

8-shot 16-shot 48-shot 8-shot 16-shot 48-shot 8-shot 16-shot 48-shot

In Context Learning 69.60 60.87 56.09

T
Y

PM
ar

ke
r

Base 59.77±2.90 66.04±1.34 74.91±0.38 66.29±2.19 79.77±1.61 80.85±1.30 54.42±4.56 65.33±4.43 83.10±0.47

WSS 62.46±2.99 70.06±2.25 74.54±1.52 67.99±2.65 80.32±2.09 81.48±1.64 57.17±4.62 67.27±3.05 85.02±0.57

WES 64.52±4.20 73.74±2.05 80.91±3.97 71.33±1.73 81.76±1.03 83.78±1.53 56.48±5.01 71.61±2.20 87.76±0.64

LAMBADA 51.69±2.37 60.99±2.21 68.88±5.50 69.21±4.70 75.01±1.53 77.02±2.68 59.08±3.59 61.46±3.84 73.06±1.33

ConsistRE 71.81±1.74 76.12±1.51 83.07±0.56 72.64±3.41 81.69±2.47 86.98±1.42 62.57±3.36 74.92±1.48 85.89±0.97

UnleashLLMRE 69.81±2.55 75.00±1.41 81.49±0.96 72.41±1.47 81.56±1.63 86.16±1.86 62.80±3.87 73.01±2.36 84.41±0.11

ODDA(Ours) 75.78±1.39 80.48±0.71 84.91±0.24 76.78±0.92 84.86±0.67 88.89±0.83 67.57±1.44 78.93±0.73 88.99±0.49

K
no

w
Pr

om
pt

Base 62.08±3.91 67.39±1.97 76.57±0.96 52.02±5.99 74.47±0.19 80.98±2.46 51.85±5.98 67.99±1.37 78.64±1.19

WSS 61.04±2.19 72.20±2.57 74.54±0.38 63.23±1.66 74.66±1.97 83.48±1.01 55.27±2.28 65.69±4.84 88.18±3.82

WES 72.27±0.39 76.58±1.14 80.91±0.60 75.17±3.08 85.11±1.04 88.26±1.91 47.29±11.2 70.24±7.38 86.92±1.23

LAMBADA† 58.45±1.85 69.75±0.54 68.88±1.61 52.71±2.87 68.12±1.77 81.22±0.83 48.41±5.14 65.00±3.68 79.01±4.02

ConsistRE† 75.81±1.52 80.86±0.82 85.35±1.26 80.12±0.98 84.87±0.62 88.84±0.84 66.20±13.4 73.38±3.85 82.52±3.12

UnleashLLMRE 74.68±1.26 78.32±1.32 83.40±0.40 80.49±4.10 84.47±1.87 88.86±1.31 67.76±4.14 74.54±0.60 84.31±2.36K
no

w
Pr

om
pt

ODDA(Ours) 80.96±1.02 84.82±0.38 87.02±0.21 84.12±0.87 87.94±0.32 90.08±0.50 71.48±1.92 77.86±0.71 88.64±0.54

Table 2: Micro-F1 (%) across 8/16/48-shot settings. The best results are in bold, while the second-best ones are
underlined. The green numbers indicate the minimum standard deviation from runs with different seeds. Base uses
only the sampled seed data. In-Context Learning represents using sampled data as demonstrations for RE with
LLMs. † indicates cases where the RE model fails to converge during training, highlighting the poor robustness of
these RA methods. Performances from non-convergent models are excluded from the evaluation.

TACRED SemEval
Method Micro-F1 Self-BLEU APS Micro-F1 Self-BLEU APS

ODDA(Ours) 75.78 0.4322 0.1189 67.57 0.2406 0.1042

Overall Diversity Data Selection (ODS)
w/o ODS 73.29 0.4677 0.1315 65.76 0.2987 0.1177
w/o Rinter 74.62 0.4463 0.1252 67.14 0.2420 0.1125
w/o Rintra 74.15 0.4552 0.1248 66.87 0.2638 0.1098

Attribute-Constrained Data Generation (ACG)
w/o ACG - 0.5403 0.2266 - 0.4081 0.2202
w/o group - 0.5316 0.1241 - 0.3125 0.1118

Selective Demonstration Filtering (SDF)
w/o SDF - 0.5695 0.1312 - 0.4520 0.1226

Table 3: Evaluating the influence of different parts in
ODDA. ‘w/o ODS’ means randomly selecting the gen-
erated data to form the augmented dataset. ‘w/o ACG’
denotes generating based solely on schema constraints.
‘w/o group’ refers to randomly selecting demonstrations
for each instance. ‘w/o SDF’ indicates not selecting
ambiguous data as demonstrations.

continuous tuning with synergistic optimization.
More details are in Appendix C.

5.2 Main Results

In Table 2, we present the Micro-F1 scores and their
standard deviation over 5 runs in three datasets.
The use of DA results in enhanced performances by
utilizing augmented data, which also outperforms
the ICL-based RE. This highlights the effectiveness
of DA for RE and points to the limitations of rely-
ing solely on LLMs for complex RE tasks (achieve
∼ 60% F1 but require billions of parameters).

In low-resource scenarios, the proposed method
consistently outperforms others (more than 1%↑)
across various settings. It achieves particularly
notable improvements (about 5% ↑) when fewer

sampled data (e.g. 8-shot) are used. Additionally,
the proposed methods contribute to more stable per-
formances, as evidenced by the minimal standard
deviations (most less than 1%).

Furthermore, the proposed method shows signif-
icant performance improvements across different
types of RE base models, including fine-tuning-
based and prompt-tuning-based models. Compared
to other DA methods, our method delivers greater
enhancements, demonstrating strong applicability.

5.3 Ablation Study

Given the similar results between TACRED and
ReTACRED, we conduct experiments on the more
discriminative 8-shot setting using TACRED and
SemEval datasets. The results of removing dif-
ferent components from the proposed method are
presented in Table 3. The results indicate that ODS
effectively identifies data with greater overall di-
versity from the large pool of generated data. A
significant performance drop would occur if data
are selected purely at random. Notably, the inter-
class rewards demonstrate a slightly greater impact
on diversity and RE performance compared to intra-
class rewards, highlighting the importance of se-
lecting diverse instances from a global perspective.
ACG not only enhances structural diversity but also
significantly improves semantic diversity, under-
scoring the critical role of attribute constraints in
the generation process. Furthermore, SDF con-
tributes significantly to enhancing the diversity of
the generated data. This finding emphasizes that
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TACRED ReTACRED SemEval

Figure 3: Comparison of methods regarding data diversity and quality on three datasets. The metrics include Type-
Token Ratio (↑), Distinct-N (↑), and MAUVE* (↑), as well as inter-APS (↓), intra-APS (↓), and Front-Integral* (↓).
For unified visualization, the Front-Integral* is plotted as 1 - value, while inter-APS and intra-APS are represented
as 1 / value. The blue line represents the Gold data and green area represents the proposed method.

Figure 4: The distribution of cosine similarity of sentence pairs sampled from the same relation type.

Figure 5: Self-BLEU (↓) for n-grams across different
datasets. We calculate based on 25,000 generated sam-
ples for TACRED and ReTACRED, and 6,500 for Se-
mEval by each method to evaluate the overall diversity.

understanding the model’s behavior provides in-
sights into the structural and semantic types of data
it requires. Consequently, data generated based on
ambiguous instances allows the model to focus on
the most relevant and diverse instances, thereby
improving overall effectiveness in the RE task.

5.4 Discussion of Data Diversity

Impact on Overall Sample Diversity. We com-
prehensively evaluate the diversity of augmented
data from different DA methods through multi-
dimensional analysis. As illustrated in Figure 3,
the proposed method outperforms others in both
diversity and quality, demonstrating its effective-
ness in generating diverse samples for RE tasks. Its
reader plot area closely aligns with the Gold data
and even surpasses it in Distinct-2.

For lexical diversity, an interesting observation is
that LLM-based DA methods produce more unique

Figure 6: Self-BLEU for the augmented data on TA-
CRED with 5- to 100-shot. The lines represent the mean
Self-BLEU of different methods, while the shaded areas
indicate the range of min to max under different shots.

bigrams but achieve lower TTR. Following the pre-
vious work (Hu et al., 2023), we compute TTR
based on the dependency path between head and
tail entities. It reveals that LLM-based methods
tend to introduce variability in sentence parts un-
related to target triplets, contributing minimally
to performance improvement. Self-BLEU scores,
as depicted in Figure 5, further highlight lexical
diversity across methods by assessing n-gram over-
laps. ODDA achieves lower Self-BLEU, indicating
higher inter-sample diversity. While ConsistRE de-
spite explicit diversity-enhancing designs, achieves
higher scores, reflecting limited overall diversity.

For semantic diversity, measured by APS, ex-
isting methods show higher intra/inter-class APS,
indicating greater sample homogeneity. They focus
on individual textual variations without addressing
inter-sample diversity, resulting in homogeneous
yet less diverse datasets. Figure 4 validates this
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point by visualizing the cosine similarity distribu-
tion of same-relation text pairs. Traditional meth-
ods sacrifice diversity through token substitutions.
LLM-based methods are constrained by the LLM’s
intrinsic biases, resulting in sample homogeneity.
ODDA achieves distributions closest to Gold data,
underscoring its ability to generate diverse samples.

Finally, the proposed method ensures both sam-
ple diversity and high-quality generation, as evi-
denced by its MAUVE⋆ and Front-Integral⋆ scores
in Figure 3, which align closely with Gold data.
This superior performance highlights its capability
to produce diverse, human-like samples.
Impact of Different Shot on Sample Diversity.
In Figure 6 and Appendix D.1, we investigate the
data diversity under different settings, a factor over-
looked in previous work. Notably, we observe that
WSS, WES, and LAMBADA share a similar trend.
Only the results of LAMBADA are presented for
clarity. It reveals that the sample diversity of exist-
ing methods changes dramatically when the num-
ber of available samples varies (e.g. 5/100-shot),
as reflected in the size of the shaded areas. Inter-
estingly, methods designed to boost diversity may
sometimes yield less diversity than simple word-
substitution strategies, as reflected by the overlap-
ping shaded region. This occurs because such meth-
ods focus on per-sample variations and thus rely
on sampling more examples to achieve broader di-
versity. By contrast, ODDA adapts well to varying
settings, producing consistently diverse samples.
Impact on Sample Distribution. We further ver-
ify the diversity of generated data and whether it
meets the requirements of the target model through
feature visualization, as shown in Figure 7 and Ap-
pendix D.2. ODDA generates diverse data from an
overall view, ensuring a relatively uniform distribu-
tion and better alignment with target data. It reveals
that the data generated by other methods exhibits
clear boundaries with the target distribution and
such domain shift may decrease the model perfor-
mance (Divekar and Durrett, 2024). Additionally,
traditional methods tend to generate data similar to
the seed data. While LLM-based methods produce
similar content when given analogous seed data, as
highlighted by the red box. The data diversity falls
into a local optimum, harming RE performance.

5.5 Discussion of Data Quantity
Impact of Generated Data Size. Previous re-
search (Ye et al., 2022; Xu et al., 2023b) indicates
that generating more data may not improve RE per-

LAMBADA ConsistRE Ours

Figure 7: Visualization for the original, augmented, and
test datasets after using t-SNE dimension reduction.

TACRED

Figure 8: Micro-F1 scores at different scaling factors
under the seed data from TACRED. The shaded areas
represent the variance across multiple runs. ‘Ours-iter’
denotes generating data iteratively, where each iteration
restarts the OODA loop to generate augmented data and
achieve the current scaling factor.

formance. As shown in Figure 8 and Appendix D.3,
existing methods experience fluctuations in perfor-
mance with an increasing quantity of generated
data, accompanied by a substantial degree of un-
certainty (even variance > 5). This limitation
arises because they provide data without consid-
ering the overall distribution, which hinders data
diversity and fails to provide effective assistance to
the model. In contrast, the proposed method tailors
the generated data to the target model and selects
data from a global perspective. This allows for the
effective utilization of data, leading to saturation
requires more data. Finally, ODDA achieves great
performance improvements and stability.
Generate Data Once or Iteratively. As shown
in Figure 8 and Appendix D.3, rather than gener-
ating the target augment ratio at once (Ours), we
iteratively restart the OODA loop to provide an
additional 4 or 8× more data (Ours-iter). This strat-
egy accelerates the performance improvement of
the model, as the proposed method selects the most
valuable data based on the observed behavior of
the target RE model and then generates diverse
data. Furthermore, through multiple cycles of itera-
tive optimization, the RE model achieves enhanced
performance (2%↑) under the same k-shot setting.

6 Conclusion

In this paper, we propose a novel DA method for
LRE, called ODDA, that integrates three key com-
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ponents: SDF, ACG, and ODS. Through extensive
experiments, ODDA consistently outperforms ex-
isting methods in performance, stability, and data
diversity. This work offers a novel deconstruction
of augmented data generation and selection, pro-
viding new insights into generating diverse and
effective data for LRE and other NLP tasks.

Limitation.

Despite the proposed ODDA achieving significant
results, there remain several limitations and ar-
eas for improvements that provide avenues for fu-
ture investigation while not affecting the overall
integrity and innovation of our contributions.
Task Settings. This study is centered on DA for
sentence-level relation extraction in low-resource
scenarios. It limits its direct applicability to more
complex tasks such as document-level relation ex-
traction (DocRE), Event Extraction (EE), Named
Entity Recognition (NER), and other structured
prediction tasks. Although it remains an open chal-
lenge to adopt a unified paradigm to resolve all
complex settings, the proposed ODDA has promis-
ing adaptive capabilities to handle these tasks. In
future work, we intend to explore adjustments to
the Data Map computation, attributes design, and
reward function, with the objective of constructing
a more versatile multi-task DA system.
Privacy. Secondly, the proposed ODDA does not
involve the processing of personally identifiable
information and consequently does not support data
desensitization. Scenarios requiring the handling
of privacy data require alternative approaches. In
such cases, substituting API-based LLM calls with
an offline deployment could effectively serve as a
safeguard to prevent data leakage in ODDA.
Ethics Statement. Additionally, data generated
by LLMs may contain biased sentences that could
raise ethical concerns. Such outputs do not reflect
the views of the authors. Additionally, if the pro-
posed method encounters adversarial or offensive
input, ODDA itself does not filter the content, as
this falls outside the scope of this study. However,
it is worth noting that current LLMs are equipped
with safety measures to detect high-risk inputs and
restrict refuse to generate corresponding outputs.
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A Details of Datasets

TACRED is a large-scale crowd-sourced relation
extraction dataset that serves as a challenging
benchmark due to its diverse relations and complex
language. It contains 42 relation types, including
‘no_relation’, meaning no relation is found. It is
collected from previous TAC KBP shard tasks.
TACRED is available on the official website 3.

ReTACRED is a re-annotated version of TACRED
with 40 relation types. It contains 39 common
relation types and 1 special ‘NA’ relation type,
meaning none of the above. ReTACRED can be
obtained from the website 4.

SemEval is a traditional dataset widely employed
in relation extraction. It is a human-annotated
dataset from SemEval-2010 Task 8 (Hendrickx
et al., 2010) and is devoid of noise. It contains 19
relation types: Cause-Effect, Component-Whole,
and Others. SemEval is an open-source resource
that is publicly accessible 5.

3https://nlp.stanford.edu/projects/tacred
4https://github.com/gstoica27/Re-TACRED
5https://huggingface.co/datasets/SemEvalWorkshop
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B Details of Metrics

B.1 Type-Token Ratio
Following the previous work (Hu et al., 2023), we
introduce the Type-Token Ratio (TTR) to measure
the diversity of augmented sentences. TTR mea-
sures the ratio of the number of different words
to the total number of words in the dependency
path between the given head entity and tail entity.
Higher TTR (%) indicates more diversity in sen-
tences. It can be calculated as follows:

TTR =
|V(⋃(s,r,h,t)∈D Ph→t)|∑

(s,r,h,t)∈D|Ph→t|
, (4)

where Ph→t represents the words in the depen-
dency path between the head entity and the tail
entity, and V(·) represents the unique words among
all the words.

B.2 Distinct-N
Following the previous work (Zheng et al., 2024),
we introduce the Distinct (Li et al., 2016) to assess
the diversity of synthetic sentences. Distinct quali-
fies the number of distinct unigrams and bigrams
divided by the total number of generated words.
The calculation formula is as follows:

Distinct(N) =
Unique N-grams
Total N-grams

× 100%. (5)

In this paper, we set N = 2, representing the pro-
portion of unique bigrams. Higher Distinct-N indi-
cates more diversity in sentences.

B.3 Self-BLEU
Since TTR and Distinct do not take into account the
similarity between sentences, we introduce Self-
BLEU (Zhu et al., 2018) to measure lexical di-
versity of the augmented dataset based on n-gram
overlap between pairs of sentences. Self-BLEU
helps ensure that the augmented instances intro-
duce meaningful variability into the dataset, avoid-
ing redundancy and enhancing the model’s ability
to generalize across diverse linguistic expressions
of the same relation. It can be calculated as follows:

Self-BLEU(D) =
1

|D|
∑

s∈D
BLEU(s,D \ {s}),

(6)
where BLEU indicates the naı̈ve BLEU score (Pa-
pineni et al., 2002). High Self-BLEU (close to
1) indicates low diversity, suggesting that the gen-
erated instances are highly similar to each other.

Low Self-BLEU (closer to 0) indicates high diver-
sity, reflecting a broader range of linguistic patterns
and lexical choices in the generated data. When
n ranges from 2 to 5, it captures both lexical and
syntactic diversity. For computational efficiency,
we employ fast-bleu 67 in this paper.

B.4 Average Pairwise Sample Similarity

While the aforementioned metrics focus solely on
structural diversity, we introduce Average Pairwise
Sample Similarity (APS) (Yu et al., 2023) to as-
sess semantic diversity. APS measures the aver-
age similarity between pairs of sentences based
on their semantic embeddings, providing a quan-
titative evaluation of how diverse the generated
sentences are in terms of meaning. Furthermore, to
gain deeper insights, we compute both intra-class
APS and inter-class APS, respectively capturing
diversity within the same relation type and across
different relation types. Importantly, a lower APS
value indicates better diversity, as it signifies re-
duced semantic overlap among sentences.

B.5 MAUVE and Front-Integral

We aim to provide a comprehensive evaluation that
captures both the semantic alignment with human-
written text and the balance between diversity and
quality in the generated data. Therefore, we in-
troduce MAUVE (Pillutla et al., 2021) and Front-
Integral (Liu et al., 2021) to evaluate the quality
of generated sentences. They address the limita-
tions of traditional metrics like BLEU or ROUGE
and offer a more reliable measure of distributional
similarity in a global view.

MAUVE quantifies the similarity between the
distributions of generated and golden data by lever-
aging embeddings in a low-dimensional space. It
computes the divergence between these distribu-
tions using a combination of Kernel Density Esti-
mation (KDE) and Optimal Transport (OT), provid-
ing a single scalar score that reflects the alignment
between the two distributions. A higher MAUVE
score indicates better agreement, suggesting that
the generated sentences are more human-like.

Front-Integral constructs a Pareto frontier be-
tween these two dimensions and computes the area
under the curve, representing the overall perfor-
mance of the generated sentences. A lower Front-
integral indicates higher-quality generated data.

6https://github.com/Danial-Alh/fast-bleu
7github.com/yizhangliu/fast-bleu_windows_vs2019
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In this paper, we employ the improved ver-
sion computed with Krichevsky-Trofimov smooth-
ing (Pillutla et al., 2023), i.e. MAUVE⋆ and Front-
Itegral⋆, and use the official code 8. Note that these
metrics are suited for relative comparisons while
the absolute scores are less meaningful.

B.6 Sampling Size for Metric Computation

It is worth noting that this work’s analysis focuses
on relative metric differences rather than absolute
values. We calculate the metrics for TTR and
Distinct-N on 1,024 samples. Following official
recommendations, we calculate MAUVEstar and
Front-Integralstared on 4,096 samples. In terms
of Self-BLEU, we utilize 25,000 samples on TA-
CRED/ReTACRED and 6,500 samples on SemEval
(constrained by dataset size) for comprehensive DA
method assessment. We utilize 5,000 samples for
varying low-resource settings, considering equi-
table evaluation across extreme data scarcity levels
(i.e. 5-shot). Samples are randomly selected from
all the augmented data from different DA methods.

C Implementation Details

C.1 Preparation of k-shot Seed Data

In this paper, we follow the previous research (Xu
et al., 2022) for k-shot data sampling. Specifically,
we randomly select k instances to constitute the
k-shot dataset across every relation type within
each RE dataset. If a particular relation type con-
tains fewer than k instances, we utilize all available
data for that relation type. We leverage the open-
source code 9 provided in the existing work. To
ensure robustness and minimize randomness bias,
we conduct this sampling process five times, each
initiated with a distinct random seed, thus yielding
five unique k-shot datasets.

C.2 Implementation of the base RE model

All training processes for the base RE models are
conducted on a single 24GB NVIDIA 3090 GPU.
For the LLM-based RE with In-Context Learning,
we utilize DeepSeek-v3 10 as the base LLM.
TYPMarker (Zhou and Chen, 2022) is an im-
proved RE baseline and adopts the Typed Entity
Marker (punct) technique. This method enhances
entity representation by marking entity spans and
their types without introducing new special tokens.

8https://github.com/krishnap25/mauve
9https://github.com/zjunlp/DeepKE

10https://platform.deepseek.com

Specifically, the head entity is enclosed with ‘@’
and its type is prepended with ‘∗’, while the tail en-
tity is enclosed with ‘#’ and its type is prepended
with ‘∧’. The embeddings for these markers are
randomly initialized and fine-tuned during training.
These embeddings are then fed into the classifier
to output the predicted probability distribution for
the pre-defined relations. We use the open-source
code 11 and make the super-parameters unchanged.
We apply the RoBERTa-large as the backbone.
KnowPrompt (Chen et al., 2022) is a knowledge-
aware prompt-tuning framework for RE. It intro-
duces virtual answer words and virtual type words
to encode semantic knowledge from relation la-
bels and entity types, respectively. These virtual
words are synergistically optimized with context-
aware prompt calibration and implicit structured
constraints, ensuring they adapt to the surrounding
context and maintain relational semantics. This
approach allows the model to effectively lever-
age task-specific knowledge without extensive fine-
tuning, making it particularly effective in both stan-
dard and low-resource settings. We utilize the offi-
cial provided code 12 and super-parameters. Specif-
ically, we apply RoBERTa-large as the backbone.
In-Context Learning (ICL) leverages the power-
ful generative capabilities of LLMs to perform re-
lation extraction in a few-shot or zero-shot manner.
Demonstrations serve as ICL prompts, enabling
the model to better understand and generalize the
semantic patterns of the specific relation. In this
paper, we use the open-source code in previous
work (Xu et al., 2023b) for experimental validation.
The detailed prompt is shown as follows:

Prompt: ICL for RE

Given a context, a pair of head and tail entities in the
context, decide the relationship between the head and
tail entities from candidate relations: <relation type
1>, <relation type 2>, ...
Context: <sentence>. The relation between <head
entity> and <tail entity> in the context is <relation
type>.
Context: ...
Context: <query sentence>. The relation between
<query head entity> and <query tail entity> in the
context is

The parameter temperature is set to 0 for preci-
sion in ICL. For each relation type, we provide one
example that demonstrates the relation in the con-
text. Finally, the LLM’s response is post-processed

11https://github.com/wzhouad/RE_improved_baseline
12https://github.com/zjunlp/KnowPrompt
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through regular expression matching to extract and
validate the predicted relation types.

C.3 Implementation of the Compared Method

We generate 48 augmented data points for each
seed data point across all DA methods to conduct
extensive experiments, from which 8 are carefully
selected for the main experiment.

Non-LLM based DA methods. In this paper, we
leverage the open-source code 13 and primarily uti-
lize the nlpaug library 14 to implement the WES,
WSS, and LAMBADA. Specifically, we employ
the GoogleNews-vectors for WES, while the WSS
is implemented with RoBERTa-large. For LAM-
BADA, we conduct separate training tailored to
each dataset, ensuring optimal performance and
adaptability to the unique dataset.

LLM based DA methods. In our experiments,
we apply the DeepSeek-v3 for the LLM-based DA
methods. The temperature parameter is set to 2.
For ConsistRE, we utilized the prompt templates
described below.

Prompt: ConsistRE

Knowledge: The relation between <head entity> and
<tail entity> is <relation type>
Objective: Make sentences with given entities <head
entity>, <tail entity> and keyword <keyword hint>
Output: <sentence>
Knowledge: ...
Objective: ...
Output: ...
Knowledge: The relation between <target head en-
tity> and <target tail entity> is <target relation type>
Objective: Make sentences with given entities <target
head entity>, <target tail entity> and keyword <target
keyword hint>
Output:

For UnleashLLMRE, we utilize the original
open-source code 15, organizing the provided
prompt templates as below.

13https://github.com/zjunlp/LREBench
14https://github.com/makcedward/nlpaug
15https://github.com/zjunlp/DeepKE/tree/main/example/

llm/UnleashLLMRE

Prompt: UnleashLLMRE

One sample in relation extraction datasets consists
of a relation, a context, and a pair of head and tail
entities in the context.
The head entity has a relation with the tail entity.
Here are some samples for relation ’<relation type>’:
Relation: <relation type>. Context: <sentence>.
Head Entity: <head entity>. Tail Entity: <tail en-
tity>.
Relation: ... Context: ... Head Entity: ... Tail Entity:
...
Generate <number> samples for the relation ’<target
relation type>’, head entity ’<target head entity>’,
and tail entity ’<target tail entity>’.

C.4 Implementation of the Proposed Method

Selective Demonstration Filtering. We train the
target RE model for 300 steps, recording the logits
of the gold relation type for all the available data ev-
ery 20 steps. This entire process is highly efficient
and completed rapidly. Subsequently, we compute
the variability and confidence scores for each sam-
ple based on the recorded logits. To identify am-
biguous samples, we select data points where both
variability and confidence fell within the range of
[0.3, 0.7] (i.e. τ = 0.3 and ϵ = 0.7).
Attribute Constrained Data Generation. To en-
sure the rationality and comprehensiveness of key
attributes, we follow the existing research (Yu et al.,
2023) and adopt a human-machine collaboration
strategy to determine the generation conditions re-
quired for generating diverse samples. Specifically,
we query the LLMs with the following content.

Prompt: Query for Generation Conditions

When trying to generate multiple sentences that all
express the same specific relation (i.e., same head en-
tity–relation–tail entity) yet exhibit diversity, it helps
to think about the text-level “conditions” you can
vary. Key conditions often include:

Through manual validation and selection of the
LLM’s responses, the demonstration provision in-
cludes four key attributions: relation type, entity,
semantic, and syntax. The generation conditions
consist of six attributes: writing style, expression
of relations, sentence order and length, voice and
perspective, tense, and tones and sentiment. The
complete prompt is shown in Table 4 for reference.
Overall Diversity Date Selection. In the imple-
mentation of Monte Carlo Tree Search (MCTS), at
each step, one data point is selected from each rela-
tion category to initiate the search. The search pro-
cess terminates when the search space is exhausted
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ReTACRED SemEval

Figure 9: Self-BLEU scores for the augmented data on ReTACRED and SemEval with 5-shot to 100-shot. The lines
represent the mean Self-BLEU of different methods, while the shaded areas indicate the range of min to max under
different shots.
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Figure 10: Visualization for the original, test, and augmented datasets from different DA methods after using t-SNE
dimension reduction.

or when the number of simulations reaches 100.
We employ the Upper Confidence Bound for Trees
(UCT) search strategy, which can be expressed by
the following formula:

UCT =
R(n′)
N(n′)

+ 2 ·
√

lnN(n)

N(n′)
, (7)

where n and n′ represent a parent node in the search
tree and its child node respectively. R(·) means
the reward accumulated by a node and N(·) tracks
the number of visits to a node.

D More Experimental Results

D.1 Impact of Different Shot on ReTACRED
and SemEval

Figure 9 showcases the Self-BLEU for augmented
data on ReTACRED and SemEval datasets across
various n-grams. The results reveal that the pro-
posed method consistently achieves the lowest Self-
BLEU scores across all n-grams on both datasets,
signifying its ability to produce highly diverse aug-
mented data. In contrast, LAMBADA (as well
as WSS, and WES, which have similar results)
exhibits the highest Self-BLEU, indicating lim-
ited diversity and the generation of numerous simi-
lar samples. For ConsistRE and UnleashLLMRE,

while they show better diversity compared to LAM-
BADA, their Self-BLEU remains notably higher
than those of our approach, especially for higher n-
grams (4-gram and 5-gram). Moreover, the shaded
areas representing score ranges indicate that the
proposed method maintains consistently low varia-
tion, underscoring the stability and reliability of its
data generation process.

D.2 Impact of Sample Distribution on
ReTACRED and SemEval

Figure 10 further visualizes the sample distribution
of the original (orange), test (blue), and augmented
(green) datasets after applying t-SNE dimensional-
ity reduction for ReTACRED and SemEval. Across
all DA methods, noticeable differences in the dis-
tribution patterns can be observed. For the WES,
WSS, and LAMBADA, we observe that the gen-
erated data distributions closely overlap with the
original data, maintaining a distinct boundary from
the test data. This suggests limited diversity in
their augmented datasets. For ConsistRE and Un-
leashLLMRE, the introduction of LLMs improves
data diversity, resulting in augmented data distri-
butions that align more closely with the test data.
However, they still suffer from generating similar

281



ReTACRED SemEval

Figure 11: Micro F1 scores at different scaling factors under the seed data from ReTACRED and SemEval. The
shaded areas represent the variance across multiple runs. ‘Ours-iter’ denotes generating data iteratively, where each
iteration restarts the OODA loop to generate augmented data and achieve the current scaling factor.

TACRED ReTACRED SemEval

Augmented Dataset from Random Data Selection Holistic Diversity Data Selection

Loss

Figure 12: Training loss comparing different data selection strategies for augmented data. The proposed overall
diversity data selection generates a diverse augmented dataset, which effectively facilitates model training. In
contrast, random selection reduces the diversity of augmented data, causing the model to repeatedly encounter
similar samples and accelerating overfitting.

samples across different inputs, as evidenced by the
aggregation of green points in the visualizations.
In contrast, the proposed method achieves both
greater overall diversity and better alignment with
the target distribution. The augmented data main-
tains a distinct separation from the original data
while also exhibiting variance among themselves.

D.3 Impact of Generated Data Size on
ReTACRED and SemEval

Figure 11 illustrates the RE performances at vari-
ous scaling factors for ReTACRED and SemEval
datasets. Similar to the results observed on the TA-
CRED dataset, the proposed method demonstrates
consistently better and more stable performance
across various scaling factors. It effectively uti-
lizes more generated data, whereas other methods
often experience performance degradation as the
data volume increases. Notably, on the SemEval
dataset, certain existing methods occasionally show
better performance. However, these instances are
attributed to the randomness, as performance could
fluctuate by more than 10% when different ran-
dom seeds are used. Furthermore, with repeated
restarts of the OODA loop in the proposed method,
we observe significant performance improvements

as the data volume increases. This highlights the
ability of the iterative process to generate useful
augmented data, ensuring diversity and alignment
with the target RE model’s requirement, ultimately
achieving superior performance.

D.4 Discussion on Training Loss Trend

During the training process, we observed several
notable phenomena reflected in Figure 12. For all
three datasets, the overall diversity data selection
strategy (orange) led to a more gradual and consis-
tent reduction in training loss compared to random
data selection (gray). This suggests that the diverse
augmented dataset generated by our method helps
the model effectively explore the data space dur-
ing the data generation, guiding it toward better
optimization paths. In contrast, the random data
selection strategy showed steeper initial declines
in loss but quickly plateaued or fluctuated, partic-
ularly in the later stages of training. This points
to overfitting caused by repeated exposure to sim-
ilar samples. These findings demonstrate that the
proposed method, generating and selecting diverse
data through observing the target model, enables
stable training and reduces the risk of overfitting.
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D.5 Influence of Different LLMs
We employ different LLMs during augmented data
generation to verify the adaptability of the pro-
posed method, as presented in Table 5. Previous
research (Zou et al., 2024) points out that different
LLMs tend to generate data reflecting their inher-
ent preferences, resulting in data biases. From the
results, we can observe that the proposed method
shows strong robustness, as using different LLMs
does not result in significant performance varia-
tions. Since the proposed method does not explic-
itly constrain the data to align with human-written
content, MAUVE⋆ scores exhibit relatively larger
changes. However, the scores still surpass those of
other DA methods.

D.6 Computational Cost of ODDA
We evaluate OODA’s computational cost and effi-
ciency across its components. For LLM APIs, we
utilize Python’s asyncio library for concurrent pro-
cessing and employ asynchronous interfaces such
as AsyncOpenAI from LLM vendors.
Selective Demonstration Filter: SDF performs
300 training steps, with logits recorded every 20
steps, requiring under 10 minutes (9m42s).
Attribute-Constrained Data Generation: The se-
lection of attribute-constrained demonstrations for
seed data completes within 5 seconds, while data
augmentation averaged 0.15 seconds per instance
(subject to network latency). It takes 3m42s.
Overall Diversity Data Selection: We utilize an
Intel i7-13700K CPU, where the complete Monte
Carlo Tree Search (MCTS) process in 8-shot sce-
narios typically concluded within approximately
10 minutes (6m43s).

E Case Study

We show examples of the generated augmented
data from different DA methods in Table 6. Based
on these data, it is clear that the proposed method
delivers significantly more diversity, covering dif-
ferent attributes in the sentences, like writing styles,
tenses, tones, emotion, and so on. This increased
variability underscores the effectiveness of the pro-
posed attribute-constrained data generation and
overall diversity data selection module, ultimately
enhancing model performance.
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### Demonstrations
You will be given a triplet of head entity, tail entity, and relation. The following will present several
examples from different perspectives. Please refer to them when generating content in order to generate
diverse content.
** Relation Type **
When a type of relation is given, sentences can be generated like:
1. Relation: <relation>, Sentence: <sentence>.
...
** Head Entity and Tail Entity **
When the head entity and the tail entity are given, the length of the dependency path between them in
the sentence should be diverse, for example:
1. Head Entity: <head entity>, Tail Entity: <tail entity>, Dependency Path: <dependency path>,
Sentence: <sentence>.
...
** Diverse Semantic **
The generated sentences should contain different semantic information, for example:
1. Triplet: (<head entity>, <tail entity>, <relation type>), Sentence: <sentence>.
...
** Diverse Syntax **
The generated sentences should contain different syntax structures, for example:
1. Triplet: (<head entity>, <tail entity>, <relation type>), Sentence: <sentence>.
...

### Task
Your task is to generate *diverse* sentences based on the given triple of head entity, tail entity, and
relation. The sentences need to *directly* include the head entity and the tail entity, and there is a given
relation between them.
Head Entity: <target head entity>, Tail Entity: <target tail entity>, Relation: <target relation type>

### Attributes
To ensure the diversity of sentences, you need to consider the following requirements.
1. Have different writing styles, use simple or complex sentence patterns, and adopt casual, professional,
academic, or humorous language contexts.
2. Use different words that can clarify the given relation.
3. Vary the length of sentences and adjust the positions of different parts of the sentences, such as
putting adverbial phrases at the beginning, changing the order of the subject and the predicate, etc.
4. Have different voices and perspectives, such as the active and passive voices, the first-person and
third-person perspectives, provided that the context allows.
5. If the relationship permits, use the past, present, and future tenses.
6. Have different tones and emotional connotations, such as neutral, enthusiastic, authoritative, or
tentative tones.

### Output
Note: You must generate diverse sentences.
Generate <number> samples for the relation ’<target relation type>’, head entity ’<target head entity>’,
and tail entity ’<target tail entity>’.

Table 4: The prompt used for attribute-constrained data generation for reference.
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LLM TACRED ReTACRED SemEval

F1 Self-BLEU APS MAUVE⋆ F1 Self-BLEU APS MAUVE⋆ F1 Self-BLEU APS MAUVE⋆

DeepSeek-v3 75.78 0.4322 0.1189 0.7774 76.78 0.4164 0.1258 0.7532 67.57 0.2406 0.1024 0.9412
GPT-4o 75.80 0.4305 0.1173 0.7528 76.75 0.4161 0.1252 0.7351 67.73 0.2308 0.1076 0.9163
GPT-4o-mini 75.34 0.4386 0.1257 0.7397 76.52 0.4240 0.1338 0.7205 67.16 0.2538 0.1116 0.8925

Table 5: The impact of using different LLMs for data generation on RE performance, data diversity, and quality.

Original Seed Data:
Ferrara said he was innocent of Limoli’s slaying, but he pleaded guilty in 1992 to murder, along with
racketeering charges, under a deal that sent him to prison for 22 years, rather than go to trial and risk a
conviction that could lead to life in prison.
Triplet: (he, per:charges, murder)
ConsistRE:
1. Witnesses testified against him, leading to the filing of murder charges by the district attorney.
2. He was arrested and now faces murder charges after the victim’s body was discovered last week.
3. He was extradited to face murder charges in the state where the crime occurred.
4. He confessed to the crime, resulting in immediate murder charges being filed.
5. He was acquitted of the murder charges after new evidence proved his alibi.
6. The police arrested him on murder charges after a lengthy manhunt.
7. The court upheld the murder charges against him, rejecting his appeal for dismissal.
8. The defense argued that the murder charges were based on circumstantial evidence.
UnleashLLMRE:
1. He was questioned in connection with the murder case.
2. He was suspected of murder and the investigation was ongoing.
3. He was the prime suspect in the murder investigation.
4. The jury found him guilty, and he was sentenced to life in prison on murder charges.
5. He was believed to have had an accomplice in the murder.
6. He was being held on suspicion of murder.
7. He was known to have a history of violence, including murder.
8. Despite his claims of innocence, he was formally charged with murder and other related offenses.
ODDA (Ours):
1. The court has decided to proceed with murder charges against him.
2. “I didn’t do it," he insisted when questioned about the murder charges.
3. “He is being charged with murder," the detective stated during the press conference.
4. The judge dismissed the murder charges against him due to lack of evidence.
5. Did you hear that he is being accused of murder?
6. Witnesses testified against him, leading to the filing of murder charges by the district attorney.
7. He was charged with murder, along with several other counts, in connection with the case.
8. Authorities allege that he committed the murder last year in cold blood.

Table 6: Examples of the generated augmented data from different LLM-based DA methods.

285


