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Abstract

As large language models advance toward su-
perhuman performance, ensuring their align-
ment with human values and abilities grows
increasingly complex. Weak-to-strong general-
ization offers a promising approach by leverag-
ing predictions from weaker models to guide
stronger systems, but its effectiveness could be
constrained by the inherent noise and inaccura-
cies in these weak predictions. To address this,
we propose a theoretically grounded approach
that replaces forward KL divergence—whose
mass-covering behavior risks overfitting to im-
perfect weak signals—with reverse KL diver-
gence. Reverse KL divergence’s zero-forcing
effect prioritizes high-confidence predictions,
effectively mitigating the influence of unreli-
able weak supervision. Theoretically, we ex-
tend existing bounds and derive tighter lower
bounds for both forward and reverse KL diver-
gence. Notably, when a sufficiently pre-trained
strong model is fine-tuned on the last linear
layer, reverse KL guarantees that it outperforms
its weak supervisor by the magnitude of their
disagreement. Empirically, we demonstrate
that reverse KL and reverse cross-entropy not
only enable strong models to outperform those
trained with forward KL and standard cross-
entropy across most settings, but also exhibit
greater robustness to noisy labels.

1 Introduction

Human supervision is indispensable to align Large
Language Models (LLMs) with human values (Bai
et al., 2022a; OpenAI, 2023a). However, as LLMs
approach superhuman capabilities, their behaviors
may exceed human ability to reliably manage (Ope-
nAI, 2023b). To address this challenge, Weak-
to-Strong Generalization (W2SG) (Burns et al.,
2023) emerges as a promising approach, leveraging
weaker models to guide and control more advanced

⋆ Equal contribution † Corresponding author

systems, thereby bridging the gap between human
oversight and superhuman AI capabilities.

In particular, W2SG demonstrates that strong
pre-trained LLMs, when fine-tuned under weak
model supervision, can achieve performance sur-
passing that of their weak supervisors. However,
this approach is fundamentally constrained by the
inherent imperfections of weak model supervision,
which may introduce inaccuracies and noise (Burns
et al., 2023). Blindly fitting the strong model to
these imperfect signals can lead to a significant dis-
crepancy between the ground truth and the model’s
predictions, ultimately undermining the effective-
ness of W2SG (Yao et al., 2025). This raises a
critical question: How to effectively leverage weak
supervision to guide strong models while mitigat-
ing the impact of noisy or inaccurate signals?

To answer this question, we propose a theo-
retically principled approach, supported by fine-
grained analysis and a simple yet effective solution.
Our motivation stems from an insightful compar-
ison with Knowledge Distillation (KD) (Hinton,
2015) in classification, where strong teachers pro-
vide informative soft labels to guide weak students.
In KD, the forward KL divergence loss plays a cru-
cial role as it encourages students to learn not only
the target class probabilities but also the relative
relationships among non-target classes encoded in
the teacher’s soft labels. For instance, in the im-
age classification scenario, a strong teacher might
assign higher probabilities to “tiger” than to “dog”
when the input image is a “cat”, reflecting the se-
mantic similarity between cats and tigers in the
feature space. However, this advantageous prop-
erty of forward KL in KD becomes a limitation
in the W2SG paradigm. The fundamental distinc-
tion lies in the quality of supervision: while strong
teachers in KD provide reliable and informative
soft labels, weak teachers in W2SG often generate
noisy and potentially misleading signals for non-
target classes (Burns et al., 2023). Thus, the mass-
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(a) Knowledge Distillation
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(b) Weak-to-Strong Generalization

Figure 1: Illustration of the mass-covering behavior of forward KL divergence and the mode-seeking behavior of
reverse KL divergence, highlighting their roles in KD and W2SG. A Gaussian mixture distribution, representing
the teacher’s supervision in KD and W2SG, is approximated by fitting a single Gaussian distribution using both
forward and reverse KL divergence as loss functions.

covering nature of forward KL (Jerfel et al., 2021;
Sun and van der Schaar, 2024), which forces the
student to match the entire probability distribution
of the teacher’s predictions, becomes detrimental in
W2SG as it may lead the strong model to overfit to
the weak teacher’s unreliable supervision. This ob-
servation motivates our investigation of reverse KL
divergence as a more suitable alternative for W2SG.
As shown in Figure 1, the key advantage of re-
verse KL lies in its mode-seeking behavior (Minka
et al., 2005; Ji et al., 2024a), which enables the
strong model to focus on the weak teacher’s high-
confidence predictions while being less sensitive
to potentially noisy low-probability regions. This
property aligns better with the W2SG setting, as
it allows the strong model to extract reliable pat-
terns from weak supervision without being overly
constrained by its imperfections.

Building on the intuitive motivation above, we
first conduct a theoretical analysis to compare for-
ward losses and reverse losses in the context of
W2SG. Inspired by the lower and upper bounds
established for the strong model in W2SG (Yao
et al., 2025), we extend these results and derive
better lower bounds for both forward and reverse
losses. Furthermore, we identify an advantage of
reverse KL: when an adequately pre-trained strong
model undergoes last linear layer fine-tuning, re-
verse KL guarantees that the strong student will
outperform its weak teacher by at least the mag-
nitude of their disagreement. In our experiments,
we empirically demonstrate that employing reverse
KL divergence and reverse Cross-Entropy (CE) as

loss functions enables the strong model to achieve
superior performance compared to using forward
KL divergence and standard CE. We further show
that these reverse losses are more robust to label
noise. Finally, we extend the analysis to an im-
proved algorithm discussed in Burns et al. (2023),
where the optimization objective incorporates an
additional regularization term. It further demon-
strates the practical advantages of reverse CE over
standard CE in the context of W2SG.

2 Related Work

Weak-to-Strong Generalization. The weak-to-
strong paradigm (Burns et al., 2023) emerges as
a promising framework to address the challenges
of AI alignment, particularly in the context of su-
peralignment (OpenAI, 2023b)—where future AI
systems may surpass human capabilities, render-
ing human supervision weak or insufficient. It
leverages weaker models to guide stronger models,
potentially unlocking their full capabilities while
maintaining alignment with human values. It has
been extensively studied through algorithms (Zhu
et al., 2025; Agrawal et al., 2024; Sang et al., 2024;
Guo and Yang, 2024; Lyu et al., 2025; Cui et al.,
2025; Ye et al., 2025), empirical analyses (Yang
et al., 2024; Ye et al., 2024; Zhou et al., 2025), and
theoretical frameworks (Lang et al., 2024; Somer-
step et al., 2024; Wu and Sahai, 2025; Charikar
et al., 2024; Yao et al., 2025; Dong et al., 2025;
Medvedev et al., 2025; Shin et al., 2025; Xue et al.,
2025; Ildiz et al., 2025; Somerstep et al., 2025),
these works primarily focus on W2SG with for-
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ward KL divergence and CE losses. However, the
potential of reverse KL and reverse CE losses in
classification under the W2SG framework has not
been sufficiently explored. This gap motivates us to
systematically investigated the benefits of these re-
verse losses in W2SG with both theoretical insights
and empirical observations.

Forward KL and Reverse KL. Forward KL
and Reverse KL are employed in distinct appli-
cations, each offering unique advantages. For-
ward KL is widely utilized in standard classification
tasks (Goodfellow, 2016), often appearing in the
form of CE loss to align predicted and true label
distributions. Its mass-covering behavior (Jerfel
et al., 2021; Sun and van der Schaar, 2024) en-
sures that the model comprehensively captures all
high-probability regions of the target distribution,
making it particularly effective in knowledge dis-
tillation (Hinton, 2015) for classification tasks. In
such tasks, the teacher model’s soft labels provide
informative guidance, enabling the student model
to learn a representative distribution (Yang et al.,
2025). In contrast, reverse KL is frequently adopted
in variational inference (Kingma and Welling,
2014; Pinheiro Cinelli et al., 2021), where it ex-
hibits zero-forcing behavior (Minka et al., 2005).
By focusing on high-confidence predictions while
disregarding low-probability regions, reverse KL
prioritizes precision over diversity. In the context
of W2SG, the choice of divergence is especially
significant. Weak teachers in W2SG provide imper-
fect supervision signals (Burns et al., 2023; Yang
et al., 2024; Yao et al., 2025), and using forward
KL divergence as the loss function may lead to
overfitting to these noisy or incomplete guidance.
Reverse KL, on the other hand, allows the strong
model to extract reliable patterns from weak su-
pervision without being overly constrained by its
imperfections. This property aligns well with the
goal of W2SG, where the focus is on leveraging
weak supervision while avoiding its pitfalls.

Furthermore, reverse KL divergence has recently
gained increasing attention in related fields such as
domain adaptation (Nguyen et al., 2022) and KL-
regularized reinforcement learning (Rafailov et al.,
2024; Wang et al., 2024; Ji et al., 2024b). These ap-

Recently, we discovered that concurrent, independent
efforts (Mulgund and Pabbaraju, 2025) have also theoretically
explored reverse losses in classification within the W2SG
framework via information geometry and convex analysis.
Due to space limitations, a more detailed comparison between
our approach and theirs in Appendix A.

plications share a conceptual similarity with W2SG,
as they all involve transferring knowledge across
domains or models under imperfect or constrained
conditions. Moreover, beyond classification tasks,
reverse KL divergence has been increasingly uti-
lized in generation tasks within knowledge distil-
lation (Gu et al., 2024; Agarwal et al., 2024; Wu
et al., 2025), owing to its mode-seeking properties.
Given these developments, it is natural to investi-
gate the role of reverse KL in classification within
the W2SG framework.

3 Preliminaries

3.1 Classification
We consider k-classification tasks. Given the data
domain X ⊆ Rd and output domain Y ⊆ Rk, let
the model space be F : X → Y . Consider the
model’s outputs form a valid probability distribu-
tion, i.e., ∀y = (y1, · · · , yk)T ∈ Y , there holds∑k

i=1 yi = 1 and 0 < yi ≤ 1. The forward and
reverse KL divergence losses are defined below.

Definition 1 (KL divergence losses). Given the
data distribution P and two models g, h ∈ F , the
forward KL divergence loss is defined as:

KL(g, h) ≜ Ex∼P [DKL(g(x)∥h(x))] ,

= Ex∼P

[
k∑

i=1

[g(x)]i log
[g(x)]i
[h(x)]i

]
,

where [g(x)]i, [h(x)]i represent the i-th elements
of g(x), h(x), respectively. Thus, the reverse KL
divergence loss is KL(h, g).

As illustrated in Figure 1, forward KL promotes
full coverage of the target distribution, whereas
reverse KL focuses on capturing the dominant
mode. Additionally, the difference between KL
divergence and CE is an entropy term:

Definition 2 (Cross-entropy losses). Given the data
distribution P and two models g, h ∈ F , define the
forward cross-entropy divergence loss:

CE(g, h) ≜ −Ex∼P

[
k∑

i=1

[g(x)]i log[h(x)]i

]

= KL(g, h) + Ex∼P H(g(x)),

where H(·) is the Shannon entropy. Thus, the re-
verse cross-entropy loss is CE(h, g).

Consequently, note that when minimizing for-
ward losses, the model g is fixed to provide su-
pervision signals. Thus, minimizing forward KL

2862



divergence loss is equivalent to minimizing stan-
dard CE loss as Ex∼P H(g(x)) is a constant.

3.2 Weak-to-Strong Generalization

Consider W2SG in the context of k-classification
tasks. We focus on the fine-tuning phase after pre-
training. The labeling function F ⋆ maps data x to
its label F ⋆(x). The strong model aims to learn
Fsw = f ◦ hs, where hs is a fixed strong model
representation and f ∈ Fs is a task-specific func-
tion from a hypothesis class Fs. In the convention
setting of AI alignment (Ouyang et al., 2022), the
model is fine-tuned through ground truth data:

fs = argminf∈Fs
L(F ⋆, f ◦ hs), (1)

where the loss L(·, ·) can be KL(·, ·) or CE(·, ·).
However, it is humans who provide weak su-
pervision in the super-alignment scenario (Ope-
nAI, 2023b). To explore this, the W2SG frame-
work (Burns et al., 2023) leverages a weak model’s
predictions to supervise the strong model:

fsw = argminf∈Fs
L(Fw, f ◦ hs), (2)

where Fw is a given weak model, and L(·, ·) is orig-
inally the standard CE loss. If we employ reverse
losses, the objective transforms into

f r
sw = argminf∈Fs

L(f ◦ hs, Fw). (3)

Regardless of the choice of loss function, the
core objective is replacing ground truth data with
weak supervision. Thus, while minimizing forward
losses L(Fw, Fsw) or reverse losses L(Fsw, Fw),
we simultaneously strive to achieve an Fsw with a
small generalization error L(F ⋆, Fsw).

4 Theoretical Analysis: Justifying
Reverse KL in W2SG

In Sections 4.1, we establish that both reverse
and forward losses offer comparable generaliza-
tion guarantees for the strong model, indicating
that reverse losses is at least as favorable as for-
ward losses in terms of theoretical properties. Fur-
thermore, our analysis in Section 4.2 uncovers an
advantage of reverse KL divergence loss: with re-
verse KL loss employed in W2SG, the strong model
is theoretically guaranteed to outperform the weak
model by at least the magnitude of their disagree-
ment under some assumptions.

4.1 Generalization Analysis of Both Losses
We establish that both reverse and forward losses
yield comparable generalization guarantees by de-
riving upper and lower bounds for their respective
generalization errors. We begin with a universal
result for both forward and reverse losses.

Upper and lower bounds. We extend Yao et al.
(2025) and establish bounds of strong model’s per-
formance. Unlike most previous work that focuses
only on forward KL and CE loss, we comprehen-
sively examine all four loss variants: forward KL,
reverse KL, forward CE, and reverse CE.

Lemma 1 (Proved in Appendix B.1). Let L(·, ·)
be KL(·, ·) or CE(·, ·). Given the data domain X ,
output domain Y and models Fw, F

⋆ defined above.
For any strong model Fsw, there holds

|L(F ⋆, Fw)− L(F ⋆, Fsw)| ≤ C1

√
d(Fw, Fsw).

where C1 is a positive constant, d(Fw, Fsw) can be
KL(Fw, Fsw) or KL(Fsw, Fw), and L(F ⋆, Fsw)
and L(F ⋆, Fw) represent the error of strong model
and weak model, respectively.

Note that d(Fw, Fsw) captures the disagreement
between the strong and weak models, which serves
as the minimization objective in W2SG. Lemma 1
quantifies the difference between the weak and
strong models’ performance from two perspectives:
a lower bound and an upper bound, which is similar
to Yao et al. (2025). The lower bound indicates
that strong model’s performance cannot be arbi-
trarily improved using weak supervision. Improv-
ing the strong model depends critically on ensur-
ing L (F ⋆, Fw) is small, underscoring the impor-
tance of weak model’s performance. Also, whether
we choose forward or reverse loss, the student-
supervisor disagreement d(Fw, Fsw) is minimized.
While reducing L (F ⋆, Fsw) requires increasing
d(Fw, Fsw), the lower bound also implies that
strong model’s performance gain may be inherently
constrained by W2SG’s own optimization objec-
tive (Yao et al., 2025). In other words, achieving
the minimal optimization objective limits the strong
model’s ability to significantly outperform its weak
supervisor. The upper bound ensures that strong
model’s error L(F ⋆, Fsw) remains bounded and do
not be arbitrarily large. It shows that a better weak
model is also crucial to improve strong model’s
performance. Building on these results, we further
conduct a fine-grained analysis to investigate how
to achieve tighter lower and upper bounds.
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Tighter lower bound. Consider the lower bound
in Lemma 1, we employ alternative proof tech-
niques rooted in information-theoretic inequalities
to derive a tighter lower bound.

Theorem 1 (Proved in Appendix B.2). Let L(·, ·)
be KL(·, ·) or CE(·, ·). Given Fsw, Fw, F

⋆, then

L(F ⋆, Fsw) ≥ L(F ⋆, Fw)− C2

√
d(Fw, Fsw),

where C2 is a positive constant, and d(Fw, Fsw)
can be KL(Fw, Fsw) or KL(Fsw, Fw).

Remark. C2 is generally smaller than C1, leading
to a tighter lower bound than Lemma 1.

Similar to Lemma 1, it also highlights the impor-
tance of selecting a well-generalizing weak model
and cautious optimization of the strong model
to prevent overfitting to weak supervision. Note
that Theorem 1 applies to both forward and reverse
losses, which share the same theoretical properties.

Tighter upper bound. In Lemma 1, there is no
theoretical guarantee that the strong model will nec-
essarily surpass the performance of its weak super-
visor in W2SG, such as L(F ⋆, Fsw) ≤ L (F ⋆, Fw).
This raises the question of whether a tighter upper
bound can be derived. Therefore, we first explore
how to achieve this goal.

Proposition 1 (Proved in Appendix B.3). Let
L(·, ·) be KL(·, ·) or CE(·, ·). Given Fsw, Fw, F

⋆,
then there holds

L(F ⋆, Fsw) = L(F ⋆, Fw)−
〈
F ⋆, log

Fsw

Fw

〉

E︸ ︷︷ ︸
R

,

where the expectation inner product is defined as
⟨f, g⟩E ≜ Ex∼P [f(x)T g(x)].

Remark. It can also be extended to reverse KL
and squared loss, as detailed in Appendix B.3.

Therefore, L(F ⋆, Fsw) ≤ L (F ⋆, Fw) satisfies
if and only if R ≥ 0. To achieve it, we aim to
establish a clear relationship between model ca-
pacity and model confidence across all data points
and all k classes. Specifically, for any x ∈ X and
i ∈ {1, · · · , k}, a positive [F ⋆(x)]i log

[Fsw(x)]i
[Fw(x)]i

en-
sures a positive R. Therefore, we expect the model
predictions to satisfy either of the two inequalities:

[F ⋆(x)]i ≥ [Fsw(x)]i ≥ [Fw(x)]i, (4)

[F ⋆(x)]i ≤ [Fsw(x)]i ≤ [Fw(x)]i. (5)

In other words, the predicted probabilities of Fsw

reflect the true outcome better than Fw. Intuitively,

because the weak model is pre-trained and fine-
tuned on ground truth data, we can trust its de-
cisions for major classes. As shown in Figure 1,
reverse KL’s mode-seeking behavior encourages
the strong model to focus on the weak model’s
high-confidence predictions, while disregarding
low-probability, potentially noisy regions. This
behavior facilitates the fulfillment of Inequality (4)-
(5). In contrast, forward KL, with its mass-covering
nature, forces the strong model to match the en-
tire probability distribution, including unreliable
signals from the weak model’s lower-probability
classes, thereby hindering the fulfillment of the
above inequalities. In the context of W2SG, where
weak supervision is imperfect, reverse KL’s fo-
cus on high-confidence decisions provides stronger
guarantees for strong model’s performance. In par-
ticular, the theoretical analysis in the following
section further supports this, demonstrating that
reverse KL can theoretically ensure superior per-
formance for the strong model in certain settings.

4.2 Theoretical Analysis of Reverse Losses

To achieve a tighter upper bound, our theoreti-
cal analysis below yields an intriguing insight:
when using reverse KL in W2SG, an adequate
pre-training and subsequent last linear layer fine-
tuning guarantee that the strong student can out-
perform its weak teacher by at least the magnitude
of their disagreement (i.e., R ≥ 0 in Proposition 1).

Theorem 2 (Proved in Appendix B.4). Consider
W2SG using reverse KL divergence loss in Equa-
tion (3). Denote Fsw = f r

sw ◦ hs. Assume that the
function class Fs is a convex set and ∃fs ∈ Fs

such that fs ◦ hs = F ⋆. Then:

KL (F ⋆, Fsw) ≤ KL (F ⋆, Fw)−KL (Fsw, Fw) .

Remark. Similar result can be naturally extended
to reverse CE loss. Our proof leverages Bregman
divergence, a generalization of both squared loss
and KL divergence. This approach not only broad-
ens the applicability of our results but also demon-
strates how our framework naturally recovers the
regression analysis (Charikar et al., 2024). The
concurrent work (Mulgund and Pabbaraju, 2025)
also independently explores the application of Breg-
man divergence in this context, establishing their
Theorem 4.1 and Corollary 4.2, which exhibit par-
allels with our results. The above extension and
discussion are detailed in Appendix B.4.
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The assumptions are consistent with previous
theory (Charikar et al., 2024; Yao et al., 2025).
Firstly, the convex set assumption includes the case
that Fs is the class of all linear functions, which
shares similar conceptual framework of last lin-
ear layer fine-tuning (Howard and Ruder, 2018;
Kumar et al., 2022; Mao et al., 2023; Kirichenko
et al., 2023). Secondly, we consider the case where
∃fs ∈ Fs such that fs ◦ hs = F ⋆. It shows the
remarkable capability of pre-training. It assumes
that the representation hs has already captured a
wealth of information during pre-training, a phe-
nomenon well-demonstrated by modern pre-trained
LLMs (Touvron et al., 2023; OpenAI, 2023a).

Theorem 2 establishes that in W2SG, using the
reverse KL divergence loss guarantees that the
strong model, trained with weak supervision, sur-
passes the weak model by at least their disagree-
ment, KL(Fsw, Fw). This upper bound is tighter
than Lemma 1, as Lemma 1 does not ensure that
the strong model surpasses the weak model. The-
orem 2 highlights the superior theoretical benefits
of reverse losses compared to forward losses.

Now we draw n i.i.d. samples to perform W2SG
and relax the assumption, where for any fs ∈ Fs,
∃fs ◦ hs = F ⋆ may not be satisfied. The unique
result for reverse KL below further emphasizes its
advantageous theoretical properties in W2SG.

Theorem 3 (Proved in Appendix B.5). Given Fsw

defined in Theorem 2. Assume that Fs is a convex
set. Consider W2SG using reverse KL divergence
loss with n i.i.d. samples:

f̂ r
sw = argminf∈Fs

K̂L(f ◦ hs, Fw),

where K̂L(·, ·) is the empirical version of KL(·, ·).
Denote F̂sw = f̂ r

sw ◦ hs and strong ceiling model’s
generalization error ε = KL(F ⋆, Fs). With proba-
bility at least 1− δ, there holds

KL(F ⋆, F̂sw) ≤ KL(F ⋆, Fw)−KL(F̂sw, Fw)

+O(
√
ε) +O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,

where CFs is a constant capturing the complexity
of the function class Fs. The asymptotic notation
is for ε → 0, n → ∞.

Compared to Theorem 2, this bound introduces
two additional error terms: the first term O(

√
ε)

is small due to the capability of the strong ceiling
model Fs. The remaining two error terms, which

are of the order O (1/
√
n), stem from the strong

model F̂sw being trained on a finite weakly-labeled
dataset. These terms also diminish asymptotically
as the sample size n increases. Overall, by using a
sufficiently large dataset and a strong model with
enough capacity, we achieve a large n and a very
small ε, rendering the remainders in Theorem 3
negligible and increasing the likelihood that the
theoretical guarantee in Theorem 2 holds. Theo-
rem 3 aligns with previous wisdom (Charikar et al.,
2024; Yao et al., 2025). However, whereas their
corresponding bounds are specifically designed for
regression tasks, our result offers new insights into
applying reverse KL loss in classification tasks.

5 Empirical Validation

In this section, we empirically compare reverse KL,
forward KL, reverse CE, and standard CE losses
in the context of W2SG. Our experiments directly
support the claim that reverse losses outperform
forward losses in most experimental settings.

5.1 Experimental Settings

Datasets. We follow previous studies (Burns
et al., 2023; Yang et al., 2024) to conduct experi-
ments mainly in the reward modeling task in two
settings: enabling a weak model to effectively
guide a strong model in achieving either harm-
lessness or helpfulness. To achieve harmlessness,
we follow Yang et al. (2024) to leverage CAI-
Harmless (Bai et al., 2022b), a widely adopted
benchmark for single-turn harmless dialogue tasks.
To achieve helpfulness, we utilize HH-RLHF (Bai
et al., 2022a), a benchmark designed to guide mod-
els toward producing responses that are helpful,
informative, and contextually relevant. We use a
subset of single-turn helpful data of HH-RLHF.

Each dataset includes three subsets: (1) Ground
truth set: 4K samples with ground truth labels,
used to fine-tune the base models to create strong
ceiling models. (2) Weak supervision set: 4K
held-out samples, where the weak model gen-
erates predicted labels to guide the training of
the strong model. (3) Test set: The extra 4K
samples, reserved for evaluating the generaliza-
tion performance of all strong ceiling and weak-
to-strong models. Each sample is formatted as
x̃ = (x; yc, yr), where x is the user input, yc and
yr represent human-chosen and human-rejected re-
sponses separately.
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Figure 2: Results of GPT-2-series. “SC” denotes the strong ceiling model, and “A to B” indicates the use of weak
teacher “A” to supervise strong student “B”. The terms CE, RCE, KL, and RKL refer to CE loss, reverse CE
loss, forward KL divergence loss, and reverse KL divergence loss, respectively. Error bars represent the standard
deviation across three runs of the experiment.

Models. We conduct experiments on two types
of model families: (1) GPT-2-series (Radford et al.,
2019), including GPT-2-Base, GPT-2-Medium,
GPT-2-Large, and GPT-2-XL; (2) Pythia-series (Bi-
derman et al., 2023), specifically, Pythia-70M,
Pythia-160M, Pythia-410M, and Pythia-1B. Each
model is trained to generate a soft value between 0
to 1 for each sample:

F (x̃) = Sigmoid(F (yc)− F (yr)).

When implementing forward and reverse losses, the
single predicted logit is transformed into a logits
distribution represented as (1− F (x̃), F (x̃)).

Training and Evaluation. The strong ceiling
models are trained using the standard CE loss. We
apply four loss functions in W2SG: forward KL,
reverse KL, CE and reverse CE. To ensure the reli-
ability and consistency of our results, each experi-

ment is repeated across three random seeds. We set
the training batch size to 16, learning rate to 10−5,
and max_seq_len to 512. Following the approach
of Burns et al. (2023), we train each model for a
single epoch to reduce overfitting. Finally, we re-
port the average accuracy on the test set across the
three random seeds for each model for comparison.

5.2 Main Results

The experimental results of the GPT-2 series on
the CAI-Harmless and HH-RLHF datasets are pre-
sented in Figure 2. Due to space limitation, we
put the detailed results for the Pythia series in Ap-
pendix C.1, but the similar trends can be observed.

We can draw several conclusions from the re-
sults in Figure 2: (1) The accuracy demonstrates
a consistent upward trend from left to right. It
indicates that the generalization capability of the
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Models CE Reverse CE KL Reverse KL

3B → 7B 95.000 ± 0.177 95.358 ± 0.225 95.067 ± 0.250 95.283 ± 0.153
3B → 14B 95.900 ± 0.001 96.100 ± 0.001 95.700 ± 0.003 95.800 ± 0.003
7B → 14B 96.117 ± 0.003 96.817 ± 0.001 96.441 ± 0.003 96.508 ± 0.001

Table 1: Results on Qwen2.5 series. “3B → 7B” means using Qwen2.5-3B as the weak teacher to supervise the
strong student Qwen2.5-7B. We report the results with three runs of the experiments. The best and the second-best
results are highlighted in bold and underlined text, respectively.

Setting Loss 10% 20% 30% 40% 50%

GPT-2-Base → GPT-2-Medium

KL 90.050 86.250 81.650 72.800 53.950
RKL 92.400 91.300 90.025 80.625 45.375
CE 90.100 86.200 81.625 72.800 53.950

RCE 92.025 90.800 89.450 81.825 59.725

GPT-2-Base → GPT-2-Large

KL 94.000 92.325 91.275 84.750 30.550
RKL 93.725 94.150 92.150 91.350 35.175
CE 94.000 92.325 91.275 84.725 30.550

RCE 93.875 93.650 91.900 85.875 26.975

GPT-2-Medium → GPT-2-Large

KL 93.800 92.850 91.730 85.930 30.000
RKL 94.000 93.850 92.930 88.730 27.400
CE 93.800 92.850 91.725 85.925 30.000

RCE 93.675 94.150 93.025 88.550 33.775

Table 2: Performance comparison across different noise levels and model settings. Bold numbers indicate the
best performance for each noise level within each setting. For each experimental setting and noise level, the
top-performing result is highlighted in bold, while the second-best is indicated with an underline.

strong model improves when a more capable weak
model is employed as the supervisor. This find-
ing is in line with Lemma 1 and aligns with prior
research (Burns et al., 2023; Yao et al., 2025),
which suggests that utilizing a higher-capacity
weak model enhances the strong model’s perfor-
mance. Furthermore, with a fixed weak model,
leveraging a stronger model also yield improved
strong model’s performance, consistent with es-
tablished research (Burns et al., 2023; Yang et al.,
2024). (2) We observe that reverse KL and re-
verse CE losses enable strong models to outper-
form those trained with forward KL and CE losses
across most experimental settings. In particular,
in all settings (12 out of 12), the use of reverse
KL yields a stronger model compared to standard
KL. Similarly, reverse CE outperforms or parallels
forward CE in nearly all experimental settings (10
out of 12). These empirical results, supported by
our theoretical framework, underscore the superi-
ority of reverse losses over forward losses. (3) In
the majority of settings (10 out of 12), the strong
model surpasses or meets the performance of its
weak supervisor when trained with reverse KL or

reverse CE loss. This observation supports The-
orem 2 and Theorem 3. However, the theoretical
guarantees may not always hold in practice, par-
ticularly in scenarios involving extremely complex
LLMs with limited training set in W2SG, where
the underlying assumptions may be violated.

5.3 Ablation Study

Larger-scale language models. We have also
conducted additional experiments on Qwen2.5-3B,
Qwen2.5-7B and Qwen2.5-14B models (Qwen
Team, 2024) using CAI-Harmless dataset in Ta-
ble 1. We can still observe that reverse losses con-
sistently outperform forward losses across these
larger-scale models.

Noise tolerance. We introduce additional noise
into the weak supervision and conduct experiments
on CAI-Harmless. Specifically, we systematically
vary the proportion of training data (ranging from
10% to 50%) where we swap the probability assign-
ments between chosen and rejected responses in
the weak supervision signals. When the chosen and
rejected labels are systematically swapped across
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Figure 3: Results of GPT-2 series on CAI-Harmless. “SC” denotes the strong ceiling model, and “A to B” indicates
the use of weak teacher “A” to supervise strong student “B”. The terms “Conf. CE” and “Reve. Conf. CE” refer
to the auxiliary confidence loss with vanilla cross-entropy loss (Equation (43)) and reverse cross-entropy loss
(Equation (45)), respectively. Error bars represent the standard deviation across three runs of the experiment.

a substantial portion of the weak supervision, the
model’s optimization process becomes misdirected,
causing it to learn inverted preferences. In this case,
the model’s accuracy may fall below the 50% (ran-
dom guessing), as it actively learns to select the
incorrect responses. The results are shown in Ta-
ble 2. We perform each experiment in one run. Our
results demonstrate that reverse losses outperform
forward losses in most experimental settings. How-
ever, under extremely high noise levels, reverse KL
divergence may exhibit overconfidence in incorrect
modes, leading to degraded performance.

Regularization. We notice that Burns et al.
(2023) investigates an improved strategy: incor-
porating an additional regularization term aimed
at boosting the strong model’s confidence in its
predictions, while utilizing the standard CE loss
as the primary objective. This naturally raises the
question of whether combining reverse CE loss
with such regularization can further improve the
strong model’s performance compared to standard
CE loss with regularization. To explore this ques-
tion, we conduct experiments using the GPT-2 se-
ries on the CAI-Harmless dataset as a representa-
tive case. The key observations are summarized
in Figure 3, with further experimental details de-
ferred to Appendix C.2. First, by integrating the
insights from Figure 2 and Figure 3, we can see that
incorporating the confidence regularization leads

to a modest improvement in the strong model’s per-
formance, aligning with the observations of Burns
et al. (2023). Second, the strong model trained us-
ing reverse CE loss with regularization consistently
surpasses its counterpart trained with standard CE
loss. This result, together with our previous results
in Section 5.2, underscores the clear advantage of
reverse losses over forward losses in enhancing
model performance in diverse settings.

6 Conclusion

In this work, we propose a theoretically principled
approach by rethinking the loss function in W2SG.
Unlike the mass-covering nature of forward KL,
reverse KL exhibits a mode-seeking behavior that
focuses on high-confidence predictions from the
weak supervisor, thereby reducing the influence of
noisy signals. Theoretically, we derive both upper
and lower bounds for forward and reverse losses
and explain how to make these bounds tighter. No-
tably, when fine-tuning a pre-trained strong model
on its last linear layer, reverse KL theoretically en-
sures that the strong model outperforms its weak
supervisor by the magnitude of their disagreement
under some assumptions. Empirically, we show
that reverse losses successfully outperform forward
losses in most settings and exhibit better noise toler-
ation, highlighting the practical benefits of reverse
KL and CE losses in W2SG.
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Limitations

While our study provides theoretical insights and
empirical validation for the advantages of reverse
losses in W2SG, several limitations remain. First,
our analysis mainly assumes relatively reliable
weak supervision from pre-trained and fine-tuned
models. However, real-world applications often
involve noisy weak supervision, and reverse KL’s
mode-seeking nature may amplify extreme noise.
Further research is needed to assess its suitabil-
ity in such cases. Second, while the theoretical
results in Section 4.1 provide broad insights, the
assumptions in Section 4.2 may not hold in the
practical deployment of LLMs. This limitation
is shared by most related work on theoretical un-
derstanding of W2SG. Nonetheless, these founda-
tions offer valuable guidance and a starting point
for future research on advancing W2SG theory in
LLMs. Third, our experiments are conducted on
two well-known alignment-focused binary classifi-
cation datasets with relatively smaller model sizes.
While these results offer valuable insights, it re-
mains an open question whether they can be gen-
eralized to more diverse datasets and larger-scale
models. Exploring this aspect in future work will
help further validate the broader applicability of
our approach.

Ethics Statement

Our intention is to highlight the positive impact of
reverse losses in improving weak-to-strong gener-
alization, ensuring more robust and reliable model
performance while minimizing the influence of po-
tentially imperfect weak supervision. However, the
potential amplification of biases from weak models
remains a concern, particularly in sensitive appli-
cations where fairness is a critical issue. While
reverse KL mitigates overfitting to unreliable super-
vision, its mode-seeking nature may amplify the
biases present in the weak model’s predictions. Ad-
ditionally, stronger AI models trained using W2SG
could be misused if deployed without appropriate
safeguards, emphasizing the need for responsible
development and oversight.
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Appendix
A Discussion of Concurrent Work

Recently, a concurrent work (Mulgund and Pabbaraju, 2025) has also independently addressed a problem
similar to ours. The primary similarity is found in Section 4.2. In particular, our Theorem 2 in Section 4.2
is similar to their Theorem 4.1 & Corollary 4.2. The proof of their Theorem 4.1 & Corollary 4.2 and
our Theorem 2 share the convexity assumption and the mathematical formulation of Bregman divergence.
However, the proof techniques differ significantly. While we explicitly construct the sum of first-order and
second-order terms through derivation and calculation, they apply mathematical tools such as generalized
Pythagorean inequality, convex analysis, and the sequential consistency property to derive their results.
Building on the derived results, while we focus on overcoming the realizability assumption and deriving
sample complexity bounds in our Theorem 3, they aim to relax the convexity assumption by projecting
the weak model onto convex combinations of functions based on the strong model representation in
their Theorem 4.3. Both our work and Mulgund and Pabbaraju (2025) contribute to the theoretical
understanding of W2SG in classification, with a particular focus on reverse KL/CE losses.

B Main Proof

B.1 Proof of Lemma 1

We first define the corresponding probability distributions for prediction of Fsw and Fw. ∀x ∈ X , we
know that

∑k
j=1[Fw(x)]j = 1. Therefore, given the class space Ck = {1, · · · , k}, we define a probability

distribution Pw(x) with the probability density function pw, where j ∈ Ck and

pw(j) = [Fw(x)]j . (6)

Using this method, we also define the probability distribution Psw(x) for Fw(x).

Lemma 2 (Yao et al. (2025)). Given the probability distributions Pw(x) and Psw(x) above. For any
x ∈ X , j ∈ Ck, g : Ck → R and assume that g is σ-subgaussian . Let f = t · g for any t ∈ R, then

DKL (Fw(x)∥Fsw(x)) ≥ sup
t

t
(
Ej′∼Pw(x)

[
g
(
j′
)]

− Ej∼Psw(x)[g(j)]
)
− t2σ2/2.

Now we start the proof. The derivations are mainly adapted from Yao et al. (2025) by swapping
Fw and Fsw and using the connection between cross-entropy and KL divergence. To make this paper
self-contained, we incorporate the proof below.

Proof. By taking expectations of x on both sides of the inequality in Lemma 2, we obtain

KL(Fw, Fsw) = ExDKL (Fw(x)∥Fsw(x))

≥ sup
t

t
(
ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
)
− t2σ2/2

︸ ︷︷ ︸
ϕ(t)

.

Note that ϕ(t) is a quadratic function of t. Therefore, by AM–GM inequality, we find the maximum of
this quadratic function:

ϕ(t) ≤ 1

2σ2

(
ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
)2

= sup
t

ϕ(t) ≤ KL(Fw, Fsw).

Subsequently, there holds
∣∣ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
∣∣ ≤

√
2σ2KL(Fw, Fsw). (7)

A random variable X ∈ R is σ-subgaussian if for any ρ, logE exp(ρ(X − EX)) ≤ ρ2σ2/2.
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Likewise, according to Lemma 2, we have

DKL (Fsw(x)∥Fw(x)) ≥ sup
t

t
(
Ej∼Psw(x)

[
g
(
j′
)]

− Ej′∼Pw(x)[g(j)]
)
− t2σ2/2. (8)

We apply the same proof technique to (8) and obtain:
∣∣ExEj′∼Pw(x)

[
g
(
j′
)]

− ExEj∼Psw(x)[g(j)]
∣∣ ≤

√
2σ2KL(Fsw, Fw). (9)

Now we construct g to associate the above results with L(F ⋆, Fsw) and L (F ⋆, Fw). Specifically, given
a probability distribution Pg with the density function pg, we define function g : Ck → (0, 1] associated
with Pg:

g(j) ≜ [F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

, for j ∈ Ck.

We have

ExEj∼Pg [g(j)] = ExEj∼Pg

[
[F ⋆(x)]j
pg(j)

log
[F ⋆(x)]j
pg(j)

]

= Ex


∑

j∈Ck

pg(j) ·
[F ⋆(x)]j
pg(j)

· log [F ⋆(x)]j
pg(j)




= Ex


∑

j∈Ck

[F ⋆(x)]j · log
[F ⋆(x)]j
pg(j)




Recall the definition of Psw and Pw in (6), we replace Pg with Psw and Pw in the above equation:

ExEj′∼Psw

[
g
(
j′
)]

= Ex


∑

j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fsw(x)]j


 = KL(F ⋆, Fsw),

ExEj∼Pw [g(j)] = Ex


∑

j=1

[F ⋆(x)]j log
[F ⋆(x)]j
[Fw(x)]j


 = KL(F ⋆, Fw).

Substitute the above into (7):

|L(F ⋆, Fsw)− L(F ⋆, Fw)| ≤
√
2σ2KL(Fw, Fsw), (10)

The above inequality is because whether L is KL or CE, we have

L(F ⋆, Fsw)− L(F ⋆, Fw) = KL(F ⋆, Fsw)−KL(F ⋆, Fw).

Likewise, we apply the same proof technique to (9) and obtain:

|L(F ⋆, Fsw)− L(F ⋆, Fw)| ≤
√
2σ2KL(Fsw, Fw). (11)

Finally, we obtain the subgaussian factor σ of function g by using the fact that g is bounded. Recall that
the output domain Y ⊆ Rk, where ∀y = (y1, · · · , yk)T ∈ Y , there holds

∑k
i=1 yi = 1 and 0 < yi ≤ 1.

In other words, ∃γ > 0 such that 0 < γ ≤ yi ≤ 1. It means that g(j) ∈ [− 1
γ log 1

γ ,
1
γ log 1

γ ]. According
to Hoeffding’s lemma, ∀λ ∈ R, we have

E
[
eλ(g(j)−E[g(j)])

]
≤ exp



λ2
(

1
γ log 1

γ

)2

2


 .
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In other words, g(j) is σ-subgaussian, where σ = 1
γ log 1

γ . Substitute it into (10) and (11), we prove the
final results:

|L(F ⋆, Fsw)− L (F ⋆, Fw)| ≤ C1

√
KL(Fw, Fsw),

|L(F ⋆, Fsw)− L (F ⋆, Fw)| ≤ C1

√
KL(Fsw, Fw),

where the constant C1 =
√
2
γ log 1

γ .

B.2 Proof of Theorem 1
Total variation distance is introduced for our proof.

Definition 3 (Total Variation Distance). Given two probability distributions P and Q, the Total Variation
(TV) distance between P and Q is

DTV(P∥Q) =
1

2

∫

x∈X
|P (x)−Q(x)| dx.

Note that DTV(P∥Q) ∈ [0, 1]. Also, DTV(P∥Q) = 0 if and only if P and Q coincides, and
DTV(P∥Q) = 1 if and only if P and Q are disjoint.

Proof. We have

L(F ⋆, Fw) = Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fw(x)]i

]

= Ex

[
k∑

i=1

[F ⋆(x)]i log

(
[F ⋆(x)]i
[Fsw(x)]i

· [Fsw(x)]i
[Fw(x)]i

)]

= Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fsw(x)]i

]
+ Ex

[
k∑

i=1

[F ⋆(x)]i log
[Fsw(x)]i
[Fw(x)]i

]

= L(F ⋆, Fsw) +

〈
F ⋆, log

Fsw

Fw

〉

E

. (12)

Rearranging terms and we know that:

L(F ⋆, Fsw) = L(F ⋆, Fw)−
〈
F ⋆, log

Fsw

Fw

〉

E

. (13)

Recall that the output domain Y ⊆ Rk, where ∀y = (y1, · · · , yk)T ∈ Y , there holds
∑k

i=1 yi = 1
and 0 < yi ≤ 1. In other words, ∃γ > 0 such that 0 < γ ≤ yi ≤ 1. Firstly, we know that F ⋆(x)
is element-wise non-negative. Denote 1⃗ = (1, 1, · · · , 1)T . We know that there is a positive constant
1
γ ≥ (mini[Fw(x)]i)

−1. We use element-wise addition, subtraction, multiplication, division and absolute
value in the proof. Note that

〈
F ⋆, log

Fsw

Fw

〉

E

≤
〈
F ⋆,

Fsw

Fw
− 1⃗

〉

E

(log x ≤ x− 1)

≤
〈
F ⋆,

1

γ
· Fw

∣∣∣∣
Fsw

Fw
− 1⃗

∣∣∣∣
〉

E

( 1γ · Fw ≥ 1⃗ (element-wise))

=
1

γ
· ⟨F ⋆, |Fsw − Fw|⟩E ,

and

⟨F ⋆, |Fsw − Fw|⟩E = Ex

[
(F ⋆(x))T (|Fsw(x)− Fw(x)|)

]
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≤ Ex [∥F ⋆(x)∥∞ · ∥Fsw(x)− Fw(x)∥1]
(Holder’s inequality for vector-valued functions)

≤ Ex [∥Fsw(x)− Fw(x)∥1] ([F ⋆(x)]i ≤ 1)

= 2ExDTV (Fw(x), Fsw(x)) (Definition of TV distance)

≤ 2
√
ExD2

TV (Fw(x), Fsw(x)) (Jensen’s inequality)

≤ 2

√
1

2
ExDKL (Fw(x), Fsw(x)) (Pinsker’s inequality)

=
√
2KL(Fw, Fsw). (Definition of KL(·, ·))

Therefore, 〈
F ⋆, log

Fsw

Fw

〉

E

≤
√
2

γ
·
√
KL(Fw, Fsw).

Since the TV distance is symmetric, we also have
〈
F ⋆, log

Fsw

Fw

〉

E

≤
√
2

γ
·
√
KL(Fsw, Fw).

Substitute them into Equation (13) and we can prove that:

L(F ⋆, Fsw) ≥ L (F ⋆, Fw)−
√
2

γ︸︷︷︸
C2

√
KL(Fw, Fsw),

L(F ⋆, Fsw) ≥ L (F ⋆, Fw)−
√
2

γ︸︷︷︸
C2

√
KL(Fsw, Fw).

The above inequalities also applies to L(·, ·) = CE(·, ·) because whether L is KL or CE, we have

L(F ⋆, Fsw)−KL(F ⋆, Fsw) = L(F ⋆, Fw)−KL(F ⋆, Fw).

Discussion of the constant. Recall that C1 =
√
2
γ log 1

γ and C2 =
√
2
γ . In other words, γ < 1

e leads to
C2 ≤ C1. While γ is the minimal value of the output, it is generally very small (γ = 10−3 ≪ 1

e in our
experiments), i.e., C2 ≤ C1. Therefore, the lower bound in Theorem 1 is tighter than that in Lemma 1.

Further Discussion. We show that adding an additional assumption leads to L(F ⋆, Fsw) ≥
L (F ⋆, Fw)− L(Fw, Fsw). Particularly, if L(Fw, Fsw) can be improved to some extent, the constant C
and square root in Theorem 1 can be eliminated, contributing to a more elegant version:

Corollary 1. Let L to be KL or CE. Let R ≥ 0 and consider the same constant C in Theorem 1. If
L(Fw, Fsw) ≥

√
2C is satisfied, then:

L(F ⋆, Fsw) ≥ L (F ⋆, Fw)−KL(Fw, Fsw).

Corollary 1 removes the constant coefficient and square root from Theorem 1. Notably, if R ≥ 0, the
results above reinforce that the key bottleneck for performance improvement over Fw arises from the
optimization objective’s inherent nature (Yao et al., 2025): If L(Fw, Fsw) can be large, the performance
improvement cannot exceed L(Fw, Fsw), which is exactly the minimum of Equation (2).

Proof. We adopt an alternative proof technique in the proof of Theorem 1:

|⟨F ⋆, |Fsw − Fw|⟩E | ≤ 2ExDTV (Fw(x), Fsw(x)) (The derivations in Appendix B.2)
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≤ 2Ex

√
1− exp [−DKL (Fw(x), Fsw(x))] (Bretagnolle–Huber inequality)

≤ 2
√
1− exp [−ExDKL (Fw(x), Fsw(x))] (Jensen’s inequality)

= 2
√
1− exp (−KL(Fw, Fsw)). (Definition of KL)

Let u(t) = e−t+ γ2

4 t
2−1, t ≥ 0. Taking the first-order and second-order derivative: u′(t) = −e−t+ γ2

2 t,
and u′′(t) = e−t + γ2

2 > 0. While u′(0) = −1 < 0, u′( 2
γ2 ) > 0, we know that there only exists a

t0 ∈ (0, 2
γ2 ) such that u′(t0) = 0. And u(t) decreases at [0, t0], increases at (t0,+∞) and u(0) = 0.

Denote u(t⋆) = 0. Notice that u( 2γ ) = e
− 2

γ > 0, which means that t⋆ < 2
γ . In other words, t > 2

γ leads
to u(t) > 0, i.e.,

√
1− e−t ≤ γ

2 t.

Using the above results, if
〈
F ⋆, log Fsw

Fw

〉
E
≥ 0 and KL(Fw, Fsw) ≥ 2

γ , then

∣∣∣∣
〈
F ⋆, log

Fsw

Fw

〉

E

∣∣∣∣ ≤
∣∣∣∣
1

γ
· ⟨F ⋆, |Fsw − Fw|⟩E

∣∣∣∣ (The derivations in Appendix B.2)

≤ 2

γ

√
1− exp (−KL(Fw, Fsw))

≤ 2

γ
· γ
2
KL(Fw, Fsw)

= KL(Fw, Fsw).

The proof is complete.

B.3 Proof of Proposition 1
Proof. We have

L(F ⋆, Fw) = Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fw(x)]i

]

= Ex

[
k∑

i=1

[F ⋆(x)]i log

(
[F ⋆(x)]i
[Fsw(x)]i

· [Fsw(x)]i
[Fw(x)]i

)]

= Ex

[
k∑

i=1

[F ⋆(x)]i log
[F ⋆(x)]i
[Fsw(x)]i

]
+ Ex

[
k∑

i=1

[F ⋆(x)]i log
[Fsw(x)]i
[Fw(x)]i

]

= L(F ⋆, Fsw) +

〈
F ⋆, log

Fsw

Fw

〉

E

.

Rearranging terms and we can prove the result.
The above also applies to L(·, ·) = CE(·, ·) because whether L is KL or CE, we have

L(F ⋆, Fsw)−KL(F ⋆, Fsw) = L(F ⋆, Fw)−KL(F ⋆, Fw).

Insights for reverse KL loss. Using similar decomposition technique, we obtain

L(Fw, F
⋆) = L(Fsw, F

⋆) +

〈
Fw − Fsw, log

Fw

F ⋆

〉

E

− L(Fsw, Fw)

︸ ︷︷ ︸
R1

.

Therefore, L(Fsw, F
⋆) ≤ L (Fw, F

⋆) satisfies if and only if R1 ≥ 0. While the teacher-student
disagreement is minimized in W2SG, we expect a small value of L(Fsw, Fw). Therefore, we want to

2877



obtain a large
〈
Fw − Fsw, log

Fw
F ⋆

〉
E

. Intuitively, for any x ∈ X and i ∈ {1, · · · , k}, we expect the model
predictions to satisfy either of the two inequalities:

[Fw(x)]i ≥ max([Fsw(x)]i, [F
⋆(x)]i), (14)

[Fw(x)]i ≤ min([Fsw(x)]i, [F
⋆(x)]i). (15)

In other words, the predicted probabilities of Fsw reflect the true outcome better than Fw. The confidence
level of Fsw should be better aligned with F ⋆ than that of Fw.

Insights for squared loss. Charikar et al. (2024) consider the squared loss:

L(f, g) = Ex∼P(f(x)− g(x))2.

In this setting, L(f, g) = L(g, f) and we have

L (Fw, F
⋆) = Ex∼P (F ⋆(x)− Fw(x))

2

= Ex∼P (F ⋆(x)− Fsw(x) + Fsw(x)− Fw(x))
2

= Ex∼P (F ⋆(x)− Fsw(x))
2 + Ex∼P (Fsw(x)− Fw(x))

2

+ 2 · Ex∼P [(F ⋆(x)− Fsw(x)) (Fsw(x)− Fw(x))]

= L (Fsw, F
⋆) + L (Fsw, Fw) + 2 · Ex∼P [(F ⋆(x)− Fsw(x)) (Fsw(x)− Fw(x))] .

If we define
⟨f, g⟩S = 2 · Ex∼P [f(x) · g(x)] ,

then we have

L (Fw, F
⋆) = L (Fsw, F

⋆) + L (Fsw, Fw) + ⟨F ⋆ − Fsw, Fsw − Fw⟩S .

Rearranging terms and we have

L (Fsw, F
⋆) = L (Fw, F

⋆)− L (Fsw, Fw)− ⟨F ⋆ − Fsw, Fsw − Fw⟩S . (16)

Therefore, ⟨F ⋆ − Fsw, Fsw − Fw⟩S > 0 is the sufficient and necessary condition for the inequality

L(Fsw, F
⋆) ≤ L(Fw, F

⋆)− L(Fw, Fsw),

when L is the squared loss. Therefore, we should make the confidence level of Fsw better aligned with F ⋆.
Despite the difficulty to attain this objective, Charikar et al. (2024) demonstrate that, within an elegant
proof framework using convexity assumption, this condition is guaranteed to hold.

B.4 Proof of Theorem 2
Proof sketch. We define KL(·, ·) in a Bregman-divergence manner. To derive the desired properties, we
construct a convex combination of the form Fsw(x) + t(F ⋆(x)− Fsw(x)), where t → 0+. By analyzing
this construction, we show that the sum of the first-order term O(t) and the second-order term O(t2)
is non-negative. This implies that the first-order term itself must also be non-negative. Leveraging this
principle and the associated derivations, we establish the proof of our results.

Our proof technique is general and unifying, covering both squared loss and KL divergence loss. While
Theorem 1-2 from Charikar et al. (2024) focus exclusively on squared loss in regression, and Theorem
3-4 from Yao et al. (2025) restrict the analysis to KL divergence-like loss in regression, our work extends
the scope to classification problems, encompassing both squared loss and KL divergence loss in a single
framework. This broader applicability highlights the versatility of our proof and its potential to bridge gaps
between regression and classification settings. We recently became aware of concurrent work by Mulgund
and Pabbaraju (2025), which has independently developed a theoretical framework employing a similar
proof technique. As discussed in Appendix A, while there are some conceptual overlaps, the core proof
methodologies in our work differ significantly.
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We first restate a lemma for our proof. Let the strong model learns from Fs : Rds → R (which
is a convex set) of fine-tuning tasks. Recall that we denote the strong model representation map by
hs : Rd → Rds . Let Vs = {f ◦ hs : f ∈ Fs} be the set of all tasks in Fs composed with the strong model
representation. Then Vs is also a convex set.

Lemma 3 (Charikar et al. (2024)). Vs is a convex set.

Proof. Fix f, g ∈ Fs, and consider f ◦ hs, g ◦ hs ∈ Vs. Fix any λ ∈ [0, 1]. Since Fs is the linear function
class so that it is a convex set, there exists p ∈ Fs such that for all y ∈ Rds , p(y) = λf(y) + (1− λ)g(y).
Now, fix any x ∈ Rd. Then, we have that

λ(f ◦ hs)(x) + (1− λ)(g ◦ hs)(x) = λf(hs(x)) + (1− λ)g(hs(x)) = p(hs(x)) = (p ◦ hs)(x),

and hence λ(f ◦ hs) + (1− λ)(g ◦ hs) = p ◦ hs ∈ Vs, which means that Vs is also a convex set.

We then present our theoretical results.
Motivated by the definition of Bregman divergence, we consider L as:

L(F1, F2) = Ex [ϕ(F1(x))− ϕ(F2(x))− ⟨∇ϕ(F2(x)), F1(x)− F2(x)⟩] , (17)

where F1, F2 ∈ F , and ϕ : Rk → R is a strictly convex and differentiable function. Note that squared
loss and KL divergence loss are special cases of the definition of L above:

Squared loss: L(F1, F2) = Ex∥F1(x)− F2(x)∥22, ϕ(x) = xTx,

KL divergence loss: L(F1, F2) = Ex

k∑

i=1

[F1(x)]i log
[F1(x)]i
[F2(x)]i

, ϕ(x) =
k∑

i=1

xi log xi.

Now we start our proof of Theorem 2.

Proof. We observe that

L(g, Fw) = Ex [ϕ(g(x))− ϕ(Fw(x))− ⟨∇ϕ(Fw(x)), g(x)− Fw(x)⟩] ,
L(g, Fsw) = Ex [ϕ(g(x))− ϕ(Fsw(x))− ⟨∇ϕ(Fsw(x)), g(x)− Fsw(x)⟩] ,
L(Fsw, Fw) = Ex [ϕ(Fsw(x))− ϕ(Fw(x))− ⟨∇ϕ(Fw(x)), Fsw(x)− Fw(x)⟩] ,

which means that

L(g, Fw) = L(g, Fsw) + L(Fsw, Fw) + Ex ⟨g(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩︸ ︷︷ ︸
R1

. (18)

Now our goal is to prove that R1 ≥ 0. We use reverse KL as the loss function in W2SG: fsw =
argminf∈F L(f ◦ hs, Fw). In other words, Fsw is the projection of Fw onto the convex set Vs, i.e.,
L(g, Fw) ≥ L(Fsw, Fw). Substitute it into Equation (18) and we have

R1 + L(g, Fsw) ≥ 0. (19)

Case 1: squared loss. Let g = Fsw + t(F ⋆ − Fsw), t ∈ (0, 1), t → 0+. Consider ϕ(x) = xTx, so
∇ϕ(x) = 2x. There holds

R1 = 2t · Ex ⟨Fsw(x)− Fw(x), F
⋆(x)− Fsw(x)⟩ = O(t),

L(g, Fsw) = t2Ex∥F ⋆(x)− Fsw(x)∥22 = O(t2).

Recall Equation (18) that O(t) +O(t2) ≥ 0, which means that O(t) ≥ 0. Therefore, there holds R1 ≥ 0,
which means

Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩ ≥ 0.

Let g = F ⋆ in Equation (18) and we can prove the result L(F ⋆, Fsw) ≤ L(F ⋆, Fw)−L(Fsw, Fw). While
our proof is different from Charikar et al. (2024), we obtain the same conclusion for squared loss.
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Case 2: reverse KL divergence. We consider L(·, ·) = KL(·, ·). Let g = Fsw+t(F ⋆−Fsw), t ∈ (0, 1),
t → 0+. Consider ϕ(x) =

∑k
i=1 xi log xi, so ∇ϕ(x) = [log x1 + 1, · · · , log xk + 1]T . Firstly,

R1 = t · Ex(F
⋆(x)− Fw(x))

T




log [Fsw(x)]1
[Fw(x)]1

...
log [Fsw(x)]k

[Fw(x)]k


 = O(t).

Secondly,

L(g, Fsw) = Ex

k∑

i=1

[g(x)]i log
[g(x)]i

[Fsw(x)]i

= Ex

k∑

i=1

[Fsw(x) + t(F ⋆(x)− Fsw(x))]i log

(
1 + t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

)

= Ex

k∑

i=1

[Fsw(x) + t(F ⋆(x)− Fsw(x))]i

(
t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

+O(t2)

)

(Taylor expansion)

= Ex

k∑

i=1

[Fsw(x)]i

(
t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

+O(t2)

)
+O(t2)

= t · Ex

k∑

i=1

[F ⋆(x)− Fsw(x)]i +O(t2)

= O(t2),

where the last equation is because Ex
∑k

i=1[F
⋆(x)]i = Ex

∑k
i=1[Fsw(x)]i = 1. Therefore,

R1︸︷︷︸
O(t)

+L(g, Fsw)︸ ︷︷ ︸
O(t2)

≥ 0,

which means R1 ≥ 0, i.e.,

Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩ ≥ 0.

Let g = F ⋆ in Equation (18) and we can prove the result L(F ⋆, Fsw) ≤ L(F ⋆, Fw)− L(Fsw, Fw).

Discussion of forward KL divergence. It is natural to ask, whether can the above proof technique
be extended to forward KL? Our answer is that, we may need an additional assumption. In our proof,
since reverse KL yields a linear term, the proof can be carried through. However, forward KL introduces
a logarithmic term. While the Taylor expansions of the log function and a linear term differ only by a
remainder term, proving the result requires assuming this remainder is non-negative, and that is why we
need an additional assumption like Theorem 3 in (Yao et al., 2025). Here are the detailed explanations.

Note that

L(Fw, g) = L(Fsw, g) + L(Fw, Fsw) + Ex ⟨Fw(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(g(x))⟩︸ ︷︷ ︸
R2

. (20)

Our goal is to prove that R2 ≥ 0. Now we use forward KL as the loss function in W2SG: fsw =
argminf∈F L(Fw, f ◦ hs). In other words, Fsw is the projection of Fw onto the convex set Vs, i.e.,
L(Fw, g) ≥ L(Fw, Fsw). Substitute it into Equation (20) and we have

R2 + L(Fsw, g) ≥ 0. (21)

2880



Again, let g = Fsw + t(F ⋆ − Fsw), t ∈ (0, 1), t → 0+. Consider ϕ(x) =
∑k

i=1 xi log xi, so
∇ϕ(x) = [log x1 + 1, · · · , log xk + 1]T . Using a similar proof technique, we can obtain R2 = O(t) and
L(Fsw, g) = O(t2). Therefore, we know that R2 ≥ 0, i.e.,

R2 = Ex

〈
Fw(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fsw + t(F ⋆ − Fsw)(x))︸ ︷︷ ︸

̸=∇ϕ(Fsw(x))−∇ϕ(F ⋆(x))

〉
≥ 0.

Consequently, even if we select g = F ⋆ in Equation (20) and obtain

L(Fw, g) = L(Fsw, g) + L(Fw, Fsw) + Ex ⟨Fw(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(F ⋆(x))⟩︸ ︷︷ ︸
R3 ̸=R2

.

Since we do not know whether R3 ≥ 0 is satisfied, we cannot directly prove the desired result. Since the
difference between R2 and R3 can be quantified using exhaustive Taylor expansion, the nature of proof is
similar to the regression analysis of W2SG (Proof of Theorem 3 from Yao et al. (2025), which introduces
an additional assumption for the remainder of Taylor expansion). However, we do not know whether the
remainder is larger than zero. In other words, to prove similar results for forward KL, we may introduce
other assumptions like Theorem 3 in Yao et al. (2025). In contrast, the success of reverse KL and squared
loss is because R3 = t ·R2. In the proof for these reverse losses, if R2 ≥ 0, then there also holds R3 ≥ 0.
The above discussion indicates that our proof framework cannot be directly extended to the forward KL
setting. We will explore how to address this limitation in future work.

Extension to reverse cross entropy loss. To extend the proof to reverse cross entropy, consider the
following theoretical result.

Corollary 2. Consider W2SG using reverse cross entropy loss:

fsw = argminf∈Fs
CE(f ◦ hs, fw ◦ hw).

Assume that the function class Fs is a convex set and ∃fs ∈ Fs such that Fs = F ⋆. Then:

CE(F ⋆, Fsw) ≤
1

2
(CE(F ⋆, Fw)−KL(Fsw, Fw)) + log k.

If we consider binary classification (such as two famous datasets in AI safety: HH-RLHF (Bai et al.,
2022a) and CAI-Harmless (Bai et al., 2022b)), then k = 2, making log k negligible due to the nature of
KL divergence KL(·, ·) ∈ [0,+∞) and cross-entropy CE(·, ·) ∈ [0,+∞). It shows that if we use reverse
cross-entropy loss in W2SG, the strong model’s performance is also probably better than weak model’s
performance, which is also validated in our experiments.

Remark. The proof also demonstrates that

CE(F ⋆, Fsw) ≤ CE(F ⋆, Fw)−KL(Fsw, Fw)− ϵ,

where ϵ = CE(F ⋆, Fsw) − log k. Due to the same reason, we expect ϵ ≥ 0, which comes to the same
conclusion.

Proof. Rewrite Equation (18) and we have

CE(g, Fw) = CE(g, Fsw) + CE(Fsw, Fw)

+ Ex (−H(Fsw(x)) + ⟨g(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩)︸ ︷︷ ︸
R′

1

. (22)

If we use reverse cross-entropy as the loss function in W2SG: fsw = argminf∈F CE(f ◦ hs, Fw). In
other words, CE(g, Fw) ≥ CE(Fsw, Fw). Let g = Fsw + t(F ⋆ − Fsw), t ∈ (0, 1), t → 0+. Substitute it
into Equation (18) and we have

R′
1 +CE(g, Fsw) ≥ 0,
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⇒ R1︸︷︷︸
O(t)

+L(g, Fsw)︸ ︷︷ ︸
O(t2)

+Ex (H(g(x))−H(Fsw(x))) ≥ 0. (23)

Note that

Ex (H(g(x))−H(Fsw(x)))

=Ex

k∑

i=1

[g(x)]i log[g(x)]i − [Fsw(x)]i log[Fsw(x)]i

=Ex

k∑

i=1

[Fsw(x)]i log[g(x)]i + t[F ⋆(x)− Fsw(x)]i log[g(x)]i − [Fsw(x)]i log[Fsw(x)]i

=Ex

k∑

i=1

[Fsw(x)]i log
[g(x)]i

[Fsw(x)]i
+ t[F ⋆(x)− Fsw(x)]i log[g(x)]i

=Ex

k∑

i=1

[Fsw(x)]i log

(
1 + t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

)
+ t[F ⋆(x)− Fsw(x)]i log[g(x)]i

=Ex

k∑

i=1

[Fsw(x)]i

(
t · [F

⋆(x)− Fsw(x)]i
[Fsw(x)]i

+O(t2)

)
+ t[F ⋆(x)− Fsw(x)]i log[g(x)]i

=Ex

k∑

i=1

t · [F ⋆(x)− Fsw(x)]i +O(t2) + t[F ⋆(x)− Fsw(x)]i log[g(x)]i

=O(t2) + t · Ex

k∑

i=1

[F ⋆(x)− Fsw(x)]i log[g(x)]i (Ex
∑k

i=1[F
⋆(x)− Fsw(x)]i = 0)

=O(t2) + t · [ExH(Fsw(x))− CE(F ⋆, Fsw)], (Definition of entropy and cross entropy)

where the last inequality is because as t → 0+, g → Fsw. Consequently, recall Equation (23), we know
that the sum of first-order terms O(t) is non-negative, i.e.,

t · [ExH(Fsw(x))− CE(F ⋆, Fsw)] +R1 ≥ 0,

which means that

ExH(Fsw(x))− CE(F ⋆, Fsw) + Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩ ≥ 0.

Let g = F ⋆ in Equation (22) and we obtain

CE(F ⋆, Fw) = CE(F ⋆, Fsw) + CE(Fsw, Fw)− ExH(Fsw(x))

+ Ex ⟨F ⋆(x)− Fsw(x),∇ϕ(Fsw(x))−∇ϕ(Fw(x))⟩
⇒CE(F ⋆, Fw) ≥ CE(F ⋆, Fsw) + CE(Fsw, Fw)− ExH(Fsw(x))

+ CE(F ⋆, Fsw)− ExH(Fsw(x))

⇒CE(F ⋆, Fw) ≥ CE(F ⋆, Fsw) + KL(Fsw, Fw) + CE(F ⋆, Fsw)− ExH(Fsw(x))

⇒CE(F ⋆, Fw) ≥ CE(F ⋆, Fsw) + KL(Fsw, Fw) + CE(F ⋆, Fsw)− log k (H(Fsw(x)) ≤ log k)

Therefore, we prove the result

CE(F ⋆, Fsw) ≤
1

2
(CE(F ⋆, Fw)−KL(Fsw, Fw)) + log k.
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B.5 Proof of Theorem 3

Proof sketch. By defining nine variables associated with given models, we substitute key components in
the proof of Theorem 2 to derive a set of inequalities among these variables. Through a series of carefully
designed transformations, we reformulate the triangle-like inequalities involving three remainder terms.
Ultimately, leveraging tools from statistical learning theory, several inequalities in information-theoretic
analysis, and the properties of specific functions, we sequentially demonstrate that these three remainder
terms become infinitesimal as n → ∞ and ϵ → 0.

Let L(·, ·) be KL(·, ·). For a clear presentation, denote

A = L(Fs, Fsw)

B = L(Fsw, Fw)

C = L(Fs, Fw)

D = L(F ⋆, Fs) = ε

E = L(F ⋆, Fsw)

F = L(F ⋆, Fw)

G = L(F ⋆, F̂sw)

H = L(F̂sw, Fsw)

I = L(F̂sw, Fw).

Now we start the proof of Theorem 3. A uniform convergence result and two claims used in the proof
are provided at the end of the proof. The proof is strongly motivated by Theorem 4 in Yao et al. (2025).
While our work primarily focuses on classification, their Theorem 4 is specifically centered on regression.

Proof. Note that by virtue of the range of f⋆, fw and all functions in F being absolutely bounded, and L
is also bounded.

Due to F ⋆ /∈ Vs, we replace F ⋆ with Fs in the final step of proof of Theorem 2, we obtain

C ≥ A+B. (24)

Recall that ⟨f, g⟩E ≜ Ex∼P [f(x)T g(x)], which is used here for a clear presentation. So we have

E = A+D − Ex

k∑

i=1

([F ⋆(x)]i − [Fs(x)]i) log
[Fsw(x)]i
[Fs(x)]i

= A+D −
〈
F ⋆ − Fs, log

Fsw

Fs

〉

E︸ ︷︷ ︸
t1

.

The log here is element-wise. Using the similar notation, we have the following

E = A+D −
〈
F ⋆ − Fs, log

Fsw

Fs

〉

E︸ ︷︷ ︸
t1

, (25)

F = C +D −
〈
F ⋆ − Fs, log

Fw

Fs

〉

E︸ ︷︷ ︸
t2

, (26)

G = E −H −
〈
F̂sw − F ⋆, log

Fsw

F̂sw

〉

E︸ ︷︷ ︸
t3

. (27)
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Combining (24) and (25), we get

E ≤ C +D −B − t1. (28)

By a uniform convergence argument (Lemma 4), we have that with probability at least 1− δ over the
draw of {(x1, y1), . . . , (xn, yn)} that were used to construct F̂sw,

I ≤ B +O
(√

CFs

n

)

︸ ︷︷ ︸
t4

+O
(√

log(1/δ)

n

)

︸ ︷︷ ︸
t5

. (29)

Combining (28) with (29) and we have

E ≤ C +D − I − t1 + t4 + t5. (30)

Combining (26) with (30) and we have

E ≤ F − I − t1 + t2 + t4 + t5. (31)

Combining (27) with (31) and we have

G ≤ F − I −H − t1 + t2 − t3 + t4 + t5. (32)

We replace F ⋆ with F̂sw in the final step of proof of Theorem 2 and obtain:

I ≥ H +B. (33)

Combining (33) with (29) and we have

0 ≤ H ≤ t4 + t5 = O
(√

CFs

n

)
+O

(√
log(1/δ)

n

)
. (34)

Combining (34) with (32) and we have

G ≤ F − I − t1 + t2 − t3 + t4 + t5. (35)

While t4 and t5 are known in (29), we analyze t1, t2 and t3 one by one.

Deal with t1. We know that

t1 =

〈
F ⋆ − Fs, log

Fsw

Fs

〉

E

.

Using the fact that Fsw(x)
Fs(x)

≤ 1
γ , we have

|t1| ≤
1

γ
Ex

k∑

i=1

|[F ⋆(x)]i − [Fs(x)]i|

=
2

γ
ExDTV(F

⋆(x), Fs(x)) (Definition of TV distance)

≤ 2

γ
Ex

√
1

2
DKL(F ⋆(x)∥Fs(x)) (Pinsker’s inequality)

≤ 2

γ

√
1

2
ExDKL(F ⋆(x)∥Fs(x)) (Jensen’s inequality)

=
2

γ

√
1

2
L(F ⋆, Fs) (Definition of L)

=
1

γ

√
2ε (36)

Therefore,

|t1| = O(
√
ε). (37)
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Deal with t2. The proof for t2 is similar for t1. In particular, replacing Fsw with Fw in the above and
we can get

|t2| = O(
√
ε). (38)

Deal with t3. We know that

t3 =

〈
F̂sw − F ⋆, log

Fsw

F̂sw

〉

E

= Ex

k∑

i=1

([F̂sw(x)]i − [F ⋆(x)]i) log
[Fsw(x)]i

[F̂sw(x)]i
.

According to Lemma 4, with probability at least 1− δ over the draw of (x1, y1), . . . , (xn, yn), we have

∣∣∣L(F̂sw, Fw)− L(Fsw, Fw)
∣∣∣ ≤ O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (39)

Notice that

H = L(Fsw, F̂sw)

= L(Fw, Fsw)− L(Fw, F̂sw) +

〈
Fw + Fsw, log

Fsw

F̂sw

〉

E

. (40)

Substitute (34) and (39) into Equation (40) with the triangle inequality for absolute values, we get

∣∣∣∣
〈
Fw + Fsw, log

Fsw

F̂sw

〉

E

∣∣∣∣ ≤ O
(√

CF
n

)
+O

(√
log(1/δ)

n

)

Since |Fw(x) + Fsw(x)| is lower bounded, we have

∣∣∣∣
〈
1⃗, log

Fsw

F̂sw

〉

E

∣∣∣∣ ≤ O
(√

CF
n

)
+O

(√
log(1/δ)

n

)
.

Since |F̂sw(x)− F ⋆(x)| is upper bounded, there holds

|t3| =
∣∣∣∣
〈
F̂sw − F ⋆, log

Fsw

F̂sw

〉

E

∣∣∣∣ ≤ O
(√

CF
n

)
+O

(√
log(1/δ)

n

)
. (41)

Therefore, combing (37), (38) and (41), we have

|t1|+ |t2|+ |t3| ≤ O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
. (42)

Finally, combing (29) and (35) with (34) and (42), we get the result:

L(F ⋆, F̂sw) ≤ L(F ⋆, Fw)− L(F̂sw, Fw) +O(
√
ε) +O

(√
CF
n

)
+O

(√
log(1/δ)

n

)
,

where in the last inequality, we instantiate asymptotics with respect to ε → 0 and n → ∞.

Here are some tools used in the above proof.
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Lemma 4 (Uniform convergence). Let (x1, y1), . . . , (xn, yn) be an i.i.d. training sample, where each
xi ∼ P and yi = Fw(xi) for a target function Fw. For a fixed strong model representation hs, we employ
reverse KL loss in W2SG:

fsw = argminf∈Fs
L(f ◦ hs, Fw) = argminf∈Fs

Ex∼P

[
k∑

i=1

[f ◦ hs(x)]i log
[f ◦ hs(x)]i
[Fw(x)]i

]
,

f̂sw = argminf∈Fs
L̂(f ◦ hs, Fw) = argminf∈Fs

1

n

n∑

j=1

[
k∑

i=1

[f ◦ hs(xj)]i log
[f ◦ hs(xj)]i
[Fw(xj)]i

]
.

Assume that the range of Fw and functions in Fs is absolutely bounded. Then, with probability at least
1− δ over the draw of (x1, y1), . . . , (xn, yn), we have

∣∣∣L(F̂sw, Fw)− L(Fsw, Fw)
∣∣∣ ≤ O

(√
CFs

n

)
+O

(√
log(1/δ)

n

)
,

where CFs is a constant capturing the complexity of the function class Fs.

Proof. The proof follows lemma 4 in Yao et al. (2025). Swap the order of the two elements in L(·, ·) and
L̂P(·, ·) in their proof and we can prove the result.

Claim 1 (Yao et al. (2025)). Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that∫
X |f(x)− g(x)| dx ≤ ξ, then there holds

∫

X
|log f(x)− log g(x)| dx ≤ 1

γ
ξ.

Claim 2 (Yao et al. (2025)). Let f(x), g(x) ∈ [γ, 1] where γ > 0. If there exists ξ > 0 such that∫
X |log f(x)− log g(x)| dx ≤ ξ, then there holds

∫

X
|f(x)− g(x)| dx ≤ ξ.

C Additional Experimental Details and Results

We first provide a detailed explanation of the evaluation metric. To determine the effectiveness of a model
F in distinguishing between the selected and rejected completions (yc and yr) for a given prompt x, we
require that F ranks the chosen completion higher than the rejected one. This condition is formulated as
F (yc)− F (yr) > 0 for each pair x̃ = (x; yc, yr), implying that F (x̃) should exceed 0.5. Consequently,
the test accuracy is defined as the fraction of instances where F (x̃) > 0.5.

C.1 Results of Pythia
The overall trends observed in Figure 4 are similar with those in Figure 2. Our analysis of the results
in Figure 4 further highlights those insights: First, the accuracy exhibits a consistent upward trend from
left to right, reinforcing the finding that the generalization capability of the strong model improves when
a more capable weak model is utilized as the supervisor. Second, the results demonstrate that in the
majority of experimental settings (7 out of 12), reverse losses outperform forward losses, leading to
stronger model performance. Given the superior capabilities of the Pythia series compared to the GPT-2
series (Biderman et al., 2023), as well as the fact that Pythia’s strong ceiling model outperforms GPT-2,
a key implication emerges. When the Pythia series serves as a weak model, it may generate less noise
on non-target labels. As a result, the potential advantages of reverse losses are diminished, leading to
only a slight improvement of reverse losses over forward losses. Finally, across almost all of the settings
(10 out of 12), the strong model trained with reverse KL and CE losses achieves superior performance
compared to its weak supervisor. This observation is in full agreement with our theoretical predictions,
further validating the effectiveness of reverse losses in enhancing model performance.
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(b) Results of Pythia-series on helpful set of HH-RLHF

Figure 4: Results of Pythia-series. “SC” denotes the strong ceiling model, and “A to B” indicates the use of weak
teacher “A” to supervise strong student “B”. The terms CE, RCE, KL, and RKL refer to cross-entropy loss, reverse
cross-entropy loss, forward KL divergence loss, and reverse KL divergence loss, respectively. Error bars represent
the standard deviation across three runs of the experiment.

C.2 Auxiliary Confidence Loss
As highlighted by Burns et al. (2023), we explore an alternative approach: introducing an additional
regularization term designed to enhance the strong model’s confidence in its predictions using standard
cross-entropy loss, which is called “Auxiliary Confidence Loss” in Burns et al. (2023):

Lconf(f) = (1− α) · CE (Fw, f ◦ hs)︸ ︷︷ ︸
vanilla cross-entropy loss

+ α · CE
(
f̂t ◦ hs, f ◦ hs

)

︸ ︷︷ ︸
R(f)

, (43)

where α is the weight constant, R(f) is the regularization term, and f̂t corresponds to hardened strong
model predictions using a threshold t, i.e., for any x:

f̂t ◦ hs(x) = I(f ◦ hs(x) > t) ∈ {0, 1},

where I(·) is the indicator function. Rewrite Equation (43) as the minimization objective in W2SG:

fsw = argminf∈Fs
Lconf(f). (44)

As advocated by Burns et al. (2023), this regularization serves to mitigate overfitting to weak supervision,
thereby improving the overall performance of the strong model. Therefore, to further explore the advantage
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of reverse cross-entropy loss, we replace the vanilla cross-entropy with reverse cross-entropy in Lconf(f)
and conduct W2SG using the following objective:

f r
sw = argminf∈Fs

Lr
conf(f)

= argminf∈Fs
(1− α) · CE (f ◦ hs, Fw)︸ ︷︷ ︸

reverse cross-entropy loss

+ α ·R(f). (45)

We set α = 0.2 to ensure that the reverse/forward CE loss dominates the regularization, because we
use a small batch size here and we want to reduce the negative impact of the randomness and instability
brought by the auxiliary confidence loss within a single batch. The experimental comparison between fsw
and f r

sw is presented in Figure 3. First, by combining the observations from Figure 2 and Figure 3, we
observe that the application of auxiliary confidence loss slightly enhances the performance of the strong
model, consistent with the findings of Burns et al. (2023). Second, the use of reverse cross-entropy loss
consistently enables the strong model to outperform its counterpart trained with standard cross-entropy
loss. This finding, combined with previous experimental results in this work, highlights the superior
effectiveness of reverse losses compared to forward losses.
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