
Findings of the Association for Computational Linguistics: ACL 2025, pages 27038–27056
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Enhancing Complex Reasoning in Knowledge Graph Question Answering
through Query Graph Approximation

Hongjun Jeong*1, Minji Kim*1, Heesoo Jung1, Ko Keun Kim†2, Hogun Park†1

1Sungkyunkwan University, Republic of Korea
2LG Electronics, Republic of Korea

{zun8861, kmjj7864, steve305}@skku.edu, kokeun.kim@lge.com, hogunpark@skku.edu

Abstract

Knowledge-grounded Question Answering
(QA) aims to provide answers to structured
queries or natural language questions by lever-
aging Knowledge Graphs (KGs). Existing
approaches are mainly divided into Knowl-
edge Graph Question Answering (KGQA) and
Complex Query Answering (CQA). Both ap-
proaches have limitations: the first struggles
to utilize KG context effectively when essen-
tial triplets related to the questions are miss-
ing in the given KGs, while the second de-
pends on structured first-order logic queries.
To overcome these limitations, we propose a
novel framework termed Aqua-QA. Aqua-QA
approximates query graphs from natural lan-
guage questions, enabling reasoning over KGs.
We evaluate Aqua-QA on challenging QA tasks
where KGs are incomplete in the context of QA,
and complex logical reasoning is required to an-
swer natural language questions. Experimental
results on these datasets demonstrate that Aqua-
QA outperforms existing methods, showcasing
its effectiveness in handling complex reasoning
tasks in knowledge-grounded QA settings.

1 Introduction

Knowledge Graphs (KGs) are structured represen-
tations of factual knowledge, typically encoded as
triples in the form of (head, relation, tail), known
as facts (Ji et al., 2021). A prominent set of applica-
tions leveraging KGs includes answering structured
queries and answering natural language questions,
both grounded in the KGs. To achieve this, graph
query languages such as SPARQL are interpreted
and executed by a query engine, which traverses the
KG based on the given structured query to retrieve
the answers.

However, in this context, the incompleteness of
KGs (Chen et al., 2020) goes beyond missing facts
to include the absence of essential facts required

* Equal contribution.
† Corresponding authors.

for the query engine to perform a traversal. Thus,
simply traversing the KGs often fails to retrieve
answers or misses important ones (Ren et al., 2024),
although answers can still be indirectly inferred
from existing facts within the KGs.

To reason answers that can be logically derived
from incomplete KGs, query embedding meth-
ods (Ren et al., 2020; Ren and Leskovec, 2020;
Zhang et al., 2021; Xu et al., 2023; Kim et al., 2024)
have been proposed. These methods encode query
graphs—constructed from First-Order Logic (FOL)
queries—by parameterizing entities, relations, and
logical operators such as conjunction, disjunction,
and negation. As they distill the core semantics of
the questions into a structured form, query graphs
can be seen as self-contained representations, com-
pactly capturing structural semantics and reasoning
intent (Yih et al., 2015). Effectively encoding them
helps mitigate KG incompleteness by leveraging
available facts without relying heavily on connec-
tivity. However, query embedding methods require
well-defined FOL inputs despite the challenges of
converting natural language into FOL (Yang et al.,
2024). As a result, these models struggle to reason
when a natural language question is poorly trans-
lated into an FOL query.

In contrast, Knowledge Graph Question Answer-
ing (KGQA) aims to directly answer natural lan-
guage questions by reasoning over KGs. From the
widely used benchmarks in KGQA, WebQSP (Yih
et al., 2016), and CWQ (Talmor and Berant, 2018),
ensure that all essential facts required to answer
each question are present within the correspond-
ing KG. Namely, KGs are complete in the context
of QA. In addition, such datasets do not consider
negation operations, the identification of which
is critical to logical reasoning (Varshney et al.,
2025). These assumptions have shaped KGQA
approaches toward retrieving supportive informa-
tion (e.g., triples (Baek et al., 2023), paths (Luo
et al., 2024), or subgraphs (He et al., 2025; Ding

27038

et al., 2024)) to aid in answering questions.

However, similar to graph query languages, the
retrieval approaches require traversal over the KGs,
which suffer from the aforementioned limitation
due to incompleteness. Furthermore, when ques-
tions involve multiple logical operators, especially
the negation operation, retrieving a larger portion
of the KGs becomes necessary to capture indirect
paths or extended multi-hop connections. This
leads to the inclusion of noisy information and an
intractably large volume of retrieved data, under-
mining the key advantage of retrieval approaches,
which reduces the reasoning space.

Additionally, when natural language questions
do not contain explicit mentions that directly corre-
spond to entities or relations in the KGs, it becomes
challenging to identify the topic entity—the start-
ing point of retrieval—or to translate the question
into FOL. This increases the likelihood of retriev-
ing irrelevant information or an FOL query that
does not capture the intent of the question, which
impairs the reasoning accuracy.

To address the above problems, we propose
Aqua-QA, a novel approach that leverages the con-
textual information in natural language questions to
Approximate QUery grAphs, bypassing the traver-
sal of KGs for KGQA. For the approximation of
query graphs, we introduce three key components:
Align module, Query decomposition module, and
Relation extraction module. Align module extracts
both KG information, such as entity and relation,
and structural information, including logical op-
erators and question type, in the form of embed-
dings. Query decomposition module decomposes
complex questions into sub-questions, serving as
anchor or variable nodes that represent unknown en-
tities in the intermediate reasoning steps within the
query graph. Relation extraction module extracts
relations that constitute the question as discrete
tokens. Finally, the extracted information is com-
bined to construct a sequence that serves as a query
graph, and Reasoner performs prediction using a
pretrained Knowledge Graph Embedding (KGE)
method based on the constructed sequence. To cap-
ture negation nuances, we introduce an additional
layer and special token for negated relations. Exten-
sive experiments on three datasets demonstrate that
our model consistently outperforms baselines on
complex questions with multiple logical operators
and missing facts.

2 Related Work

2.1 KGQA

KGQA aims to retrieve answers to natural language
questions over KGs. Existing methods can be
broadly divided into Semantic-Parsing (SP) and
Information-Retrieval (IR) approaches. SP ap-
proach (Li et al., 2023) converts natural language
questions into executable queries (e.g., SPARQL)
to retrieve answers. In contrast, the IR approach ex-
tracts relevant information related to questions such
as triples (Baek et al., 2023), paths (Zhang et al.,
2022; Luo et al., 2024), and subgraphs (He et al.,
2025; Ding et al., 2024) based on the topic enti-
ties. In addition, Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020), which enhances the
quality of answers generated by Large Language
Models (LLMs) by retrieving relevant information
from external knowledge sources, can also be uti-
lized for the KG-grounded QA. Recently, a method
has been proposed to construct KGs from textual
documents (Edge et al., 2024). However, these SP
and IR approaches overlook QA scenarios where
the required facts are absent from the KGs, which
may lead to reasoning failure, either by missing
important answers even when the question is suc-
cessfully converted into an executable query, or by
failing to retrieve relevant evidence. Furthermore,
as a question becomes more complex with multiple
logical operators, it inherently requires retrieving
answers that are further away, thereby necessitating
overburdened retrieval.

2.2 Handling missing facts in KGQA

There are existing methods that aim to answer ques-
tions on KGs with missing facts (Saxena et al.,
2020; Xu et al., 2024). Both methods attempt
to address this problem by generating new links
from topic entities. However, these models are ei-
ther incapable of handling complex questions with
multiple topic entities or remain underexplored in
addressing questions involving negation, which re-
quire generating an extremely large number of new
links. In contrast, Aqua-QA does not require a
topic entity and can handle questions with negation
explicitly via Align module and Relation extraction
module.

2.3 Complex query answering

Complex Query Answering (CQA) aims to rea-
son the answer from incomplete KGs for complex
FOL queries consisting of multiple logical opera-

27039

tors (Ren et al., 2024). Previous work has encoded
logical queries into a low-dimensional vector space
using geometric-based embeddings (Ren et al.,
2020; Zhang et al., 2021), probability-based em-
beddings (Ren and Leskovec, 2020), positional em-
beddings (Kim et al., 2024), or pretrained KGE (Xu
et al., 2023). However, these methods cannot solely
address natural language questions because the en-
tities, relations, and logical operators that make up
the question must be explicitly parsed. Therefore,
if the conversion of a natural language question
into an FOL query fails to fully capture its original
intent, a CQA model struggles to make reliable and
robust predictions.

3 Preliminary

KG Let a KG be G = {V,R, E}, where V is set
of entities, R is set of relations, and E is set of facts
defined as {(u, r, v)|u, v ∈ V, r ∈ R}.

KGQA Let A be the set of answer entities and T
be the set of topic entities. KGQA aims to find the
answer entity a ∈ A based on G, given a natural
language question and topic entity t ∈ T .

FOL Following the definition from BetaE (Ren
and Leskovec, 2020), we define an FOL query qFOL
in its Disjunctive Normal Form (DNF) as follows:

qFOL[V?] = V?, ∃V1, ..., Vk : c1∨c2∨...∨cn, (1)

where V1, ..., Vk are bound variables and V? is a
single target free variable. c1, ..., cn denote clauses
consisting of one or more atomic formulas or their
negation eij = r(x, y) or¬r(x, y), called literal,
using conjunctive operator like ci = ei1∧ei2∧ ...∧
eim. Variables x and y can be either constants or
variables. A relation r serves as a binary function
indicating whether x and y can be connected via r,
considering direction as follows:

r(x, y) =

{
true, if (x, r, y) ∈ E ,
false, otherwise.

(2)

3.1 Problem Definition
Let a KG be G = {V,R, Etrain} and the set of
unseen ground-truth facts be Etest which satisfies
following condition: Etrain ∩ Etest = ∅, Etest =
{(u, r, v)|u, v ∈ V, r ∈ R}. The problem ad-
dressed in this paper is the task of finding an-
swer entities given only G and a complex natural
language question, which may involve multiple
logical operators such as conjunction, disjunction,

and negation. Assuming the existence of an FOL
query, which fully captures the intent of the natu-
ral language question, every literal comprising this
FOL query becomes true in Equation (2), where
E = Etrain ∪ Etest. In this case, some of the facts,
that make literal true, may not exist in Etrain, but
are present in Etest.

3.2 Difference from prior setting
Let us assume that for every natural language ques-
tion, the literals that constitute its corresponding
FOL query hold true over the Etrain ∪ Etest. This
paper aims at a scenario where answers must be de-
rived based on KG, G = {V,R, Etrain}, while con-
ventional KGQA relies on KG, G = {V,R, Etrain ∪
Etest}, where KG is complete to find the answer in
the context of QA. Additionally, we address natural
language questions composed of combinations of
various logical operators, including negation, a log-
ical operator that has been underexplored in prior
work.

4 Methodology

In this section, we introduce Aqua-QA, which
leverages contextual information of natural lan-
guage to approximate a query graph and perform
reasoning based on it. Our methodology consists of
1) an Align module, 2) a Query decomposition mod-
ule, and 3) a Relation extraction module, which
effectively approximate a structured query from a
given question. Moreover, we propose 4) a Rea-
soner that leverages a pretrained KGE method to
infer the answer entity using the outputs from com-
ponents 1), 2), and 3). The overall framework is
illustrated in Figure 1, and the illustration of the
Align module is in Figure 6.

4.1 Align module
Align module aims to decouple the structural in-
formation and the semantic information related to
KG from natural language questions. To achieve
this, we define six learnable tokens ([ENT], [REL],
[TYPE], [AND], [OR], [NOT]):

E = [eENT; eREL; eTYPE; eAND; eOR; eNOT], (3)

where e is the embedding of the token indicated
by the subscript and E indicates the concatenated
embeddings of all pre-defined tokens. [ENT] and
[REL] tokens identify KG entities and relations as-
sociated with input natural language questions and
align these natural language tokens into the embed-
ding space of the KG, leveraging pretrained KGE

27040

Figure 1: Overall framework of Aqua-QA.

methods such as ComplEx (Trouillon et al., 2016).
[AND], [OR], and [NOT] tokens capture the struc-
tural information by identifying the existence of
conjunction, disjunction, and negation operators,
respectively. [TYPE] token identifies the type of
questions such as single-hop or multi-hop to facili-
tate sharing of reasoning processes and structural
relationships. We exploit 11 distinct types, shown
in Figure 5, as labels.

Pretraining the Align module requires paired
data consisting of natural language questions and
their corresponding FOL queries. However, such
data is unavailable in our setting, as we assume
access only to natural language questions, without
ground-truth mappings to FOL queries. Therefore,
we generate pretraining data from the given KGs
to obtain a self-supervision signal. In short, we
construct FOL queries by randomly selecting facts
from the KGs and then convert them into natural
language using an LLM. The detailed process of
data synthesis can be found in Appendix E. No-
tably, we augment data by replacing some entities
with semantically similar but distinct expressions,
enabling effective alignment even when the enti-
ties mentioned in the question are not explicitly
present in the KGs (e.g., "Aaron Judge": "2024
American League MVP and the captain of New
York Yankees").

For the pretraining of Align module, we first en-
code natural language questions using a Pretrained
Language Model (PLM) (e.g., SBERT (Reimers

and Gurevych, 2019)) and concatenate the encoded
sequence with pre-defined tokens. This sequence
is processed to falign which consists of transformer
encoder layers (Vaswani, 2017) as follows:

HM
align = falign(E;PLM(q)), (4)

where q is a natural language question and HM
align ∈

RNalign×dKG is the last hidden states of concatenated
sequence, and Nalign is the length of concatenated
sequence. dKG denotes the dimension of KGE. The
[ENT] token and the [REL] token are trained with
contrastive learning using the embeddings of enti-
ties (or relations) represented in natural language
questions as the positive samples and randomly
sampled embeddings of the other entities (or rela-
tions) as the negative samples. Both positive and
negative entity embeddings are taken from the pre-
trained KGE.

The [TYPE] token is optimized similar to [ENT]
and [REL]. We sample [TYPE] tokens of a differ-
ent question type in a batch to use them as negative
samples. The contrastive learning loss for [ENT],
[REL], and [TYPE] tokens is expressed as:

LCL = −∑3
i=1 log

exp(hM
i ·e+i)

exp(hM
i ·e+i)+

∑|Ni|
j=1 exp(hM

i ·e−ij)
.

Here, hM
i is the i-th hidden representation of

HM
align, where i corresponds to [ENT], [REL], and

[TYPE]. |Ni| denotes the cardinality of negative
sample set Ni, and e+i , e−ij ∈ RdKG is positive

27041

sample and j-th negative sample for i-th token,
respectively.

In addition, to distinguish representations of re-
lation with and without the negation operation, we
introduce a linear layer represented as Wneg,1 ∈
RdKG×dKG as:

e
+(−)
[REL] =

{
Wneg,1e

+(−)
[REL], if negation relation ¬ ,

e
+(−)
[REL], otherwise.

The [AND], [OR], and [NOT] tokens are opti-
mized using binary cross-entropy loss functions
based on whether the question contains a conjunc-
tion, disjunction, or negation operation. For in-
stance, the example illustrated in Figure 1 includes
a conjunction operator, where the label for [AND]
is assigned a value of 1, while the labels for other
operators, such as [OR] and [NOT], are set to 0.
Thus, the loss function for a single data pair can be
expressed as follows:

LBCE = −
3∑

k=1

yk log ŷk + (1− yk) log(1− ŷk),

where k corresponds to [AND], [OR], and [NOT],
ŷk is the prediction from the k-th representation in
HM

align through task-specific heads, and yk is a label
of each token. Finally, Align module is optimized
with the following loss function:

Lalign = LCL + LBCE. (5)

4.2 Query decomposition module
For the modeling of anchor or variable nodes within
the approximated query graphs, we decompose a
complex question into simpler sub-questions using
a vanilla LLM with few-shot demonstrations and
without any fine-tuning. Similar to Plan-and-Solve
prompting (Wang et al., 2023), which generates an
intermediate process to tackle complex tasks, query
decomposition helps clarify intermediate reasoning
steps, which are analogous to the roles of anchor
and variable nodes in the query graph.

4.3 Relation extraction module
To extract the relations that constitute the natu-
ral language question, we present an instruction-
tuning task for the LLM by leveraging the synthetic
data used to train Align module. Inspired by the
RoG (Luo et al., 2024), we format the output of the
LLM with special token <START>, <SEP>, and
<END>. Each token represents the start, separa-
tor, and end of the relation extraction, respectively.

Additionally, to capture the semantic differences
in relations caused by negation, we add a special
token <NEG>. For example, let qNL be “Which
players played for the LA Angels and were not born
in Japan?”. Then, LLM frel is instruction-tuned
to extract relations for input question q as follows:

frel(q) =<START>played_for−1<SEP>

<NEG>born_in−1<END>.
(6)

Here, the <NEG> token serves to indicate whether
a negation is applied to a relation. The extracted
relations serve as a relational projection of an-
chor and variable nodes in the approximated query
graph.

4.4 Reasoner
The reasoner aims to predict answer candidate en-
tities by leveraging the approximated query graph.
The parameters of all modules except the reasoner
are frozen when training the reasoner. Given a nat-
ural language question q as input, an approximated
query graph is generated from the three frozen
modules. For the Align module, we exploit the
last hidden states of the pre-defined tokens HM

align[:

6] ∈ R6×dKG . In the Query decomposition module,
we decompose q into sub-questions and encode
each of them through a PLM. Then, we get initial
sub-question representations as Hsub ∈ RNSUB×dKG

where NSUB denotes the number of sub-questions
by pooling each sub-question representation and ap-
plying the linear transformation to match the dimen-
sion size with HM

align. Through the Relation extrac-
tion module, we extract the relations in q and get
the corresponding embeddings Hrel ∈ RNREL×dKG

from the pretrained KGE where NREL is the num-
ber of extracted relations. In this case, we define
a negation layer Wneg,2 ∈ RdKG×dKG to distinguish
the semantic of relation embedding with or with-
out negation since the Relation extraction module
identifies the negation operator with the special
token <NEG>. Finally, by concatenating all ex-
tracted embeddings HM

align,Hsub, and Hrel into a
single sequence, the approximated query graph is
represented as HFOL ∈ R(6+NSUB+NREL)×dKG . To
fully utilize the context of the question, we also
encode a natural language question through PLM,
and then apply a linear transformation again for
the same purpose with Hsub. This representation
is denoted as HNL ∈ RNNL×dKG where NNL is the
length of q.

Following Q2T (Xu et al., 2023), our reasoner

27042

consists of transformer encoder layers and learn-
able embeddings ehead, erel ∈ RdKG , which serve
as an abstract head and relation. The input of the
reasoner is represented as follows:

H0 = [ehead; erel;HFOL;HNL]. (7)

Then we process H0 into the reasoner fr as follows:

HL = fr(WrH
0), (8)

where HL is the last hidden representation of the
input sequence through the reasoner and Wr ∈
Rd×dKG is the linear transformation to reduce the
dimension size for efficient training. Finally, we
compute the score of the answer candidate entity ea
to the q by using the pretrained KGE as a scoring
function ϕ as follows:

s(q, ea) = ϕ(Wenth
L
head,Wrelh

L
rel, ea). (9)

Here, hL
head and hL

rel are the representations of ab-
stract head and relation in HL, respectively, and
ea is the embedding of answer candidate entity.
Went,Wrel ∈ RdKG×d are the linear transforma-
tions to project the hL

head, hL
rel to KG embedding

space for scoring. The loss function used to train
the reasoner is as follows:

Lr = − log
exp (s(q, e+a))

exp (s(q, e+a)) +
∑|N |

i=1 exp (s(q, e
−
a,i))

,

(10)
where e+a denotes the answer entity for a given
question and e−a,i is a i-th negative sample randomly
selected from the non-correct entities.

5 Experiments

In this section, we empirically validate the effec-
tiveness of Aqua-QA, answering the following re-
search questions. RQ1: Can Aqua-QA achieve
better QA performance than baselines across mul-
tiple datasets? RQ2: How does each module in
Aqua-QA affect performance? RQ3: Can Aqua-
QA effectively deal with the challenges as follows:
1) incompleteness of KGs, where essential facts
for answering questions may be missing, 2) com-
plexity of questions with multiple logical operators,
3) ambiguity in questions that lack terms directly
corresponding to entities in KGs?

5.1 Experimental setup
Dataset As discussed in Section 3, existing
KGQA benchmarks are not well suited for eval-
uating whether Aqua-QA effectively addresses the

limitations outlined in this paper. Therefore, we
construct three new datasets based on CQA’s data
generation strategy, as it aligns with the objectives
discussed in Section 3. In detail, natural language
question answering datasets are generated from
the widely used KGs (FB15k-237 (Toutanova and
Chen, 2015), UMLS (Kok and Domingos, 2007),
and CoDEx (Safavi and Koutra, 2020)). We em-
ploy the query generation process proposed in Be-
taE (Ren and Leskovec, 2020) to derive logical
queries from the KGs. Then, the generated FOL
queries are converted into natural language ques-
tions using Llama-3-70B-Instruct. In addition, the
question types for all datasets follow the 14 query
types defined in BetaE, as detailed in Appendix 5.

Metric We employ Hits@1, which measures
whether the model’s top-1 prediction matches the
correct answer, as the evaluation metric. For LLM-
based baselines, we treat the first answer generated
by the model as the top-1 prediction.

Baseline Baselines can be broadly categorized
into the IR approach, LLM, and CQA. The
model for each category is as follows: 1) IR ap-
proach: KAPING (Baek et al., 2023), RAG (Lewis
et al., 2020), GraphRAG (Edge et al., 2024),
RoG (Luo et al., 2024), G-Retriever (He et al.,
2025), EPR (Ding et al., 2024). 2) LLM: Llama-
3-8B-Instruct (Dubey et al., 2024). 3) CQA: Be-
taE (Ren and Leskovec, 2020), ConE (Zhang et al.,
2021), Q2T (Xu et al., 2023). The details of the
baselines are provided in the Appendix F.

Implementation Relation extraction module
uses FLAN-T5-xl (Raffel et al., 2020) and Query
decomposition module uses Llama-3-8B-Instruct
as the backbone model. If not explicitly specified,
we do not apply the question augmentation strat-
egy that replaces entities with semantically simi-
lar variants in pretraining data synthesis for fair
comparison. We adopt ComplEx (Trouillon et al.,
2016) as our backbone KGE. Every baseline using
LLMs employs Llama-3-8B-Instruct as the back-
bone model to ensure that there is no performance
difference depending on the backbone model. We
adopt LogicLLaMA (Yang et al., 2024) to con-
vert natural language questions into FOL queries
(NL2FOL), which are used to generate input for the
CQA models. Experiments are conducted on the
A100 GPU. More detailed implementation settings
are in Appendix D.

27043

Dataset Model NL w/o R w/o T 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni Ap An

FB15k-237

KAPING ⃝ × × 33.8 19.6 17.7 32.6 27.5 21.4 16.5 57.0 28.6 29.8 21.3 15.3 17.3 20.4 29.3 20.7
RAG ⃝ × ⃝ 23.1 17.5 19.1 21.3 13.8 14.5 10.7 44.3 22.6 34.2 18.8 16.8 18.1 26.0 21.2 22.6

GraphRAG ⃝ × ⃝ 13.0 5.8 5.9 5.1 4.5 3.0 5.4 9.8 7.4 5.3 3.3 5.7 4.7 3.9 7.8 4.6
RoG ⃝ × × 20.1 26.4 23.2 13.0 10.7 11.8 16.7 32.2 27.0 16.7 10.1 17.6 19.2 9.6 20.2 14.6

G-Retriever ⃝ × ⃝ 26.3 17.2 16.4 22.2 18.3 17.5 14.8 45.4 22.6 24.6 15.9 13.7 16.8 18.1 23.1 17.7
EPR ⃝ × ⃝ 36.1 14.2 12.5 14.5 7.6 10.2 5.0 19.7 6.7 17.4 8.1 7.4 7.8 12.1 14.1 10.1

Llama-3-8B-Inst. ⃝ × ⃝ 20.0 10.3 8.0 14.5 11.2 9.9 7.8 27.8 11.9 13.5 8.1 8.5 8.7 8.4 14.7 9.4
BetaE × ⃝ × 36.2 36.3 39.6 44.0 39.9 19.5 13.6 53.8 17.0 36.8 34.5 35.1 21.6 16.6 33.6 28.7
ConE × ⃝ × 36.7 40.4 42.4 52.0 49.4 23.2 15.9 68.5 20.4 49.0 42.1 38.0 25.7 18.1 38.1 34.2
Q2T × ⃝ × 39.7 50.6 47.9 60.1 58.5 28.3 17.3 71.4 21.4 52.6 47.7 35.2 28.2 30.3 42.7 38.8
Ours ⃝ ⃝ ⃝ 72.0 74.3 69.1 75.5 70.1 45.1 31.4 92.6 47.7 62.3 54.8 59.2 47.0 43.9 65.2 53.2

UMLS

KAPING ⃝ × × 29.3 20.6 26.2 7.3 11.2 20.8 45.7 51.5 41.0 20.6 10.2 40.2 40.7 21.6 29.0 26.5
RAG ⃝ × ⃝ 25.5 25.7 26.7 10.3 11.7 18.8 33.2 42.5 39.0 19.4 17.9 35.2 26.3 21.6 26.1 24.0

GraphRAG ⃝ × ⃝ 10.8 10.3 7.5 7.3 7.1 8.6 14.1 34.5 20.0 13.3 7.1 15.1 8.2 12.9 13.1 11.2
RoG ⃝ × × 32.0 33.1 24.6 24.2 18.4 29.4 40.7 44.0 34.5 40.0 13.8 35.8 33.0 36.1 31.5 31.5

G-Retriever ⃝ × ⃝ 31.5 30.9 26.2 28.5 16.3 31.5 42.2 59.5 48.0 37.8 32.1 39.1 42.3 46.4 34.6 39.6
EPR ⃝ × ⃝ 59.2 33.8 32.6 31.5 23.0 24.4 31.2 34.0 17.5 39.4 24.0 38.0 32.5 39.7 31.9 34.7

Llama-3-8B-Inst. ⃝ × ⃝ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 1.0 1.0 0.5 0.5 0.3 0.4
BetaE × ⃝ × 66.8 75.7 81.3 69.1 65.3 57.9 52.8 84.0 42.0 71.7 62.2 61.5 53.6 61.9 66.1 62.0
ConE × ⃝ × 71.5 69.9 71.7 68.5 53.6 50.3 55.8 96.0 46.5 75.0 63.8 71.5 38.1 49.0 65.9 59.1
Q2T × ⃝ × 67.6 66.9 79.1 73.9 62.2 52.8 59.8 80.0 41.0 73.9 64.3 67.0 67.5 68.6 65.1 68.2
Ours ⃝ ⃝ ⃝ 80.4 72.1 75.4 68.5 63.8 66.5 62.3 97.0 58.0 81.1 64.8 76.0 73.2 72.2 73.3 73.3

CoDEx

KAPING ⃝ × × 60.3 21.2 16.6 48.8 34.1 20.7 13.0 64.4 17.9 41.3 32.9 23.5 15.9 20.6 31.5 26.6
RAG ⃝ × ⃝ 41.0 16.6 16.6 25.2 18.3 18.3 9.7 50.8 16.4 49.4 26.0 25.1 23.6 30.4 22.8 30.6

GraphRAG ⃝ × ⃝ 27.9 5.3 3.2 13.8 9.0 8.8 4.7 17.6 5.8 13.7 6.9 11.1 5.1 5.6 9.7 8.4
RoG ⃝ × × 38.9 36.4 33.3 21.2 13.6 19.4 28.0 36.2 28.6 28.0 17.6 53.2 42.2 21.3 27.6 32.6

G-Retriever ⃝ × ⃝ 59.0 22.5 30.1 30.1 24.4 20.6 19.6 41.0 26.8 34.1 20.2 47.4 35.0 25.1 28.8 32.4
EPR ⃝ × ⃝ 53.9 19.4 19.7 9.2 5.9 10.7 4.3 9.5 2.4 25.5 11.9 9.9 16.9 14.8 15.0 15.8

Llama-3-8B-Inst. ⃝ × ⃝ 39.9 9.3 7.1 21.2 15.3 11.1 7.1 40.5 8.2 19.4 11.7 13.4 7.2 7.0 16.6 11.6
BetaE × ⃝ × 57.6 52.7 59.7 58.1 56.6 32.2 9.4 74.1 8.2 55.1 50.8 49.2 32.7 21.8 44.1 41.8
ConE × ⃝ × 64.4 57.6 68.5 69.2 68.0 35.1 11.7 84.1 8.0 68.0 67.5 54.8 36.4 17.5 50.4 48.6
Q2T × ⃝ × 63.8 57.8 69.0 74.4 71.3 39.1 10.5 74.4 7.4 78.5 76.5 42.2 28.7 24.3 50.5 49.6
Ours ⃝ ⃝ ⃝ 81.5 72.0 78.3 74.6 74.9 58.4 34.0 88.3 15.1 81.9 73.1 88.3 89.8 86.2 62.5 83.9

Table 1: Performance comparison in Hits@1 across baseline models. NL, w/oR, and w/oT indicate a constraint-free
setting, allowing Natural Language input without requiring KG-based retrieval or topic entities. Bold scores mark
the best results, while underlined scores denote the second-best. Ap and An represent the average performance on
questions with or without negations, respectively.

5.2 Main results (RQ1)

We compare our framework against baselines on
three datasets to evaluate its reasoning capability.
As shown in Table 1, our framework significantly
outperforms baselines on all datasets by effectively
reasoning the answers through query graph approx-
imation. In particular, IR approaches underperform
compared to ours and CQA models, which do not
require explicit traversal over the KG. These re-
sults support our claim that retrieving relevant and
compact information is challenging when the KG
is incomplete and the questions require multi-hop
reasoning involving multiple logical operators. Fur-
thermore, both IR approaches and CQA models
need the identification of topic entity or converting
NL2FOL. Since these processes propagate addi-
tional errors, it results in performance degradation.

5.3 Ablation study (RQ2)

We conduct an ablation study by removing each
module (Align, Query decomposition, and Relation
extraction module) to evaluate its impact on overall
performance. As shown in Table 2, both Align and
Query decomposition modules contribute to perfor-
mance improvements for questions with and with-

FB15k-237 UMLS

Ap An Ap An

w/o align 64.42 52.48 73.08 70.84
w/o QD 64.56 52.11 72.84 71.47
w/o rel 66.34 49.54 67.73 52.28

Aqua-QA 65.22 53.24 73.28 73.28

Table 2: Ablation study of Aqua-QA for FB15k-237 and
UMLS on Hits@1. Align, QD, and rel denote Align,
Query decomposition, and Relation extraction module,
respectively. w/o denotes our framework without the
indicated module.

out negation. Although Relation extraction module
results in a performance drop for questions with-
out negation in FB15k-237, it shows a significant
performance improvement for questions with nega-
tion in both datasets. We assume that this result is
due to the negation layer, which is inherently de-
pendent on Relation extraction module and cannot
function without it. In addition, in UMLS, Relation
extraction module contributes considerably to Ap
performance compared to other modules. It still
supports the effectiveness of Relation extraction
module. Overall, our approach of approximating

27044

Figure 2: Hits@1 performance on questions where every
answer is classified as a hard answer. Here, C denotes
the complete facts setting, while L represents the limited
facts setting.

the query graph with every module demonstrates
its effectiveness.

5.4 Model analysis (RQ3)

Conjunction Disjunction Negation

FB15k-237 98.70 93.86 98.67
CoDEx 99.83 99.62 99.99
UMLS 99.41 98.69 99.99

Table 3: Classification performance of Align module on
identifying logical operators.

Effectiveness under incompleteness KGs We
design an additional experiment to compare the
performance on questions that have only hard an-
swers, which cannot be inferred solely from the
facts present in the given KG. As illustrated in Fig-
ure 2, we observe that IR approaches significantly
underperform when evaluated with hard answers,
compared to the performance in the complete facts
setting. In contrast, our framework, which takes
an approach that approximates the query graph,
effectively reasons answers by mitigating incom-
pleteness due to missing facts.

Handling complex question type To verify
whether Align module can identify logical oper-
ations from natural language questions, we evalu-
ate the binary classification performance of Align
module. We use AUC-PR as an evaluation metric
to consider the imbalance in the occurrence of each
logical operator. Based on the results shown in
Table 3, Align module is highly effective at identi-
fying which logical operations are embedded. Ad-
ditionally, we visualize the embedding of [TYPE]
tokens with respect to types of questions. As shown
in Figure 3, our model effectively clusters question
types in the embedding space, with each cluster

Figure 3: t-SNE visualization of [TYPE] tokens in the
CoDEx dataset, using 400 samples per question type.

Figure 4: Performance with the question where entities
in KGs are not explicitly represented in the CoDEx.

representing a specific type. Furthermore, simi-
lar question types are positioned near each other,
indicating their semantic relationships.

Handling questions with implicitly represented
KG entities. We conduct additional experiments
to assess the robustness of our framework when a
pretraining data augmentation strategy is applied,
by replacing entities in test questions with seman-
tically similar alternatives, while excluding alter-
native data during training. From the results in
Figure 4 for the CoDEx dataset, our model outper-
forms baselines. Notably, although NL2FOL uses
the same pretraining data as our model to ensure
a fair comparison, the CQA baselines exhibit sig-
nificantly lower performance. Furthermore, in IR
approaches, the reasoner also must account for ex-
pression inconsistencies between the question and
the information retrieved from the KGs. In contrast,
our framework adopts a modular design, which en-
sures a clear separation of the sub-tasks handled by
each component, such as sentence structure anal-
ysis, KG information alignment (e.g., entity, rela-

27045

Case Study 1 Case Study 2

Question Who are the spouses of Whitney Houston that were born in
Boston and are citizens of the United States of America?

Which individuals from North American federal republic,
who speak a language spoken in the UK,
were educated at a performing arts conservatory in New York?

KG Entities
represented in a question

Whitney Houston: Whitney Houston,
United States of America: USA,
Boston: Boston

North American federal republic: United States of America,
language spoken in the UK: English,
performing arts conservatory in New York: Juilliard School

Top-3 entities with <ENT> token USA, Whitney Houston, Boston USA, English, Juilliard School
Top-3 relations with <REL> token birthplace of, citizen of, spouse country of citizenship, languages spoken, written, or signed, edu-

cated at
Structural information in question And: True (1.00), Or: False (0.00), Not: False (0.00) And: True (1.00), Or: False (0.00), Not: False (0.00)
Sub-questions Who are the spouses of Whitney Houston?,

Who was born in Boston?,
Who are citizens of the United States of America?

What individuals from the United States were educated at a per-
forming arts conservatory in New York?,
What language is spoken in the UK?

Extracted relation birthplace of, citizen of, spouse country of citizenship, ’languages spoken, written, or signed’,
educated at

Top-1 prediction Bobby Brown Elmer Bernstein
Answer Bobby Brown Elmer Bernstein

Table 4: Two case studies of approximating the query graph from example questions in the CoDEx dataset.

tion), and reasoning. Consequently, in complex
questions that involve multiple factors, such tightly
coupled methods often struggle to adapt flexibly.

Case study Two real-world case studies demon-
strate the effectiveness of Aqua-QA in identify-
ing the underlying context of natural language
questions by approximating them as query graphs.
Table 4 presents two examples from the CoDEx
dataset, with the second illustrating a more chal-
lenging case where the entities represented in the
KG are expressed differently in the natural lan-
guage question. We observe that the approximated
query graphs closely resemble the ground-truth
query graphs for each question. These results sug-
gest that our framework can approximate the query
graph using only the context extracted from the
natural language question.

6 Conclusion

We propose Aqua-QA, a framework that directly
approximates query graphs from natural language
questions without requiring structured inputs. This
approach addresses limitations such as the incom-
pleteness of KGs, where the information neces-
sary to answer a given question is not explicitly
provided within the KGs. It also handles the
complexity inherent in natural language questions.
Our experiments demonstrate the effectiveness of
Aqua-QA in these extreme settings, highlighting
its robustness in multiple datasets and its ability
to capture the structural intent of complex ques-
tions. By outperforming existing methods, Aqua-
QA advances knowledge-grounded QA, providing
a flexible framework for complex reasoning.

7 Limitation

While Aqua-QA effectively handles complex rea-
soning over incomplete KGs, it has several limi-
tations. First, its performance heavily depends on
the quality and density of the underlying KGs. In
addition, significant data gaps can hinder correct
answer inference, especially for questions requir-
ing extensive background knowledge not present
in the KGs. Lastly, decomposing a complex ques-
tion into sub-questions using Query decomposition
module may not always preserve the original in-
tent, particularly for questions with nested logical
structures or multiple layers of complexity.

8 Ethics Statement

Our methodology, Aqua-QA, aims to improve
knowledge-grounded question answering by ap-
proximating query graphs from natural language
questions, enabling reasoning over incomplete KGs
with complex logical operations. We do not uti-
lize any external data beyond standard benchmark
datasets and the provided KGs. However, since
KGs may contain biases reflecting historical or so-
cietal prejudices, our approach may inadvertently
propagate or amplify these biases in the answers
generated. We acknowledge this limitation and rec-
ommend further research to identify and mitigate
potential biases in knowledge graphs to ensure fair
and unbiased outcomes in knowledge-grounded
question-answering systems.

27046

Acknowledgements

This work was supported by LG Electronics;
in part by the Institute of Information & Com-
munications Technology Planning & evaluation
(IITP) grant and the National Research Founda-
tion of Korea (NRF) grant funded by the Korean
government (MSIT) (RS-2019-II190421, IITP-
2025-RS-2020-II201821, RS-2024-00438686, RS-
2024-00436936, IITP-2025-RS-2024-00360227,
RS-2023-00225441, RS-2024-00448809). This re-
search was also partially supported by the Culture,
Sports, and Tourism R&D Program through the Ko-
rea Creative Content Agency grant funded by the
Ministry of Culture, Sports, and Tourism in 2024
(RS-2024-00333068).

References
Jinheon Baek, Alham Fikri Aji, and Amir Saffari. 2023.

Knowledge-augmented language model prompting
for zero-shot knowledge graph question answering.
In Proceedings of the First Workshop on Match-
ing From Unstructured and Structured Data @ ACL
2023, pages 70–98.

Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin
Zhao, and Zongtao Duan. 2020. Knowledge graph
completion: A review. IEEE Access, 8:192435–
192456.

Wentao Ding, Jinmao Li, Liangchuan Luo, and Yuzhong
Qu. 2024. Enhancing complex question answering
over knowledge graphs through evidence pattern re-
trieval. In Proceedings of the ACM Web Conference
2024, pages 2106–2115.

Cícero dos Santos, Bing Xiang, and Bowen Zhou. 2015.
Classifying relations by ranking with convolutional
neural networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing, pages 626–634.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graphrag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2619–2629.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In Proceedings of the 14th ACM
International Conference on Web Search and Data
Mining, pages 553–561.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2025. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. Advances in Neural Information
Processing Systems, 37:132876–132907.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. 2022. Lora: Low-rank adap-
tation of large language models. In Proceedings of
the International Conference on Learning Represen-
tations.

Xiang Huang, Sitao Cheng, Yiheng Shu, Yuheng Bao,
and Yuzhong Qu. 2023. Question decomposition tree
for answering complex questions over knowledge
bases. In Proceedings of the Thirty-Seventh AAAI
Conference on Artificial Intelligence, pages 12924–
12932.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Martti-
nen, and S Yu Philip. 2021. A survey on knowledge
graphs: Representation, acquisition, and applications.
IEEE Transactions on Neural Networks and Learning
Systems, 33(2):494–514.

Jeonghoon Kim, Heesoo Jung, Hyeju Jang, and Hogun
Park. 2024. Improving multi-hop logical reasoning
in knowledge graphs with context-aware query repre-
sentation learning. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 15978–
15991.

Stanley Kok and Pedro Domingos. 2007. Statistical
predicate invention. In Proceedings of the 24th In-
ternational Conference on Machine Learning, pages
433–440.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas
Hofmann. 2018. End-to-end neural entity linking.
In Proceedings of the 22nd Conference on Computa-
tional Natural Language Learning, pages 519–529.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Jianbin Li, Ketong Qu, Jingchen Yan, Liting Zhou, and
Long Cheng. 2021. Tebc-net: An effective relation

27047

extraction approach for simple question answering
over knowledge graphs. In Knowledge Science, En-
gineering and Management, pages 154–165.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics, pages 6966–6980.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, pages 4582–4597.

Xukai Liu, Ye Liu, Kai Zhang, Kehang Wang, Qi Liu,
and Enhong Chen. 2024. OneNet: A fine-tuning
free framework for few-shot entity linking via large
language model prompting. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 13634–13651.

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and
Shirui Pan. 2024. Reasoning on graphs: Faithful
and interpretable large language model reasoning.
In Proceedings of the International Conference on
Learning Representations.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Multi-hop reading compre-
hension through question decomposition and rescor-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
6097–6109.

Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun
Cho, and Douwe Kiela. 2020. Unsupervised question
decomposition for question answering. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, pages 8864–8880.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing, pages 3982–3992.

Hongyu Ren, Mikhail Galkin, Zhaocheng Zhu, Jure
Leskovec, and Michael Cochez. 2024. Neural graph
reasoning: A survey on complex logical query an-
swering. Transactions on Machine Learning Re-
search.

Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020.
Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In Proceedings

of the International Conference on Learning Repre-
sentations.

Hongyu Ren and Jure Leskovec. 2020. Beta embed-
dings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing
Systems, 33:19716–19726.

Tara Safavi and Danai Koutra. 2020. CoDEx: A Com-
prehensive Knowledge Graph Completion Bench-
mark. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
pages 8328–8350.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4498–
4507.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 641–651.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Proceed-
ings of the 33rd International Conference on Machine
Learning, pages 2071–2080.

Neeraj Varshney, Satyam Raj, Venkatesh Mishra, Ag-
neet Chatterjee, Amir Saeidi, Ritika Sarkar, and
Chitta Baral. 2025. Investigating and addressing hal-
lucinations of LLMs in tasks involving negation. In
Proceedings of the 5th Workshop on Trustworthy NLP
(TrustNLP 2025), pages 580–598.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems, 30:6000–
6010.

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hinrich
Schütze. 2016. Combining recurrent and convolu-
tional neural networks for relation classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 534–539.

Somin Wadhwa, Silvio Amir, and Byron C Wallace.
2023. Revisiting relation extraction in the era of
large language models. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics, pages 15566–15589.

27048

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2609–
2634.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu
Song, Hanghang Tong, Guang Liu, Jun Zhao, and
Kang Liu. 2024. Generate-on-graph: Treat LLM as
both agent and KG for incomplete knowledge graph
question answering. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 18410–18430.

Yao Xu, Shizhu He, Cunguang Wang, Li Cai, Kang Liu,
and Jun Zhao. 2023. Query2triple: Unified query
encoding for answering diverse complex queries over
knowledge graphs. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
11369–11382.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2024. Harnessing the power of
large language models for natural language to first-
order logic translation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics, pages 6942–6959.

Scott Wen-tau Yih, Ming-Wei Chang, Xiaodong He,
and Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the Joint Con-
ference of the 53rd Annual Meeting of the ACL and
the 7th International Joint Conference on Natural
Language Processing of the AFNLP.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
pages 201–206.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics, pages 5773–5784.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji,
and Feng Wu. 2021. Cone: Cone embeddings for
multi-hop reasoning over knowledge graphs. Ad-
vances in Neural Information Processing Systems,
34:19172–19183.

A Code Availability

Our code is available at https://github.com/
HongjunJeongSKKU/Aqua-QA.

B Further Related Work

Align & Relation Extraction Module Our
Align module and Relation extraction module are
conceptually aligned with prior work on entity link-
ing and relation extraction, as they involve mapping
questions to KG entities and relations. Early neu-
ral entity linking methods (Ganea and Hofmann,
2017; Kolitsas et al., 2018) leverage context-aware
similarity scoring or perform joint detection of en-
tity mentions and their corresponding KG entities
in a unified architecture. Recent advances lever-
age Large Language Models (LLMs) to improve
flexibility in entity linking, using prompt-based in-
context learning (Liu et al., 2024). For the relation
extraction task, conventional approaches treat it
as a standalone classification problem, often em-
ploying CNN or LSTM encoders (dos Santos et al.,
2015; Vu et al., 2016). Transformer-based model,
such as TEBC-Net (Li et al., 2021), combines self-
attention with BiLSTM and CNN layers, improving
performance in simple KGQA benchmarks. More
recently, generative approaches (Wadhwa et al.,
2023) reformulate relation extraction as a sequence-
to-sequence task, where models generate relations
as textual sequences rather than selecting from a
fixed set.

Unlike conventional approaches that match dis-
crete elements in the KG, our Align module maps
natural language questions into the continuous em-
bedding space derived from KGE. It includes spe-
cialized tokens for not only entities and relations
but also logical operators such as conjunction, dis-
junction, and negation, enabling it to model the
structural logic of the question explicitly. In addi-
tion, the Relation extraction module extracts rela-
tions while detecting whether extracted relations
are applied to negation, thereby providing more
explicit guidance for downstream reasoning.

Query Decomposition Module Decomposing a
complex question into simpler sub-questions helps
the model better understand the structure of the
question. Early work on question decomposition
(Talmor and Berant, 2018; Min et al., 2019) splits
the question into sub-questions depending on the
reasoning type of the original question. To alle-
viate the burden of annotated data, ONUS (Perez

27049

https://github.com/HongjunJeongSKKU/Aqua-QA
https://github.com/HongjunJeongSKKU/Aqua-QA

Figure 5: Query types addressed in the experiments.
Unseen queries are types that are not used during the
pretraining and reasoner training phase, respectively.

et al., 2020) generates a pseudo-decomposition set
by mapping complex questions to the elements
in a simpler question set based on similarity, and
trains the model in an unsupervised manner using
these sets. Recently, QDT (Huang et al., 2023)
performs decomposition by generating preliminary
sub-questions and inserting separators into the orig-
inal question based on predefined options to en-
hance flexibility in response to the complexity
of the question. While any query decomposition
method can be used as our Query decomposition
module, we adopt a vanilla LLM with few-shot
demonstrations. It does not require any training
cost and can handle diverse types of questions flex-
ibly.

C Dataset Statistics

Tables 5 and 6 present the statistics for the KGs we
use in our experiments—FB15k-237 (Toutanova
and Chen, 2015), UMLS (Kok and Domingos,
2007), and CoDEx (Safavi and Koutra, 2020)—and
the questions generated from each. Figure 5 shows
all the grounded First-Order Logic (FOL) query
types that we use for NL question generation. p, i,
n, and u in the figure denote projection, intersection,
negation, and union, respectively.

D Hyperparameters Setting

We apply a grid search to find the right hyperpa-
rameters for the reasoner, following the ranges of
each hyperparameter. We set the learning rate in
[1e−4, 2e−4, 4e−4], batch size in [512, 1024], em-
bedding dimension in [768, 1024] and number of

layers in [6, 8]. The optimal hyperparameter con-
figurations for our model across different datasets
are as follows. For FB15k-237, we set the learning
rate to 4e−4, the batch size to 1024, and the embed-
ding dimension to 1024. For UMLS, the learning
rate is 4e−4, the batch size is 512, and the embed-
ding dimension is 768. For CoDEx, the learning
rate is 2e−4, the batch size is 1024, and the embed-
ding dimension is 1024. Across all variants, the
model consists of eight layers. The total number
of parameters in our framework is summarized in
Table 7.

E Pretrain Data Synthesis

For pretraining of Align module and Relation ex-
traction module, we synthesize natural language
question–FOL query pairs from KGs. First, FOL
queries are generated by randomly selected facts
in KGs and verbalized into natural language using
LLM. For example, we randomly select the facts
(LA Angles, played_for−1, Otani Shohei),
(Japan, born_in−1, Otani Shohei) from
KGs. Then, we could induce a conjunction query
q = V? : played_for−1(LA Angles, V?) ∧
born_in−1(Japan, V?) and verbalize it using
LLM as “Which players played for the LA Angels
and were born in Japan?”. To assess model ro-
bustness under natural language ambiguity, partic-
ularly when entity mentions are paraphrased and
not explicitly found in KGs, we utilize an LLM to
rephrase entities into semantically similar yet dis-
tinct noun or noun phrases (e.g. "iPhone": "smart-
phone developed by Apple") based on prompt in
Table 16. We then randomly replace the original
entities with their rephrased counterparts. To en-
sure semantic consistency, we additionally verify
that the meaning of each rephrased phrase remains
equivalent to that of the original entity. Table 17 is
an example prompt for this step. We remove any
FOL and natural language pairs that overlap with
the reasoning data to prevent data leakage.

F Baseline Models

We broadly categorize the baselines as follows: (1)
Information Retrieval (IR) approach, (2) Complex
Query Answering (CQA).

RAG (Lewis et al., 2020) retrieves a relevant
subset of an unstructured textual corpus, which is
an external knowledge source, and incorporates it
into a prompt to enhance the response quality of
LLM. GraphRAG (Edge et al., 2024) enhances the

27050

Figure 6: Illustration of Align module.

Datasets # Entity # Relation # Training Edge # Validation Edge # Test Edge # Total Edge

FB15k-237 14,505 237 272,115 17,526 20,438 310,079

UMLS 135 46 5,216 652 661 6,529

CoDEx 2,034 42 32,888 1,877 1,828 36,593

Table 5: Statistics of KG datasets.

Datasets # Train # Validation # Test # Synthethic

FB15k-237 789,686 77,751 75,748 821,117

CoDEx 60,509 11,898 12,868 45,331

UMLS 22,809 2,077 3,016 25,306

Table 6: Statistics of the natural language questions,
including splits for training, validation, testing, and syn-
thetic.

RAG through a hierarchical framework. First, it
constructs KGs from raw text by using LLM. Then,
it organizes community hierarchy from the con-
structed KGs and generates summaries for these
communities. Finally, LLM generates responses
based on these summaries. In both baselines, to
treat KGs as textual documents, we convert each
fact within KGs into a natural language sentence.
In contrast, KAPING (Baek et al., 2023) retrieves

relevant facts based on the semantic similarity be-
tween the question and the facts directly associated
with the topic entity. RoG (Luo et al., 2024) fine-
tunes LLM to generate supportive information in
the form of paths derived from the given question.
These generated paths are then utilized to identify
reasoning paths within KGs. Both G-Retriever (He
et al., 2025) and EPR (Ding et al., 2024) extract
a subgraph from the KGs. G-Retriever encodes
a subgraph using a graph encoder while simul-
taneously generating a textual embedding. The
encoded graph representation is then fed into the
LLM alongside the textual embedding, functioning
as a soft prompt (Lester et al., 2021; Li and Liang,
2021). EPR constructs a subgraph using atomic
patterns to reduce noisy retrieval and integrates
NSM (He et al., 2021) to find the answer entities.
Due to constraints in time and computational re-

27051

Align QD (Llama) RE (FLAN-T5-xl) Reasoner KGE PLM TOTAL

FB15k-237 22M 8B 3B 62M 30M 66M 11.2B
UMLS 11M 8B 3B 31M 0.2M 66M 11.1B
CoDEx 19M 8B 3B 62M 4M 66M 11.1B

Table 7: Number of parameters for each module in Ours. QD denotes Query decomposition module, and RE denotes
Relation extraction module.

sources, we fine-tune RoG using LoRA (Hu et al.,
2022), a parameter-efficient method for adapting
LLMs. G-Retriever also employs LoRA as part of
its original model design.

In CQA methods, we adopt BetaE (Ren and
Leskovec, 2020), ConE (Zhang et al., 2021) and
Q2T (Xu et al., 2023) as baselines. BetaE en-
codes logical queries based on the beta distribu-
tion, which enables negation operations that are
not supported in previous work. Similarly, for ad-
dressing the limitation of existing geometric-based
embedding, which cannot model negation opera-
tor, ConE (Zhang et al., 2021) introduces carte-
sian products of two-dimensional cones to map
logical queries into embedding space. In contrast,
Q2T (Xu et al., 2023) aims to mitigate inconsis-
tency between pretraining and the downstream task.
To fully exploit the capability of pretrained KGE,
it handles downstream task, i.e, complex query rea-
soning, as a simple query reasoning, which is the
objective of pretraining.

G Applicability in the Existing Setting

As discussed in Section 3, the problem addressed in
this paper differs from that of conventional KGQA
as follows: 1) handling questions over KGs that
may not cover all the facts required to find the an-
swer entity, 2) handling questions composed of var-
ious logical operators, including negation, which
has been underexplored in previous work. How-
ever, to explore the applicability of our framework
in a previous setting, we evaluate our framework
on CWQ, a benchmark dataset widely used in prior
studies.

The conventional KGQA assumes that the KGs
are complete from the perspective of QA, and the
topic entity, which indicates the region to attend,
is provided. Therefore, to exploit this assumption,
we use our framework as a retriever, without any
internal modifications, alongside an LLM. Specif-
ically, once our framework predicts the candidate
entities, we input the shortest path connecting the

topic entity and each candidate entity along with
the question into the prompt, following an approach
similar to RoG. We exclude RAG, GraphRAG, and
G-Retriever due to computational constraints. In
particular, RAG and GraphRAG require verbaliz-
ing over 7 million triples into textual form to align
with their input format. This conversion step alone
takes over 200 hours, making it infeasible to in-
clude them in our experiments. G-Retriever is also
omitted, as its training time exceeded 100 hours.

As shown in Table 8, our framework, coupled
with LLM, shows comparable performance with
EPR, which is the best competitor on CWQ. This
result suggests that while our framework is not a
tailored approach for the conventional setting, it re-
mains applicable with slight modifications to lever-
age the assumptions underlying standard KGQA
settings.

Model Hits@1

KAPING 26.5
RAG -

GraphRAG -
LLaMA2-Chat-7B 22.1

RoG planning + LLaMA2-Chat-7B 55.6
G-Retreiver -

EPR 60.4
Ours + LLaMA2-Chat-7B 60.5

Table 8: Performance comparison in Hits@1 across
baseline models on the CWQ dataset.

H Computational Efficiency Analysis

H.1 Comparison of inference times based on
the size of KGs.

We compare the inference time of each module
(Align module, Query decomposition module, Re-
lation extraction module, and Reasoner) on the
CoDEx and CWQ datasets to verify the scalability
of our model on large-scale KGs. The CWQ dataset
leverages Freebase, a large-scale KG, for Ques-

27052

tion Answering (QA), encompassing over 2 million
entities, whereas CoDEx is based on a compara-
tively smaller KG with approximately 2,000 enti-
ties. From the results in Table 9, despite the more
than 1000-times difference in the number of entities
between the KGs used in the CoDEx and CWQ,
the inference time for each module does not ex-
hibit a significant increase. Notably, Query decom-
position module, the most time-consuming mod-
ule in our framework, shows a reduced inference
time on CWQ. This is because CWQ involves rela-
tively simpler question types compared to CoDEx,
leading to shorter question lengths and a relatively
smaller number of generated sub-questions. These
results confirm that our model remains computa-
tionally efficient at scale.

Datasets Align QD Rel Reasoner

CoDEx 8.23 948.60 191.81 22.56
CWQ 11.81 834.68 239.09 26.53

Table 9: Average inference time (in ms) for 1,100 sam-
ples in CoDEx and CWQ datasets.

H.2 Inference Time Comparison with
Baseline Models

To provide a more detailed discussion of the ef-
ficiency of our method, we compare inference
time against some baselines on the CoDEx dataset.
Since the inclusion of LLM can significantly in-
crease inference time, we focus our comparison
on the baselines that utilize LLM. As shown in
Table 10, our model achieves competitive compu-
tational efficiency. This is because, unlike other
models, our framework does not require any pre-
processing or retrieval of information for integra-
tion into the prompt with a question. Similarly,
Llama-3-8B-Instruct and RAG exhibit high compu-
tational efficiency since they rely solely on the ques-
tion or require simple similarity-based retrieval.
While KAPING employs simple similarity-based
retrieval, it tends to generate verbose responses that
include the retrieved information, which results in
additional overhead. Other baselines require mul-
tiple LLM calls or overburdened processing steps
for sophisticated retrieval, which leads to computa-
tional inefficiency.

Model Inference Time

KAPING 3,597.3
RAG 1,092.1

GraphRAG 7,032.7
Llama-3-8B-Instruct 470.8

RoG 2,058.8
G-Retreiver 6,129.5

Ours 1,171.2

Table 10: Comparison of the average inference time (in
ms) against baselines.

Datasets Type Actual Query Entity Relation

FB15k-237 78.8 6.3 52.9 45.5
CoDEx 62.8 25.7 75.1 76.2
UMLS 56.2 16.9 85.4 60.7

Table 11: Accuracy (%) of converting natural language
questions into first-order logic (FOL) queries.

I Prompts for Data Generation using
LLM

I.1 FOL query to NL question
Table 12 shows an example prompt for converting
an FOL query into a natural language question.

I.2 Question decomposition
Table 13 presents an example prompt used for ques-
tion decomposition.

I.3 Topic entity extraction
Table 14 provides an example prompt for entity
extraction from a natural language question, specif-
ically for input in the context of the given entity
setting. We feed the extracted entities to the base-
line model, such as (Luo et al., 2024), which re-
quires topic entities to derive the answer from the
question.

I.4 NL question to FOL query
Table 15 represents an example prompt for
FOL query generation. We adopt the previous
method (Yang et al., 2024) along with its prompt.
Additionally, Table 11 shows its performance met-
rics, including type, actual query, entity, and rela-
tion matching accuracy between the original FOL
query and the converted FOL query. From the
result, we can observe that converting natural lan-
guage into first-order logic is a challenging task.

27053

NL Question Generation Prompt

You are a natural language generator.
Your task is to understand a First-Order Logic (FOL) query and convert it into a natural language question.
Please convert the following FOL query into a natural language question.
Provide only one natural language question as output, without any additional explanation.
FOL Query Structure: q = V ?. ∃V : r(e, V ?)

Examples of Conversion:
q = V ?. ∃V :(-/base/popstra/celebrity/breakup./base/popstra/breakup/participant(’Howard Hughes’, X?)) => Who did Howard Hughes participate in a breakup with?
q = V ?. ∃V :(-/tv/tv_program/regular_cast./tv/regular_tv_appearance/actor(’Will Arnett’, X?)) => What TV programs is Will Arnett a regular cast member of?
q = V ?. ∃V : (-/film/film/prequel(’National Treasure’, X?)) => What are the prequels to the film "National Treasure"?

FOL Query to Convert:
q = V ?. ∃V : (+/people/person/profession(’Manny Coto’, X?)) =>

Table 12: Example prompt for FOL to NL generation.

NL Question Decomposition Prompt

You are an intelligent assistant and a natural language question generator that creates effective and concise questions.
ONLY RETURN THE SUB-QUESTION (QUESTIONS) WITHOUT ANY EXPLANATION.

Instructions:

- Extract every claim from the provided question.
- Resolve any coreference for clarity.
- Convert each claim into a concise (less than 15 words)
- Generate no more than 5 sub-questions.
- Generate sub-questions only based on information available in the original question.
- Separate multiple sub-questions with ’ / ’, except for certain ’p’ type questions. A ’p’ type question involves a sequence of steps or a path
where one piece of information is used to find another (for example, "Which educational institutions have the same colors as the Indiana Pacers?"
requires first finding the colors of the Indiana Pacers, then finding educational institutions with those colors). Do not separate these.
- DO NOT RETURN ANYTHING BUT THE ANSWER.

Examples:

1. Question: Which football teams have a Forward, a Goalkeeper, and a Defender on their roster?"
Response: Which football teams have a Forward? / Which football teams have a Goalkeeper? / Which football teams have a Defender?
2. Question: Who are the University of Miami graduates who are married to Melanie Griffith?
Response: Who are the University of Miami graduates? / Who is married to Melanie Griffith?
3. Question: What is Billy Boyd’s profession?
Response: What is Billy Boyd’s profession?

Complete the following:
Question: What is Manny Coto’s profession?
Response:

Table 13: Example prompt for NL question decomposition.

27054

Topic Entity Extraction Prompt

You are an assistant to help people get the entities from the given question, following the instructions strictly.
Return only the entity from the given question without other words.

Please identify the entities in the given question.

Examples:

Q: Which sports team play in London did Drogba play for?
A: 1. London
2. Drogba
Q: When was the film One Fine Day released?
A: 1. One Fine Day
Q: Who directed the movie Into the Blue?
A: 1. Into the Blue

Your Task:
Q. What is Manny Coto’s profession?
A.

Table 14: Example prompt for topic entity extraction.

NL Question to FOL Query

Translate the following Natural Language (NL) statement to a First-Order Logic (FOL) rule

NL:
What is Manny Coto’s profession?

Table 15: Example prompt for NL question to FOL query.

Augmentation with Semantically Similar Variants Prompt

The task is to create a concise, semantically equivalent representation of an entity while following the patterns demonstrated in the examples.
Please convert the given entity into a semantically identical but different noun or noun phrase coincisely.
Ensure that the output captures the essential meaning of the input entity.
Please return only the output, avoiding additional explanations. Follow the format provided below:

Examples
Example 1:
Input: Japan
Output: island country near South Korea
Example 2:
Input: the United States
Output: USA
Example 3:
Input: Python
Output: programming language commonly used for data science and web development
Example 4:
Input: Albert Einstein
Output: physicist known for the theory of relativity
Example 5:
Input: The Great Wall of China
Output: an ancient series of walls and fortifications in northern China
Example 6:
Input: iPhone
Output: smartphone developed by Apple
—
Now process the following input and return response:
Input: Eleanor Roosevelt
Output:

Table 16: Example prompt for pretraining data augmentation.

27055

Verification for Semantically Similar Variants Prompt

The task is to verify that two given inputs are semantically equivalent representations while following the patterns demonstrated in the examples.
Please verify whether the two given representations are semantically equivalent.
If they are semantically equivalent, return Yes; otherwise, return No. Please return only Yes or No, avoiding additional descriptions like "Sure!".
Follow the format provided below:
Examples
Example 1:
Representation 1: iPhone
Representation 2: smartphone made by USA enterprise
Output: No
Example 2:
Representation 1: iPhone
Representation 2: smartphone made by Apple
Output: Yes
Example 3:
Representation 1: Japan
Representation 2: country near South Korea
Output: No
Example 4:
Representation 1: Japan
Representation 2: island country near South Korea
Output: Yes
Example 5:
Representation 1: Albert Einstein
Representation 2: scientist who developed the theory of relativity
Output: Yes
Example 6:
Representation 1: Albert Einstein
Representation 2: famous scientist
Output: No
Example 7:
Representation 1: The Great Wall of China
Representation 2: ancient structure in China
Output: No
Example 8:
Representation 1: The Great Wall of China
Representation 2: ancient series of walls and fortifications in northern China
Output: Yes
—
Now process the following input and return a response starting with "Output:":
Representation 1:
Representation 2:

Table 17: Example prompt for verification of semantical similar variants.

27056

