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Abstract

The Mixture of Experts (MoE) architecture en-
ables efficient model scaling through condi-
tional computation, where only subset of pa-
rameters are activated per input. However, this
distributed architecture poses unprecedented
challenges for model compression, as con-
ventional quantization methods optimized for
dense networks prove inadequate. This paper
introduces a specialized quantization frame-
work for MoE architectures, motivated by
our discovery that weight matrices across ex-
pert networks exhibit distinctive channel-wise
outlier distributions, necessitating a more nu-
anced compression approach. Through theo-
retical analysis incorporating Fisher Informa-
tion matrices and condition number charac-
teristics, we establish a fundamental relation-
ship between layer functionality and quanti-
zation sensitivity, demonstrating that down-
projection layers inherently demand higher
precision compared to up-projection layers.
Leveraging these insights, we develop an au-
tomated channel-wise quantization framework
that dynamically determines optimal bit-width
allocations while maintaining minimal com-
putational overhead through efficient statisti-
cal approximations. When evaluated on the
Mixtral-8x7b-v0.1 architecture, our methodol-
ogy demonstrates a 3.96% improvement over
existing state-of-the-art approaches across natu-
ral language understanding benchmarks, while
achieving superior compression ratios. Code is
available at: https://github.com/cei1ing4/Fine-
Grained-MoE-Quantization

1 Introduction

In recent years, Large Language Models (LLMs)
(Touvron et al., 2023a,b; Reid et al., 2024; Zhang
et al., 2022; Yang et al., 2024) have demonstrated
unprecedented advancements in natural language
processing. However, this remarkable progress has
been accompanied by an exponential increase in
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Figure 1: Comparison of different outlier metrics (Wup,
Wgate, and Wdown ) across layers and experts in Mixtral-
8x7B and DeepSeek-V2-Lite, revealing consistently el-
evated values in down-projection metrics across MoE
architectures.

computational resource requirements. The Mix-
ture of Experts (MoE) architecture (Jacobs et al.,
1991; Fedus et al., 2022; Lepikhin et al., 2020) has
emerged as a transformative paradigm in large lan-
guage models, introducing efficient parameter scal-
ing through selective activation of context-relevant
parameter subsets. Through strategic partitioning
of the parameter space into specialized expert net-
works coupled with dynamic routing mechanisms,
MoE models achieve substantial performance gains
while maintaining modest training costs and intro-
ducing only marginal computational overhead dur-
ing inference (Jiang et al., 2024; Dai et al., 2024;
Liu et al., 2024b). This innovative approach en-
ables the processing of increasingly sophisticated
tasks while optimizing resource utilization, mark-
ing a significant milestone in scaling language
model capabilities (Rajbhandari et al., 2022; Chen
et al., 2022).

The exponential growth of language models has
heightened the critical importance of model com-
pression. Various compression techniques, includ-
ing quantization (Frantar et al., 2023; Yuan et al.,
2023; Shao et al., 2023; Ma et al., 2024; Liu et al.,
2024c), sparsification (Frantar and Alistarh, 2023;
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Sun et al., 2023), and knowledge distillation (Hsieh
et al., 2023; Gu et al., 2024), have demonstrated
remarkable efficacy in reducing model footprint
while preserving performance. Among these ap-
proaches, quantization has emerged as particularly
promising, with recent advances successfully ad-
dressing the challenging outlier problem in large
dense models through sophisticated weight com-
pensation and affine transformation techniques.

However, these quantization methodologies,
originally designed for dense architectures, en-
counter unique challenges when applied to MoE-
LLM architectures. The fundamental distinction
lies in the dynamic routing mechanism (Shazeer
et al., 2017), where input tokens are intelligently di-
rected to specific experts based on semantic content.
This sophisticated routing mechanism, combined
with sparse computational patterns, renders conven-
tional quantization techniques inadequate without
compromising model performance (Li et al., 2023).
Moreover, the inherent heterogeneity of expert
structures indicates that individual experts within
the MoE framework possess distinct parameters
and specialized functionalities. Unlike traditional
homogeneous neural networks, this architectural di-
versity suggests that each expert requires a tailored
compression strategy, introducing additional com-
plexity to the quantization process. The distinctive
characteristics of MoE architectures present un-
precedented quantization challenges, particularly
in managing outliers effectively across heteroge-
neous expert networks. Recent research has begun
addressing these challenges in MoE compression.
(He et al., 2024) introduced a unified compression
framework integrating expert slimming with quan-
tization, marking an initial step toward comprehen-
sive MoE compression. Additionally, (Li et al.,
2024) investigated variable quantization bit-width
allocation based on importance metrics across dif-
ferent structural granularities. However, these ap-
proaches predominantly focus on static structural
metrics, without fully addressing the unique char-
acteristics of MoE architectures. The field cur-
rently lacks a specialized quantization solution en-
gineered specifically for the distinctive nature of
MoE models, particularly in effectively managing
heterogeneous expert structures.

In response to the unprecedented challenges in-
herent in quantizing MoE models ((Jiang et al.,
2024; Li et al., 2024)), we present a novel au-
tomated mixed-precision quantization framework
specifically designed for MoE-based Large Lan-

guage Models. Our approach is fundamentally mo-
tivated by a critical empirical observation: weight
matrices within MoE architectures exhibit distinc-
tive channel-wise outlier patterns, with substan-
tial heterogeneity across different channels within
individual experts. As illustrated in Figure 1
and 2, this phenomenon is consistently observed
across diverse MoE architectures, with particu-
larly pronounced patterns in down-projection lay-
ers. These findings fundamentally challenge con-
ventional layer-wise quantization paradigms and
underscore the necessity for more granular quanti-
zation strategies. Through comprehensive theoreti-
cal analysis, we establish that various components
within MoE architectures demonstrate differential
susceptibility to quantization effects. Specifically,
we prove that down-projection layers exhibit inher-
ently greater sensitivity to quantization perturba-
tions compared to their up-projection counterparts,
as evidenced by their elevated condition numbers
and Fisher Information metrics. This theoretical
foundation provides principled guidance for opti-
mal bit allocation across the model’s architectural
components. To reconcile these theoretical insights
with practical deployment constraints, we introduce
computationally efficient statistical approximation
techniques that facilitate automated bit allocation
without introducing additional training complexity.
Our methodology maintains rigorous theoretical
guarantees while achieving the computational effi-
ciency necessary for large-scale model deployment.
Experimental results demonstrate significant im-
provements over existing approaches, achieving
a 3.96% performance gain on the Mixtral-8x7B
model under extreme low-bit configurations.

The primary contributions of this work are:

• We elucidate and systematically character-
ize the channel-wise heterogeneity in MoE
weight distributions, revealing distinctive pat-
terns that necessitate the development of fine-
grained quantization methodologies.

• We establish a comprehensive theoretical
framework that quantifies and explicates layer-
wise sensitivity variations in MoE architec-
tures, providing mathematical evidence for
the increased quantization precision require-
ments in down-projection layers.

• We propose an integrated quantization frame-
work that operationalizes these theoretical in-
sights, automatically determining optimal bit-

27025



width allocations while maintaining minimal
computational overhead through sophisticated
statistical approximations.

• We empirically validate our approach through
extensive experimentation, demonstrating su-
perior compression ratios while maintaining
model performance across multiple MoE ar-
chitectures.

2 Related Work

2.1 Mixture-of-Experts Models

Mixture-of-Experts (MoE) architectures have
emerged as a significant innovation in Large Lan-
guage Models (LLMs) (Jiang et al., 2024; Dai et al.,
2024; Liu et al., 2024a), offering a balance between
model capacity and computational efficiency. Orig-
inally proposed by (Jacobs et al., 1991), MoE has
evolved substantially through key developments
like (Shazeer et al., 2017)’s application to trans-
former models and (Fedus et al., 2022)’s intro-
duction of sparse gating mechanisms for efficient
routing. The theoretical foundations have been
strengthened by works such as (Chen et al., 2022;
Chowdhery et al., 2022), while recent advances like
the Mixtral model (Jiang et al., 2024) have demon-
strated that MoE can match full-parameter LLM
performance while using significantly fewer ac-
tive parameters. These developments have sparked
growing interest in MoE optimization and compres-
sion techniques (Li et al., 2023; Rajbhandari et al.,
2022), highlighting the architecture’s potential for
efficient, large-scale language modeling.

2.2 Post-Training Quantization

Post-training quantization (PTQ) (Wei et al., 2022b;
Yao et al., 2022; Ashkboos et al., 2024; Liu et al.,
2024c; Sun et al., 2024) has emerged as an effi-
cient technique for model compression, particularly
beneficial for LLMs. Unlike quantization-aware
training or fine-tuning (Tailor et al., 2020; Ding
et al., 2022), PTQ operates on pre-trained models
without extensive retraining (Liu et al., 2021; Fang
et al., 2020). In computer vision, AdaRound (Nagel
et al., 2020) optimizes weight rounding strategies,
BRECQ (Li et al., 2021) introduces block-wise
reconstruction, and QDROP (Wei et al., 2022a) en-
hances performance through activation substitution.
For LLMs, GPTQ(Frantar et al., 2023) uses ap-
proximate second-order information for layerwise

quantization, SmoothQuant (Xiao et al., 2023) tack-
les activation outliers, and AWQ (Lin et al., 2023)
preserves critical weights’ precision. OmniQuant
(Shao et al., 2023) integrates multiple strategies,
combining mixed-precision quantization, outlier
handling, and adaptive rounding. AffineQuant (Ma
et al., 2024) introduces an affine transformation
to adjust weight distribution, effectively reducing
quantization errors. These advancements have sig-
nificantly improved LLM deployment efficiency
on resource-constrained devices (Kim et al., 2023;
Chen et al., 2024).

3 Preliminary

Mixture of Experts. The Mixture-of-Experts
(MoE) architecture represents a significant advance-
ment in Transformer models (Fedus et al., 2022;
Jiang et al., 2024), superseding the conventional
Feed-Forward Network (FFN) sublayer with a
more sophisticated dynamic structure. An MoE
layer incorporates N parallel FFN modules, des-
ignated as experts E1, E2, . . . , EN , alongside a
router network (Shazeer et al., 2017) that facilitates
dynamic input allocation through a specialized gat-
ing mechanism.

For an input vector x ∈ Rdin , the MoE layer
generates output y ∈ Rdout through the following
computation:

y =

N∑

i=1

ri(x)Ei(x), (1)

where ri = [router(x;G)]i denotes the gating
weight assigned to expert i, G represents the gating
function that determines routing probabilities based
on input characteristics, and Ei(x) corresponds
to the output of the i-th expert. Following archi-
tectural principles established in (Touvron et al.,
2023a; Jiang et al., 2024), each expert implements
an enhanced FFN structure defined as:

Ei(x) = W
(i)
d (Act(W (i)

g x)⊙W (i)
u x), (2)

where Act(·) denotes the activation function, and
⊙ represents element-wise multiplication. The ex-
pert parameters comprise up-projection matrices
W

(i)
u ,W (i)g ∈ Rdmid×dh and a down-projection

matrix W
(i)
d ∈ Rdh×dmid , where dmid and dh repre-

sent the intermediate and hidden state dimensions,
respectively.
Quantization. For a given weight matrix W , the
b-bit quantization operation Qb (Nagel et al., 2021)
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(a) Outlier Proportion Across Projection Matrices (b) L2 Norm Distribution of Outlier Channels

Figure 2: Channel-wise Distribution Analysis across MoE Architectures: (a) Outlier Proportion Across Projection
Matrices reveals that outlier channels constitute only a small fraction of total channels, with down-projection
matrices (Wdown) consistently showing higher outlier proportions; (b) L2 Norm Distribution of Outlier Channels
demonstrates a pronounced long-tail distribution, where outlier channels exhibit L2 norms orders of magnitude
larger than typical channels

is formulated as:

Qb(W ) = s · clamp
(W

s

)
,

where s =
max(|W |)−min(|W |

2b − 1
.

(3)

Here, s denotes the quantization step size, and
clamp(·) represents a function that constrains val-
ues within a specified range. The quantization error,
denoted as ϵb(W ) = W−Qb(W ), exhibits specific
statistical properties.
Fisher Information Matrix. In the context of neu-
ral networks with parameters W and loss function
L, the Fisher Information Matrix is characterized
by:

FW = E
[(

∂L
∂W

)(
∂L
∂W

)T ]
, (4)

where the expectation is computed over the un-
derlying data distribution. This matrix provides
a principled measure of the local curvature in the
loss landscape and quantifies the relative signifi-
cance of individual parameters within the network
architecture.

4 Method

4.1 Channel-wise Mixed-precision
Quantization

Extensive empirical analysis of weight matrices in
MoE architectures reveals a distinctive structural
characteristic: the distribution of outliers exhibits
pronounced channel-wise heterogeneity. Our inves-
tigation of Wup, Wgate, and Wdown matrices across
diverse expert networks demonstrates that signifi-
cant outliers are consistently concentrated within a
small subset of channels, while the majority main-
tain notably uniform distributions. As visualized

in Figure 2, these channel-wise outlier patterns
exhibit substantial variation, suggesting that con-
ventional layer-wise or tensor-wise quantization
approaches, which impose uniform quantization
across all channels, are inherently suboptimal for
MoE architectures.

Motivated by these empirical observations, we
introduce a channel-wise mixed-precision quantiza-
tion framework. For a weight matrix W ∈ Rm×n

within expert Ei, our approach independently quan-
tizes each row vector wj using bit-widths selected
from a predefined set B = b1, b2, ..., bk. The quan-
tization operation for channel j with assigned bit-
width bj ∈ B is formulated as:

Qbj (wj) = sj · round(
wj

sj
), (5)

where the channel-specific quantization step size
sj is computed as:

sj =
max(|wj |)−min(|wj |)

2bj − 1
. (6)

This channel-wise quantization paradigm offers
significant theoretical and practical advantages. By
allocating higher bit-widths to channels contain-
ing substantial outliers, the framework preserves
the model’s critical representational capacity in nu-
merically sensitive regions. Simultaneously, chan-
nels exhibiting more uniform distributions can be
efficiently quantized with lower bit-widths while
maintaining numerical stability, leveraging their
inherent robustness to quantization effects. This
adaptive precision allocation enables optimal bal-
ance between model fidelity and memory efficiency
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4.2 Theoretical Analysis of Layer-wise
Quantization Sensitivity

A fundamental challenge in quantizing MoE archi-
tectures lies in understanding the differential sensi-
tivity of various layer types to precision reduction.
Our empirical investigations reveal a striking pat-
tern: down-projection weights Wd consistently ex-
hibit substantially higher magnitude and frequency
of outliers compared to up-projection (Wu) and
gating (Wg) weights across different experts. This
systematic variation in weight distributions sug-
gests an inherent asymmetry in the quantization
requirements across different components of MoE
architectures.

To rigorously characterize this empirical obser-
vation, we establish a theoretical framework that
elucidates component-wise quantization sensitivity
in MoE architectures. Our analysis synthesizes
three fundamental aspects: the relationship be-
tween quantization perturbations and loss function
dynamics through Fisher Information, the propaga-
tion patterns of quantization errors in MLP struc-
tures, and the derivation of optimal bit allocation
strategies.

Proposition 4.1 (Loss Function Taylor Expansion).
For sufficiently small perturbations ϵ in the param-
eter space W , the loss function L admits the fol-
lowing second-order approximation:

L(W + ϵ) =L(W ) + tr
(
∂L
∂W ϵT

)
+ 1

2 tr
(
ϵHW ϵT

)

+O(|ϵ|3),
(7)

where HW denotes the Hessian matrix of L with
respect to W .

Lemma 4.2 (Fisher Information and Quantization).
In practical neural network deployments where the
loss landscape exhibits local convexity and quan-
tization perturbations remain within the regime of
Taylor approximation validity, the expected loss
increase due to quantization necessarily satisfies:

E[∆L] ≥ tr
(
FW ϵb(W )ϵb(W )T

)
. (8)

Proof. Leveraging the Taylor expansion from the
previous proposition:

∆L = L
(
W + ϵb(W )

)
− L(W )

= 1
2 tr

(
ϵb(W ), HW , ϵb(W )T

)

+ tr
(
∂L
∂W , ϵb(W )T

)
+O

(
|ϵb(W )|3

)
.

(9)

The result follows naturally by taking expecta-
tion and applying the definition of the Fisher Infor-

mation Matrix:

E[∆L] ≥ E
[
tr
(
∂L
∂W , ϵb(W )T

)]

= tr
(
E
[
∂L
∂W , ∂L

∂W

T ]
, ϵb(W ), ϵb(W )T

)

= tr
(
FW , ϵb(W ), ϵb(W )T

)
.

(10)

To analyze the quantization sensitivity in FFN
structures, we examine the error propagation
through the projection layers. Taking the Wdown

and Wup matrices as representative examples,
we establish the following characterization of
quantization-induced errors.
Lemma 4.3 (Error Propagation in FFN Layers).
For the standard FFN architecture incorporating
up-projection matrix Wu ∈ Rdh×d and down-
projection matrix Wd ∈ Rd×dh with dh > d, the
quantization error propagation manifests as:

|∆y|2 ≤κ(Wd)|ϵb(Wd)|2|x|2
+ |Wd|2|ϵb(Wu)|2|x|2,

(11)

where κ(Wd) = |Wd|2|W+
d |2 represents the con-

dition number of Wd.

Proof. The quantization-induced output perturba-
tion naturally decomposes as:

∆y = (Wd + ϵb(Wd))(Wu + ϵb(Wu))x

−WdWux

= Wdϵb(Wu)x+ ϵb(Wd)Wux

+ ϵb(Wd)ϵb(Wu)x.

(12)

Application of the triangle inequality yields:

|∆y|2 ≤ |Wdϵb(Wu)x|2 + |ϵb(Wd)Wux|2
+ |ϵb(Wd)ϵb(Wu)x|2
≤ |ϵb(Wd)|2|Wu|2|x|2
+ |Wd|2|ϵb(Wu)|2|x|2 +O(|ϵb(W )|2).

(13)
The stated inequality follows from the architec-

tural constraint |Wu|2 ≤ κ(Wd).

Theorem 4.4 (Optimal Bit Allocation). In typical
neural network deployments where input distribu-
tions exhibit bounded moments and weight matri-
ces maintain Lipschitz continuity, the optimal bit
allocation ratio r∗ between Wdown and Wup nec-
essarily satisfies:

r∗ =
bd
bu
≥

√
κ(Wd)

κ(Wu)
· |FWd|F
|FWu|F

. (14)

The detailed proof can be found in Appendix A.1.
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Corollary 4.5. Under contemporary neural net-
work architectures employing standard initializa-
tion schemes, the following relationships naturally
emerge:

κ(Wd) > κ(Wu) and |FWd
|F > |FWu|F,

(15)

These inequalities, in conjunction with Theorem
4.4, establish that the optimal bit ratio r∗ between
Wdown and Wup necessarily exceeds unity, indi-
cating the imperative for higher bit allocation to
the down-projection layer. This result derives from
dimensional analysis and established initialization
properties, providing theoretical guidance for bit
allocation in mixed-precision quantization. The
detailed proof is provided in Appendix A.2.

These theoretical findings provide rigorous jus-
tification for the empirically observed sensitivity
of the down-projection layer. The analysis reveals
that this sensitivity emerges from two fundamental
factors: (1) the inherent dimensional compression
in the down-projection operation, which engenders
heightened sensitivity to quantization errors, and
(2) its position in the computational graph, where
perturbations can be amplified through the network
structure. These insights naturally motivate our
proposed bit allocation strategy that assigns higher
precision to the down-projection layer to preserve
model performance..

4.3 Theoretically-Guided Mixed-Precision
Quantization Framework

Building on our layer-wise sensitivity analysis and
channel heterogeneity characterization, we pro-
pose a mixed-precision quantization framework
that bridges theoretical insights with deployment
efficiency. Our method establishes dual-granularity
bit allocation through theoretically-grounded sensi-
tivity metrics.
Channel-wise Theoretical Sensitivity Metric

From Theorem 4.4 connecting quantization sen-
sitivity with Fisher Information F and condition
numbers κ, we derive a channel-level sensitivity
metric:

Sc = α · tr(Fc)κc︸ ︷︷ ︸
Tc

+(1− α) ·Oc (16)

where α ∈ [0, 1] regulates the theoretical-
empirical trade-off. The theoretical component
Tc combines the cumulative gradient variance cap-
tured by the Fisher Information trace tr(Fc) with

Algorithm 1 Mixed-precision Quantization Frame-
work for MoE
Require: Model parameters Θ, bit budget B, out-

lier threshold τ
Ensure: Quantized model parameters ΘQ

1: for each Transformer block Tb do
2: for each Expert Ei in Tb do
3: for each MoE linear layer W ∈

Wu,Wg,Wd do
4: for each channel c in W do
5: Kc ← |wc|2/minj |wj |2
6: Vc ← var(wc)/mean(var(w:))
7: Oc ←

|wij ∈ wc : |wij| > τ |/|wc|
8: Sc ← α · (Kc · Vc) + (1− α) ·Oc

9: end for
10: end for
11: κd ← maxi |wi|2/mini |wi|2 for Wd

12: κu ← maxi |wi|2/mini |wi|2 for Wu

13: Vd ← var(Wd)
14: Vu ← var(Wu)
15: βi ←

√
κd/κu ·

√
Vd/Vu

16: Allocate bits: bd ← βi · bu
17: end for
18: end for
19: Apply channel-wise quantization using com-

puted sensitivity scores
20: Return ΘQ

the numerical stability quantified through the con-
dition number κc, which governs parameter per-
turbation sensitivity. The empirical component
Oc implements our channel-wise distribution anal-
ysis in Section 4.1 by statistically quantifying
quantization-critical outliers. This data-driven
mechanism through an integrated analysis of the
magnitude and frequency characteristics of outliers,
thereby providing essential empirical compensa-
tion to theoretical sensitivity estimates.
Computationally Efficient Approximation

Direct computation of tr(Fc) requires
O(Nparams ·Nsamples) complexity due to gradient
propagation. We develop theoretically-justified
approximations:

tr(Fc) ≈ Vc =
var(wc)

mean(var(w:))

κc ≈ Kc =
|wc|2

minj |wj |2

(17)

The variance approximation Vc derives from
maximum entropy principles under second-
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ACCURACY (%) ↑
#BITS GRANULARITY METHOD

BOOLQ PIQA HELLAS. WINO. ARC_E ARC_C AVG.

FP16 - - 85.02 82.59 83.99 76.56 84.13 56.83 78.18

EXPERT FREQUENCY 79.36 78.62 74.91 70.88 76.85 45.82 71.07

METRIC W-OUTLIER 79.42 79.98 77.65 72.69 78.54 48.63 72.82

CHANNEL W-OUTLIER 82.02 80.14 78.18 71.11 77.78 49.23 73.10
2.86

CHANNEL OURS 81.53 80.69 78.57 71.69 79.8 50.43 73.79

METRIC W-OUTLIER 78.07 78.45 76.25 70.32 76.3 48.12 71.25

CHANNEL W-OUTLIER 81.31 78.84 77.18 72.06 76.18 44.37 71.662.68

CHANNEL OURS 80.58 80.3 77.8 71.11 78.2 48.21 72.68

EXPERT FREQUENCY 73.55 78.07 72.51 68.67 72.69 42.15 67.94

METRIC W-OUTLIER 74.65 78.07 74.17 71.43 73.15 42.75 69.04

CHANNEL W-OUTLIER 76.36 78.24 75.14 72.06 75.67 44.8 70.38
2.54

CHANNEL OURS 80.49 79.27 76.58 71.9 77.57 46.76 72.10

METRIC W-OUTLIER 71.59 76.71 72.14 68.35 72.81 42.66 67.38

CHANNEL W-OUTLIER 76.3 76.93 73.79 69.53 73.19 41.98 68.622.30

CHANNEL OURS 79.6 78.67 75.1 70.8 73.78 41.64 69.93

EXPERT FREQUENCY 69.27 77.31 70.79 69.3 71.3 39.51 66.25

METRIC W-OUTLIER 66.27 76.55 70.22 66.69 70.12 39.51 64.89

CHANNEL W-OUTLIER 72.45 77.86 72.97 70.17 73.32 42.92 68.28
2.20

CHANNEL OURS 74.31 77.69 73.54 71.03 73.65 42.92 68.85

Table 1: Zero-Shot Task Performance of Mixtral-8x7B using Automated Fine-Grained MoE Quantization. #Bits
denotes bits for weight quantization, Granularity represents the level of mixed-precision application, and Method
indicates the bit allocation strategy. "HellaS." is the short format of "HellaSwag" and "Wino." denotes "Winogrande".

moment constraints, while Kc preserves spectral
stability relationships(see Appendix B for detailed
derivations). This reduces computational complex-
ity from O(N2) to O(N). The final implementable
metric becomes:

Sc = α(KcVc) + (1− α)Oc (18)

Layer-wise Bit Allocation Strategy
Theorem 4.4 establishes the optimal bit ratio

between projection layers:

bd
bu
≥

√
κ(Wd)

κ(Wu)
· |FWd

|F
|FWu|F

(19)

We implement this through practical approxima-
tions preserving theoretical guarantees:

βi =

√
κdVd

κuVu
(20)

where κl = maxj |wj |2/minj |wj |2 captures
numerical stability and Vl approximates Fisher
norm |Fl|F . The allocation respects per-expert con-
straints:

bid + biu + big = Bi (21)

where bid, biu, and big represent the bits allocated
to Wdown, Wup, Wgate respectively within expert
i, and Bi denotes the total bit budget for that expert.

The algorithm presented in Algorithm 1 inte-
grates theoretical insights with practical efficiency
considerations, operating at both the layer and chan-
nel granularities while maintaining minimal com-
putational overhead through statistical approxima-
tions.

5 Experiments

5.1 Settings
Implementation Details. We implement our
method following standard LLM quantization prac-
tices (Frantar et al., 2023; Lin et al., 2023; Shao
et al., 2023; Ma et al., 2024), using a WikiText2
(Merity et al., 2016) calibration set (128 samples ×
2048 tokens) and asymmetric group quantization
(group size 128). Attention layers are quantized to
4-bit while maintaining full-precision routers. For
FFN layer mixed-precision quantization, we set
sensitivity balance coefficient α to 0.5 and employ
hardware-friendly 2-bit and 4-bit precision levels.
To ensure fair comparison across granularity lev-
els (Li et al., 2024), we maintain consistent ratios
of 2-bit and 4-bit parameters while controlling the
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#BITS GRANULARITY METHOD
ACCURACY (%) ↑

PIQA HELLAS. WINO. ARC_E ARC_C AVG.

FP16 - - 80.14 77.28 69.22 73.19 41.64 68.294

2.54

LINEAR W-OUTLIER 74.32 67.88 63.8 69.2 37.57 63.06

CHANNEL W-OUTLIER 75.3 68.13 64.33 69.4 38.74 63.71

CHANNEL OURS 75.46 68.68 64.64 69.49 38.71 63.94

2.30

LINEAR W-OUTLIER 73.99 67.42 62.98 67.61 36.52 62.2

CHANNEL W-OUTLIER 75.57 67.72 63.38 68.22 36.95 62.76

CHANNEL OURS 75.21 68.89 63.22 70.22 38.95 63.79

2.20

LINEAR W-OUTLIER 73.88 66.32 61.88 64.9 35.41 60.66

CHANNEL W-OUTLIER 73.94 67.2 62.67 65.7 36.69 61.75

CHANNEL OURS 74.16 67.54 62.98 69.07 38.31 62.88

Table 2: Zero-Shot Task Performance of DeepSeek-V2-Lite using Automated Fine-Grained MoE Quantization.
#Bits denotes bits for weight quantization, Granularity represents the level of mixed-precision application, and
Method indicates the bit allocation strategy. "HellaS." is the short format of "HellaSwag" and "Wino." denotes
"Winogrande".

overall parameter budget.
Baseline. All experiments were conducted
on the Mixtral-8x7B-v0.1 (Jiang et al., 2024),
DeepSeek-V2-Lite(Liu et al., 2024a) and Qwen-
1.5-MoE(Team, 2024). Our method successfully
quantizes this multi-billion parameter model, with
all GPTQ (Frantar et al., 2023) experiments com-
pleted on a single NVIDIA RTX 3090 GPU with
24GB memory .
Evaluation. To assess the efficacy of our auto-
mated fine-grained quantization approach for MoE
models, we conducted evaluations across five zero-
shot tasks: PIQA (Bisk et al., 2020), HellaSwag
(Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2019), BoolQ (Clark et al., 2019), and ARC (Clark
et al., 2018). We utilized the lm-eval-harness (Gao
et al., 2021) framework to obtain individual task
accuracies and the overall average accuracy. This
comprehensive evaluation strategy enables us to
gauge the impact of our quantization method on
various aspects of model performance, providing
insights into its generalization capabilities across
diverse natural language understanding tasks.

5.2 Main Results

We conduct comprehensive zero-shot evaluations
across various quantization configurations, includ-
ing different bit-widths, granularity levels, and pri-
ority allocation strategies. Our primary baseline is
derived from the extensive mixed-precision quan-
tization experiments for MoE models presented in
(Li et al., 2024). Their work explores two gran-
ularity levels: expert-level allocation, which dis-

tributes bits among experts within the same block,
and metric-level allocation, which operates across
all matrices (Wdown, Wup, Wgate) throughout the
model. For allocation strategies, they investigate
frequency-based (frequency) prioritization accord-
ing to router activation patterns and weight-outlier
(w-outlier) based ordering. The specific bit-width
assignment is determined by the mixed-precision
ratio - for instance, a 2.54-bit configuration indi-
cates that 25% of the FFN parameters are quantized
to 4-bit precision, with the remaining parameters
at 2-bit precision.

The experimental results in Table 1, Table 2
and Table 3 demonstrate the consistent superiority
of our approach across various bit-width config-
urations. Our method achieves the highest aver-
age zero-shot accuracy under all bit-width settings,
with particularly remarkable performance in lower
bit. Notably, at 2.20 bits, our approach outperforms
the best metric-level method by 3.96% (68.85% vs.
64.89%) and surpasses the frequency-based expert-
level approach by 2.6% (68.85% vs. 66.25%) in
accuracy, highlighting its competitive advantage
in aggressive quantization scenarios. Furthermore,
the effectiveness of channel-level granularity is ev-
ident even when using the same weight-outlier pa-
rameter selection strategy, consistently outperform-
ing metric-level quantization across all configura-
tions. This improvement suggests that finer-grained
mixed-precision allocation enables more precise
capture of parameter sensitivity and better preser-
vation of model capabilities under strict bit-width
constraints.
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5.3 Ablation Study

Sensitivity Analysis of FFN Projections To vali-
date Corollary 4.5 empirically, we conduct an abla-
tion study by quantizing either the down-projection
or up-projection layer while maintaining full preci-
sion for all other layers. As shown in Figure 3 We
measure the mean squared error (MSE) between
the original and quantized outputs across different
transformer blocks. The results consistently show
that down-projection layers exhibit higher quan-
tization sensitivity across all transformer blocks,
necessitating more bits in mixed-precision quanti-
zation. This experimental observation aligns with
our theoretical analysis in Corollary 4.5, provid-
ing empirical support for our sensitivity-aware bit
allocation strategy.
Analysis of Balance Parameter α We conduct
an ablation study on hyperparameter α at 2.54-bit
quantization level, varying it from 0.2 to 0.8. As
shown in Figure 4, model performance peaks at
α ≈ 0.5, indicating that balancing weight magni-
tude and gradient information is crucial for effec-
tive bit allocation in mixed-precision quantization.
Lower α values overemphasize weight magnitudes
while higher values excessively prioritize gradient
information, both leading to suboptimal quantiza-
tion results.
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Figure 3: Layer-wise Mean Squared Error (MSE) com-
parison between down-projection and up-projection
quantization, demonstrating consistently higher sensitiv-
ity in down-projection layers across transformer blocks.

Analysis of Channel Quantization Direction
We investigate the impact of channel direction
choice in quantization by comparing row-wise and
column-wise quantization strategies, while main-
taining the quantization level at 2.54-bit and using
weightoutlier as the allocation criterion. Our exper-
iments in Table 4 demonstrate that row-wise quanti-
zation consistently achieves superior performance.
This finding aligns with the inherent function of

FFN layers, as each row vector corresponds to an
output dimension that represents a distinct feature
transformation. By quantizing along the row direc-
tion, we preserve the integrity of individual feature
transformations, allowing each output dimension
to maintain its unique contribution to the model’s
representation capacity. This result suggests that
preserving the precision of output feature computa-
tions is more critical than maintaining the precision
of input feature combinations.

6 Conclusion

This paper presents an automated fine-grained
quantization framework for MoE models. Our key
theoretical contribution establishes the relationship
between Fisher Information, condition numbers,
and quantization sensitivity, providing principled
guidance for bit allocation across different model
components. Through extensive empirical anal-
ysis, we demonstrate that MoE weight matrices
exhibit distinct channel-wise outlier patterns, ne-
cessitating fine-grained quantization approaches.
Our proposed framework successfully bridges the-
oretical insights with practical efficiency consider-
ations through statistical approximations, enabling
automated bit allocation without additional training
overhead.

Limitations

While our work demonstrates promising results
in MoE quantization, several limitations warrant
discussion. First, our experimental validation, al-
though thorough on Mixtral-8x7B, DeepSeek-V2
and Qwen-1.5-MoE, is constrained to a limited set
of MoE architectures. Despite the block-wise quan-
tization approach being computationally feasible
on a single GPU, resource constraints prevented us
from extending our evaluation to emerging mod-
els such as DeepSeek-V3, potentially limiting our
understanding of the framework’s generalizability
across different MoE architectures. Additionally,
while our work focuses specifically on quantization-
based compression, it does not explore potential
synergies with other compression techniques such
as pruning, knowledge distillation, or structured
sparsification. Future work could investigate the
integration of our fine-grained quantization frame-
work with these complementary compression meth-
ods, potentially yielding more comprehensive and
efficient MoE compression solutions.
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A Appendix A: Detailed Proofs for
Optimal Bit Allocation

A.1 Proof of Theorem 4.4

Proof. The proof consists of three main steps:
Step 1: Error Propagation. As we have previ-
ously derived in Equation 12, from matrix pertur-
bation analysis, we have:

∆y = (Wd + ϵb(Wd))(Wu + ϵb(Wu))x

−WdWux

= Wdϵb(Wu)x+ ϵb(Wd)Wux

+ ϵb(Wd)ϵb(Wu)x.

(22)

Step 2: Bounding the Expected Loss Increase.
Using Lemma 4.2 and 4.3, we can bound the ex-
pected loss increase. First, note that for uniformly
distributed quantization error, we have:

E[ϵb(W )ϵb(W )T ] =
1

22b
diag(var(W )) (23)

For Wd:

E[∆Ld] ≥ tr(FWd
ϵb(Wd)ϵb(Wd)

T )

= tr(FWd
E[ϵb(Wd)ϵb(Wd)

T ])

=
1

22bd
tr(FWd

diag(var(Wd)))

=
|FWd

|F
22bd

(24)

Similarly for Wu:

E[∆Lu] ≥ tr(FWuϵb(Wu)ϵb(Wu)
T ) =

|FWu |F
22bu

(25)

By the independence of quantization operations
between layers and the additivity of expectation:

E[∆L] = E[∆Ld] + E[∆Lu]

≥ |FWd
|F

22bd
+
|FWu|F
22bu

(26)

A.2 Proof of Corollary 4.5

Proof. Step 1: Dimensional Analysis. Recall
Wd ∈ Rd×dh and Wu ∈ Rdh×d, where dh > d.
Step 2: Xavier Initialization. Under Xavier ini-
tialization, weights are typically sampled as:

Wij ∼ N
(
0,

2

nin + nout

)
. (27)

Step 3: Condition Number Comparison. For
Wd, this leads to:

κ(Wd) ≈
√
dh
d

maxσi
minσi

, (28)

while for Wu:

κ(Wu) ≈
√
d

dh

maxσi
minσi

, (29)

so κ(Wd) > κ(Wu) since dh > d.
Step 4: Fisher Information Comparison. Due
to the bottleneck from dh to d, Wd compresses
information more aggressively, leading to:

|FWd
|F > |FWu|F . (30)

Hence, both terms in the inequality of Theorem
4.4 exceed 1, implying r∗ = bd

bu
> 1.

B Appendix B: Approximation Derivation

The approximations are derived from fundamental
theorems in optimization and matrix theory:

B.1 Fisher Information Trace Approximation
1. Starting with the exact definition:

tr(Fc) = E[∥∂L/∂wc∥2]

2. Applying optimization theory and Taylor ex-
pansion near optimality:

∂L/∂wc = δc ⊗ x ≈ Hc(wc − w∗
c )

where Hc is the Hessian and w∗
c are optimal

parameters.

3. This leads to the key approximation:

tr(Fc) = E[∥Hc(wc − w∗
c )∥2]

= E[δ2c ]E[∥x∥2] ∝ var(wc)
(31)

4. The normalization term emerges natu-
rally: mean(var(w:)) ensures scale invariance
across layers

B.2 Condition Number Approximation
1. From matrix perturbation theory:

κc = σmax(wc)/σmin(wc)

2. For channel vectors, this simplifies to:

κc = ∥wc∥2/min
j
∥wj∥2

preserving the relative scaling relationships
between channels.

C Other expertment results
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#BITS GRANULARITY METHOD
ACCURACY (%) ↑

PIQA HELLAS. WINO. ARC_E ARC_C AVG.

FP16 - - 80.14 77.28 69.22 73.19 41.64 68.294

2.69

LINEAR W-OUTLIER 76.71 72.60 65.43 59.60 32.34 61.336

CHANNEL W-OUTLIER 77.48 73.67 62.59 63.49 35.41 62.528

CHANNEL OURS 77.55 74.13 65.51 64.95 35.84 63.596

2.58

LINEAR W-OUTLIER 77.53 72.77 62.12 61.07 31.23 60.944

CHANNEL W-OUTLIER 76.33 72.78 63.33 61.62 34.39 61.690

CHANNEL OURS 77.84 73.24 63.38 63.56 33.36 62.276

2.47

LINEAR W-OUTLIER 75.90 72.60 62.12 61.871 31.28 60.7542

CHANNEL W-OUTLIER 75.97 72.46 61.56 62.09 32.79 60.974

CHANNEL OURS 75.97 73.21 62.19 62.18 33.59 61.428

Table 3: Zero-Shot Task Performance of Qwen-1.5-MoE using Automated Fine-Grained MoE Quantization. #Bits
denotes bits for weight quantization, Granularity represents the level of mixed-precision application, and Method
indicates the bit allocation strategy. "HellaS." is the short format of "HellaSwag" and "Wino." denotes "Winogrande".

DIRECTION
ACCURACY (%) ↑

PIQA HELLAS. WINO. ARC_E ARC_C AVG.

DOWN ROW 76.55 73.52 69.61 75.34 43.86 67.78

DOWN COLUMN 78.84 75.25 68.98 74.75 44.2 68.40

ALL COLUMN 78.13 75.48 71.51 75.38 44.28 68.95

ALL ROW 78.24 75.14 72.06 75.67 44.8 69.19

Table 4: Performance comparison of different channel quantization directions in FFN layers of Mixtral-8x7B-v0.1.
All Row represents using row-wise quantization for all channel quantization matrices, Down Row represents row-
wise quantization for Wdown only, column-wise for Wup and Wgate. "HellaS." is the short format of "HellaSwag"
and "Wino." denotes "Winogrande".
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Figure 4: Impact of balance parameter α on zero-shot
accuracy under 2.54-bit quantization, demonstrating op-
timal performance at α nearby 0.5.
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