
Findings of the Association for Computational Linguistics: ACL 2025, pages 26950–26966
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Revisiting In-Context Learning with Long Context Language Models

Jinheon Baek1* Sun Jae Lee2 Prakhar Gupta2

Geunseob (GS) Oh2 Siddharth Dalmia2 Prateek Kolhar2
KAIST1 Google DeepMind2

jinheon.baek@kaist.ac.kr {sunjaelee, prakharguptaz, ohgs, pkolhar}@google.com

Abstract
In-Context Learning (ICL) is a technique by
which language models make predictions based
on examples provided in their input context.
Previously, their context window size imposed
a limit on the number of examples that can be
shown, making example selection techniques
crucial for identifying the maximally effective
set of examples. However, the recent advent of
Long Context Language Models (LCLMs) has
significantly increased the number of examples
that can be included in context, raising an im-
portant question of whether ICL performance
in a many-shot regime is still sensitive to the
method of sample selection. To answer this,
we revisit these approaches in the context of
LCLMs through extensive experiments on 18
datasets spanning 4 tasks. Surprisingly, we ob-
serve that sophisticated example selection tech-
niques do not yield significant improvements
over a simple random sample selection method.
Instead, we discover that the advent of LCLMs
has fundamentally shifted the challenge of ICL
from that of selecting the most effective exam-
ples to that of collecting sufficient examples
to fill the context window. Specifically, in cer-
tain datasets, including all available examples
does not fully utilize the context window; how-
ever, by augmenting the examples in context
with a simple data augmentation approach, we
substantially improve ICL performance by 5%.

1 Introduction

In-Context Learning (ICL) has emerged as a pow-
erful paradigm in natural language processing that
enables Language Models (LMs) to learn, adapt,
and generalize from examples provided within their
input context, eliminating the need for extensive
training and parameter updates (Brown et al., 2020;
Min et al., 2022; von Oswald et al., 2023). How-
ever, due to the limited context lengths of earlier
LMs (which accommodate only a few thousand to-
kens), much of previous ICL work has focused on

*This work was conducted during an internship at Google.

optimizing sample selection strategies (Liu et al.,
2021; Rubin et al., 2022; Sorensen et al., 2022; An
et al., 2023; Mavromatis et al., 2023; Liu et al.,
2024). With the advent of Long Context Language
Models (LCLMs), which are capable of processing
over a million tokens in a single context window,
these constraints are significantly relaxed as it en-
ables including a large number of examples to be
used in ICL, known as many-shot ICL (Agarwal
et al., 2024; Bertsch et al., 2024).

This expansion of context length raises an impor-
tant question: do previous sample selection strate-
gies, designed for shorter context windows in ear-
lier LMs, generalize to the many-shot ICL regime?
To answer this, we systematically revisit existing
sample selection strategies by conducting extensive
experiments across 18 datasets spanning diverse
tasks (namely, classification, translation, summa-
rization, and reasoning) with multiple LCLMs. Our
experiments include multiple types of sample selec-
tion methods: relevance, diversity, and difficulty-
based sample selection, as outlined in Dong et al.
(2023). From these experiments, we uncover novel
and surprising findings: contrary to prevailing ex-
pectations that carefully selected ICL demonstra-
tions would yield performance improvements, they
are similarly effective with a simple random selec-
tion approach, offering no statistically meaningful
improvements in almost all cases (Figure 1). An
additional reason to prefer the naive sample selec-
tion approach is that it enables greater efficiency
through key-value caching of in-context examples
(as the same examples can be reused across multi-
ple queries), unlike sophisticated sample selection
methods where the examples vary for each sample.

While the expanded context length in LCLMs
allows us to focus less on selecting optimal sub-
sets of examples, it introduces a new challenge:
effectively utilizing this expanded capacity when
the number of examples is limited. Specifically, in
scenarios where available data is sparse (such as
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Figure 1: Results of various sample selection approaches in 64-shot ICL with LCLMs. Approaches include Retrieval that selects
examples similar to the target query, Diversity that aims for maximizing example variety, Curriculum that arranges examples in
order from easiest to hardest, and Hard that uses only challenging examples, alongside Random that selects examples without any
constraints. Results indicate that sample selection methods provide no significant improvement over the naive (random) approach
and sometimes perform worse. Meanwhile, Augmentation refers to the approach that generates additional demonstrations
and uses them along with original samples for ICL, particularly for low-resource tasks (such as translation, reasoning, and
classification) that do not contain enough samples to utilize the full capacity of LCLMs, showing substantial performance gains.

low-resource translation or reasoning tasks where
annotated data samples are difficult or costly to
obtain), the examples available only utilize a small
fraction of the full context window. This mismatch
between context capacity and example availability
introduces a new direction in ICL research, shift-
ing the focus from optimizing sample selection to
maximally utilizing the long context window. To
address this, we propose a simple yet effective data
augmentation approach to increase the number of
in-context examples, which consists of two steps:
(1) generating synthetic examples and (2) filtering
out low-quality examples through LCLM prompt-
ing contextualized with real examples. Then, by
adding these augmented data samples to the con-
text, we significantly improve ICL performance.

Moreover, we explore other key factors unique
to LCLM-enabled ICL. Specifically, we investigate
the capacity of LCLMs to comprehend extremely
long context (where a large number of examples
up to the context length are present), as well as
how they handle scenarios in which some of these
examples introduce noise. Through comprehensive
analyses, we find that while performance generally
improves as the number of in-context examples in-
creases, it eventually plateaus and begins to decline
as the context length approaches the limit. This
diminishing return highlights the need to carefully
balance context length and example quantity. Also,
we observe that LCLMs exhibit robustness to noisy
examples in relatively simple tasks, but become
vulnerable to noise in more complex scenarios to
which they might be less exposed during training,
such as extremely low-resource translation tasks.

Overall, we believe our work sheds new light on
an important paradigm shift in ICL with LCLMs:
the shift from optimizing sample selection to better
utilizing extensive context capacity. In particular,

our findings suggest that simpler, more efficient
random sampling approaches can be as effective as
previous sample selection approaches in many-shot
settings in most cases, and that data augmentation
can significantly improve ICL performance in low-
resource tasks. Furthermore, our study paves the
way for future research on understanding how to
better utilize large context windows and manage
the intricacies that arise in extended-context ICL.

2 Examining Sample Selection Methods
for In-Context Learning with LCLMs

2.1 Background

We begin with formally introducing LCLMs, fol-
lowed by describing the setup of ICL with LCLMs.

Long-Context Language Models A language
model (LM), which takes an input sequence of to-
kens x = [x1, x2, . . . , xn] and generates an output
sequence of tokens y = [y1, y2, . . . , ym], can be
denoted as follows: y = LMθ(x), where θ is the set
of model parameters. A long-context LM (LCLM) is
an advanced LM (Reid et al., 2024) that is designed
to accommodate sequences with a large number of
tokens (e.g., n can exceed 1 million), typically far
surpassing the context sizes of earlier LMs.

In-Context Learning with LCLMs Given a set
of k input-output pairs {(xi,yi)}ki=1 as well as an
input query x′, the goal of ICL is to produce an out-
put y = LCLM(x′|{(xi,yi)}ki=1), where the model
(LCLM) uses the contextual examples {(xi,yi)}ki=1

to make predictions for x′. In prior research before
the advent of LCLMs, the value of k was often
limited by the relatively short context lengths of
earlier models, which constrained the number of ex-
amples that could be utilized for ICL. Subsequently,
significant work has focused on developing sam-
ple selection techniques to optimize performance
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Figure 2: Results of various sample selection approaches on ICL of 64 examples with LCLMs, where we average the performance
over all models: Gemini Pro, Gemini Flash, and Llama 3.1, across four different tasks with 18 datasets. Each bar represents the
averaged performance, with the upper and lower limits indicating standard deviation. See Figure 9 for results on each model.

within these restricted contexts (Liu et al., 2021;
Rubin et al., 2022; Sorensen et al., 2022; An et al.,
2023; Mavromatis et al., 2023; Liu et al., 2024).
In the meantime, the expanded context capacity of
LCLMs enables a larger k, facilitating many-shot
learning with a far greater number of examples.

2.2 Experimental Setup

We now discuss the detailed experimental design.

Tasks and Datasets We experiment with 18 dif-
ferent datasets across four tasks to evaluate the ef-
fectiveness and robustness of various approaches.

• Translation: This task evaluates the ability of
models to translate text from one language to an-
other. We include translations from English to
low-resource languages (namely, Bemba, North-
ern Kurdish, and Ewe) and high-resource lan-
guages (Spanish, French, and German) from the
FLORES-200 benchmark (NLLB et al., 2022),
with chrF scores (Popovic, 2015) as the metric.

• Summarization: This task assesses the capabil-
ity of models to generate concise and coherent
summaries from articles. We include one widely-
used XSum dataset (Narayan et al., 2018) and
two long-context summarization datasets: ArXiv
and GovReport (Cohan et al., 2018; Huang et al.,
2021). ROUGE-L score is used for evaluation.

• Reasoning: This task evaluates the ability of
models on complex reasoning. We use four chal-
lenging datasets from Big Bench Hard (Suzgun
et al., 2022) following the experimental setting of
Long-Context Frontiers (LOFT) benchmark (Lee
et al., 2024a), where each data sample follows a
multiple-choice question answering format.

• Classification: This task includes challenging
benchmark datasets for ICL from Li et al. (2024),
particularly designed for classification problems
with diverse classes and long inputs.

ICL Sample Selection Strategies To ensure
comprehensive coverage of previously explored
sample selection strategies, we follow the category
of three core dimensions from Dong et al. (2023)
(that extensively summarizes around ICL 200 pa-
pers). This includes selecting samples based on
their diversity, difficulty, and relevance to the query,
with the baseline of random sample selection.

• Naive: This method randomly selects examples
from a dataset and uses this initial set of selected
examples as ICL demonstrations for all queries.

• Relevance: This method selects examples that
are most similar to the input query to maximize
the alignment of ICL demonstrations with the
query. To compute semantic similarity between
the query and each example, we use the state-of-
the-art embedding model (Lee et al., 2024b).

• Diversity: This method selects examples that are
maximally distinct from each other to capture a
broad coverage of features within the task space.
We embed each example in a shared embedding
space with Lee et al. (2024b) and utilize k-means
clustering (where k corresponds to the number
of desired ICL examples) to group the examples
into subcategories. We then select the example
closest to each cluster center as the representative
to capture a diverse subset of the task features.

• Difficulty: This method selects examples based
on their difficulty. We examine two approaches:
the first method (called Curriculum) follows a
curriculum learning paradigm where examples
are ordered from easiest to hardest; the second
one (called Hard) includes only difficult exam-
ples, as simpler examples may already be well-
understood by models. To assess example diffi-
culty, we use model-based evaluation (Liu et al.,
2023) with the state-of-the-art LCLM (Reid et al.,
2024), which prompts a model 30 times and aver-
ages difficulty scores weighted by probabilities.
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Figure 3: Results with varying the number of examples for ICL with Gemini Pro, where we average the results for each task.

Table 1: Counting the statistical significance of sophisticated
selection approaches over random selection on each experi-
ment instance, by conducting the t-test with 95% confidence
threshold. Tran., Summ., Reas, Clas, denote translation, sum-
marization, reasoning, and classification tasks, respectively.

LCLMs Methods Tran. Summ. Reas. Clas. Total

Gemini Pro

Relevance 0 / 6 0 / 3 0 / 4 0 / 5 0 / 18
Diversity 0 / 6 0 / 3 1 / 4 2 / 5 3 / 18
Curriculum 1 / 6 0 / 3 0 / 4 1 / 5 2 / 18
Hard 0 / 6 0 / 3 1 / 4 0 / 5 1 / 18

Gemini Flash

Relevance 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18
Diversity 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18
Curriculum 0 / 6 0 / 3 0 / 4 0 / 5 0 / 18
Hard 0 / 6 0 / 3 0 / 4 0 / 5 0 / 18

Llama 3.1

Relevance 1 / 6 0 / 3 1 / 4 1 / 5 3 / 18
Diversity 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18
Curriculum 0 / 6 0 / 3 0 / 4 1 / 5 1 / 18
Hard 0 / 6 0 / 3 0 / 4 2 / 5 2 / 18

Total

Relevance 1 / 18 0 / 9 1 / 12 3 / 15 5 / 54
Diversity 0 / 18 0 / 9 1 / 12 6 / 15 7 / 54
Curriculum 1 / 18 0 / 9 0 / 12 2 / 15 3 / 54
Hard 0 / 18 0 / 9 1 / 12 2 / 15 3 / 54

LCLM Configurations for ICL We consider
LCLMs that support extensive token capacities to
evaluate performance in long-context, many-shot
ICL scenarios, such as those with context window
lengths on the order of millions: Gemini 1.5 Flash
(1M tokens) and Gemini 1.5 Pro (2M tokens) (Reid
et al., 2024). Also, we consider the Llama 3.1 70B
model (Dubey et al., 2024), which, while support-
ing the comparatively smaller context size of 128K
tokens, is still considered an LCLM. To provide a
comprehensive view of performance under differ-
ent shots, we vary the number of ICL examples,
starting from one and sequentially doubling to 2, 4,
8, 16, 32, and so forth, until reaching either the con-
text size limit or the maximum number of dataset
samples, whichever is exhausted first. Furthermore,
to ensure the reliability of our results, we conduct
multiple runs for each setup: 3 runs for translation
and summarization tasks and 10 runs for reasoning
and classification tasks. The prompts used to elicit
responses from ICL are provided in Appendix A.

2.3 Experimental Results

Results on Sample Selection Strategies We re-
port the detailed results of various sample selection
approaches in many-shot ICL scenarios in Figure 2.
To rigorously evaluate each sample selection ap-
proach and their statistically significant gains, we

Table 2: Performance comparison of recent sample selection
strategies (Auto-ICL, IDS, and ICCL) in many-shot ICL.

Methods Translation Summarization Reasoning Classification

Random 0.551 ± 0.005 0.311 ± 0.005 0.650 ± 0.020 0.539 ± 0.006

Auto-ICL 0.544 ± 0.003 0.305 ± 0.003 0.629 ± 0.029 0.539 ± 0.005
IDS 0.547 ± 0.003 0.313 ± 0.004 0.649 ± 0.018 0.537 ± 0.007
ICCL 0.553 ± 0.006 0.307 ± 0.006 0.653 ± 0.016 0.543 ± 0.006

conduct a t-test with a 95% confidence threshold
and report the results in Table 1. From these results,
we observe that previously effective sample selec-
tion methods, designed for shorter context LMs,
yield little to no performance gains over the ran-
dom selection approach when applied to LCLMs.
Aggregated results across three different LCLMs
indicate statistical significance in fewer than 15%
of instances, indicating that they are not reliable.

Additional Results with Advanced Sample Selec-
tion Strategies To further assess the robustness
of our findings, we additionally evaluate several
recent and more advanced sample selection strate-
gies: Auto-ICL (Yang et al., 2023), IDS (Qin et al.,
2023), and ICCL (Liu et al., 2024), which have
been proposed to improve ICL by selecting high-
quality and relevant examples based on context or
model feedback. As shown in Table 2, however, we
find that none of these newer methods consistently
outperform the simple random selection baseline
across tasks, with performance fluctuations within
the range of statistical variation. This reinforces our
main claim that LCLMs are insensitive to the spe-
cific sample selection strategy in many-shot ICL.

Analysis on Number of ICL Examples To see
the performance of ICL with respect to the number
of examples, we visualize results in Figure 3. Over-
all, for any sampling method, we observe that per-
formance increases as the number of examples in-
creases. Also, when the number of examples is rel-
atively small, the relevance-based sample selection
approach performs particularly well, as focusing
on highly relevant examples maximizes learning
effectiveness with the limited number on examples.
However, as the number of examples increases, the
performance gap between various sample selection
methods diminishes, indicating that performance
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Figure 4: Ratios of convex hull volume of in-context examples to the full dataset with varying numbers of ICL examples.

Table 3: Results with varying the order of ICL samples, where
Ascending and Descending represent cases where examples
closer to the query appear earlier and later in the LCLM con-
text, respectively. In contrast, random denotes the case where
examples are arranged randomly without a specific order.

Methods Summarization Translation Reasoning Classification

Random 0.310 ± 0.004 0.553 ± 0.004 0.650 ± 0.023 0.539 ± 0.007
Ascending 0.307 ± 0.006 0.557 ± 0.004 0.641 ± 0.027 0.534 ± 0.010
Descending 0.309 ± 0.003 0.552 ± 0.007 0.648 ± 0.021 0.539 ± 0.005

is less dependent on selection strategies in many-
shot scenarios. Lastly, in the summarization task
(where samples tend to be longer than those in
other tasks), we observe an initial increase in per-
formance, followed by a decline once the context
becomes heavily populated with a large number of
examples. We argue this decline likely reflects the
challenges LCLMs face in processing extremely
long contexts, discussed in Section 4.2.

Analysis on Converge of ICL Examples To
further investigate why the performance gap be-
tween different approaches diminishes as the num-
ber of examples increases, we analyze the represen-
tational coverage of examples in-context relative to
the full examples. Specifically, we measure the con-
vex hull volume spanned by the embeddings of ICL
examples (where we vary their numbers) and com-
pare it to that of the entire dataset, which can serve
as a proxy for how well the samples in-context cap-
ture the distribution of the full data. Our results,
visualized in Figure 4, show that, when the number
of ICL examples is moderate (e.g., 64), they already
span over 80% of the convex hull volume of the full
dataset in almost all tasks and datasets. This sug-
gests that, beyond a certain threshold, adding more
examples does not significantly improve coverage,
as the selected examples, regardless of selection
methods, can approximate the full data distribution.

Analysis on Example Order Previous work has
shown that earlier LMs are sensitive to the order of
examples when doing few-shot ICL. For example,
LMs tend to follow the answer in the last exam-
ple (Zhao et al., 2021; Lu et al., 2022). To investi-
gate whether similar issues arise in many-shot ICL
with LCLMs, we experiment by comparing per-

formance when ordering ICL examples randomly,
by increasing similarity, and by decreasing similar-
ity. The results in Table 3 suggest that the order of
examples does not affect performance of LCLMs.

Analysis on Computational Complexity In ad-
dition to performance, computational complexity
is a critical factor to consider when assessing the
practicality of many-shot ICL with LCLMs, as they
often handle million-token contexts. We note that
for approaches that adjust ICL examples based on
the given query (such as relevance-based selection),
the complexity scales quadratically, O(n2), where
n represents the number of tokens used for ICL
demonstrations. In contrast, the simpler naive se-
lection approach, which uses the same set of ran-
domly selected examples for all queries, offers a
significantly more efficient complexity of O(kn),
where k is the number of tokens only within the
target query (n ≫ k). This is because the selected
examples do not change based on the query; thus,
the same set of examples can be key-value cached.
As a result, random selection is a practical choice
due to its equivalent performance with other selec-
tion methods and the added advantage of efficiency.

3 Augmenting ICL Demonstrations to
Increase Context Capacity of LCLMs

3.1 ICL Example Augmentation Approach

Recall that recent advances in LCLMs offer un-
precedented context capacity, potentially amplify-
ing ICL performance by including more examples.
However, the available examples sometimes fall
short of filling this expanded capacity, and this
under-utilization of the context may result in sub-
optimal performance. To address this, we introduce
a simple yet effective ICL sample augmentation ap-
proach designed to increase the context capacity of
LCLMs, while being scalable for many-shot sce-
narios. This method consists of synthetic example
generation and low-quality example filtering.

Generation of Synthetic Examples Formally,
let D = {(xi,yi)}ki=1 be a set of available ICL ex-
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Table 4: Results of LCLM-enabled ICL on four different tasks, where Random indicates the naive sample selection approach
without selection criteria, Best Selection indicates the model that achieves the best performance among sophisticated sample
selection methods for each experiment unit, and Augmentation indicates the proposed approach that generates demonstrations
and uses them alongside original samples with random selection. We emphasize statistically significant results over Random in
bold. We exclude Llama from the augmentation scenario as its context capacity is approximately ten times smaller than that of
Gemini, allowing it to fully utilize its available context with the original examples alone, making augmentation unnecessary.

Translation Reasoning

LCLMs Methods ENG to BEM ENG to KMR ENG to EWE ENG to SPA ENG to FRA ENG to DEU Date Salient

Gemini Pro
Random 0.470 ± 0.003 0.439 ± 0.001 0.419 ± 0.004 0.580 ± 0.006 0.734 ± 0.002 0.676 ± 0.010 0.854 ± 0.009 0.776 ± 0.035
Best Selection 0.470 ± 0.004 0.443 ± 0.004 0.418 ± 0.002 0.583 ± 0.004 0.745 ± 0.005 0.676 ± 0.004 0.896 ± 0.021 0.772 ± 0.017

Augmentation 0.487 ± 0.007 0.469 ± 0.003 0.437 ± 0.003 0.595 ± 0.005 0.748 ± 0.007 0.694 ± 0.005 0.927 ± 0.019 0.784 ± 0.018

Reasoning Classification All

LCLMs Methods Tracking7 Web Banking77 DialogRE Discovery FewNERD GoEmotion Average

Gemini Pro
Random 0.294 ± 0.029 0.675 ± 0.021 0.878 ± 0.002 0.661 ± 0.009 0.195 ± 0.007 0.568 ± 0.012 0.393 ± 0.007 0.574 ± 0.010
Best Selection 0.311 ± 0.031 0.700 ± 0.028 0.886 ± 0.004 0.709 ± 0.014 0.204 ± 0.011 0.569 ± 0.006 0.413 ± 0.006 0.586 ± 0.011

Augmentation 0.307 ± 0.031 0.768 ± 0.040 0.889 ± 0.004 0.698 ± 0.010 0.209 ± 0.009 0.574 ± 0.008 0.428 ± 0.006 0.601 ± 0.012

Translation Reasoning

LCLMs Methods ENG to BEM ENG to KMR ENG to EWE ENG to SPA ENG to FRA ENG to DEU Date Salient

Gemini Flash
Random 0.419 ± 0.006 0.427 ± 0.004 0.363 ± 0.002 0.573 ± 0.004 0.726 ± 0.004 0.666 ± 0.005 0.754 ± 0.022 0.682 ± 0.019
Best Selection 0.421 ± 0.002 0.434 ± 0.002 0.360 ± 0.003 0.575 ± 0.002 0.732 ± 0.003 0.673 ± 0.001 0.777 ± 0.030 0.687 ± 0.015

Augmentation 0.436 ± 0.006 0.460 ± 0.002 0.378 ± 0.004 0.594 ± 0.007 0.737 ± 0.010 0.676 ± 0.012 0.804 ± 0.037 0.714 ± 0.013

Reasoning Classification All

LCLMs Methods Tracking7 Web Banking77 DialogRE Discovery FewNERD GoEmotion Average

Gemini Flash
Random 0.256 ± 0.030 0.582 ± 0.033 0.868 ± 0.004 0.541 ± 0.008 0.065 ± 0.007 0.521 ± 0.006 0.362 ± 0.016 0.520 ± 0.011
Best Selection 0.270 ± 0.031 0.566 ± 0.031 0.872 ± 0.006 0.547 ± 0.012 0.083 ± 0.007 0.532 ± 0.002 0.385 ± 0.006 0.528 ± 0.010

Augmentation 0.281 ± 0.035 0.609 ± 0.040 0.880 ± 0.006 0.578 ± 0.025 0.090 ± 0.005 0.537 ± 0.009 0.392 ± 0.015 0.544 ± 0.015

amples for a target task. The objective is to gener-
ate a set of synthetic examples D′ = {(x′

j ,y
′
j)}mj=1

(to supplement the original dataset D), such that
the augmented set of examples DAUG = D ∪ D′

can increase the utilization of the available context
capacity of LCLMs. To operationalize this, we gen-
erate each synthetic example (x′

j ,y
′
j) by prompting

an LM with randomly selected real examples from
D as context, to ensure the generated data retains
meaningful characteristics relevant to the task.

Filtering Out Low-Quality Examples Once the
synthetic examples are generated, we filter out low-
quality instances that may introduce noise or irrele-
vant information. To do this, we design a function
f that assigns a quality score to each synthetic ex-
ample (x′

j ,y
′
j) based on its contextual relevance

and alignment with real examples as well as over-
all quality. Specifically, each synthetic example is
rated on a 5-point Likert scale by prompting the
LM 30 times with the synthetic and 30 real exam-
ples. We then compute an aggregate score using a
weighted average of scores with their correspond-
ing probabilities from the LM. Only the synthetic
examples that exceed the quality threshold, τ , are
retained in the augmented example set, as follows:

DAUG = D ∪ {(x′
j ,y

′
j) | f(x′

j ,y
′
j ,D) ≥ τ}mj=1.

Notably, our data augmentation process is efficient,
as it is performed offline and does not contribute
to inference-time overhead. Also, it takes under 10
seconds per example, which can be done in parallel.

3.2 Experimental Setup

For synthetic data generation and filtering, we use
Gemini Pro, one of the state-of-the-art LMs. We
focus on tasks that underutilize the context capac-
ity of LCLMs even when all available samples are
provided, such as translation, reasoning, and classi-
fication. For each task, we generate 3,000 examples
and retain only those with a quality score above the
median among the generated samples. As a result,
we use the original examples and 1,500 synthetic
examples. The prompts used to elicit data genera-
tion and filtering are provided in Appendix A.

3.3 Experimental Results

Main Results As shown in Table 4, which com-
pares the example augmentation approach (with
random selection) to other sample selection strate-
gies, the augmentation approach demonstrates sub-
stantial performance gains across various datasets,
which can be attributed to the greater diversity and
volume of ICL examples achieved through syn-
thetic data generation, leading to the effective uti-
lization of the context capacity of LCLMs. Also,
like the random selection approach, our augmenta-
tion method allows the reuse of the same examples
across all queries. Thus, due to key-value caching,
the augmentation approach is as efficient as random
selection while achieving superior performance.

Analysis on Augmented Data Beyond perfor-
mance improvements, we analyze the characteris-
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Figure 5: Visualization of embedding-space with original and synthetic examples.

Table 5: Results on Similarity (embedding-
level similarity between original and synthetic
examples) and Volume (relative expansion of
the convex hull with augmented examples).

Tasks Similarity Volume
Translation 0.5715 1.6563
Reasoning 0.8099 3.2328
Classification 0.6252 2.7931
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Figure 6: Results with augmented examples according to the size of
synthetic samples (Left) and context utilization of Gemini Pro (Right).

Table 6: Results on ablation study, where w/o Filtering and
w/o Original denote results based on augmented samples
without filtering and without original samples, respec-
tively. Only Original shows results without augmentation.

Methods Translation Reasoning Classification

Augmentation 0.571 ± 0.005 0.696 ± 0.027 0.560 ± 0.008
w/o Filtering 0.552 ± 0.005 0.666 ± 0.031 0.548 ± 0.009
w/o Original 0.544 ± 0.002 0.611 ± 0.025 0.531 ± 0.007
Only Original 0.553 ± 0.004 0.650 ± 0.023 0.539 ± 0.007

tics of the augmented data to better understand its
impact on ICL. First, as visualized in Figure 5, the
embedding-space distribution of augmented exam-
ples closely follows that of real examples while ex-
panding the overall data coverage, which suggests
that the synthetic examples effectively capture task-
relevant features without deviating substantially
from the original data distribution. In addition, we
further quantify this expansion through two met-
rics: the similarity between original and synthetic
examples, and the relative expansion of the convex
hull with augmented examples compared to that
formed by original examples, and report results in
Table 5. From this, we observe that while synthetic
examples maintain a high degree of similarity to
real examples (ensuring alignment with the task),
they also significantly increase the volume of the
data distribution. This balance between relevance
and diversity highlights why our augmentation ap-
proach effectively enhances ICL performance.

Finally, we analyze the impact of the number
of augmented examples on performance and their
corresponding context utilization in LCLMs. As
shown in Figure 6, while increasing the number of
synthetic examples initially improves performance,
it eventually plateaus, indicating diminishing re-
turns. Also, despite augmentation improving con-
text utilization, we find that even at peak perfor-
mance, the augmented data occupies less than 3%
of the full context capacity of LCLMs, which is sig-
nificantly below the scale that LCLMs can handle
(Figure 8). These suggest an interesting future work
to develop more advanced augmentation strategies
to increase the context utilization of LCLMs.

Ablation Study on Augmentation To see how
each component in the augmentation approach con-

tributes to performance gains, we conduct an abla-
tion study. As shown in Table 6, we observe that the
full augmentation method (called Augmentation),
which uses both original and filtered synthetic ex-
amples, achieves the best performance. In contrast,
when the filtering step is omitted, performance de-
creases, indicating that filtering contributes posi-
tively by removing lower-quality examples. Also, a
large performance drop occurs when original sam-
ples are excluded from the augmented set. This sug-
gests that although filtering helps maintain quality,
the synthetic samples generated still do not match
the quality of the original examples. Thus, while
our augmentation approach is effective, further re-
search could improve data generation techniques
to improve the quality of the synthetic examples.

4 Behaviors of LCLM-Enabled ICL

4.1 LCLM-Based ICL with Noisy Examples

LCLMs can accommodate a large number of di-
verse ICL examples, which raises the question of
the impact and risk of including noisy examples in
the context. We investigate how the performance of
LCLM-enabled ICL is impacted when some or all
of the ICL examples are noisy. To simulate noisy
examples, we modify the outputs of a subset of in-
context demonstrations by replacing their outputs
with outputs from other randomly selected demon-
strations. As shown in Figure 7, LCLM-enabled
ICL is largely robust to noise when the propor-
tion of noisy examples is relatively low (i.e., below
25%). This observation highlights why augmented
examples, even if slightly lower quality, can still en-
hance performance as it increases the utilization of
the context window. In contrast, when the amount
of noise exceeds this threshold, LCLMs become
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Figure 7: Results with varying the ratio of noisy examples within the context of LCLMs, where we report the relative performance
over the ICL without noisy examples (i.e., the noise ratio of 0) and the results are averaged over multiple runs.
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Figure 8: Results across different percentages of context size utilized in LCLMs, where the x-axis represents the percentage of
the full LCLM context used (according to the number of tokens over the full token length), and the y-axis shows the relative
performance compared to the highest performance achieved for each dataset. Results are averaged over multiple runs.

vulnerable to the negative effects of noise and the
performance notably declines. This adverse effect
is more pronounced for challenging tasks, such as
low-resource translation (e.g., English to Bemba
or Ewe). This is likely because LCLMs are less
familiar with those tasks, and therefore rely more
on learning from in-context examples.

4.2 LCLM-Based ICL with Long Context
As the context length capacity of LCLMs contin-
ues to grow, it becomes increasingly important to
assess whether LCLMs can reliably utilize a large
number of ICL examples. To investigate this, we
conduct an experiment analyzing the performance
as a function of the context utilization. Specifically,
we gradually increase the number of examples by
powers of two, and if the entire set of examples
within the dataset is used, we further extend the con-
text utilization by repeating these examples. The
hypothesis being tested is that if LCLMs can effec-
tively understand and utilize extremely long con-
text, performance should remain consistent even
with repeated examples, as the presence of dupli-
cates should not impact contextual understanding.
However, as shown in Figure 8, a substantial perfor-
mance decline occurs when LCLMs are pushed to
use extremely large contexts. Specifically, this de-
cline generally begins when more than 25% of the
available context capacity is utilized. Also, the per-
formance drop is pronounced in tasks such as xsum,
which requires generating abstractive summaries
(unlike other summarization datasets like arXiv or
GovReport) and in tasks demanding complex rea-
soning such as date understanding (Date) and ob-

ject tracking (Tracking7). These findings suggest
that while LCLMs can handle moderately long con-
texts, they encounter limitations with exceedingly
large contexts, particularly in tasks requiring fine-
grained reasoning or abstractive generation. This
may be due to challenges in distinguishing and
integrating relevant information across numerous
examples, especially when tasks require high levels
of nuanced abstraction and precise reasoning.

5 Related Work

LCLMs The field of language modeling has wit-
nessed remarkable advancements with Language
Models (LMs) (Brown et al., 2020; OpenAI, 2023;
Reid et al., 2024; Dubey et al., 2024). However,
earlier LMs were constrained by relatively short
context windows, typically handling only a few
thousand tokens at a time, which limits their appli-
cability in advanced tasks requiring broader context
comprehension, such as document-level summa-
rization or complex reasoning (Koh et al., 2023;
Suzgun et al., 2022). To address this, recent efforts
have led to the development of LCLMs, designed
to process much larger contexts, sometimes ac-
commodating over a million tokens within a single
prompt (Reid et al., 2024). To mention a few, mod-
els like Longformer and BigBird (Beltagy et al.,
2020; Zaheer et al., 2020) incorporate sparse at-
tention mechanisms to efficiently handle extended
contexts without compromising on computational
feasibility. Also, LongRoPE extends the context
window of LMs to 2M tokens by interpolating their
specific positional embeddings (Ding et al., 2024).
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In-Context Learning In-Context Learning (ICL)
is a recent paradigm that enables language models
to learn from examples provided within their input
context and then perform given tasks (Brown et al.,
2020; Min et al., 2022; von Oswald et al., 2023).
Since its introduction, previous studies have con-
centrated on developing the strategies to optimize
the quality and arrangement of in-context examples
to maximize performance, especially given the lim-
itations of early LMs on context length. For exam-
ple, these approaches include selecting examples
that maximize relevance to the target query (Liu
et al., 2021; Rubin et al., 2022), ensuring diver-
sity among examples to cover a range of possible
cases (Sorensen et al., 2022; An et al., 2023), strate-
gically ordering examples to improve model adap-
tation (Zhao et al., 2021; Lu et al., 2022), and pri-
oritizing examples by their ease of learning based
on their difficultly (Mavromatis et al., 2023; Liu
et al., 2024). Yet, as the context capacity expands
with LCLMs, these conventional selection strate-
gies warrant re-evaluation, particularly in many-
shot settings; thus, we focus on revisiting them.

Many-Shot ICL Early approaches in many-shot
ICL have primarily focused on the paradigm shift
brought by the ability to incorporate a larger num-
ber of examples in-context (Agarwal et al., 2024;
Bertsch et al., 2024), without giving much con-
sideration to example selection strategies. Such
many-shot ICL methods have demonstrated perfor-
mance comparable to fine-tuning. Also, there is a
very recent work that explores retrieval strategies
in many-shot ICL (Bertsch et al., 2024); however,
they use models with relatively limited context ca-
pacities (e.g., under 100k tokens with Llama 2),
resulting in restrictions on the number of examples
included and, consequently, making retrieval-based
methods appear more advantageous. However, con-
trary to this finding, we uncover that this advantage
diminishes as the context capacity increases, al-
lowing random sampling to perform on par with
more sophisticated selection methods when a large
number of examples is used. Lastly, other recent
efforts include establishing benchmarks for long-
context ICL (Lee et al., 2024a; Li et al., 2024).
Unlike prior studies, our work offers a novel per-
spective by systematically re-evaluating traditional
selection strategies in the expanded context regime
and highlighting the shift from selection optimiza-
tion to effectively leveraging the extensive context
space in many-shot ICL, with data augmentation.

6 Conclusion
We explored ICL in the context of LCLMs, investi-
gating whether traditional sample selection strate-
gies remain effective in many-shot scenarios and
observing that they offer minimal to zero perfor-
mance gains over simple random selection. We
also highlighted the emerging challenge of under-
utilized context in low-resource tasks due to limited
example availability, and proposed a data augmen-
tation strategy, which substantially boosts perfor-
mance by increasing context utilization of LCLMs.
Lastly, we analyzed the behavior of LCLM-enabled
ICL when operating with extremely long context
and in the presence of noisy examples, and found
that while performance improves with added exam-
ples, it plateaus and even declines when the context
becomes too long, with increased vulnerability to
noise in complex tasks. This suggests promising
future directions in making LCLMs more robust to
lengthy context and noise examples alongside the
direction of extending their context length.

Limitations
While this work explores the new opportunity of
ICL with LCLMs, a couple of limitations can be
considered. First, the computational cost associated
with LCLMs remains a significant challenge, partic-
ularly for researchers and practitioners in resource-
constrained settings. Second, while the proposed
data augmentation method enhances context utiliza-
tion of LCLMs and improves ICL performance, the
quality of synthetic examples often falls short of the
quality of original data. Addressing them through
cost-efficient strategies for leveraging LCLMs and
developing improved data augmentation techniques
would be an exciting area for future work. Lastly,
a theoretical understanding of why LCLMs exhibit
insensitivity to example selection in many-shot set-
tings remains an open research question.

Ethics Statement
We believe this work does not raise any direct ethi-
cal concerns, as it primarily focuses on advancing
the understanding of ICL with LCLMs. However,
as with any other application of LCLM-based ICL,
careful consideration must be given to the quality
of the examples used in the context. Specifically,
the inclusion of biased, harmful, or otherwise prob-
lematic examples in the input context can propagate
or amplify these issues in the model’s outputs, and
we advise practitioners to carefully evaluate and
select ICL examples to avoid potential issues.
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Table 7: Results of LCLM-enabled ICL on reasoning datasets
with and without Chain-of-Thought (CoT) (Wei et al., 2022).

Methods Date Salient Tracking7 Web

Many-Shot ICL 0.927 0.784 0.307 0.768
Many-Shot ICL with CoT 0.918 0.810 0.334 0.771

A Prompts

We provide the prompts used for many-shot ICL
on translation, summarization, and reasoning tasks
in Table 8 and on classification tasks in Table 9.
Also, we provide the prompts used for synthetic
data augmentation and filtering in Table 10.

B Detailed Experimental Setup

Configuration For all experiments, we use the
default hyperparameters for Gemini and Llama.

Ratio of Augmented Data We use original ex-
amples alongside 1,500 synthetic samples (filtered
from an initial set of 3,000 examples according to
their quality scores); therefore, the percentage of
augmented samples varies depending on the size
of the original examples in each dataset. Specifi-
cally, for the translation task where there are around
1,000 original examples, synthetic samples com-
prise around 60% of the total examples. For rea-
soning tasks (having around 100 to 150 examples),
synthetic samples constitute 90-94% of the total ex-
amples. For the classification task (e.g., Banking77
dataset), with 385 original examples, synthetic sam-
ples account for around 80% of the total examples.

C Detailed Experimental Results

Results with CoT It is worth noting that while
developing the approach to better utilize many ex-
amples within the expanded context windows of
LCLMs with advanced prompting techniques, such
as Chain-of-Thought (CoT) (Wei et al., 2022), rep-
resents an orthogonal but promising future research
direction, as an initial foray into this area, we per-
form experiments with CoT on the reasoning task
(as it may benefit from explicit step-by-step think-
ing procedures) and report results in Table 7. From
this, we then observe that the CoT prompting strat-
egy improves the performance on most datasets
(except for Date whose performance is already high
without CoT), demonstrating that there may be a
potential to enhance the performance of LCLM-
enabled many-shot ICL via advanced prompting.
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Figure 9: Detailed results of various sample selection approaches on ICL with LCLMs, such as Gemini Pro (Top), Gemini Flash
(Middle), and Llama 3.1 (Bottom), across four different tasks (translation, summarization, reasoning, and extreme classification)
with 18 datasets. Each bar represents the averaged performance, with the upper and lower limits indicating standard deviation.
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Table 8: A list of prompts that we use for many-shot ICL on translation, summarization, and reasoning tasks.

Types Prompts

Translation

You are an expert translator. I am going to give you one or more example pairs of text snippets where the first is
in {SOURCE_LANGUAGE} and the second is a translation of the first snippet into {TARGET_LANGUAGE}.

The sentences will be written as the following format:
{SOURCE_LANGUAGE}: <first sentence>
{TARGET_LANGUAGE}: <translated first sentence>

After the example pairs, I am going to provide another sentence in {SOURCE_LANGUAGE} and I want you
to translate it into {TARGET_LANGUAGE}. Give only the translation, and no extra commentary, formatting,
or chattiness. Translate the text from {SOURCE_LANGUAGE} to {TARGET_LANGUAGE}.

{EXAMPLES}

{TARGET_QUERY}

Summarization

You are an expert in article summarization. I am going to give you one or more example pairs of article and its
summary in fluent English.

The pairs will be written as the following format:
Article: <article>
Summary: <summary>

After the example pairs, I am going to provide another article and I want you to summarize it. Give only the
summary, and no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

Reasoning

You are an expert in multiple-choice question answering tasks. I am going to give you one or more example
pairs of question and its answer in a multiple-choice question answering format.

The pairs will be written as the following format:
Question: <question>
Answer: <answer>

After the example pairs, I am going to provide another question and I want you to predict its answer. Give only
the answer that follows a consistent format as in the provided examples, and no extra commentary, formatting,
or chattiness.

{EXAMPLES}

{TARGET_QUERY}
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Table 9: A list of prompts that we use for many-shot ICL on five different extreme classification tasks.

Types Prompts

BANKING77

I am going to give you one or more example pairs of customer service query and its intent.

The pairs will be written as the following format:
service query: <query>
intent category: <category>

After the example pairs, I am going to provide another customer service query and I want you to classify the
label of it that must be one among the intent categories provided in the examples. Give only the category, and
no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

DialogRE

I am going to give you one or more examples of the dialogue, the list of entity pairs within it, and their
corresponding relation types.

The examples will be written as the following format:
Dialogue: <dialogue>
The list of k entity pairs are (<entity 1>, <entity 2>), ...
The k respective relations between each entity pair are: <relation>, ...

After the examples, I am going to provide another dialogue along with its associated entity pairs, and I want
you to classify their corresponding relation types that must be one among the relation types provided in the
examples. Give only the relations, and no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

Discovery

I am going to give you one or more example pairs of two sentences and the conjunction word between them.

The pairs will be written as the following format:
<sentence 1> ( ) <sentence 2>
the most suitable conjunction word in the previous ( ) is <conjunction word>

After the example pairs, I am going to provide another two sentences and I want you to classify the conjunction
word between them that must be one among the conjunction words provided in the examples. Give only the
conjunction word, and no extra commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

FewNERD

I am going to give you one or more examples of the sentence, the named entities within it, and their corre-
sponding entity types.

The examples will be written as the following format:
Sentence: <sentence>
<named entity>: <entity type>

After the example pairs, I am going to provide another comment and I want you to classify the label of it that
must be one among the emotion categories provided in the examples. Give only the category, and no extra
commentary, formatting, or chattiness.

{EXAMPLES}

{TARGET_QUERY}

GoEmotion

I am going to give you one or more example pairs of comment and its emotion category.

The pairs will be written as the following format:
comment: <comment>
emotion category: <category>

After the example pairs, I am going to provide another sentence, and I want you to classify the named entities
within it and their corresponding entity types that must be one among the entity types provided in the examples.
Give only the named entities and their corresponding entity types, and no extra commentary, formatting, or
chattiness.

{EXAMPLES}

{TARGET_QUERY}
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Table 10: A list of prompts that we use for generating synthetic demonstrations and filtering them of low-quality.

Types Prompts

Generation

You are an expert in data augmentation. You will be provided with a series of demonstrations that show how
a task is performed. Your objective is to generate a new example that closely follows the pattern, structure,
and style of the demonstrations. Carefully analyze the key steps, transitions, and output style in the provided
demonstrations. Then, create a new sample that maintains consistency in format and correctness while
introducing variety in content.

Here are the demonstrations:

{EXAMPLES}

Now, as an expert, generate a new sample that aligns with the original demonstrations:

Filtering

You are an expert in assessing data quality. Given the original set of samples, your task is to carefully evaluate
the provided sample in comparison to the original samples. Based on your expertise, determine whether the
provided sample is of high quality, meeting or exceeding the standards set by the original set.

Here are the original samples:
{EXAMPLES}

Now, as an expert, evaluate the provided sample:
{GENERATED_SAMPLE}

Please provide only a single numerical rating (1, 2, 3, 4, or 5) based on the quality of the sample, without any
additional commentary, formatting, or chattiness.
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