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Abstract

A Writing Assistant (WA) is a system that
offers writing suggestions based on user in-
structions. Existing WAs are typically built
by training large language models (LLMs) on
domain-specific instruction data through super-
vised fine-tuning (SFT) only. However, SFT
optimizes models to match a single reference,
failing to capture the inherent flexibility of text
editing, where multiple valid revisions exist.
Therefore, solely relying on SFT limits WA
performance. To address this limitation, we
propose the Rationalize and Align framework,
which enhances the WA performance with ra-
tionale (i.e., linguistic explanations) and align-
ment. Our framework automatically generates
the rationale and preference data for writing
tasks via distillation and self-training, elimi-
nating the need for human annotation. These
data are then leveraged to refine WA using a
novel preference optimization method. Empir-
ical results show that our framework signifi-
cantly improves WA performance. Our WA
outperforms both open-source state-of-the-art
WAs and the closed-source GPT-4o by 3.9 and
7.1 points on average, respectively, across eight
well-established writing-related test sets.1

1 Introduction

Large language models (LLMs) demonstrate strong
proficiency in generating fluent and coherent text
revisions, assisting users with various writing tasks
(Achiam et al., 2023). However, general-purpose
LLMs, such as GPT-4, often underperform com-
pared to task-specific models (Cao et al., 2023b;
Raheja et al., 2023). Consequently, research has
focused on tailoring LLMs for writing-related
tasks, such as grammatical error correction (GEC)
(Bryant et al., 2023), text simplification (Baez and
Saggion, 2023), and style transfer (Luo et al., 2023).
Several studies (Raheja et al., 2023; Schick et al.,
2023) have proposed writing assistants (WAs) that

1https://github.com/nusnlp/RationAlign

xx x xCoEDIT
Prompt: Fix the grammatical errors in this sentence: The CEO, along with his advisors,
were confident that the plan, which they spent months developing, would succeed.
Suggestion: The CEO, along with his advisors, was confident that the plan, which they
spent months developing, would succeed.

Rationale: 
The verb form "were" should be replaced by "was" because the subject "The CEO" is
singular.
The verb form "spent" should be replaced by "had spent" because the action "developing
the plan" happened before "being confident," requiring the past perfect tense.

Prompt: Fix the grammatical errors in this sentence: The CEO, along with his advisors,
were confident that the plan, which they spent months developing, would succeed.
Suggestion: The CEO, along with his advisors, was confident that the plan, which they
had spent months developing, would succeed.

Ours
Rationale: Fix grammar errors.

xx x x x x x x x

Suggestion: The CEO, along with his advisors, was confident that the plan, which they
spent months developing, would succeed.

Prompt: Fix the grammatical errors in this sentence: The CEO, along with his advisors,
were confident that the plan, which they spent months developing, would succeed.

PEER

Figure 1: Comparison of our WA and related systems’
output: CoEDIT (Raheja et al., 2023) and PEER (Schick
et al., 2023).

generate text suggestions based on user instruc-
tions.

State-of-the-art (SOTA) WAs (Raheja et al.,
2023; Zhang et al., 2023) are built by directly apply-
ing supervised fine-tuning (SFT) on labeled data.
However, text editing inherently allows multiple
valid revisions for a given input. Since SFT opti-
mizes models to match a single reference revision,
it fails to capture this flexibility. In contrast, task-
specific evaluation metrics (e.g., SARI, ROUGE)
may account for such variation (Paulus et al., 2018).
Consequently, relying solely on SFT may result in
suboptimal performance. Furthermore, existing
open-source WAs cannot provide rationales (i.e.,
linguistic explanations) for their suggestions (Fig.
1), limiting their applicability.

To bridge this gap, we introduce the Rationalize
and Align framework, which enhances WA with
rationales and aligns WA towards suggestions with
higher overall quality (e.g., fluency, coherence).
However, the absence of rationale and preference
data presents a significant challenge, and acquir-
ing human annotations is both time-consuming and
expensive. To address this, we propose to auto-
matically generate these data via distillation and
self-training. Since existing WAs are not able to
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provide rationales for their suggestions, we distill
rationales (Fig. 2(a)) from GPT-4o into the labeled
data, creating rationale-enhanced labeled datasets.
These datasets are then used to develop a rationale-
enhanced WA through SFT.

We then generate preference data to further en-
hance WA. However, text editing tasks lack appro-
priate reward models. Moreover, widely used eval-
uation metrics in writing tasks are reference-based
metrics, restricting the generation of preference
data to labeled datasets (i.e., containing labeled
suggestions for user instructions). However, such
labeled data is scarce and costly to obtain. To ad-
dress this, we propose a self-training alignment
method that leverages unlabeled data to align WA.
This method consists of two phases: (1) reward
modeling (Fig. 2 (b)), which builds a reward model
to assess suggestion quality, and (2) preference opti-
mization (Fig. 2 (c)), which creates preference data
and aligns WA towards higher-quality suggestions.

During reward modeling, we utilize labeled data
(i.e., data used for SFT) and evaluation metrics
to generate preference data, which is then used to
build the reward model. In the subsequent pref-
erence optimization phase, we leverage the con-
structed reward model and rationale-enhanced WA
to create new preference data from unlabeled data
for WA. This preference data, along with its cor-
responding reward assigned by the reward model,
is then used to align WA via a novel margin-based
preference optimization loss. This loss extends
DPO (Rafailov et al., 2023) by replacing the refer-
ence model with the reward margin between pre-
ferred and non-preferred data, thereby capturing
their quality differences more effectively.

Our experiments demonstrate that the Ratio-
nalize & Align framework significantly enhances
our WA’s performance. Across eight widely-used
writing-related tasks, our WA significantly outper-
forms both open-source SOTA WA and GPT-4o,
by 3.9 and 7.1 points on average, respectively. The
contributions of our paper are as follows:
• We present the first open-source explainable WA

that provides rationales for its suggestions.
• We introduce the Rationalize & Align framework

to enhance WA. Our analysis demonstrates that
each component contributes effectively.

• To the best of our knowledge, this is the first
study to assess the impact of incorporating ratio-
nales into WA. Extensive experiments confirm
that rationales enhance performance and increase
confidence in the generated suggestions.

2 Related Work

Alignment. DPO (Rafailov et al., 2023) serves as a
prominent approach in offline preference optimiza-
tion. However, its reliance on a reference model
and the absence of a reward model restrict its ability
to sample preference pairs from the optimal policy
(Meng et al., 2024). Recent advancements have
aimed to eliminate the need for a reference model.
CPO (Xu et al., 2024) entirely removes the refer-
ence model, whereas SimPO (Meng et al., 2024)
replaces it with a length regularization term and
integrates a pre-defined margin. Similar to SimPO,
ODPO (Amini et al., 2024) integrates an offset into
DPO while retaining the reference model. Unlike
these approaches, our approach leverages the re-
ward values generated by our reward model and
replaces the reference model with a dynamically
adjusted reward difference, tailored according to
the quality of different preference data.

Enhancing LLMs with Rationale. Incorporat-
ing rationales into LLMs effectively enhances their
faithfulness and performance across various tasks,
including reasoning (Krishna et al., 2023; Wei
et al., 2022), question answering (Kassner et al.,
2023), and continual relation extraction (Xiong
et al., 2023). Unlike previous studies, ours focuses
on leveraging writing-related rationales to improve
the performance of LLMs in writing tasks.

Writing Assistants. Previous WAs (Raheja et al.,
2023; Zhang et al., 2023) provide suggestions
based on user instructions yet lack sufficient ex-
planatory support. In contrast, the PEER system
(Schick et al., 2023), trained using the edit history
of Wikipedia, offers high-level rationales. How-
ever, these rationales (Fig. 1) tend to be too ab-
stract to effectively assist users in understanding or
validating the suggestions. Our system overcomes
these limitations by providing writing suggestions
and detailed linguistic explanations for each edit.

Distillation and Self-Training. Recent studies
(Cao et al., 2023b; Zhao et al., 2024; Kadlčík and
Štefánik, 2024) demonstrate the effectiveness of
distillation and self-training across diverse NLP
tasks. Specifically, Cao et al. (2023b) employ self-
training to build a strong unsupervised GEC sys-
tem; Kadlčík and Štefánik (2024) leverage self-
training to improve LLM reasoning; and Zhao et al.
(2024) combine distillation with self-training to
boost LLMs’ parsing performance.
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Figure 2: Our WA involves the following steps: (a) generating rationales for labeled data by distilling the output
from GPT-4o, (b) constructing the reward model with DL and evaluation metrics, and (c) building a rationale and
alignment enhanced WA with self-generated preference data through the preference optimization process.

3 Rationalize & Align

WAs aim to generate a proper writing suggestion
s based on the user’s instruction and the input text.
Existing WAs (Raheja et al., 2023; Zhang et al.,
2023) focus solely on providing writing sugges-
tions, which are trained to learn the mapping from
x to s, where x represents the combination of in-
struction and input text. Here, we want to enhance
the WA by providing a rationale (or explanation) e
for its s. Therefore, our goal is to learn a mapping
from x to y, where y represents the combination
of suggestion s and rationale e. Fig. 2 shows the
method to build our WA, comprising three key com-
ponents: rationale generation, reward modeling,
and preference optimization.

3.1 Rationale Generation
To enhance a WA with rationales in writing tasks,
it is essential to provide linguistic explanations
for its suggestions. However, current open-source
WAs lack this capability, and no existing datasets
have rationale annotations. To address this, we pro-
pose distilling rationales from the advanced closed-
source model GPT-4o2 into open-source models.
Song et al. (2024) demonstrated that GPT-4 gener-
ates high-quality rationales (e) (92.2% accuracy in
English) when given the input text (in), suggestion
(s), and necessary edits (edits) that transform in
into s, formulated as e = GPT-4(in, s, edits).

Following their approach, we use GPT-4o to
generate rationales using these three components.
Specifically, we leverage the MaxMatch toolkit
(Dahlmeier and Ng, 2012) to identify the edits re-
quired to transform the input into the suggestion.
These edits, along with the input and suggestion,

2https://chat.chatbotapp.ai/?model=gpt-4o

are incorporated into prompts (Fig. 3) that instruct
GPT-4o to generate the rationale. This process
yields a rationale-enhanced dataset DE = {x, s, e}
from the labeled dataset DL = {x, s}.

3.2 Self-Training Alignment

Aligning LLMs requires preference data, which is
unavailable for writing-related tasks. To address
this, we propose a self-training alignment frame-
work that utilizes widely available unlabeled data
to perform alignment. The framework comprises
two key steps: reward modeling and preference
optimization. In the reward modeling step, we use
labeled data (DL) and task-specific evaluation met-
rics to generate preference data for training the
reward model. During preference optimization, we
first construct an initial WA on DE . We then uti-
lize this initial WA and the reward model to gener-
ate high-quality preference data, which are subse-
quently used to further refine the WA.

You are given a pair of English sentences along with a list of
atomic edits. For each edit, the first word identifies content in
the source sentence that is less appropriate, while the second
word suggests a better phrase in the target sentence. [Task
Instruction] Please generate a succinct explanation for each
edit using the following template:

The word X should be deleted/inserted/replaced by Y because ...

###Source sentence:
[Input Text]

###Target sentence:
[Suggestion]

###Edits:
[Edit Content]

###Explanation:

Table 8: Instruction template for GPT-4o to generate
rationales. [Task Instruction] for each task is shown
in Table 9. [Input Text] represents the input text,
[Output Text] represents the suggestion, and [Edit
Content] represents the extracted edits.

15

Figure 3: Prompt to generate rationale. [Task
Instruction] for each task is shown in Table 10.
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LDPO = −E(x,ỹw,ỹl)∼DH

[
log σ

(
β log

θW(ỹw | x)
θSFT(ỹw | x) − β log

θW(ỹl | x)
θSFT(ỹl | x)

)]
(1a)

= −E(x,ỹw,ỹl)∼DH
{log σ[β(log θW(ỹw | x)− log θW(ỹl | x)− (log θSFT(ỹw | x)− log θSFT(ỹl | x)︸ ︷︷ ︸

margin

))]} (1b)

LM = −E(x,ỹw,ỹl)∼DH
{log σ[β(log θW(ỹw | x)− log θW(ỹl | x)− γ (rw − rl)︸ ︷︷ ︸

margin

)]} (1c)

3.2.1 Reward Modeling

Our objective of reward modeling is to develop a
robust reward model, rϕ, that can accurately eval-
uate the quality of any suggestion s given input
x without relying on human-labeled suggestions.
We achieve this by generating multiple pseudo-
suggestions through sampling and then using auto-
matic metrics to construct preference pairs, which
are then used to build the reward model.

Specifically, we first partition the entire DL into
K folds. For each fold, a model θk is trained on
K − 1 folds to learn the mapping from x to s. Sub-
sequently, we use θk to generate N responses ŝ
for the reserved i-th fold through sampling. We
then create preference pair (ŝp, ŝn) for each x by
randomly selecting two predictions from these re-
sponses and evaluating them against the true la-
bel s using automatic metrics. The response with
the higher score is labeled as the preferred output
ŝp, and the one with the lower score as the non-
preferred output ŝn. Following Wang et al. (2024),
we build the reward model with the objective func-
tion: Lr = −log(σ(rϕ(ŝp)− rϕ(ŝn))), where σ is
the sigmoid function.

3.2.2 Preference Optimization

Labeled data is often scarce, while unlabeled data
is abundant. Therefore, we propose a preference
optimization method that generates preference data
from unlabeled data. The preference data is gen-
erated through sampling, utilizing both a reward
model and an initial WA model. We build this ini-
tial WA model, θW, by fine-tuning LLM on DE

through SFT. To differentiate this initial WA model
from our final WA model, we refer to this initial
model as the SFT model and the final model as the
WA model. This SFT model is optimized to gener-
ate the suggestion s followed by its rationale e, with
the cross-entropy loss: LCE(y) = −logθW(y|x).
Preference Data Generation. Utilizing the SFT
model, we sample multiple responses and employ
the reward model to identify the preferred and non-
preferred responses, constructing preference pairs

from unlabeled data. Specifically, for each input
x, we sample M responses with θW, where each
response contains a writing suggestion s̃ and its
corresponding rationale. The reward model then
assigns a score to each s̃, designating the highest-
scoring suggestion as the winning suggestion s̃w
and the lowest-scoring as the losing suggestion s̃l.
Each suggestion is paired with its rationale to form
the winning response ỹw and the losing response
ỹl, resulting in a preference pair (ỹw, ỹl) for each
x. The reward for s̃w and s̃l are denoted as rw and
rl, respectively.

However, suggestions generated through sam-
pling exhibit varying quality (Beigi et al., 2024).
To ensure that θW learns only from high-quality
suggestions, we filter out lower-quality ones based
on the reward rw. Specifically, we rank the prefer-
ence pairs by rw and retain only the top 20% of the
preference pairs with the highest reward. We de-
note this subset of high-quality preference pairs and
their corresponding inputs as DH = {x, ỹw, ỹl}.
Since no established methods exist for evaluating
rationale quality, we rank suggestions and ratio-
nales together based on the reward value of the
suggestions, hypothesizing that higher-quality sug-
gestions correlate with better rationales.

Optimization. Eq. (1a) and Eq. (1b) present the
DPO (Rafailov et al., 2023) loss. As shown in
Eq. (1b), DPO ensures that the log probability of
the winning response, ỹw, exceeds that of the los-
ing response, ỹl, by a margin equal to their log
probability difference under the SFT model, θSFT.
Within our framework, since the reward model as-
sesses suggestion quality, the quality gap between
the winning and losing responses can be captured
by the reward difference, rw − rl. With an ef-
fective rϕ (Fig.4), we hypothesize that the reward
difference more accurately captures this margin3,
motivating us to replace the log probability differ-
ence computed by θSFT with the reward difference.
Consequently, we define our margin loss, LM , in
Eq. (1c), where γ controls the weight assigned to

3Fig. 5 demonstrates the importance of this margin.
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System CoN ITR-F ITR-L ITR-O STS WNC AST GYAFC ALLEM FR

a)

Llama-3.3-70B-Instruct 55.6 46.5 31.4 31.0 34.6 31.8 46.4 59.5 / 98.1 56.2 / 98.4 43.7
ChatGPT 53.3 50.9 31.5 31.0 39.9 36.3 47.0 57.7 / 99.6 60.4 / 99.5 45.3
GPT-4 59.9 51.6 32.6 32.3 42.2 40.8 46.3 60.2 / 99.6 62.4 / 99.5 47.6
GPT-4o 59.4 51.1 32.4 32.4 42.4 41.1 47.4 62.8 / 99.2 63.7 / 99.1 48.1
o1-preview 59.7 51.4 32.6 32.7 42.6 41.7 47.2 62.9 / 98.3 63.1 / 98.4 48.2
Deepseek-R1 60.1 50.9 32.3 32.6 42.3 41.1 47.6 62.8 / 98.1 63.1 / 98.5 48.1

b)

Llama-3.3-70B-Instruct (R) 58.4 49.4 35.0 31.8 37.7 41.2 44.7 63.6 / 97.8 65.3 / 98.2 47.5
ChatGPT (R) 56.1 51.1 30.3 28.7 40.6 36.6 45.0 63.1 / 98.7 63.5 / 98.9 46.1
GPT-4 (R) 60.4 50.1 33.3 32.8 41.2 40.7 47.6 63.2 / 98.8 63.5 / 99.1 48.1
GPT-4o (R) 60.8 51.4 32.6 32.2 43.3 40.9 46.1 64.4 / 98.4 64.6 / 98.6 48.5
o1-preview (R) 60.9 50.6 33.3 32.9 41.2 41.1 47.5 63.0 / 98.4 64.1 / 98.9 48.3
Deepseek-R1 (R) 60.4 51.5 32.3 32.5 43.0 40.6 45.8 64.5 / 99.1 64.3 / 99.2 48.4

c)
PEER-EDIT-11B N.A. 52.1 32.5 32.7 28.2 54.5 29.5 N.A. N.A. N.A.
Writing-Alpaca (7B) 55.9 52.8 39.4 37.1 44.6 64.4 44.7 N.A. N.A. N.A.
CoEDIT-xxl (11B) 57.1* 51.6 31.8 31.5 42.9* 71.0 41.7 66.0 / 98.7* 68.7 / 97.9* 51.7

Ours based on Flan-T5-xxl (11B) (RationAlign-11B)

d) SFT model 58.3 50.9 33.6 32.2 43.0 70.8 41.4 69.2 / 97.3 70.5 / 97.1 52.1
+ Self-Training Alignment 61.4 49.3 32.8 34.7 47.0 68.9 41.1 75.3 / 96.8 78.0 / 96.3 54.3

e) SFT model (R) 61.8 51.3 30.2 36.1 46.6 69.0 43.1 73.4 / 97.4 76.2 / 97.1 54.1
+ Self-Training Alignment (R) 62.1 52.5 33.5 38.6 44.7 70.2 42.8 75.6 / 97.1 77.4 / 96.9 55.2

Ours based on Llama 3.1 8B (RationAlign-8B)

f) SFT model 61.7 50.5 31.6 35.6 43.3 66.4 42.0 75.3 / 97.9 75.5 / 96.8 53.5
+ Self-Training Alignment 62.5 48.7 31.9 40.3 47.1 64.6 45.2 78.0 / 96.8 78.0 / 95.9 55.1

g) SFT model (R) 62.7 51.1 34.0 37.5 45.1 65.8 41.3 75.9 / 98.4 76.4 / 97.5 54.4
+ Self-Training Alignment (R) 65.5 48.7 35.4 37.6 46.5 65.9 45.2 77.3 / 97.9 78.2 / 97.3 55.6

Table 1: Performance on writing-related tasks. All results are shown in %. *: Results reproduced using the
official checkpoint and scripts released by Raheja et al. (2023), due to different evaluation metrics or test sets not
previously evaluated. For the GYAFC test sets, the first score is BLEU and the second is accuracy. Following Raheja
et al. (2023); Zhang et al. (2023), we show the averaged result under the ALL column, and we only consider the
BLEU score for the GYFAC test sets when taking the average. a): zero-shot performance of LLMs. b): zero-shot
performance of LLMs when also prompted to generate rationales (or explanations) for their writing suggestions. c):
SOTA WAs. d) & f): RationAlign trained without rationale. e) & g): RationAlign trained with rationale.

the reward difference. To better align WA with the
distribution of winning responses (Xu et al., 2024),
we integrate LCE , computed for ỹw, with LM and
propose the margin-based preference optimization
loss, LMPO. We then optimize θW with LMPO:

LMPO = λLM + LCE(ỹw) (2)

where λ is a hyper-parameter, controlling the
weight assigned to LM . SimPO (Meng et al., 2024)
also incorporates a margin, but our approach dif-
fers in motivation. Unlike SimPO, which uses a
fixed margin as a hyper-parameter, our margin is
determined by the reward difference, allowing it
to adapt to varying input qualities. Furthermore,
SimPO is not as effective as ours (Fig. 5).

4 Experimental Results

4.1 Data and Model Configuration

Data. Following previous works (Raheja et al.,
2023; Zhang et al., 2023), we evaluate our system’s
performance in generating suggestions across eight
writing-related tasks. These tasks closely align
with EDITEVAL (Dwivedi-Yu et al., 2022): GEC,

fluency, clarity, coherence, paraphrasing, neutral-
ization, simplification, and formality style transfer
(FST). For GEC, we use the CoNLL-2014 (CoN)
test set (Ng et al., 2014). Fluency, clarity, and co-
herence are assessed using the ITERATER test sets
(Du et al., 2022), corresponding to ITR-F, ITR-L,
and ITR-O, respectively. Paraphrasing is evaluated
with the STSB (STS) test set (Dwivedi-Yu et al.,
2022), while neutralization is assessed using the
WNC test set (Pryzant et al., 2020). Simplifica-
tion is evaluated using the ASSET (AST) test set
(Alva-Manchego et al., 2020). FST is evaluated
on the GYAFC test set (Rao and Tetreault, 2018),
covering both the Entertainment & Music (EM)
and Family & Relationships (FR) domains.

Metrics. Following prior research (Raheja et al.,
2023; Schick et al., 2023; Zhang et al., 2023), we
primarily utilize the SARI metric (Xu et al., 2016)
for evaluation, except for the GEC and FST tasks.
For GEC, we use the MaxMatch scorer (Dahlmeier
and Ng, 2012), as done in previous studies (Cao
et al., 2023a). For FST, we follow the evaluation
setting from previous work (Rao and Tetreault,
2018; Tang et al., 2022), using both the BLEU
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metric (Papineni et al., 2002) and a formality clas-
sification model to assess style transfer accuracy.
Implementation Details. Following Raheja et al.
(2023), we randomly select 80k sentence pairs
(source and target sentences) from the training sets
of eight tasks to build the SFT and the reward
model. During alignment, we randomly sample
another 400k sentences from the entire training
set, using only the sentences from the source side.
The 80k sentence pairs used for building the SFT
model were excluded from this sample. These 400k
sentences are not parallel and do not include their
human-annotated target sentences. We name the
WA built with our Rationalize & Align framework
as RationAlign. Both the reward model and WA
are based on Llama-3.1-8B (Dubey et al., 2024),
fine-tuned using the LoRA (Hu et al., 2022). We
report the average scores of three runs and use
a one-tailed sign test with bootstrap resampling
for statistical significance tests (Cao et al., 2021).
More information is provided in Appendix B.
Baselines. We compare RationAlign against
both open-source and closed-source SOTA LLMs.
Specifically, we compare against previous SOTA
LLMs in the writing domain, such as CoEDIT-
xxl, PEER-EDIT-11B, and Writing-Alpaca (Zhang
et al., 2023). We also compare against strong open-
sourced and close-sourced LLMs in zero-shot set-
tings, including Llama-3.3-70B-Instruct, ChatGPT,
GPT-4, GPT-4o, o1, and DeepSeek-R1.

4.2 Main Results

Table 1 shows the performance of RationAlign-
8B, and SOTA LLMs across eight writing-related
tasks. RationAlign-8B (Ours) significantly outper-
forms both the open-source SOTA WA, CoEDIT-
xxl, and the closed-source LLM, GPT-4o. Specif-
ically, RationAlign-8B surpasses CoEDIT-xxl by
an average of 3.4 points and GPT-4o by an aver-
age of 6.6 points when trained without rationales.
Incorporating rationales further enhances perfor-
mance, with an average increase of 3.9 points over
CoEDIT-xxl and 7.1 points over GPT-4o.

Our statistical significance tests confirm that our
self-training alignment method significantly en-
hances the performance of RationAlign-8B, both
with and without rationales. Specifically, alignment
increases RationAlign-8B’s average performance
by 1.6 points without rationales and by 1.2 points
with rationales. Moreover, adding rationales to
RationAlign-8B results in a substantial improve-
ment: with GPT-4o’s rationales, RationAlign-8B’s

performance improves by an average of 0.9 points
before alignment and by 0.5 points after alignment.

To ensure a fair comparison with CoEDIT-xxl,
we construct a new WA model, RationAlign-11B,
by replacing Llama-3.1-8B with the older Flan-T5-
xxl model (Chung et al., 2022) for both the WA and
the reward model. Despite using an older architec-
ture, RationAlign-11B outperforms CoEDIT-xxl
by an average of 3.5 points, demonstrating the ef-
fectiveness of our Rationalize & Align framework.
More performance are shown in Appendix D.

5 Analysis

5.1 Self-Training

Reward Model. Following previous work (Tun-
stall et al., 2024; Cai et al., 2024), we evaluate
our reward model on the downstream task. In our
framework, the reward model is responsible for
selecting high-quality suggestions. Prior research
(Dahlmeier and Ng, 2012; Xu et al., 2016) has
shown that evaluation metrics align well with hu-
man preferences on their respective tasks. Thus, we
assess the quality of s̃w and s̃l using these metrics.

Fig. 4 (Left) shows that 88% of s̃w outperform s̃l
on task-specific metrics, demonstrating our reward
model is effective in selecting high-quality sugges-
tions. Additionally, Fig. 4 (Right) reveals a strong
correlation between our model’s scores and these
metrics, with a Pearson correlation coefficient of
0.63 (Cohen et al., 2009). Since these metrics align
with human preferences, this suggests our reward
model does as well. Appendix C shows more detail
about the experimental setup and metric descrip-
tions.

Figure 4: Left: The distribution of metric(s̃w) −
metric(s̃l), where metric represents the task-specific
evaluation metric. Right: Pearson correlation between
our reward model and automatic evaluation metric.

Quality of the Winning Response. As described
in §4.1, RationAlign-8B was developed using 80k
labeled examples to build the SFT model, which
was subsequently fine-tuned with 78k preference
data, DH . To assess the effectiveness of the win-
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Figure 5: Left: Ablation study evaluating the significance of individual components in the loss function (Eq. (2)).
The bars labeled ‘LM w/o reward margin’ indicate setting γ to 0 in Eq. (1c). Right: Performance comparison
against other related preference optimization methods.

ning suggestion, we compared fine-tuning the SFT
model using the winning suggestion (s̃w) against
using the labeled data (s). Notably, this experiment
was conducted without incorporating any rationale
into RationAlign-8B.
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Figure 6: The performance difference (in %) between
the WA (obtained under Setting A and B) and the SFT
model. Setting A: Fine-tune the SFT model with an
additional 78k labeled data (s). Setting B: Fine-tune
the SFT model with an additional 78k s̃w from DH .

The results presented in Fig. 6 demonstrate that
utilizing s̃w leads to a greater improvement in per-
formance. Statistical tests confirm that using s̃w
consistently outperforms using s across all test sets.
This suggests that using the winning response is
more helpful for the WA to achieve better align-
ment. The improvement likely stems from the
reward model’s selection of the winning sugges-
tions, as it is optimized to favor suggestions with
higher overall quality (e.g., fluency and coherence)
as measured by task-specific metrics.

Ablation Study. We analyze the effectiveness
of individual components within our loss function
LMPO. Fig. 5 (Left) indicates that when the ra-
tionale is not incorporated, both ‘LM w/o reward
margin’ and ‘LM ’ enhance the RationAlign-8B’s
performance. Statistical significance tests confirm

that incorporating the reward margin into ‘LM ’
substantially enhances performance, highlighting
the critical role of our reward margin. Moreover,
employing LM or LCE alone significantly outper-
forms the SFT model, demonstrating the effective-
ness of LM and the efficacy of our framework in
selecting high-quality samples. Ultimately, LMPO,
which combines LM and LCE , yields the largest
improvement. Similar patterns have been observed
when the rationales are incorporated.

Preference Optimization. Our objective func-
tion, LMPO, shares similarities with CPO and
SimPO. We compare optimizing the SFT model us-
ing LMPO against CPO, SimPO, and PPO (Schul-
man et al., 2017), where PPO uses our reward
model for reward computation. Fig. 5 (Right)
shows that LMPO outperforms CPO, DPO, SimPO,
and PPO. Furthermore, incorporating LCE into
DPO and SimPO improves performance, highlight-
ing its importance in reducing deviations from
the preferred data distribution. Ours is also more
memory-efficient than PPO, requiring only to store
θW, whereas PPO additionally stores θSFT and rϕ.
Appendix B.4 shows experimental details.

Theoretical Justifications. We provide a theo-
retical rationale for the effectiveness of our pro-
posed objective, LMPO. As shown in Eq. 1b, Di-
rect Preference Optimization (DPO) encourages the
log-likelihood margin between winning and losing
responses to be larger than that of the supervised
fine-tuned (SFT) model:

log θW(yw|x)− log θW(yl|x) < log θSFT(yw|x)− log θSFT(yl|x).
(3)

However, DPO’s effectiveness hinges on the SFT
model correctly ranking responses. When θSFT as-
signs higher likelihood to a lower-quality response,
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the margin becomes non-positive, providing mis-
leading supervision. Prior work (Meng et al., 2024;
Chen et al., 2024) shows that log-likelihood dif-
ferences align with human preferences only about
50% of the time, even after optimization. In con-
trast, our reward model provides a more reliable
signal, correctly identifying the better response in
88% of cases (Fig. 4(Left)).

In scenarios where log θSFT(yw|x) <
log θSFT(yl|x) but rw > rl, DPO fails to
correct the model due to the negative margin. Our
method resolves this by directly incorporating the
reward-based margin, offering a more consistent
and accurate supervision signal (88% vs. 50%),
thus better aligning the model with the preferred
response.

5.2 Rationale

We use RationAlign-8B without self-training align-
ment (i.e., only enhanced with rationale) to analyze
the impact of rationale on WA.
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Figure 7: Left: The probability to generate the target
sentence by WA trained with (w/ rat) and without ra-
tionale (w/o rat). Right: Number of edits proposed by
different systems, with the precision of the edits dis-
played above each bar (P=*).

Rationale Effect. We compare the probability of
WA trained with and without rationales to produce
the target (human-annotated) sentence. For this ex-
periment, we randomly selected 1k sentences from
the validation set. Fig. 7 (Left) demonstrates that
the WA model trained with rationales has a signif-
icantly higher probability of generating the target
sentence compared to the model trained without
rationales. This suggests that the WA model, when
trained with rationales, is more confident and pro-
ficient in generating accurate writing suggestions.
Additionally, Fig. 7 (Right) reveals that the WA
model trained with rationales proposes more ed-
its (less conservative) while maintaining relatively
high precision.

Other Rationales. Fig. 8 (Left) illustrates the
performance of WA under different rationales. Sta-
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out rationales (w/o rat) and with rationales provided by
ChatGPT, GPT-4, and GPT-4o. Right: Evaluation re-
sults by GPT-4 on outputs generated by RationAlign-8B
(Ours), GPT-4o, and CoEDIT-xxl.

tistical significance tests indicate that rationales
generated by ChatGPT significantly enhance per-
formance compared to no rationales. Moreover,
rationales from GPT-4 and GPT-4o yield even
greater improvements, which are statistically sig-
nificant compared to those from ChatGPT. Song
et al. (2024) demonstrates that GPT-4 generates
higher-quality rationales than ChatGPT, indicating
that higher-quality rationales can more effectively
enhance the suggestion performance.
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Figure 9: The performance (in %) of WA (RationAlign-
8B) trained under different settings: 1) trained without
(w/o) rationale (1st bar), 2) trained to generate rationale
first followed by the suggestion (2nd bar), 3) trained to
generate suggestion first followed by the rationale (3rd
bar).

Position of Suggestion and Rationale. Given a
user instruction, our WA (RationAlign-8B) is de-
signed to generate a writing suggestion s first fol-
lowed by its rationale e. We want to analyze how
our WA will perform when it is asked to generate
the rationale e first then followed by the sugges-
tion s. Fig. 9 shows that generating the rationale
first did not improve performance, whereas gener-
ating the suggestion first followed by the rationale,
yielded significant performance gains.
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Criteria Description Grammaticality: Does the text demonstrate proper grammatical usage?
Score 1 Description The text contains frequent grammatical errors, making it difficult to understand.
Score 2 Description The text shows occasional grammatical errors, which disrupt the flow and clarity of the text.
Score 3 Description The text generally adheres to grammatical rules, though minor errors are present.
Score 4 Description The text demonstrates good grammaticality with rare errors that do not affect comprehension.
Score 5 Description The text excels in grammatical usage, with clear and correct grammar throughout.

Criteria Description Fluency: Is the text fluent and easy to read?
Score 1 Description The text is disjointed and lacks fluency, making it hard to follow.
Score 2 Description The text has limited fluency with frequent awkward phrasing.
Score 3 Description The text is moderately fluent, with some awkward phrasing but generally easy to follow.
Score 4 Description The text is fluent with smooth transitions and rare awkward phrases.
Score 5 Description The text is highly fluent, with natural and smooth expression throughout.

Criteria Description Consistency: Is the text consistent in terms of style, tone, and tense?
Score 1 Description The text is inconsistent in style, tone, and tense, leading to confusion.
Score 2 Description The text shows occasional inconsistencies in style, tone, and tense.
Score 3 Description The text is mostly consistent in style, tone, and tense, with minor lapses.
Score 4 Description The text is consistent in style, tone, and tense, with rare inconsistencies.
Score 5 Description The text is highly consistent in style, tone, and tense throughout.

Criteria Description Coherence: Is the text coherent and logically organized?
Score 1 Description The text is incoherent and lacks logical organization, making it difficult to understand.
Score 2 Description The text shows some coherence but contains several disjointed ideas and poor organization.
Score 3 Description The text is generally coherent with a logical flow, though minor lapses in organization may occur.
Score 4 Description The text is coherent and well-organized with clear connections between ideas.
Score 5 Description The text is highly coherent, with a strong logical structure and seamless organization.

Table 14: Scoring rubrics on a 1-5 scale for the GPT4.

Task Fluency Simplification
Instruction Make the text more fluent and grammatical by initially providing a

response, followed by an explanation.
Simplify the text by first providing a response, followed by an
explanation.

Input While I was walking through the park, there was a bird who were
singing beautifully, but none of my friends who was with me noticed.

GPT-4o, known for its advanced natural language processing
capabilities, is widely for text understanding.

Target While I was walking through the park, there was a bird that was singing
beautifully, but none of my friends who were with me noticed.

GPT-4o is widely used for text understanding.

GPT-4o While I was walking through the park, there was a bird who was singing
beautifully, but none of my friends who was with me noticed.

GPT-4 is widely used for text understanding.

WA w/o rat suggestion While I was walking through the park, there was a bird that were
singing beautifully, but none of my friends who was with me noticed.

GPT-4o, known for its advanced natural language processing
capabilities, is widely used for text understanding.

WA w/ rat suggestion While I was walking through the park, there was a bird that was singing
beautifully, but none of my friends who were with me noticed.

GPT-4o is widely used for text understanding.

rationale The word “who” should be replaced by “that” because “that” is more
appropriate for referring to animals. The word “were” should be
replaced by “was” because “a bird” is singular. The word “was” should
be replaced by "were" because "none of my friends" is plural.

The phrase “known for its advanced natural language processing
capabilities” is deleted because it is descriptive but not essential.
Removing it simplifies the sentence by focusing on the primary
message.

Table 15: Example output generated by GPT-4o, and the WA system trained with (w/ rat) and without rationale (w/o
rat). Wrong or unnecessary words in the GPT-4o and WA w/o rat’s suggestions are highlighted.

16

WA w/ rat

Figure 10: Example output generated by GPT-4o, and the WA trained with (w/ rat) and without rationale (w/o rat).
Wrong or unnecessary words in the GPT-4o and WA w/o rat’s suggestions are highlighted in yellow.

5.3 LLM Based Evaluations

Text editing is inherently subjective, and traditional
automatic metrics may not accurately assess text
quality. While human evaluations provide valuable
insights, they are susceptible to bias and lack re-
producibility. Various research (Liu et al., 2023;
Kim and Kim, 2024) demonstrate that GPT-4 ex-
hibits a strong correlation with human assessments
of text quality across multiple dimensions, includ-
ing grammaticality (GR), fluency (FL), coherence
(CH), and consistency (CN). Following Kim and
Kim (2024), we employ GPT-4 to score 1k outputs
generated by RationAlign-8B, CoEDIT-xxl, and
GPT-4o on a 1–5 scale rubric. Fig. 8 (Right) shows
that RationAlign-8B outperforms both GPT-4o and
CoEDIT-xxl in grammaticality, consistency, and
coherence, while slightly underperforming GPT-4o
in fluency. Additionally, leveraging the criteria pro-
posed by Song et al. (2024), we assess the accuracy
of rationales generated by RationAlign-8B using
GPT-4, achieving an accuracy of 87.3%.

5.4 Case Studies

Fig. 10 qualitatively compares the suggestions gen-
erated by our WA (i.e., RationAlign-8B), GPT-4o,
and WA trained without rationale. When trained
without rationale, WA often fails to address com-
plex errors or remove superfluous words effectively.
Similarly, GPT-4o occasionally mishandles com-
plex errors and removes essential tokens, which
significantly alters the meaning of the original sen-
tence. The superior performance of RationAlign
comes from two key factors: (1) the incorporation
of rationales, which enhances both error identifi-
cation and confidence in producing high-quality
suggestions, and (2) it is optimized toward human
preferences in writing, resulting in more refined

suggestions. We provide further analysis in Ap-
pendix A.

6 Conclusion

In this work, we introduce a novel framework, Ra-
tionalize & Align, to enhance the performance of
LLMs in writing-related tasks. Its core idea lies in
distilling rationales from GPT-4o into the WA sys-
tem and further improving it through self-training
alignment, which includes reward modeling and
preference optimization. Our experiments demon-
strate that each component contributes to superior
writing suggestions. Our WA surpasses both the
SOTA WA system and GPT-4o in suggestion qual-
ity. Moreover, we built the first open-source WA
capable of generating rationales for its suggestions.

7 Limitations

We conducted extensive experiments on various
writing-related tasks (in English), demonstrating
the effectiveness of our Rationalize & Align frame-
work. While we believe this approach to be task-
agnostic, its application to other domains, such
as machine translation, remains unexplored and
warrants future investigation. Additionally, our
self-training alignment method involves generating
multiple sampled responses to create the preference
data, which can demand substantial GPU resources
when scaling to larger datasets.
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Appendix

A Analysis on Adaptability

Setting. We investigate whether our WA can
be extended to other text editing domains, LaTeX
text editing, a common but challenging academic
writing scenario. LaTeX editing requires careful
handling of keywords, as errors can cause compila-
tion failures. We compare our WA against the best
model, CoEDIT-xxl, in Table 1. To ensure a fair
comparison, we use our WA based on Flan-T5-xxl
(RationAlign-11B). Both LLMs revise the LaTeX
text to improve the fluency, and we evaluate them
based on the average error rate and fluency for the
post-compilation text. The fluency is measured us-
ing perplexity (PPL) computed with GPT-2 Large
(Radford et al., 2019).

TETRA dataset (Mita et al., 2024) comprises
64 research papers written by non-native speak-
ers. Among them, we identified nine papers with
available LaTeX source code. Table 3 presents the
URLs for these papers. From these papers, we ex-
tracted 100 sentences containing at least one LaTeX
keyword for evaluation.
Result. Table 2 compares the fluency of re-
vised text across RationAlign-11B and CoEDIT-
xxl. RationAlign-11B produces more fluent revi-
sions, while both CoEDIT-xxl and RationAlign-
11B exhibit relatively high error rates. This may
be due to the lack of fine-tuning on LaTeX-specific
data, as LaTeX revision differs significantly from
plain text revision, limiting their performance.

AvgCE.↓ PPL↓
RealEdit-11B 0.54 32.4
CoEDIT-xxl 0.56 35.2

After fine-tuning
RealEdit-11B 0.24 28.4
CoEDIT-xxl 0.27 31.3

Table 2: Revised text generated by ReAlEdit-11B and
CoEDIT-xxl. AvgCE. refers to the average compilation
error, while PPL indicates the perplexity of the revised
text obtained after LaTeX compilation.

ID URL
1 https://arxiv.org/abs/1805.11267
2 https://arxiv.org/abs/1603.03116
3 https://arxiv.org/abs/1705.00823
4 https://arxiv.org/abs/1704.04859
5 https://arxiv.org/abs/1606.01323
6 https://arxiv.org/abs/1810.05104
7 https://arxiv.org/abs/1804.10959
8 https://arxiv.org/abs/1705.00316
9 https://arxiv.org/abs/1805.07043

Table 3: URLs of papers from which we obtained the
LaTeX source.

To mitigate this issue, we extract LaTeX sen-
tences, refine them using GPT-4o for improved
fluency, and filter out revisions with compilation er-
rors. We generate 10k data using this process, and
we use it to further fine-tune RationAlign-11B and
CoEDIT-xxl. After fine-tuning, we observe that the
error rates of RationAlign-11B have been signif-
icantly reduced, demonstrating that RationAlign-
11B can be effectively adapted to other domains
with a small amount of in-domain data.

B Experimental Details

B.1 Training Data Configuration.
To balance between each task, we sample 10k la-
beled sentences per task when building the SFT
model, and sample around 40k unlabeled sentences
per task when building the final WA model. Table
4 lists the detailed information about the training
set and test set.

B.2 Validation Data Configuration.
Table 5 lists the validation data we have used
throughout our experiments. We use the official
validation sets for the GEC, fluency, clarity, co-
herence, paraphrase, neutralization, simplification,
and FST tasks. The average performance across
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Task Train Test Metric Abbrev. # Sent
GEC W&I +

LOCNESS
- Train

CoNLL-
2014

M2 CoN 1,312

Fluency ITERATER-
V2-Train

ITERATER-
fluency

SARI ITR-F 88

Clarity ITERATER-
V2-Train

ITERATER-
clarity

SARI ITR-L 185

Coherence ITERATER-
V2-Train

ITERATER-
coherence

SARI ITR-C 35

Paraphrase Parabank
V2

STSB SARI STSB 97

Neutralization WNC -
Train

WNC SARI WNC 1,000

Simplification TurkCorpus,
NEWSELA,
WikiLarge,
WikiAuto,
Parabank
V2

ASSET SARI AST 359

FST GYAFC-
EM-Train

GYAFC-
EM

BLEU,
ACC

GYAFC-
EM

1,416

FST GYAFC-
FR-Train

GYAFC-
FR

BLEU,
ACC

GYAFC-
FR

1,332

Table 4: The tasks, training sets, test sets, metrics used,
abbreviations used, and numbers of sentences (# Sent)
in the various test sets in our evaluation benchmark.
ACC represents the accuracy evaluation metric.

these validation sets is used to guide checkpoint
and hyper-parameter selection.

B.3 Implementation Details.
We implement our training code using Alignment
Handbook Codebase4. For inference, we use the
vLLM package (Kwon et al., 2023)5. When eval-
uating performance in generating writing sugges-
tions, for vLLM, we set the temperature to 0.0,
top_p and top_k to 1, presence_penalty to 0, and
best_of to 1. During sampling, we set the tem-
perature parameter to 1.2, top_p to 0.9, top_k to
50, presence_penalty to 1.2, and max_length to
2048. Our reward model code is based on the
HuggingFace TRL package6. We employed Deep-
Speed’s Zero-Offload7 and LoRA techniques for
fine-tuning the WA and reward models. Our ex-
periments are conducted on the 4 A100 40GB
GPUs, with CUDA version 11.7. The CPU is
AMD EPYC 9554P, with 792GB RAM. Train-
ing the SFT model required six hours, while addi-
tional fine-tuning with our self-training alignment
method took 12 hours. For OpenAI and DeepSeek
models, we set the temperature to 0.7, and use
the following model cards: InstructGPT: gpt-3.5-
turbo-instruct; ChatGPT: gpt-3.5-turbo-1106; GPT-
4: gpt-4-0613, GPT-4o: gpt-4o-2024-08-06. o1-
preview: o1-preview, and DeepSeek-R1: deepseek-

4https://github.com/huggingface/alignment-han
dbook

5https://github.com/vllm-project/vllm
6https://github.com/huggingface/trl
7https://github.com/microsoft/DeepSpeed

r1.

Task Validation Set # Sent
GEC W&I+LOCNESS-

Dev
4.3k

Fluency ITERATER-Dev 115
Clarity ITERATER-Dev 157
Coherence ITERATER-Dev 41
Paraphrase STS-Dev 56
Neutralization WNC-Dev 700
Simplification ASSET-Dev 2k

STF
GYAFC-EM-Dev 2.8k
GYAFC-FR-Dev 2.7k

Table 5: The statistics of validation data.

B.4 Training Configuration and
Hyper-Parameters.

When building the SFT model, we train for four
epochs with a batch size of 128 and a learning rate
of 5e-4. The target module for LoRA is query,
key, value, and output projection. Both lora_r and
lora_alpha are set to 16, and lora_dropout is set to
0.05. We use the same configuration when building
our final WA model, and change the learning rate
to 1e-5. Our reward model uses the same setting,
but with a learning rate of 3e-4, and we train a
task-specific adapter for each individual task.

There are in total six hyper-parameters in our
system: (1) K: the number of folds to perform
K-fold training. (2) N : the number of samples for
creating the preference data for the reward mod-
eling phase. (3) M : the number of samples for
creating the preference data for the preference op-
timization phase. (4) λ: the weight for LM . (5) β:
the scaling constant in Eq. (1c). (6) γ: the weight
for the reward margin. We do not tune the values
of K, N , and M . We set K to 5, and both N and
M to 16. The value of λ is tuned from 0.2 to 1.0
in increments of 0.2, with the best performance on
the validation set achieved at 0.8. The value of β
is tuned from {0.01, 0.05, 0.1}, with the best per-
formance achieved at 0.01. The value of γ is tuned
from 0.2 to 1.0 in increments of 0.2, with the best
performance obtained in 1.0.

Table 6 shows the hyper-parameter search ranges
for CPO and SimPO. When optimizing the SFT
model with PPO, we adopt the default configura-
tion from LLaMA-Factory8 and tune the learning

8https://github.com/hiyouga/LLaMA-Factory/blo
b/main/examples/train_lora/llama3_lora_ppo.yaml
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Method Objective Hyperparameter

CPO (Xu et al., 2024) − log σ (β log πθ(yw|x)− β log πθ(yl|x))− λ log πθ(yw|x) λ = 1.0, β ∈ [0.01, 0.05, 0.1]

SimPO (Meng et al., 2024) − log σ
(

β
|yw| log πθ(yw|x)− β

|yl| log πθ(yl|x)− γ
)

β ∈ [2.0, 2.5]
γ ∈ [0.3, 0.5, 1.0, 1.2, 1.4, 1.6]

MPO (Ours) −λ log σ [β (log πθ(yw|x)− log πθ(yl|x)− γ(rw − rl))]− log πθ(yw|x) β ∈ [0.01, 0.05, 0.1]
λ ∈ [0.2, 0.4, 0.6, 0.8, 1.0]
γ ∈ [0.2, 0.4, 0.6, 0.8, 1.0]

Table 6: Various preference optimization objectives and hyperparameter search range.

rate from 1e-5 to 1e-3 following the PPO prac-
tices.9

C Additional Reward Model Information
Setting

Metrics’ Correlation with Human Preferences
This subsection summarizes studies that examine
the correlation between evaluation metrics and hu-
man preferences across various tasks. Dahlmeier
and Ng (2012) demonstrated that the MaxMatch
scorer positively correlates with human judgments
in the GEC task, as evaluated on the CoNLL-2014
test set. Similarly, Alva-Manchego et al. (2020)
found that SARI aligns well with human prefer-
ences in the text simplification task (ASSET test
set). Furthermore, Rao and Tetreault (2018) re-
ported a positive correlation between BLEU scores
and human evaluations in the FST task (GYAFC-
EM/FR test set). Finally, Dwivedi-Yu et al. (2022)
mentioned that SARI significantly correlates with
human judgments on the ITERATER-fluency,
ITERATER-clarity, ITERATER-coherence, STSB
test set, and the WNC test sets.

[Task Instruction]

### Input:
[Input Text]

### Hypothesis:
[Output Text]

Table 7: Instruction template for the reward model.

D Detailed results

Full Results. Table 9 extends the performance
presented in Table 1 by including additional mod-

9https://github.com/llSourcell/Unity_ML_Agent
s/blob/master/docs/best-practices-ppo.md

els. Specifically, we additionally included the zero-
shot performance of Llama-2 models, Llama-3.1
models, and InstructGPT. Furthermore, we exam-
ine the experimental results using Llama-2-13B
as the base model for both the WA and reward
models. Additionally, Table 9 summarizes the per-
formance of state-of-the-art (SOTA) systems across
various tasks (Prev. SOTA). It is important to note
that these SOTA systems are mostly task-specific
(not multi-task) transformer models that leverage a
range of task-specific features. Consequently, their
results (Prev. SOTA) are not directly comparable
to those of other LLMs.

Below is an instruction that describes a task, paired
with an input that provides further context. Write a
response that appropriately completes the request.

###Instruction:
[Task Prompt]

###Input:
[Input Text]

###Response:
[Output Text]

Table 8: Instruction template used during training and
testing both the SFT model and WA model.

E Instructions

Task instructions for Fig. 3 are provided in Table 10.
Table 8 presents the template used for instruction
tuning, while Table 12 presents the employed task-
specific instructions. Table 7 shows our template
used for instruction tuning in the reward model-
ing process to build the reward model, and Table
11 shows our task-specific instruction used during
training and testing in the reward modeling process.
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System CoN ITR-F ITR-L ITR-O STS WNC AST GYAFC ALLEM FR

a)

Llama-3.3-70B-Instruct (ICL) 57.9 48.1 32.3 31.5 35.7 36.4 45.8 62.2 / 97.5 62.4 / 97.8 45.8
ChatGPT (ICL) 55.6 51.3 31.1 29.7 40.3 36.6 47.4 60.3 / 98.4 63.1 / 98.5 46.2
GPT-4 (ICL) 60.5 50.9 31.8 33.0 42.4 41.2 47.1 62.3 / 98.6 63.3 / 98.8 48.1
GPT-4o (ICL) 60.9 52.1 32.8 32.8 43.1 41.8 47.5 63.8 / 98.2 64.1 / 98.3 48.7
o1-preview (ICL) 60.7 51.8 32.7 32.9 42.7 41.9 47.6 63.5 / 98.5 63.9 / 98.8 48.6
Deepseek-R1 (ICL) 60.9 51.3 32.8 32.7 42.9 41.5 47.3 63.3 / 98.8 63.8 / 99.1 48.5

b)

Llama-3.3-70B-Instruct (CoT) 57.4 48.3 33.2 30.9 38.2 40.9 43.3 61.9 / 97.2 63.8 / 97.5 46.4
ChatGPT (CoT) 54.6 51.4 30.5 30.2 40.3 35.8 45.1 62.3 / 98.1 62.7 / 98.4 45.8
GPT-4 (CoT) 60.3 52.3 31.8 32.9 40.8 40.8 47.3 63.8 / 98.9 63.6 / 99.1 48.2
GPT-4o (CoT) 60.5 51.7 32.1 32.5 42.9 40.7 47.2 64.8 / 98.1 64.9 / 98.4 48.6
o1-preview (CoT) 61.0 51.9 32.1 33.1 42.7 40.8 47.3 64.3 / 98.2 64.7 / 98.8 48.7
Deepseek-R1 (CoT) 60.9 51.8 32.9 32.9 42.8 41.1 47.4 64.1 / 98.3 64.4 / 98.4 48.7

c)

Llama-3.3-70B-Instruct (Multi) 58.0 49.1 34.6 31.1 38.4 41.9 46.0 64.8 / 98.1 64.9 / 98.3 47.6
ChatGPT (Multi) 55.4 51.6 31.4 29.8 40.7 36.8 47.2 63.2 / 98.5 63.1 / 98.8 46.5
GPT-4 (Multi) 61.1 52.1 32.4 32.9 41.9 40.5 46.9 64.3 / 98.8 64.4 / 99.1 48.5
GPT-4o (Multi) 61.2 51.9 32.8 32.7 43.3 41.9 47.3 65.1 / 99.1 65.2 / 99.3 49.0
o1-preview (Multi) 61.3 51.8 32.7 32.5 42.9 41.8 47.2 64.9 / 98.3 65.4 / 98.9 48.9
Deepseek-R1 (Multi) 61.2 52.0 32.6 32.8 43.1 41.7 47.3 65.1 / 98.5 65.3 / 98.7 49.0
Prev. SOTA 72.8 52.8 46.2 38.3 43.3 71.0 44.6 78.8 / 94.6 81.4 / 86.4 N.A.

Ours based on Flan-T5-xxl (11B) (RationAlign-11B)

d)
SFT model 58.3 50.9 33.6 32.2 43.0 70.8 41.4 69.2 / 97.3 70.5 / 97.1 52.1
+ Self-Training Alignment 61.4 49.3 32.8 34.7 47.0 68.9 41.1 75.3 / 96.8 78.0 / 96.3 54.3

e)
SFT model (R) 61.8 51.3 30.2 36.1 46.6 69.0 43.1 73.4 / 97.4 76.2 / 97.1 54.1
+ Self-Training Alignment (R) 62.1 52.5 33.5 38.6 44.7 70.2 42.8 75.6 / 97.1 77.4 / 96.9 55.2

Ours based on Llama-2-13B (RationAlign-13B)

f)
SFT model 58.1 49.5 32.5 38.9 41.3 66.5 41.1 72.8 / 97.8 74.0 / 96.7 52.7
+ Self-Training Alignment 60.8 52.9 31.4 40.8 44.2 66.8 41.4 75.6 / 96.2 77.0 / 95.5 54.5

g)
SFT model (R) 60.9 53.2 32.1 35.0 45.0 67.3 41.5 76.7 / 98.2 77.8 / 97.2 54.3
+ Self-Training Alignment (R) 62.6 51.8 35.9 37.8 45.3 66.7 43.3 77.5 / 97.8 78.4 / 97.1 55.5

Ours based on Llama-3.1-8B (RationAlign-8B)

h)
SFT model 61.7 50.5 31.6 35.6 43.3 66.4 42.0 75.3 / 97.9 75.5 / 96.8 53.5
+ Self-Training Alignment 62.5 48.7 31.9 40.3 47.1 64.6 45.2 78.0 / 96.8 78.0 / 95.9 55.1

i)
SFT model (R) 62.7 51.1 34.0 37.5 45.1 65.8 41.3 75.9 / 98.4 76.4 / 97.5 54.4
+ Self-Training Alignment (R) 65.5 48.7 35.4 37.6 46.5 65.9 45.2 77.3 / 97.9 78.2 / 97.3 55.6

Table 9: Performance on writing-related tasks. All results are shown in %. *: Results reproduced using the official
checkpoint and scripts released by Raheja et al. (2023), due to different evaluation metrics or test sets not previously
evaluated. For the GYAFC test sets, the first score is BLEU and the second is accuracy. Following (Raheja et al.,
2023; Zhang et al., 2023), we show the averaged result under the ALL column, and we only consider the BLEU
score for the GYFAC test sets when taking the average. a): In-Context Learning (ICL) performance of LLMs. b):
Chain-of-Thought (CoT) performance of LLMs. c): LLM performance under Multi-Turn Refinement (Multi). d)
& f) & h): RationAlign trained without rationale. e) & g) & i): RationAlign trained with rationale. The previous
SOTA (Prev. SOTA) from left to right are from Omelianchuk et al. (2024) (CoN), Zhang et al. (2023) (ITR-F, STS,
AST), Du et al. (2022) (ITR-L, ITR-O), Raheja et al. (2023) (WNC), Liu et al. (2022) (GYAFC-EM/FR).

GEC Specifically, the target sentence corrects the grammar mistakes in the source
sentence.

Fluency Specifically, the target sentence makes the source sentence more fluent.
Clarity Specifically, the target sentence provides a clarification of the source sentence.
Coherence Specifically, the target sentence provides a cohesive representation of the source

sentence.
Paraphrase Specifically, the target sentence is a well-phrased paraphrase of the source

sentence.
Neutralization Specifically, the target sentence provides a neutralization of the source sentence.
Simplification Specifically, the target sentence provides a simplification of the source sentence.
FST Specifically, the target sentence transforms the source sentence into a formal

style.

Table 10: [Task Instruction]s for each task.
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GEC The hypothesis corrects all grammar mistakes in the input.
Fluency The hypothesis makes the input more fluent.
Clarity The hypothesis is a good clarification of the input.
Coherence The hypothesis is a good cohesive representation of the input.
Paraphrase The hypothesis is a well-phrased paraphrase of the input.
Neutralization The hypothesis is a good neutralization of the input.
Simplification The hypothesis is a good simplification of the input.
FST The hypothesis correctly transforms the input into a formal style.

Table 11: [Task Instruction]s for each task.

GEC Correct grammatical errors in the text by first providing a response, followed
by an explanation. Please use this template for the explanation: "The word X
should be deleted/inserted/replaced by Y because ..."

Fluency Make the text more fluent and grammatical by initially providing a response,
followed by an explanation. Please use this template for the explanation: "The
word X should be deleted/inserted/replaced by Y because ..."

Clarity Enhance the readability of the text by initially providing a response, followed
by an explanation. Please use this template for the explanation: "The word X
should be deleted/inserted/replaced by Y because ..."

Coherence Enhance the cohesion of the text by initially providing a response, followed
by an explanation. Please use this template for the explanation: "The word X
should be deleted/inserted/replaced by Y because ..."

Paraphrase Paraphrase the text by initially providing a response, followed by an expla-
nation. Please use this template for the explanation: "The word X should be
deleted/inserted/replaced by Y because ..."

Neutralization Neutralize the text by initially providing a response, followed by an explana-
tion. Please use this template for the explanation: "The word X should be
deleted/inserted/replaced by Y because ..."

Simplification Simplify the text by first providing a response, followed by an explana-
tion. Please use this template for the explanation: "The word X should be
deleted/inserted/replaced by Y because ..."

FST Convert the following informal text into formal style by initially providing a
response, followed by an explanation. Please use this template for the explana-
tion: "The word X should be deleted/inserted/replaced by Y because ..."

Table 12: [Task Prompt]s for each task.
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