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Abstract
Multimodal Continual Instruction Tuning
(MCIT) empowers Multimodal Large Lan-
guage Models (MLLMs) to adapt to ever-
evolving requirements without continuous
costly retraining. However, MCIT faces chal-
lenges in mitigating Catastrophic Forgetting
(CF) and enhancing Knowledge Transfer (KT).
Existing works combine Mixture-of-Expert
(MoE) and LoRA to address these. However,
using a fixed number of shared LoRA blocks
across tasks can lead to the overwriting of ac-
quired knowledge, making MLLMs harder to
handle CF and KT. Therefore, we propose the
Progressive LoRA framework (ProgLoRA),
which contains a progressive LoRA pool and
trains a new LoRA block for each incremental
task to reduce knowledge interference. Specif-
ically, ProgLoRA has two key mechanisms:
task-aware allocation for effectively leveraging
acquired knowledge at current task and task re-
call for realigning the model with learned tasks.
Additionally, considering different application
scenarios, we design a static ProgLoRA for
the more idealized basic setting and a dynamic
ProgLoRA for the more realistic challenging
setting. Experiments on the latest MCIT bench-
mark demonstrate that ProgLoRA outperforms
existing approaches.1

1 Introduction

Multimodal Large Language Models (MLLMs)
(Zheng et al., 2024b; Dai et al., 2023) have demon-
strated remarkable capabilities across a wide range
of vision-language tasks (Mishra et al., 2019; Goyal
et al., 2017), showcasing their potential to handle
diverse scenarios. To support joint training across
multiple tasks, instruction tuning (Liu et al., 2023a;
Shen et al., 2024) is commonly used. In real-world
applications, MLLMs are often required to contin-
uously follow new instructions to keep pace with

*Corresponding author.
1Our code is available at https://github.com/ku-nlp/

ProgLoRA.
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Figure 1: A comparison between MoELoRA and our
ProgLoRA. In LoRA blocks, higher transparency repre-
sents a lower allocation weight. MoELoRA updates the
same set of blocks and allocates them by a simple router.
In contrast, ProgLoRA updates only newly added block
in current task and assigns blocks by task relevance.

advancing knowledge. Despite this demand, most
existing MLLMs are static, restricting their ability
to address emerging tasks. Considering the compu-
tation cost and efficiency, retraining MLLMs from
scratch for every new instruction is impractical.
Therefore, existing works (Zheng et al., 2024a) con-
ceptualize this challenge within Multimodal Con-
tinual Instruction Tuning (MCIT) (He et al., 2023),
which is designed to incrementally instruction-tune
MLLMs while maintaining high performance on
previously tuned tasks.

However, MCIT faces two challenges: mitigat-
ing Catastrophic Forgetting (CF), which involves
preserving the model’s previously acquired knowl-
edge after learning new tasks; enhancing knowl-
edge transfer (KT), which encourages models to
leverage acquired knowledge to improve the learn-
ing of new tasks. To address this challenge, the
Mixture-of-Experts LoRA (MoELoRA) (Liu et al.,
2023b; Chen et al., 2024) leverages a set of special-
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ized LoRA blocks designed to capture task-specific
knowledge from sequential tasks. Nevertheless, a
limitation is that MoELoRA shares the same set
of LoRA blocks across different tasks as shown
in Fig. 1 (a). As a result, acquired task-specific
knowledge is easily overwritten by the knowledge
of subsequent incremental tasks, which is more
challenging to mitigate CF and enhance KT.

To further mitigate CF and enhance KT,
we propose the Progressive LoRA framework
(ProgLoRA). To prevent the disruption of ac-
quired knowledge due to model parameter updates,
ProgLoRA incorporates a progressive LoRA pool
with multiple LoRA blocks. As shown in Fig. 1
(b), in each incremental step, a newly added LoRA
block is trained to capture task-specific knowledge,
while all previously tuned LoRA blocks are frozen.
ProgLoRA isolates task-specific knowledge in in-
dependent LoRA blocks, preventing overwriting
during updates. Meanwhile, frozen blocks still
contribute to the training of other tasks. Specifi-
cally, ProgLoRA comprises two main components:
task-aware allocation and task recall. Even if the
acquired knowledge within the LoRA pool origi-
nates from tasks entirely unrelated to the current
one, it may still enhance the learning of the current
task. Therefore, we propose task-aware allocation,
encouraging the model to effectively select and
fuse LoRA blocks. Additionally, since the model
contains trainable parameters beyond the LoRA
pool, we introduce task recall to align with previ-
ous tasks, aiming to mitigate CF.

Considering different application backgrounds,
we propose two kinds of implementations:
ProgLoRA (static) for the ideal basic setting and
ProgLoRA (dynamic) for a practical, challeng-
ing setting. The basic setting can assess task in-
formation associated with the input sample dur-
ing training and testing stages, while challenging
setting can only assess during training. Thus, in
ProgLoRA (static), we propose static allocation
weights in task-aware allocation and simple replay
in task recall, which are both based on precom-
puted task similarity scores. In ProgLoRA (dy-
namic), as for the task-aware allocation, we assign
a key to each LoRA block and calculate dynamic
allocation weights with LoRA keys for adaptively
fusing LoRA blocks. For the task recall, we apply a
Kullback-Leibler (KL) divergence loss to constrain
the allocation weights of previous samples in the
current step more similar to the ones in previous
steps, where the previous samples are the same set

as in the ones of ProgLoRA (static).
Our contributions can be summarized as follows:

1. We propose ProgLoRA, where knowledge
from different tasks is stored in separate LoRA
blocks, thereby minimizing task interference.

2. We design the task-aware allocation to select
and fuse LoRA blocks, aiming to enhance
KT by effectively using acquired knowledge.
We also propose the task recall to constrain
the model updating and further mitigate CF.
Considering basic and challenging settings,
we design ProgLoRA (static) and ProgLoRA
(dynamic), respectively.

3. Comprehensive experiments on LLaVA-1.5
using the latest MCIT benchmark demonstrate
that ProgLoRA outperforms MoELoRA.

2 Related Works

2.1 MLLMs

MLLMs extend LLMs’ (Chung et al., 2022; Bai
et al., 2023; Touvron et al., 2023; Li et al., 2025)
capabilities to process visual and textual inputs.
By combining the advanced reasoning skills of
LLMs with rich visual representations from vi-
sual backbones, MLLMs achieve refined multi-
modal reasoning and deep content understanding
abilities (Zhang et al., 2024; Zhao et al., 2025b,a).
LLaVA (Liu et al., 2023a), NExT-GPT (Wu et al.,
2023), and MiniGPT-v2 (Chen et al., 2023) adopt
a linear projection layer to connect a frozen LLM
with a visual encoder for multimodal alignment.
Meanwhile, models like InstructBLIP (Dai et al.,
2023) and BLIP-2 (Li et al., 2023) trained the
Q-Former projector to bridge the gap between
modalities. Additionally, instruction tuning is lever-
aged to make models follow human instructions.
These developments highlight the rapid evolution
of MLLMs in addressing reasoning and compre-
hension tasks across modalities.

2.2 MCIT

MLLMs are necessary to be continuously updated
to equip new abilities and keep pace with the
rapidly evolving landscape of human knowledge
(Wu et al., 2024b; Zheng et al., 2024b; Shi et al.,
2024). To solve this, MCIT has emerged as a key
solution, enabling models to integrate new data
incrementally without the expensive process of re-
training from scratch. Recent efforts have intro-
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duced new MCIT benchmarks designed to incre-
mentally fine-tune MLLMs on multiple tasks (He
et al., 2023; Chen et al., 2024). Facing the major ob-
stacle of mitigating CF and enhancing KT, where
knowledge from earlier tasks interrupts with the
new ones, some methods such as MoELoRA have
been proposed. These methods aim to preserve
instruction alignment across tasks by aggregating
LoRA experts (Chen et al., 2024). Despite these
efforts, such methods often fall short, as the shared
expert design can result in knowledge interference,
ultimately degrading model performance over time.

3 Preliminary

3.1 Problem Definition

Continual learning (Rypeść et al., 2024; Zhang
et al., 2023; Zheng et al., 2025; Dong et al., 2022,
2024) aims to tackle challenges from sequentially
evolving tasks, avoiding the high cost of full re-
training. MCIT (Chen et al., 2024) is one of the
continual learning approaches that allows MLLMs
to adapt to new datasets in a step-by-step sequence
through instruction tuning. The goal of MCIT is
to sequentially train a model M on the stream of
tasks while ensuring strong performance across all
previously encountered tasks. The problem is struc-
tured as a sequential stream of tasks, represented
as {T1, T2, ..., TN}, where N represents the total
number of tasks. Each task Ti is associated with its
own dataset Di. Notably, datasets from different
tasks are diverse and cover knowledge from multi-
ple domains without restriction. In each dataset Di,
it consists of Mi data pairs (Xv

i,j , X
q
i,j , X

a
i,j)

Mi
j=1,

where Xv, Xq and Xa denote image tokens, in-
struction tokens, and answer tokens, respectively.

3.2 LoRA

LoRA (Hu et al., 2022; Wu et al., 2024a; Wang
et al., 2023, 2024a,b) is a parameter-efficient fine-
tuning technique designed to adapt pre-trained
LLMs to new tasks without modifying full set of
parameters. Given an intermediate representation
x from preceding attention layer, the forward pass
in LLMs is defined as:

h = Wx +
ω

r
BAx, (1)

where W → Rdin→dout denotes pre-trained weight in
LLMs, A → Rr→dout and B → Rdin→r denote train-
able low-rank matrices with rank r, and ω denotes
hyperparameter to finetune effect of r.

In MCIT, Chen et al. (2024) adopt the
MoELoRA (Dou et al., 2023; Liu et al., 2023b)
to mitigate CF, utilizing a set of specialized experts
to capture task-specific knowledge with a fixed
expert pool {E1(·), E2(·), ..., EK(·)} and a router
R(·) (Fedus et al., 2022; Zhu et al., 2024). The
MoELoRA layer computes output as follows:

h = WF x +
ω

r

∑
R(x)[k]Ek(x)

R(x) = Softmax(WRx[0]), Ek(x) = BkAkx
(2)

where WF → Rdin→dout denotes parameters of the
FF layer. The model employs K experts and each
is characterized by two trainable low-rank matrices,
Ak → Rdin→ r

K and Bk → R
r
K
→dout . These matrices

are with a reduced rank of r
K , ensuring that overall

trainable parameters remains equivalent to a single
LoRA setup, thereby maintaining computational
efficiency. Meanwhile, R(·) takes the first token
of x as input and uses trainable WR → Rdin→K to
generate a probability distribution of each expert.

4 Approach

4.1 Overview

Our ProgLoRA, as shown in Fig. 2, is a novel
framework to address CF and KT in a progres-
sive and task-aware manner. We set a progressive
LoRA pool {BLK1, BLK2, ..., BLKN}, where
BLKi(x) = BAx represents i-th LoRA block.
ProgLoRA comprises two components:

Task-aware Allocation The LoRA blocks
BLKp trained on previous tasks Tp (p → [1, i)) are
frozen during the training of the current task Ti to
preserve the acquired knowledge. This knowledge,
even though it comes from different tasks than the
current one, can also be effectively utilized to pro-
mote KT. Thus, we design allocation weights w to
select and fuse LoRA blocks in LoRA pool, where
each block stores task-specific knowledge.

Task Recall Freezing previous BLKp intu-
itively mitigates CF. However, MLLMs often
include other trainable components (e.g., cross-
modal projection layers) that remain active across
tasks, which creates a vulnerability of CF. Thus,
we introduce task recall.

Specifically, our method has two versions: (1)
For the basic setting, where task information (i.e.,
task ID i) is available during training and testing,
we propose ProgLoRA (static) in Fig. 2 (a) with
fixed allocation weights. (2) For the challenging
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Figure 2: The overall structure of ProgLoRA. Considering different application scenarios, our method has two
versions: ProgLoRA (static) in (a) for basic setting and ProgLoRA (dynamic) in (b) for more challenging setting.

setting, where task ID is only available during train-
ing, we introduce ProgLoRA (dynamic) in Fig. 2
(b), which enables the adaptive allocation of LoRA
blocks.

4.2 ProgLoRA (static)

The basic setting represents an idealized scenario.
In this context, our goal is to leverage a lightweight
model.

Task-aware Allocation Prior works (Nikandrou
et al., 2022) have optimized continual learning
methods by leveraging similarity between Tp and
Ti. Higher similarity facilitates the retention of
acquired knowledge from Tp while enabling effi-
cient learning of new knowledge in Ti. Inspired
by these, we propose static allocation weights ws

based on task similarity. When the similarity be-
tween Tp and Ti is higher, the weight ws

p,i assigned
to BLKp increases. The formulas are as follows:

εBLKs
i

= ws
i,iεBLKi +

i↑1∑

p=1

ws
p,iεBLKp

ws
p,i = ϑ(ev

p, e
v
i ) · ϑ(eq

p, e
q
i ) · ϑ(ea

p, e
a
i )

, (3)

where ϑ denotes cosine similarity measure, ε de-
notes the parameters, BLKs

i denotes the fused
LoRA block. ev

i , eq
i and ea

i denote pre-computed
average image, instruction and answer embeddings
of Di. Note that ws

i,i = 1. The training loss for

allocation in Ti is:

Ls
A,i = ↑

M train
i∑

j

logP (Xa
i,j |Xv

i,j , X
q
i,j ; εBLKs

i
, εMi),

(4)
where εMi denotes parameters of MLLM back-
bone. This static method ensures that more relevant
acquired knowledge is better leveraged to facilitate
the learning of new knowledge.

Task Recall Given that ProgLoRA (static) main-
tains its simplicity by not introducing any addi-
tional trainable parameters beyond the LoRA pool,
we propose a replay-based task recall to keep this
resource-efficient way. This approach leverages a
small amount of replayed data from Tp based on
task similarity to align the model. Specifically, we
replay (1 ↑ ws

p,i)ϖ samples from Tp when learning
Ti, where ϖ denotes base value of replay samples.
Tp that is less similar to Ti will have more replay
samples, thereby enhancing the recall of acquired
knowledge. The training loss Ls

R,i for task recall in
Ti is the same as the calculation process in Eq. (4),
while the input data is the replay ones.

The final loss is defined as Ls
i = Ls

A,i + ϱLs
R,i,

where ϱ is the loss coefficient. During the infer-
ence phase, for a test sample originating from Ti,
we directly execute using the fused LoRA block
BLKs

i .
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4.3 ProgLoRA (dynamic)

In challenging settings where task IDs are unavail-
able during the testing phase, it becomes neces-
sary to incorporate a mechanism within the model
that can adaptively allocate and fuse LoRA blocks.
Therefore, we propose ProLoRA (dynamic) to ex-
tend the static method.

Task-aware Allocation We design dynamic al-
location weights to fuse LoRA blocks. Specifi-
cally, at the training stage of Ti, a key vector keyn

is assigned to each LoRA block BLKn (n → [1, i]),
and instance-level weights are computed. This en-
sures that the allocation process is block-agnostic
and can be compatible with various adaptation tech-
niques (e.g., LoRA). The dynamic allocation pro-
cess begins when the Xq

i,j is passed through layers
preceding the LoRA pool of the LLM backbone
and obtains embeddings xq

i,j . For better alignment
with the key vector spaces, we first fed xq

i,j into a
projector Proji (we omit the q and j for simplic-
ity):

hi = LN(W2ς(W1xi[max] + b1) + b2), (5)

where W1 → Rdp→din and W2 → Rdin→dp de-
note trainable parameters, b1 and b2 denote bias,
ς(·) and LN(·) denote SiLU function and Layer
Norm to ensure the reliability of the training pro-
cess. Note that max-pool operation is applied to xi

along the token length dimension to align it with
the dimension of the keyn → Rdin . Then, dynamic
allocation weights wd

n,i is processed with aligned
hi as:

wd
n,i = Softmax(hikeyn/ωtem), (6)

where ωtem represents a temperature factor to con-
strain the confidence of wd

n,i, which makes the
model less sensitive to small differences and leads
to more balanced weight distributions to improve
robustness. Similar to Eq. (3), the LoRA blocks
are fused to BLKd

i as follows:

εBLKd
i

=

i∑

n=1

wd
n,iεBLKn (7)

To update the model, the calculation of training
loss Ld

A,i is similar to that of Ls
A,i in Eq. (4), but it

incorporates εBLKd
i

, εkey, εProji , and εMi into the
optimization process.

Task Recall As tasks are sequentially trained,
the Proj in Eq. (5) is updated continuously. To

ensure that inputs from Tp still accurately per-
form the dynamic allocation weights and identify
the specific fusion of LoRA blocks, we introduce
the KL-divergence-based task recall. This is
achieved by using samples from Tp; however, un-
like in ProgLoRA (static), we don’t perform full
LLM replay on these samples. Instead, they are
solely used to generate pseudo dynamic allocation
weights ŵd for the recall of Proji at the training
of Ti. To help Proji accurately recall the correct
wd

p = {wd
1,p, ..., w

d
p,p} for samples Tp, each previ-

ous sample is fed into layers in Eq. (5) and (6) to
get ŵd

i = {ŵd
1,i, ..., ŵ

d
i,i} at the training of Ti. To

ensure that ŵd
i aligns with its intended value wd

p ,
we minimize the recall loss Ld

R,i:

Ld
R,i =

i↑1∑

p=1

Nrecall
p∑

KL(ŵd
i ||wd

p), (8)

where N recall
p denotes the number of samples from

Tp and is kept consistent with the replay sample
size used in the ProgLoRA (static). KL(·) denotes
a KL divergence loss. Note that wd

p are padded
with zeros to match the sequence length of ŵd

i .
Finally, we also optimize the model in a multi-

task learning manner:

Ld
i = Ld

A,i + ϱLd
R,i (9)

During the inference phase, we dynamically al-
locate all available LoRA blocks to the testing sam-
ples in an adaptive manner by Eq. (5)-(7).

5 Experimental Settings

5.1 Datasets

We follow the setup outlined in the MCIT bench-
mark, CoIN (Chen et al., 2024), which includes
8 multimodal datasets covering a diverse range
of tasks. Datasets in CoIN benchmark are: (Lu
et al., 2022), TextVQA (Singh et al., 2019), Im-
ageNet (Deng et al., 2009), GQA (Hudson and
Manning, 2019), VizWiz (Gurari et al., 2018),
Grounding (Kazemzadeh et al., 2014; Mao et al.,
2016), VQAv2 (Goyal et al., 2017), and OCR-VQA
(Mishra et al., 2019). The datasets are processed in
the same sequential order as experiments in Chen
et al. (2024). Detailed statistics for the 8 datasets
in the CoIN benchmark (Chen et al., 2024) are
presented in Appendix A.

2783



Method
Accuracy on Each Task Overall Results

ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA ACC↓ MAA↓ BWT↓ FWT↓
Zero-shot 49.91 2.88 0.33 2.08 0.90 0.00 0.68 0.17 – 7.12 – –

Multi-task 56.77 49.35 95.55 56.65 53.90 30.09 59.50 55.65 – 57.18 – –

LoRA
82.45 49.99 96.05 56.40 55.45 31.27 62.20 57.08

21.26 28.74 10.25 36.78 32.45 0.83 42.50 57.08
28.74 32.97 -32.62 -4.82

LwF↓ 81.36 50.59 96.84 51.98 48.19 25.13 41.30 64.12

26.78 37.52 12.64 35.18 25.24 2.87 38.92 64.12
30.41 34.95 -27.03 -8.75

EWC↓ 82.81 51.76 96.80 46.19 48.68 26.82 66.37 63.46

30.33 36.08 11.62 35.75 37.50 3.48 44.98 63.46
32.90 36.93 -27.46 -5.81

MoELoRA
75.78 51.73 96.70 59.42 58.88 37.50 64.22 60.08

63.09 38.63 10.50 37.38 43.62 0.59 43.15 60.08
37.13 42.76 -25.91 -4.01

ProgLoRA (dynamic)
76.27 60.78 97.32 61.27 60.16 39.35 65.83 64.44
74.84 51.83 83.90 49.93 53.87 31.19 62.71 64.44

59.09 62.38 -6.59 1.37

Table 1: Main results on the LLaVA-1.5-7B model. For accuracy of each task of MCIT methods, the first row denotes
the results for each task evaluated after its tuning (i.e., Pi,i (i → [1, N ])) with the best performance highlighted in
red, while the second row shows each task’s results after tuning the final task (i.e., PN,i) with the best ones in blue.
For overall results, the bold highlights the best performance. ↔ represents results from our re-implementation, while
others are cited from CoIN (Chen et al., 2024).

5.2 Compared Methods

We compare ProgLoRA with zero-shot, multi-
task and MCIT methods (LoRA (Hu et al., 2022),
MoELoRA (Chen et al., 2024), LwF (Li and
Hoiem, 2017), and EWC (Kirkpatrick et al., 2017)).
Details are shown in Appendix B.

5.3 Evaluation Metrics

For metrics, we use Average Accuracy (ACC),
Mean Average Accuracy (MAA), Backward Trans-
fer (BWT), and Forward Transfer (FWT). ACC =
1
N

∑N
i=1 PN,i, where PN,i is the performance on

i-th task after training the final task TN . MAA =
1
N

∑N
i=1(

1
i

∑i
k=1 Pi,k), where Pi,k is the per-

formance on Tk after training Ti. BWT =
1
N

∑N
i=1(PN,i ↑ Pi,i), where Pi,i is the perfor-

mance on Ti after training on Ti. FWT =
1
N

∑N
i=1(Pi,i↑P0,i), where P0,i represents the per-

formance of training Ti in isolation. Among these
metrics, ACC reflects the model’s ability to pro-
mote KT, MAA measures accuracy across all tasks
to focus on stability, BWT assesses the model’s
capacity to mitigate CF, and FWT measures the
model’s capacity to enhance KT. More details are
shown in Appendices C.

5.4 Implementation

We also follow the same implementation settings as
Chen et al. (2024) and utilize LLaVA-1.5-7B (Liu
et al., 2023a) as the backbone. For all the experi-
ments, LoRA (Hu et al., 2022) is integrated into the
LLMs. The vision encoder and LLM remain frozen,

while only the projection layer and LoRA are up-
dated. For a fair comparison, for a single LoRA
block in ProgLoRA, rank r is set to 16, ω is kept
consistent with MoELoRA, with the base value of
replay amount ϖ set to 200 and loss coefficient ϱ
set to 2.0. For the calculation of task similarity,
ev

i , eq
i and ea

i denote pre-computed average image,
instruction and answer embeddings of Di, respec-
tively. These embeddings are obtained using BERT
(Kenton and Toutanova, 2019) to encode texts and
ViT (Dosovitskiy et al., 2020) to encode images.
All experiments are conducted on 4 NVIDIA A100
GPUs, each with 80GB of memory.

6 Results and Analysis

6.1 Main Results

Results are summarized in Table 1. Considering
that MCIT baselines don’t require task informa-
tion during testing, we compare only ProgLoRA
(dynamic) with them. For the overall results, our
method significantly outperforms all baselines,
which illustrates the designed task-aware allocation
and task recall can solve problems of CF and KT.
For accuracy on each task, our method consistently
achieves the best performance on both Pi,i and
PN,i, where Pi,i denotes performance on Ti after
its tuning and PN,i denotes performance on Ti after
tuning on the last task TN . Meanwhile, it’s worth
noting that while baselines may perform better on
Pi,i, this doesn’t indicate a weakness in ProgLoRA.
This is because the overall r of ProgLoRA is al-
ways less than the baselines before training the last
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Method
Accuracy on Each Task Overall Results

ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA ACC↓ MAA↓ BWT↓ FWT↓

ProgLoRA (static)
76.27 60.07 92.65 58.45 57.33 17.68 64.45 63.54

72.70 57.08 91.20 53.12 56.04 12.54 63.64 63.54
58.73 66.44 -2.57 1.06

ProgLoRA (dynamic)
76.27 60.78 97.32 61.27 60.16 39.35 65.83 64.44
74.84 51.83 83.90 49.93 53.87 31.19 62.71 64.44

59.09 62.38 -6.59 1.37

Table 2: Comparision of ProgLoRA (static) and ProgLoRA (dynamic) on LLaVA-1.5-7B. Meaning of the highlight
marker is the same as in Table 1.

Figure 3: Step-wise comparison of ProgLoRA (dynamic) with different (a) replay amount, (b) model scale, and (c)
LoRA rank.

Variant ACC↓ MAA↓ BWT↓ FWT↓
ProgLoRA (static) 58.73 66.44 -2.57 1.06

w/ allocation weight ws = 1 54.60 63.43 -2.62 0.83
w/o task recall 56.06 65.06 -4.84 0.90
w/ random task recall 57.62 66.00 -2.76 0.97

ProgLoRA (dynamic) 59.09 62.38 -6.59 1.37
w/o task recall 57.52 62.12 -8.07 1.08

Table 3: The ablation study of ProgLoRA on the LLaVA-
1.5-7B backbone. Bold highlights the best performance.

task, making the slightly lower results reasonable.
We also observed that ProgLoRA (dynamic) out-
performed the multi-task setting in terms of MAA,
demonstrating that our method effectively facili-
tates knowledge transfer.

We also compare the ProgLoRA (static) results
separately with the dynamic ones to demonstrate
the impact of different allocation and recall strate-
gies within the same progressive LoRA pool, which
is shown in Table 2. ProgLoRA (static) achieves
higher MAA, BWT and most PN,i, demonstrat-
ing its advantage in mitigating CF. We think that
it operates under idealized setting, where pre-
determined allocation weights are applied in the
testing stage based on known task details. As a
result, its performance after tuning different tasks
remains stable. Additionally, for each task, the
higher Pi,i and FWT only occur with ProgLoRA
(dynamic), for the reason that ProgLoRA (static)
is lack of flexibility, highlighting the advantages

of dynamic task allocation in improving KT.

6.2 Ablation Study

As shown in Table 3, we analyzed each compo-
nent. For ProgLoRA (static), KT is hindered when
setting ws = 1, indicating the necessity of lever-
aging task similarity for LoRA block allocation
when the allocation weight is fixed. Additionally,
removing task recall or replacing it with random
sampling of ϖ samples from each previous task
increases CF, highlighting the importance of task
recall. For ProgLoRA (dynamic), removing task
recall leads to a significantly greater occurrence of
CF, underscoring the critical role of this component
in enabling adaptive LoRA block allocation.

6.3 More Explorations

Effect of Replay Amount We show the step-
wise results on ProgLoRA (dynamic) with differ-
ent replay amount ϖ after training on the final
task (OCR-VQA) in Fig. 3 (a), where the back-
bone is LLaVA-1.5-7B. More results are shown
in Appendix F. The results showed a very slight
improvement with the increase in ϖ, but it can be
observed that tasks later in the task sequence (such
as OCR-VQA) are slightly affected as the ϖ in-
creases. Meanwhile, it’s preferable to use as little
replay data as possible, because storing and replay-
ing large amounts of data can be computationally
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User:
Select the better answer.
Which property do these two objects have in 
common?
A. sour
B. blue
Answer with the option's letter from the given 
choices directly.

MoELoRA: B ProgLoRA (static): A ProgLoRA (dynamic): A✓ ✓✘

(a) Example from ScienceQA (b) Example from OCR-VQA

User:
Fish live underwater. They have fins, not limbs. Fish 
are cold-blooded. The body temperature of cold-blooded 
animals depends on their environment. A Banggai 
cardinalfish is an example of a fish. Select the fish 
below.
A. water buffalo
B. poison dart frog
C. great white shark
D. penguin
Answer with the option's letter from 
the given choices directly.

MoELoRA: A

ProgLoRA (static): A

ProgLoRA (dynamic): D

✘
✘

User:
Who wrote this book?
When the provided information is insufficient, 
respond with 'Unanswerable’.
Answer each question using a single word or phrase.

MoELoRA: BSAVA
ProgLoRA (static): Ian Ramsey

ProgLoRA (dynamic): Ian Ramsey ✓✓
✘

User:
Is this book related to Children's Books?
When the provided information is insufficient, 
respond with 'Unanswerable’.
Answer each question using a single word or phrase.

MoELoRA: No
ProgLoRA (static): No

ProgLoRA (dynamic): Yes✓
✘
✘

✘

Figure 4: Comparison between MoELoRA and ProgLoRA on cases after training on the final task.

Figure 5: Visualization of allocation weights in
ProgLoRA (dynamic).

expensive and time-consuming in real-world sce-
narios. Therefore, ϖ = 200 is appropriate.

Effect of Model Scale We choose LLaVA-1.5-
13B as the new backbone to evaluate ProgLoRA
(dynamic). We show the step-wise results after
training on the final task in Fig. 3 (b). We observed
that larger models tend to offer better capabilities
for mitigating CF and promoting KT. We analyse
the reason that, with an increase in model size,
the model retains a larger optimization space for
learning more new knowledge.

Effect of LoRA Settings We investigate the in-
fluence of LoRA rank r. Step-wise results on
ProgLoRA (dynamic) after training on the final
task are provided in Fig. 3 (c), where MLLM back-
bone is LLaVA-1.5-7B. More results are shown in
Appendix G. We observed that performance im-
proves as r increases, demonstrating that more
trainable parameters enhances model’s ability to
acquire new multimodal knowledge. Additionally,

CF also decreases, because the additional parame-
ters provide the model with sufficient optimization
space to learn more multimodal knowledge.

We also conduct further explorations, including
results on Other MLLM Backbone (Appendix D),
analysing the effect of Task Order (Appendix H),
effect of Instruction Diversity (Appendix I), and
discussion on Efficiency (Appendix J).

6.4 Visualization of Allocation Weights

We show the allocation weights on ProgLoRA (dy-
namic) after completing the final task in Fig. 5,
where MLLM backbone is LLaVA-1.5-7B. We ob-
serve that task-specific LoRA block associated with
the input samples occupies the largest proportion.
This demonstrates that our designed Task-aware
Allocation can automatically identify the most rel-
evant task-specific knowledge. Compared to static
weights provided in Appendix K, the partial con-
sistency between dynamic weights and their corre-
sponding parts proves that task similarity is effec-
tive in improving the performance of MCIT, but it
cannot be fully relied upon. Designing dynamic
allocation weights is necessary.

6.5 Case Study

We provide some case studies in Fig. 4. For the top
case of Fig. 4 (a), after fine-tuning the final task,
ProgLoRA still provides the correct answer for the
first task, while MoELoRA doesn’t. This highlights
ProgLoRA’s advantage to mitigate CF. At the same
time, we also demonstrate potential weaknesses in
ProgLoRA’s reasoning capability. For the bottom
case of Fig. 4 (a), we present a failed case where
ProgLoRA provides an incorrect answer when han-
dling scenarios with extensive contextual informa-
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tion and complex options. Similarly, for the top
case of Fig. 4 (b), ProgLoRA successfully gener-
ates the correct answer for the final task, whereas
MoELoRA fails to do so, demonstrating the edge
of ProgLoRA in leveraging acquired knowledge to
promote KT. The bottom one shows a failed case of
ProgLoRA (static), illustrating limitations of static
method when dealing with obscure information.
More case studies are shown in Appendix L.

7 Conclusion

In this paper, we proposed ProgLoRA with a pro-
gressive LoRA pool that mitigates task interference
by isolating knowledge in separate LoRA blocks.
We design task-aware allocation and task recall to
mitigate CF and promote KT. Experiments show
that ProgLoRA outperforms MoELoRA and LoRA
across two MLLM backbones on CoIN benchmark,
offering a more efficient and stable MCIT approach.
Future work could explore how to achieve a pro-
gressive LoRA pool with fewer parameters.
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Limitations

While ProgLoRA offers significant improvements
in mitigating catastrophic forgetting and enhancing
knowledge transfer, it does have certain limitations.
First, our work was confined to the CoIN bench-
mark. To further validate the effectiveness of MCIT
methods, future work could focus on creating more
comprehensive and challenging benchmarks that
encompass a wider array of tasks and domains.

Secondly, our method is influenced by the task
order to some extent. We believe that maintaining
robustness across different task orders is a valuable
research direction. For instance, further enhancing
the ability to transfer knowledge could allow the
model to not only learn new knowledge but also re-
visit and fill gaps in previously learned knowledge.

Finally, We have considered that the total param-
eters of the model will increase as new tasks are
added. Since the additional parameters introduced
by our method at each task come from one LoRA
block, which is small compared to the total number
of model parameters, the impact of the increasing
number of tasks on the model’s parameter size can

be neglected in our work. Thus, currently, we are
primarily focused on how to best mitigate forget-
ting and promote knowledge transfer within a task
sequence of a certain length for MLLM. For future
work, this is an important and interesting direction
to explore how to achieve a more efficient MCIT
model in the context of an infinite number of new
tasks. Some methods, like the fusion of similar
block fusion and block pruning, can be used to
address this problem.
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Task Dataset Instruction Train
Number

Test
Number

Grounding
RefCOCO
RefCOCO+
RefCOCOg

Please provide the bounding
box coordinate of the region

this sentence describes: <description>
55k 31k

Classification ImageNet
What is the object in the image?

Answer the question using a
single word or phrase

129k 5k

Image Question Answering (IQA) VQAv2
Answer the question using a

single word or phrase
82k 107k

Knowledge Grounded IQA ScienceQA
Answer with the option’s letter
from the given choices directly

12k 4k

Reading Comprehension IQA TextVQA
Answer the question using a

single word or phrase
34k 5k

Visual Reasoning IQA GQA
Answer the question using a

single word or phrase
72k 1k

Blind People IQA VizWiz
Answer the question using a

single word or phrase
20k 8k

OCR IQA OCR-VQA
Answer the question using a

single word or phrase
165k 100k

Table 4: The statistic of multimodal datasets in CoIN (Chen et al., 2024).

Method
Accuracy on Each Task Overall Results

ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA ACC↓ MAA↓ BWT↓ FWT↓
Zero-shot 64.56 48.15 11.82 44.50 9.57 0.00 64.10 27.50 33.78 – – –

LoRA
67.69 66.36 53.70 59.30 36.38 63.10 71.00 47.80

31.05 42.45 29.57 55.57 15.30 40.33 67.75 47.80
41.23 43.35 -16.94 -2.87

MoELoRA↓ 73.99 50.91 29.84 60.03 39.44 3.93 73.44 55.10

54.66 48.82 29.15 56.31 35.97 1.30 55.33 55.10
42.08 46.83 -6.26 -1.15

ProgLoRA (dynamic)
68.33 56.17 31.98 57.38 40.63 8.46 68.78 57.13
68.07 53.08 30.22 53.16 45.22 1.26 68.58 57.13

47.09 52.07 -1.51 0.23

Table 5: Main results on Qwen-VL model. For accuracy of each task of MCIT methods, the first row denotes the
results for each task evaluated after its tuning (i.e., Pi,i (i → [1, N ])) with the best performance highlighted in red,
while the second row shows each task’s results after tuning the final task (i.e., PN,i) with the best ones in blue. For
overall results, the bold highlights the best performance. ↔ represents results from our re-implementation, while
others are cited from CoIN (Chen et al., 2024).

A Datasets

Detailed statistics for the 8 datasets in the CoIN
benchmark (Chen et al., 2024) are presented in
Table 4.

B Compared Methods

We evaluate the ProgLoRA by comparing with
these methods: (1) Zero-shot: Evaluating each task
directly using pre-trained MLLMs without any fine-
tuning; (2) LoRA (Hu et al., 2022): Sequentially
updating knowledge through two low-rank matrices
while keeping the pre-trained MLLM parameters
intact; (3) MoELoRA (Chen et al., 2024): Lever-
aging multiple independent yet identical LoRA
blocks to capture task-specific knowledge across

sequential tasks, achieving state-of-the-art perfor-
mance on the CoIN benchmark; (4) LwF (Li and
Hoiem, 2017): Restricting the shared representa-
tion layer to remain close to its original state be-
fore acquiring the new task; (5) EWC (Kirkpatrick
et al., 2017): Finetuning the entire model with a
regularization loss that restricts parameter updates
to avoid disrupting previously learned tasks.

Note that zero-shot approach primarily reflects
the reasoning capability of the MLLM backbone
on the CoIN benchmark without task-specific adap-
tation, serving as a lower bound for MCIT methods.
we aim for ProgLoRA’s overall results to surpass
zero-shot.
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Task ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA

ScienceQA 75.78

TextVQA 31.40 51.73

ImageNet 40.98 13.15 96.70

GQA 37.42 35.53 6.62 59.42

VizWiz 47.15 41.69 5.53 45.27 58.88

Grounding 59.06 13.97 0.25 32.62 30.40 37.50

VQAv2 33.27 50.48 8.15 51.75 28.52 0.97 64.22

OCR-VQA 63.09 38.63 10.50 37.38 43.62 0.59 43.15 60.08

Table 6: Detailed results of LLaVA-1.5-7B MoELoRA in CoIN, cited from (Chen et al., 2024).

Task ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA

ScienceQA 76.27

TextVQA 75.72 60.07

ImageNet 74.95 58.56 92.65

GQA 74.60 56.08 88.86 58.45

VizWiz 75.58 57.38 89.67 54.66 57.33

Grounding 74.53 56.66 90.20 54.67 56.01 17.68

VQAv2 73.58 57.02 92.24 52.45 56.43 13.28 64.45

OCR-VQA 72.70 57.08 91.20 53.12 56.04 12.54 63.64 63.54

Table 7: Detailed results of LLaVA-1.5-7B ProgLoRA (static) in CoIN.

C Evaluation Metrics

We use four metrics: Average Accuracy (ACC) to
evaluate after training on the final task, Mean Aver-
age Accuracy (MAA) to evaluate throughout train-
ing process, Backward Transfer (BWT) to quantify
the extent of CF, and Forward Transfer (FWT) to
evaluate the extent of KT.

We evaluate outputs of MLLMs by perform-
ing word-by-word comparisons with ground truths.
Given the diverse output formats across tasks, we
employ task-specific evaluation metrics.

In line with the CoIN benchmark (Chen et al.,
2024), we evaluate performance on the Image
Question Answering task, which includes VQAv2,
ScienceQA, TextVQA, GQA, VizWiz, and OCR-
VQA, by measuring the accuracy of predicted
answers against the ground truth, following the
method used in LLaVA (Liu et al., 2023a). For
classification tasks, we compare the predicted la-
bels with the actual labels. In the referring ex-
pression comprehension (grounding) task, we use
the Intersection over Union (IoU) metric, which is
commonly used for this purpose, to evaluate predic-
tion accuracy. A prediction is considered correct

if the IoU between the predicted and ground-truth
bounding boxes is greater than 0.5.

D Results on Other MLLM Backbone

We also evaluate our ProgLoRA on the Qwen-VL-
7B (Bai et al., 2023) model. Results are shown in
Table 5. For the overall results, our method signifi-
cantly outperforms all baselines, which illustrates
the designed task-aware allocation and task recall
can solve problems of CF and KT. For accuracy
on each task, while the Pi,i for some tasks is not
as good as the baselines, it still maintains a lead-
ing position in PN,i for most tasks. This reflects
that although Qwen-VL may be more sensitive to
the allocation of LoRA blocks as both MoELoRA
and ProgLoRA exhibit lower Pi,i, our method can
still effectively reduce interference and forget-
ting among tasks.

E Detailed Main Results

Detailed results of MoELoRA and ProgLoRA on
LLaVA-1.5-7B are shown in Tables 6, 7, and 8.
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Task ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA

ScienceQA 76.27

TextVQA 59.06 60.78

ImageNet 70.92 52.57 97.32

GQA 51.56 50.33 79.68 61.27

VizWiz 65.62 50.79 81.17 48.99 60.16

Grounding 40.08 47.53 77.75 50.61 48.30 39.35

VQAv2 76.90 56.79 73.90 53.64 40.63 35.96 65.83

OCR-VQA 74.84 51.83 83.90 49.93 53.87 31.19 62.71 64.44

Table 8: Detailed results of LLaVA-1.5-7B ProgLoRA (dynamic) in CoIN.

Method ACC↓ MAA↓ BWT↓ FWT↓
ProgLoRA (dynamic) w/ ϖ = 200 59.09 62.38 -6.59 1.37
ProgLoRA (dynamic) w/ ϖ = 500 59.14 62.74 -6.47 1.40
ProgLoRA (dynamic) w/ ϖ = 1000 59.66 63.23 -6.21 1.38

Table 9: Overall Results of ProgLoRA (dynamic) with
different replay amount. Bold highlights the best perfor-
mance.

Method ACC↓ MAA↓ BWT↓ FWT↓
ProgLoRA (dynamic) w/ r = 16 59.09 62.38 -6.59 1.37
ProgLoRA (dynamic) w/ r = 64 61.04 64.88 -6.23 1.39
ProgLoRA (dynamic) w/ r = 128 62.63 65.01 -6.09 1.43

Table 10: Overall Results of ProgLoRA (dynamic) with
different LoRA setting. Bold highlights the best perfor-
mance.

F Effect of Replay Amount

We provide comprarison of ProgLoRA (dynamic)
with different replay amount ϖ as shown in Table 9.

G Effect of LoRA Settings

We provide comprarison of ProgLoRA (dynamic)
with different LoRA Rank r as shown in Table 10.

H Effect of Task Order

We compared the alphabet order of tasks as shown
in Table 11, which proves that changing the order
significantly impacts performance of ProgLoRA.
This is because the knowledge acquired from ear-
lier tasks can either facilitate or hinder the learn-
ing of subsequent tasks in our proposed LoRA
pool. The overall performance in the alphabet order
drops, which we attribute to the decline in perfor-
mance on the GQA and Grounding. In contrast,
with the original sequential order, since ScienceQA
has few training samples, even a single LoRA block
is sufficient for effective learning, providing a solid
foundation for subsequent tasks. Therefore, the
knowledge acquired early in sequential order, due

to its higher quality, enables better KT. However,
since GQA and Grounding have larger datasets and
there is no prior knowledge available for assistance
at the start of the alphabet order, their performance
is poorer. These results demonstrate that the per-
formance improvement of ProgLoRA is attributed
to the effective utilization of acquired knowledge.
It’s worth noting that GQA shows significant im-
provement after completing all tasks in alphabet
order, further validating that the proposed dynamic
allocation can efficiently allocate LoRA blocks.

Moreover, the task order with the worst per-
formance (Alphabet order) still outperforms other
comparison methods (such as MoELoRA) in terms
of ACC, MAA, BWT, and FWT. This indicates
that, while our method is influenced by task order,
its performance does not degrade to a level where
it is no longer SOTA. It provides evidence from an-
other perspective of the superiority of our method
in mitigating CF and promoting KT.

I Effect of Instruction Diversity

We investigated the sensitivity of ProgLoRA to dif-
ferent instruction templates because tasks in CoIN
share overlapping instructions as shown in Table
12. We followed Diverse and 10Type instruction
templates in Chen et al. (2024). The list of in-
struction templates for each task is shown in Table
14. Original: Certain tasks in the CoIN bench-
mark (Chen et al., 2024) use similar instructions.
Diverse: Assigning distinct and specific instruc-
tion templates to each task. 10Type: Randomly
selecting an instruction template from a pool of 10
unique templates for each task.

Although ACC is similar to those of the orig-
inal type, the use of Diverse and 10Type tem-
plates both increase MAA by exposing it to a
wider variety of instructions. Additionally, both
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Order
Accuracy on Each Task Overall Results

ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA ACC↓ MAA↓ BWT↓ FWT↓

Sequential
76.27 60.78 97.32 61.27 60.16 39.35 65.83 64.44

74.84 51.83 83.90 49.93 53.87 31.19 62.71 64.44
59.09 62.38 -6.59 1.37

GQA Grounding ImageNet OCR-VQA ScienceQA TextVQA VizWiz VQAv2 ACC↓ MAA↓ BWT↓ FWT↓

Alphabet
39.23 8.11 90.75 56.98 69.37 56.52 60.96 69.95

57.03 4.65 66.32 42.42 68.96 54.62 32.18 69.95
49.51 42.85 -6.96 0.04

Table 11: The results of LLaVA-1.5-7B ProgLoRA (dynamic) about different task orders. Bold highlights the best
performance in overall results.

Instruction Type
Accuracy on Each Task Overall Results

ScienceQA TextVQA ImageNet GQA VizWiz Grounding VQAv2 OCR-VQA ACC↓ MAA↓ BWT↓ FWT↓

Original
76.27 60.78 97.32 61.27 60.16 39.35 65.83 64.44

74.84 51.83 83.90 49.93 53.87 31.19 62.71 64.44
59.09 62.38 -6.59 1.37

Diverse
76.27 60.95 97.69 59.88 58.87 37.03 67.34 66.49
75.50 55.44 82.37 53.57 52.38 29.34 63.01 66.49

59.76 62.72 -5.80 1.32

10Type
76.85 60.11 97.95 60.32 57.21 38.15 68.93 65.23

75.35 56.26 85.62 52.36 49.14 31.70 64.10 65.23
59.97 63.74 -5.62 1.41

Table 12: The results of LLaVA-1.5-7B ProgLoRA (dynamic) about different instruction templates. Meaning of the
highlight marker is the same as in Table 1.

Method Trainable Param.↗ ACC↓ MAA↓ BWT↓ FWT↓
MoELoRA 320M 37.13 42.76 -25.91 -4.01
ProgLoRA (dynamic) 42M 59.09 62.38 -6.59 1.37

Table 13: Efficiency comparison of ProgLoRA and
MoELoRA. Bold highlights the best performance.

Diverse and 10Type templates lead to an increase
in BWT because instruction diversity helps miti-
gate instruction-following degradation by enhanc-
ing adaptability. Although changing the template
helps improve performance, the variation in results
within ProgLoRA remains below 1.5%, and it con-
sistently outperforms the baselines. This shows that
ProgLoRA has low sensitivity to different instruc-
tions and can reliably extract task-specific knowl-
edge from them.

J Discussion on Efficiency

We compare the amount of trainable parameters of
ProgLoRA (dynamic) with MoELoRA on LLaVA-
1.5-7B, with results presented in Table 13. In
ProgLoRA, trainable parameters in LoRA pool
amount to 42M (0.25% of total parameters), while
MoELoRA has 320M trainable parameters (2.06%
of total parameters). Therefore, our method signifi-
cantly reduces the number of trainable parameters,
and with the arrival of new tasks, the number of
trainable parameters also doesn’t increase.

Figure 6: Visualization of allocation weights in
ProgLoRA (static).

K Visualization of Allocation Weights

We show the allocation weights after completing
the final task (OCR-VQA) in Fig. 6, where the
MLLM backbone is LLaVA-1.5-7B and the method
is ProgLoRA (static).

L More Cases

Fig. 7 and 8 show more cases from ScienceQA and
OCR-VQA after training on the final task.

2793



Task Original Diverse 10Type

ScienceQA
Answer with the option’s

letter from the given
choices directly

Answer with the option’s
letter from the given

choices directly

Answer with the option’s letter from the given choices directly
Select the correct answer from the given choices and respond with the letter of the chosen option
Determine the correct option from the provided choices and reply with its corresponding letter
Pick the correct answer from the listed options and provide the letter of the selected option
Identify the correct choice from the options below and respond with the letter of the correct option
From the given choices, choose the correct answer and respond with the letter of that choice
Choose the right answer from the options and respond with its letter
Select the correct answer from the provided options and reply with the letter associated with it
From the given choices, select the correct answer and reply with the letter of the chosen option
Identify the correct option from the choices provided and respond with the letter of the correct option
From the given choices, pick the correct answer and respond by indicating the letter of the correct option

Grounding
Please provide the bounding
box coordinate of the region

this sentence describes

Please provide the bounding
box coordinate of the region

this sentence describes

Identify and provide the bounding box coordinates that match the description given in this sentence
Extract and provide the bounding box coordinates based on the region described in the sentence
Please provide the bounding box coordinate of the region this sentence describes
Find and provide the bounding box coordinates for the region mentioned in the sentence
Provide the coordinates of the bounding box that correspond to the region described in the sentence
Give the bounding box coordinates as described in the sentence
Determine and provide the bounding box coordinates based on the description in the sentence
Identify and provide the coordinates of the bounding box described in the sentence
Provide the coordinates for the bounding box based on the region described in the sentence
Extract and provide the coordinates for the bounding box described in the sentence
Identify and give the coordinates of the bounding box as described by the sentence

GQA
Answer the question

using a single
word or phrase

Respond to the question
briefly, using only one

word or a phrase

Respond to the question with a single word or a short phrase
Respond to the question using only one word or a concise phrase
Answer the question with a single word or a brief phrase
Respond with one word or a short phrase
Provide your answer in the form of a single word or a concise phrase
Respond to the question with just one word or a brief phrase
Answer the question using a single word or a concise phrase
Provide your response using only one word or a short phrase
Respond to the question with a single word or a brief phrase
Respond to the question using just one word or a concise phrase
Answer the question with one word or a short phrase

ImageNet
Answer the question

using a single
word or phrase

Express your answer in
a single word or a

short, descriptive phrase

Express your answer in a single word or a short, descriptive phrase
Provide your answer using a single word or a brief phrase
Describe the content of the image using one word or a concise phrase
Respond to the question with a single word or a short, descriptive phrase
Classify the image content using only one word or a brief phrase
Give your answer in the form of a single word or a concise phrase
Use a single word or a short phrase to categorize the image content
Express your answer with one word or a short, descriptive phrase
Identify the type of content in the image using one word or a concise phrase
Summarize your response in a single word or a brief phrase
Use one word or a short phrase to classify the content of the image

OCR-VQA
Answer the question

using a single
word or phrase

Condense your answer for
each question into a single

word or concise phrase

Answer with the option’s letter from the given choices directly
Select the correct answer from the given choices and respond with the letter of the chosen option
Determine the correct option from the provided choices and reply with its corresponding letter
Pick the correct answer from the listed options and provide the letter of the selected option
Identify the correct choice from the options below and respond with the letter of the correct option
From the given choices, choose the correct answer and respond with the letter of that choice
Choose the right answer from the options and respond with its letter
Select the correct answer from the provided options and reply with the letter associated with it
From the given choices, select the correct answer and reply with the letter of the chosen option
Identify the correct option from the choices provided and respond with the letter of the correct option
From the given choices, pick the correct answer and respond by indicating the letter of the correct option

TextVQA
Answer the question

using a single
word or phrase

Capture the essence of your
response in a single word

or a concise phrase

Answer the question with just one word or a brief phrase
Use one word or a concise phrase to respond to the question
Answer using only one word or a short, descriptive phrase
Provide your answer in the form of a single word or a brief phrase
Use a single word or a short phrase to respond to the question
Summarize your response in one word or a concise phrase
Respond to the question using a single word or a brief phrase
Provide your answer in one word or a short, descriptive phrase
Answer the question with a single word or a brief, descriptive phrase
Capture the essence of your response in one word or a short phrase
Capture the essence of your response in a single word or a concise phrase

VizWiz
Answer the question

using a single
word or phrase

Provide a succinct
response with a single

word or phrase

Answer the question using only one word or a concise phrase
Respond to the question using only one word or a concise phrase
Respond to the question with a single word or a brief phrase
Provide your answer using just one word or a short phrase
Respond with one word or a concise phrase
Answer the question with just one word or a brief phrase
Use a single word or a short phrase to answer the question
Provide your answer in the form of one word or a brief phrase
Reply to the question using one word or a concise phrase
Answer with a single word or a short phrase
Use one word or a brief phrase to answer the question

VQAv2
Answer the question

using a single
word or phrase

Answer the question
using a single
word or phrase

Answer the question using a single word or phrase
Answer the question with a single word or a brief phrase
Use one word or a short phrase to respond to the question
Answer the question using just one word or a concise phrase
Provide your answer to the question using only one word or a brief phrase
Respond to the question with a single word or a short phrase Use a single word or phrase to answer the question
Provide an answer using only one word or a brief phrase
Answer the question succinctly with one word or a brief phrase
Answer the question with just one word or a short phrase
Respond to the question using a single word or a concise phrase

Table 14: The list of different instructions template for each task (Chen et al., 2024).
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User:
Which material is this path made of?
A. plastic
B. brick
Answer with the option's letter from the given choices directly.

MoELoRA: plastic ProgLoRA (static): A ProgLoRA (dynamic): B✓✘✘
User:
Are the bubbles in soda a solid, a liquid, or a gas?
A. a gas
B. a solid
C. a liquid
Answer with the option's letter from the given choices directly.

MoELoRA: C ProgLoRA (static): A ProgLoRA (dynamic): A✓✘ ✓
User:
This organism is Asimina triloba. It is a member of the plant kingdom.
Asimina triloba is commonly called the pawpaw. Pawpaw trees grow in 
the southeastern part of the United States. They have large, sweet 
fruit. The fruit is sometimes called a prairie banana.
Does Asimina triloba have cells that have a nucleus?
A. Yes
B. no
Answer with the option's letter from the given choices directly.

MoELoRA: no ProgLoRA (static): A ProgLoRA (dynamic): A✓✘ ✓
User:
Use the graph to answer the question below.
Which month is the hottest on average in Cape 
Town?
A. April, May, and November
B. December, January, February, and March
C. August, September, October, and November
Answer with the option's letter from the given 
choices directly.

MoELoRA: B ProgLoRA (static): A ProgLoRA (dynamic): C✘✓ ✘

User:
Look at the models of molecules below. Select the 
elementary substance.
A. Fluoromethanol
B. tetraphosphorus
C. methane
Answer with the option's letter from the given 
choices directly.

MoELoRA: C ProgLoRA (static): A ProgLoRA (dynamic): C✘ ✘✘
Figure 7: Comparison between MoELoRA and ProgLoRA on cases from ScienceQA after training on the final task.
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User:
What is the title of this book?
When the provided information is insufficient, respond with 'Unanswerable’.
Answer each question using a single word or phrase.

MoELoRA: The Conflict Resolution Training Program

ProgLoRA (static): The Conflict Resolution Training Program: Leader's Manual
ProgLoRA (dynamic): The Conflict Resolution Training Program: Leader's Manual✓✓

✘

User:
Is this a comics book?
When the provided information is insufficient, respond with 'Unanswerable’.
Answer each question using a single word or phrase.

MoELoRA: No

ProgLoRA (static): Yes

ProgLoRA (dynamic): Yes✓
✘

User:
Is this book related to Politics & Social Sciences?
When the provided information is insufficient, respond with 'Unanswerable’.
Answer each question using a single word or phrase.

MoELoRA: No

ProgLoRA (static): No

ProgLoRA (dynamic): Yes✓
✘
✘

User:
Who is the author of this book?
When the provided information is insufficient, respond with 'Unanswerable’.
Answer each question using a single word or phrase.

MoELoRA: Bartholomew de Las Casas

ProgLoRA (static): Bartolome de las Casas

ProgLoRA (dynamic): Bartolome de las Casas✓
✘

✓

✓
User:
Who wrote this book?
When the provided information is insufficient, respond with 'Unanswerable’.
Answer each question using a single word or phrase.

MoELoRA: Ettienne Wenger

ProgLoRA (static): Ettiene Wenger

ProgLoRA (dynamic): Ettiene Wenger

✘
✘
✘

Figure 8: Comparison between MoELoRA and ProgLoRA on cases from OCR-VQA after training on the final task.
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