A Constrained Text Revision Agent via
Iterative Planning and Searching

Hannan Cao

Hwee Tou Ng

Department of Computer Science, National University of Singapore
caoh@u.nus.edu,nght@comp.nus.edu.sg

Abstract

Existing text revision systems are capable of
generating fluent and coherent text, but strug-
gle with constrained text revision (CTR), which
requires adherence to specific constraints. Fur-
thermore, adapting these systems to diverse
constraints is challenging. To bridge this gap,
we introduce CRAFT, a Constrained Revision
Agent For Text, focusing on CTR. CRAFT uti-
lizes a planner, a reviser (i.e., a large language
model), and adaptable tools to generate revi-
sions tailored to different scenarios. Specif-
ically, we propose an iterative self-training
alignment method to construct the planner,
which generates tool usage and text revision
plans. Furthermore, we propose Tool-Guided
Monte Carlo Tree Search (TG-MCTS), a novel
CTR algorithm that extends MCTS with tool-
guided expansion and evaluation, enabling the
search for optimal revision strategies across var-
ious scenarios. To evaluate CRAFT, we intro-
duce CORD (COnstrained Revision Dataset),
a dataset with multi-level constrained instruc-
tions for paragraph-level revision. Experimen-
tal results show that CRAFT outperforms base-
lines in both constraint adherence and revision
quality. Furthermore, CRAFT exhibits robust
performance across diverse use cases, includ-
ing plain text and LaTeX revision.'

1 Introduction

Large language models (LLMs) excel at generat-
ing fluent and coherent text, motivating researchers
to develop various text revision systems (Raheja
et al., 2023; Cao et al., 2023). In practice, users ex-
pect text revision systems to revise entire passages
while adhering to specific constraints, such as word
limits or keyword constraints (Chen et al., 2024).
We define this task as constrained text revision
(CTR), a subtask of constrained text generation
(CTG) (Liang et al., 2024a).

"https://github.com/nusnlp/CRAFT

CRAFT
,oTTTTTT s <
Adaptabla
Instruction & Text ! Planner ools ! Revision
1
Revise this text, keep l # I/ Twitter users were
“Twitter” and contains | : among the first to
more than 450 words: 1 1, catch aglimpse of
Twitter users got first : Search : the highly update,
chanceto .. I 1« Which ...
| 1
1 1
| 1
1
1 1
\ I
Reviser

Figure 1: Illustration of our proposed CRAFT for CTR.

CTR involves modifying text according to spe-
cific instructions, requiring LL.Ms to interpret di-
verse constraints, plan tasks (Liang et al., 2024b),
and interact with tools (Schick et al., 2023), mak-
ing it more complex than traditional text genera-
tion (Yao et al., 2024). Moreover, CTR applies to
various scenarios, such as plain text and LaTeX
revisions, making it more challenging to design a
system that accommodates all possible constraints
and use cases. An ideal solution would be a highly
adaptable text revision system capable of handling
diverse scenarios efficiently. However, existing
text revision LLMs (Raheja et al., 2023; Shu et al.,
2024) rely on supervised fine-tuning (SFT) with
labeled in-domain data, limiting their adaptability
to diverse constraints or use cases.

To bridge this gap, we employ a vanilla LLM
(i.e., not fine-tuned on task-specific data) as a text
revision LLM (reviser), ensuring high adaptability.
However, directly using the reviser often yields sub-
optimal performance across different constraints
and domains. Therefore, we introduce CRAFT
(Fig. 1), a Constrained Revision Agent For Text.
CRAFT operates iteratively in two phases: (1) the
planning phase, where the planner formulates tool
usage and revision plans based on different scenar-
ios, and (2) a searching phase, where the selected
tools guide the search algorithm to identify optimal
revision plans for the reviser.

In the planning phase, the planner is responsible

26859

Findings of the Association for Computational Linguistics: ACL 2025, pages 26859-26882
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/nusnlp/CRAFT

for interpreting various instructions to formulate

tool usage and text revision plans. However, ver-

ifiable constrained instructions often involve nu-
merical symbols (Zhou et al., 2023; Jiang et al.,

2024), which LLMs frequently misinterpret (Chen

et al., 2024). To address this weakness and enhance

the planner’s ability to mimic human text revision
plans, we propose a two-step approach to build the
planner: (1) utilizing GPT-40 to generate planning
and tool-usage data via in-context learning (ICL),
which is then used to train an initial planner through

SFT; and (2) iteratively refining the planner using a

self-training alignment method, enabling it to learn

from its own mistakes.

To enhance the reviser’s performance under di-
verse constraints while ensuring adaptability, we
introduce Tool-Guided Monte Carlo Tree Search
(TG-MCTYS) for the search phase. TG-MCTS is a
novel CTR algorithm that integrates external tools
to guide text revisions across various constraints
and domains. It extends the traditional Monte Carlo
Tree Search (MCTS) framework (Browne et al.,
2012) through two key innovations: fool-guided
expansion and tool-based evaluation. During tool-
guided expansion, the reviser first generates revi-
sions using plans formulated by the planner. TG-
MCTS then leverages planner-selected tools to pro-
vide linguistic feedback, enabling the planner to
refine future plans. During fool-based evaluation,
TG-MCTS employs these tools to assess revision
quality and constraint compliance, steering the al-
gorithm towards an optimal plan.

Existing text revision datasets primarily focus
on single-task or sentence-level revisions, making
them unsuitable for paragraph-level revisions with
constrained instructions. Therefore, we introduce
a dataset named CORD, which incorporates com-
plex, verifiable, and valid text revision constraints
into paragraph-level text inputs. We also propose
evaluation metrics to assess both constraint adher-
ence and revision quality. We evaluate CRAFT’s
performance using the CORD dataset. The contri-
butions of our paper are as follows:

* We introduce CTR, a novel and complex text
revision task that closely reflects real-world sce-
narios, along with the CORD dataset.

* To the best of our knowledge, this is the first
study to formulate text revision as an iterative
planning and searching problem. Experimental
results demonstrate that CRAFT significantly out-
performs baseline approaches.

* CRAFT exhibits strong adaptability across di-

verse text revision tasks, such as LaTeX revision,
consistently achieving superior performance.

2 Related Work

Text Revision Systems. Existing text revision sys-
tems (Raheja et al., 2023; Cao et al., 2025) generate
suggestions based on user instructions but are pri-
marily designed for single-task or single-sentence
revisions. However, a significant gap remains be-
tween these systems and real-world applications.
CRAFT bridges this gap by providing suggestions
for paragraph-level inputs while adhering to diverse
constraints and scenarios.

Constrained Text Generation. Our study on CTR
is closely related to CTG for LLM, which involves
generating text under specific constraints. Prior
research (Zhou et al., 2023; Jiang et al., 2024) in-
dicates that LLLMs often struggle to comply with
complex constraints. Existing work (Sun et al.,
2024; Xu et al., 2024) mainly uses SFT and pref-
erence optimization with labeled data to improve
LLM’s constraint adherence. Chaffin et al. (2022)
explored the use of traditional MCTS for CTG
but focused only on simple constraints, such as bi-
nary sentiment constraints. In contrast, our method
offers greater flexibility in handling complex con-
straints through iterative planning and searching.
Appendix A shows more related work on writing-
related agents and MCTS.

3 CORD

CORD is constructed in two steps: data selection
and constrained instruction generation.

a) Revise Love it or hate it, Jared Leto's | b) Extract Features
of the Joker is

aninternet......

Sentence Length: [12, .., 5]

Key Words: Joker, .., Jared Leto

c) Create
Constraints

i
i
d) Instruction
Rendering Keep the keyword ‘Joker’.

Contain less than 15 sentences.

Figure 2: Constrained instruction generation pipeline.

Data Selection. To ensure broad domain coverage
and build a robust evaluation framework, we build
on prior research (Que et al., 2024; Tang et al.,
2022; Mita et al., 2024; Ladhak et al., 2020) by se-
lecting texts from academic papers, WikiHow arti-
cles, and human-written stories. We randomly sam-
ple 500 texts, each between 350 and 1,000 words,
as input text.

26860

Constrained Instruction Generation. Design-
ing valid text revision constraints requires careful
consideration, as some may be inapplicable or con-
flicting. To address this, we propose an instruction-
generation pipeline (Fig. 2). Specifically, given
a text, we first employ GPT-40 to revise the se-
lected text, producing revised versions. We then
extract sentence-level and word-level features from
these revisions and construct constraint-based in-
structions through program templates. To increase
instruction complexity (Pham et al., 2024), we ran-
domly select M features to generate M single-
constraint instructions. Finally, following Yao et al.
(2024) we render these instructions with GPT-40
to improve fluency and diversity, yielding a text
revision instruction with M constraints.

We categorize the 500 texts into five domains
(C0-C4), each containing 100 texts. CO texts are
paired with unconstrained instructions (i.e., stan-
dard text revision instructions), whereas C1-C4
texts are paired with instructions containing one
to four constraints, respectively. Additional details
are provided in Appendix C.

4 Preliminary Analysis

During CTR, humans read the full text to under-

stand its context, and iteratively plan improvements

(Flower and Hayes, 1980; Du et al., 2022). Inspired

by this, we explore whether LLMs can similarly

benefit from this behavior. Specifically, we address

the following research questions:

* RQ-1: Can structured planning enhance LLM-
generated revisions?

* RQ-2: Does the quality of LLM-generated revi-
sions improve through iterative revision?

PPL| SOME{ BARTScoref

w/o Plan 34.58 88.91 -2.46
w/ GPT-40 Plan 23.64 91.67 -1.92
w/ Human Plan 21.31 93.28 -1.49

Table 1: Revised text quality under three conditions:
without plans (w/o Plan), with GPT-40-generated plans
(w/ GPT-40 Plan), and with human-labeled plans (w/
Human Plan). SOME is reported in %.

Setup. We analyze LLMs’ performance in CTR us-
ing TETRA (Mita et al., 2024), a dataset containing
human-labeled text revision plans for paragraph-
level text. Since TETRA lacks explicit instructions,
we generate CO—C4 constrained instructions follow-
ing the method in §3. We use accuracy to measure
constraint adherence. Following Kim and Kim

(2024); Shao et al. (2024), we assess revision qual-
ity from fluency, coherence, and grammaticality
perspectives. Consistent with prior research (Yuan
et al., 2021; Goto et al., 2024; Qorib and Ng, 2023),
we measure fluency with perplexity (PPL) through
GPT-2 Large (Radford et al., 2019), coherence with
BARTScore (Yuan et al., 2021), and grammatical-
ity with SOME (Yoshimura et al., 2020).

C1 C2 C3 C4

w/o Plan 68.00 61.00 53.66 46.50
w/ GPT-40Plan 71.00 67.00 61.00 54.00
Gain +3.00 +6.00 +7.34 +7.50

Table 2: Constraint adherence accuracy (%) under dif-
ferent constraints for two settings: without plans (w/o
Plan) and with GPT-40-generated plans (w/ GPT-40
Plan). Gain: the performance gain with the plan.

Structured Planning. We compare two settings:
(a) using human-labeled revision plans and (b) us-
ing GPT-40-generated plans. In the first setting,
GPT-40 revises text based on human-labeled plans
from TETRA. In the second, GPT-4o first gener-
ates a revision plan and then uses it to revise the
text. Table 1 indicates that planning significantly
enhances fluency (lower PPL), coherence (higher
BARTScore), and grammaticality (higher SOME),
with human-labeled plans yielding greater improve-
ments. Furthermore, Table 2 shows that planning
enhances constraint adherence. The improvement
increases as the number of constraints grows. Ap-
pendix D.1 shows more implementation details.

Avg. PPL
w
®
[n}
d
I
3

R1 R2 R3 R4 R5
Rounds

w
= 7
5 901 —— GPT40 g
: g
S
z 88 g
<R R2 R3 R4 RS
Rounds e
£ -15
& _2_0{ —e— GPT-40 ‘ 0 /
%
g
Rty R2 R3 R4 RS -
B = s w s
Rounds rounds

Figure 3: Left: Average PPL, SOME, and BARTScore
for revised text across five revision rounds (R1-R5).
Right: Average accuracy for different revision rounds.

Iterative Revision. Fig. 3 shows that iterative revi-
sions enhance text quality (fluency, coherence, and
grammaticality) and adherence to constraints. The
results indicate that LLMs’ CTR ability benefits
from structured planning (RQ-1) and iterative
revision (RQ-2).

S CRAFT

Building on the features identified in §4, we intro-
duce CRAFT, which iteratively refines text through

26861

Polish this text for clarity, keeping "Friday"
and under 450 words:

Twitter users got their first look at Leto in
character Friday night, and the memes ...

—— Selection
—» Expansion
Backpropagation

a

@ght: I should improve the claritm
and modify ...

Action: Feedback
Through Tools
Tool: detect_keyword(), text_eval(), g
Generate
Plan: The 1%t sentence should be Revision

kept ...

el N

Thought: To modify ...
Action:

Observations:
They got their ...

The word is within limit

Thought: To modify ...

Action:
Tool: word_count() ... Tool: text_eval() ...

Plan: Change ... Plan: Improve ...

Observations:
Leto was obtained by ...

The text can be improved from ...

Observations:

(DRevision:
Twitter users caught their first G
glimpse of ... —_—

Your Output text contains more
than 450 tokens, consider reducing‘
it.

1
1
1
1
1
(@ Feedback: |
1
1
1
1
\

4——@ v [/

-

N
Evaluation: R(sj+1) = Ry + R, Ry: Generated Revision Reward \
Text Quality Evaluation Tool R, : Constraint Reward :
1
Twitter users caught their... Rg =0.9 1
1
1
Constraint Evaluation Tool 1
1
Twitter users caught their... R.=0.5 !

Figure 4: Illustration of the search process.

planning and searching, leveraging both the plan-
ner (Fig. 5) and the search algorithm (Fig. 4). The
planner generates revision plans and tool usages,
while the search algorithm utilizes tool evaluations
and feedback to optimize the revision plans.

Input Instruction & Paragraph
Thought & Action
Observation

Preferred

c) Sample
Thought &Action

Trajectory
Data

/:ﬂNon-preferred

b) Generate

@ d) Preference
Trajectories

Optimization
bl
a) Supervised Fine-tuning

1

Figure 5: Illustration of the planner construction pro-
cess.

5.1 Planner

Table 1 shows that LLMs perform better with
human-labeled plans. However, these plans are
sparse, and LLMs struggle to interpret numerical
constraints (Chen et al., 2024). Therefore, we em-
ploy GPT-4o to synthesize planning trajectories via
ICL (§5.1.1). This synthesized trajectory is then
used to fine-tune LLMs via SFT and iterative self-
training alignment (§5.1.2). Consequently, the re-
sulting planner, 7, generates human-like revision
plans with precise tool usage.

5.1.1 Trajectory Generation

Data Source. We use CNN-DailyNews (Nallapati
et al., 2016) as the raw data (D,) to generate tra-
jectories. Following the method in §3, we select
texts containing 350 to 1,000 words and generate
constrained instructions for each input.

Trajectory Format. We utilize the ReAct frame-
work (Yao et al., 2023) to generate trajectories by
feeding GPT-40 with the input text and its cor-
responding constrained instruction. The gener-
ation process follows an iterative three-step ap-
proach: (a) analyzing the input text (observation),
(b) identifying constraints and areas requiring revi-
sion (thought), and (c) formulating tool usage and
revision plans (action). The LLM then generates a
revised output based on this plan. The revised out-
put, along with its feedback from the tools, serves
as the new observation for the next iteration.

This process iterates until a complete trajectory
is generated, either upon reaching the maximum
iteration limit or when further revisions fail to im-
prove the output quality. To generate human-like re-
vision plans, we randomly select an example from
TETRA, apply the constraints according to §3, and
augment its revision plan accordingly. This modi-
fied example serves as the in-context example for
GPT-40. Each trajectory comprises constrained in-
structions, input text, intermediate steps (observa-
tions, thoughts, actions), and the final revised text.
Samples with incorrect tool usage are discarded
to ensure the trajectory’s quality. Ultimately, we

26862

generate 2k synthetic trajectories, denoted as D;.
Appendix D.2 shows further details.

5.1.2 Planner Construction

SFT. We construct the initial planner, 7, by
fine-tuning LLM on Dy with SFT. The syn-
thetic trajectory for each input is represented
as (09,t1,a1,01,...,tm,am,0m), wWhere t;, a;,
and o; denote the thought, action, and obser-
vation at step ¢, respectively. Here, og corre-
sponds to the initial observation, which includes
the instruction and input text, and o,, represents
the final observation, containing the revised text
and its corresponding tool feedback. At each
step, the planner generates a thought and an ac-
tion based on the historical trajectory H;—1 =
(00,t1,a1,...,0;—1). During SFT, we compute
the cross-entropy loss only for ¢; and a;, masking
0;: Log = —log Z?:l Wo(ti, ai]”;’-[i_l).

Iterative Self-Training Alignment. SFT equips
o with reasoning capabilities (i.e., tool usage, text-
revision planning). However, SFT alone may result
in suboptimal tool-usage performance. Therefore,
we introduce an iterative self-training alignment
method (Algorithm 1), which improves the plan-
ner by emphasizing its high-quality outputs while
mitigating the low-quality ones.

Algorithm 1: Self-Training Alignment
Input: D, Initial planner 7 (7,, when p = 0),
trajectory step count 7.
Output: The final planner 7.
1: while 7, keeps improving do
2: Sample data from D,., and generate
constraints following the method in §3.
Generate trajectories (H;) up to i-th step.

Score a;41 via Eq. 1 to build D,
Optimize 7, on D,, with Eq. 2.
end while

A A

At each iteration, we randomly sample 2k texts
from D, and generate constrained instructions to
form text-instruction pairs following §3. For each
pair, the current planner 7, at iteration p generates
trajectories of up to ¢ steps, producing a histori-
cal trajectory H;. Subsequently, multiple thought-
action pairs, t;+1 and a;y1, are sampled for each
‘H; using sampling-based decoding. Since actions
with correct tool usage and better revision plans are
preferred, we score them using S, (+):

Sample responses: (ai41, tit1) = mp(H;).

Sa(a/i+1):>\v'S’U+>\7"ST'+)\C'SC> (D

where S, measures the tool usage quality, while
both S, and S, measure the overall quality of the
revised text?. Specifically, S, measures the revi-
sion quality (e.g., fluency and coherence), whereas
S, evaluates its adherence to constraints. \,, A,
and). are the weights assigned to these metrics.
Implementation details are in Appendix D.4.
Among these actions, the one with the highest
Sa(-) score is selected as the preferred action, with
its corresponding thought forming the preferred
response, w;41. Conversely, the action with the
lowest score is identified as the non-preferred ac-
tion, with its associated thought forming the non-
preferred response, [; 1. This process generates
a preference dataset, D,. We then apply SimPO
(Meng et al., 2024), coupled with the cross-entropy
loss computed on w;1, to optimize 7, with Lp:

Lp = Lsimpo — log my(wit1|Hs)
= _logo (/310g7rp(wz'+1|7{¢) _ Blog mp(Liy1|Hs) B V)

|wita]

[lit1]
— log mp (wit1[Hi),

)
where [and « are hyper-parameters for SimPO.
This process iterates until the tool usage and revi-
sion plans generated by 7, show no further measur-
able improvement.

5.2 Search

The iterative nature of text revision makes future
plans highly dependent on previous revisions and
feedback. This motivates us to use search algo-
rithms, such as MCTS, to identify optimal revision
plans. Furthermore, to enhance the adaptability
of the reviser across various constraints and sce-
narios, we propose Tool-Guided Monte Carlo Tree
Search (TG-MCTS), a novel CTR algorithm that
guides the revision process according to different
constraints. TG-MCTS integrates feedback and
verification from self-selected tools while leverag-
ing the reflection capabilities of LLMs to promptly
correct errors and optimize the search process.
Within our framework, a tree is constructed
using the reviser 7y and the planner 7,. Each
node at the j-th level is represented as s; =
{0j,H;,N(s;),V(s;)}, where o; includes the re-
vised text y; and tools’ feedback, H ; represents the
historical trajectory to the current node, and N (s;)
and V (s;) denote the node’s visit count and value

2Generated by feeding ;41 into a vanilla LLM.

26863

score, respectively. The root node, sy = {09}, con-
tains the initial text and instructions (i.e., starting
observation). The TG-MCTS algorithm iteratively
performs four operations: selection, tool-guided
expansion, tool-based evaluation, and backpropa-
gation.

Selection. The selection process identifies a node
s;j for expansion based on the Upper Confidence
Bounds applied to Trees (UCT) score (Kocsis and
Szepesvdri, 20006), defined as:

In N (p)

UCT(sj) =V(sj) + N(s;)

3)

where p denotes the parent node of s;, and the
hyper-parameter « balances between exploitation
(i.e., the node value V (s;), which corresponds to
the expected reward of s;) and exploration (i.e., the
visit count N (s;)).

Tool-Guided Expansion. The expansion phase
consists of two key steps: Revise and Feedback.
In the Revise step, the selected node s; expands by
generating a set of actions, a;1, sampled from the
planner. These actions are then processed by 7y to
generate revised text: y; 41 = mg(a;+1,y;). In the
subsequent Feedback step, the feedback is gener-
ated through pre-defined tools (Appendix E.2) and
consists of two components: revision feedback and
constraint feedback. Revision feedback is obtained
using the text-quality tool, which prompts my with
the prompts shown in Appendix E.8. Constraint
feedback is derived using the condition-checking
tools. Leveraging LLMs’ reflective capabilities, the
planner incorporates this feedback to refine text re-
vision plans. This enables TG-MCTS to promptly
improve revision quality throughout the search.

Tool-Based Evaluation. During the evaluation,
the selected tools estimate the expected reward
R(sj41) for the new node s; ;. This reward con-
sists of two components: the generated revision re-
ward (Ry) and the constraint reward ([2..). Specifi-
cally, the text-quality tool calculates IR as the arith-
metic mean of the normalized PPL, BARTScore,
and SOME scores. Meanwhile, the condition-
checking tools compute R.. Finally, the overall
reward is defined as: R(s;y1) = Ry + R.. Addi-
tional details can be found in Appendix D.5.

Backpropagation. After obtaining the reward for
the new node s;1, TG-MCTS updates the values
and visit counts of all nodes along the path from

the root node to its ancestor nodes s (0 < k < j)
with the following equations:

Nnew(sk) = Nold(sk) +1, “4)
Vs N R(s;
V() = L2228) Nld(jlf;,; L))

where Noia(sx) and Voja(sg) denote the visit count
and value of node s, respectively, prior to back-
propagation.

6 Experiments

6.1 Setup

Dataset and Metrics. We evaluate CRAFT on
the CORD dataset, measuring its performance in
terms of constraint adherence and revision qual-
ity. Constraint adherence is assessed using accu-
racy. Revision quality is evaluated from the fluency,
grammaticality, and coherence aspects, measured
by PPL, SOME, and BARTScore, respectively.

Models. Two versions of CRAFT are developed:
(a) CRAFT-3.1, which employs Llama-3.1-8B-
Instruct (Dubey et al., 2024) as the reviser, and
(b) CRAFT-40, which uses GPT-40 as the reviser.
In both versions, the planner (7;,) uses Llama-3.1-
8B-Instruct as the base model. 7, is trained using
trajectories generated for instructions containing
up to three constraints (CO—C3), while instructions
with four constraints (C4) are reserved for evaluat-
ing its generalization to unseen domains. During
iterative self-training alignment, #; is generated
with a maximum of five steps. For CTR, we define
a total of 8 tools, encompassing text quality eval-
uation tool, keyword detection tool, and various
condition-checking tools. Detailed description of
these tools is provided in Appendix E.2.

Baselines. We compare CRAFT against the fol-
lowing baselines based on GPT-40 and Llama-3.1-
8B-Instruct: (a) Direct: The LLMs are directly
prompted with instructions and text from CORD;
(b) CoT: The LLMs are prompted to generate inter-
mediate reasoning steps before providing the final
answer. Specifically, we employ zero-shot Chain-
of-Thought (CoT) (Wei et al., 2022); (c) Plan: The
LLMs first receive a human-labeled plan as an in-
context example (as described in §5.1.1) to gener-
ate text revision plans. LLMs then use these plans
to revise the text; (d) Iter: The LLMs generate an
initial response and iteratively revise it over mul-
tiple rounds. According to Fig. 3, we conduct 5
rounds of text revision.

26864

System Constraint Adherence (Acc.?) Text Quality
C1 C2 C3 C4 PPL| SOME?T BARTScoret
Evol-Ins 57.00 53.00 51.33 42.00 3544 87.43 -1.92
Conifer 51.00 59.00 52.00 44.25 4251 87.55 -1.85
DeepSeek-R1 81.00 70.00 66.66 58.00 40.95 87.60 -2.08
ol-preview 80.00 70.50 67.00 57.50 40.84 84.46 -2.07
Llama 3.1 8B Instruct
Direct 58.00 59.50 50.33 4225 32.61 87.55 -3.33
CoT 60.00 57.50 51.00 46.00 32.11 88.09 -4.38
Plan 62.00 62.50 54.66 4625 29.52 85.75 -3.26
Iter 65.00 63.50 57.33 48.25 28.95 87.99 -3.38
CRAFT-3.1 83.00 80.00 80.00 72.75 28.33 88.80 -1.90
GPT-40
Direct 69.00 61.50 5433 47.00 50.69 87.90 -2.02
CoT 68.00 63.00 55.66 48.75 48.63 87.74 -1.96
Plan 72.00 66.50 60.00 53.75 43.25 87.87 -1.96
Iter 77.00 67.50 62.33 54.75 45.41 87.53 -2.03
CRAFT-4o0 85.00 83.00 82.66 76.50 34.74 86.85 -1.82

Table 3: Performance on CORD across C1-C4 domains. Text Quality denotes the averaged text quality across
C1-C4. Acc. denotes accuracy. Both Acc. and SOME are shown in %. The best results are bolded, and the

second-best results are underlined across all domains.

Additionally, we compare CRAFT’s perfor-
mance against the state-of-the-art (SOTA) text re-
vision system, CoEDIT-Composite (CoEDIT-C)
(Raheja et al., 2023), in the CO domain. We also
compare CRAFT with SOTA methods for CTG,
including Evol-Ins (Xu et al., 2024) and Conifer
(Sun et al., 2024), across the C1 to C4 domains.
We report the average score over three runs. For
CO0 to C5, we also include comparison with reason-
ing LLMs DeepSeek-R1 and ol-preview, using the
Iter method, which yields the best performance.
Additional implementation details are provided in
Appendix D.6.

6.2 Results

Table 3 highlights significant improvements in con-
straint adherence for both CRAFT-3.1 and CRAFT-
40 compared to their respective baselines, with an
average accuracy increase of over 16% across all
domains. As the number of constraints increases
from C1 to C4, both systems demonstrate pro-
gressively greater performance gains over base-
line approaches. Notably, CRAFT-40 consistently
achieves the highest accuracy across all test cases,
with an average accuracy of 81.8%.

Moreover, Tables 3 and 4 show that CRAFT-
3.1 and CRAFT-40 produce superior text revisions
compared to the baselines in most scenarios, in flu-
ency, grammaticality, and coherence aspects. Our

statistical significance tests confirm that both mod-
els generate high-quality revisions, surpassing pre-
vious SOTA text revision and CTG systems in both
constraint adherence and revision quality.

System o
PPL] SOMET BARTScoref
CoEDIT-C 38.82 87.32 -2.16
DeepSeek-R1 ~ 35.97 88.10 -1.84
ol-preview 34.98 88.20 -1.92
Llama 3.1 8B Instruct
Direct 29.69 83.61 -4.97
CoT 27.38 84.58 -4.77
Plan 27.31 84.18 -4.58
Iter 26.55 84.21 -4.52
CRAFT-3.1 25.82 88.96 -1.92
GPT-40
Direct 35.92 87.61 -2.18
CoT 36.16 88.62 221
Plan 35.24 88.14 -1.87
Iter 34.74 88.21 -1.89
CRAFT-40 33.07 88.80 -1.76

Table 4: Performance on CORD CO domain. SOME
is shown in %. The best and second-best results are
highlighted in bold and underline, respectively.

SOTA CTG systems, Evol-Ins and Conifer, are
built by training Llama-3.1-8B-Instruct with la-
beled constrained instruction data. However, these
models do not exhibit significant advantages over
their base model on CRAFT, likely due to the do-
main gap between their training data and CORD.
In contrast, CRAFT-3.1 achieves greater improve-
ments by leveraging a planner and reviser (i.e., a

26865

vanilla LLM).

7 Analysis

In this section, we refer to the best-performing GPT-
40 baseline, GPT-40 (Iter), as GPT-4o for brevity.

CRAFT-40 GPT-40 # Cases
F() 4.93 4.87 F 67
cM 4.82 4.67 C 72
G 0.02 0.06 G 85

Table 5: LLM-as-a-Judge using GPT-4. Left: Average
scores assigned by GPT-4. Right: Number of cases (#
Cases) where CRAFT-40 outperformes GPT-4o.

LLM-as-a-Judge. Text revision is subjective, and
traditional metrics may fail to capture quality accu-
rately. While human evaluations provide insights,
they are biased and irreproducible. Prior research
(Sottana et al., 2023; Zhou et al., 2024) shows that
GPT-4 closely aligns with human judgments on
fluency, coherence, and grammaticality.

We compare the revision quality of CRAFT-40
and GPT-40 by randomly selecting 100 outputs
from each system. Following Sottana et al. (2023),
we score the fluency (F), grammaticality (G), and
coherence (C) of the revision with GPT-4. As
shown in Table 5 (Left), CRAFT-40 outperforms
GPT-40 on these aspects. Additionally, following
Zhou et al. (2024), we conduct a pairwise compar-
ison using GPT-4, using the prompt in Table 15.
Table 5 (Right) confirms that CRAFT-40 produces
superior revisions more often than GPT-40. Details
of the experimental setup are in Appendix D.7.

System €0
PPL| SOME{T BARTScoref
CRAFT-40 33.07 88.80 -1.76
w/o Plan 34.93 88.16 -1.91
w/o Feedback 34.21 88.24 -1.88
wlo R, 33.95 88.56 -1.82
w/o R, 33.09 88.78 -1.74

Table 6: Revision quality on the CORD CO domain.

Ablation Study. We analyze CRAFT-40 by remov-
ing several key elements: 1) w/o Plan: removes
the planner and rely solely on iterative text revi-
sion; 2) w/o Feedback: removes the tool feedback
in TG-MCTS; 3) w/o R,: omits the generated re-
vision reward Ry; 4) w/o R.: omits the constraint
reward R.. For revision quality analysis, we fo-
cus on the CO domain (Table 6), while constraint
adherence is analyzed using the C1-C4 domains
(Table 7). Tables 6 and 7 confirm that both plan-
ning and feedback play a crucial role in providing

revisions with better text quality and adherence to
constraints. Specifically, 17, contributes to improv-
ing text quality, while R, strengthens constraint
adherence.

Cl c2 C3 C4

CRAFT-40 85.00 83.00 82.66 76.50
w/o Plan 76.00 65.50 60.66 54.25
w/o Feedback 79.00 69.00 62.00 56.00
w/o R, 84.00 82.50 81.66 75.25
w/o R, 81.00 73.00 6833 62.75

Table 7: Constraint adherence accuracy on CORD
across C1 to C4 domains.

Preservation Rate Distribution

6 CRAFT-40
GPT-40
€ 4
>
[=]
£ CRAFT-40: 81.7%
=] epracesTw
/
0

00 02 04 06 08 10
Preservation Rate

Figure 6: The LaTeX keyword preservation rate distri-
bution.

Text Quality
AveCE. | —ppr T SOME 1 BARTScore T
GPT-do 024 4872 8537 192
CRAFT-40 006 35.65 88.21 -1.61

Table 8: Revised text generated by CRAFT-40 and GPT-
40. AvgCE.: the average compilation error. Text Qual-
ity: the quality of the revision after compilation.

Adaptability. We evaluate CRAFT-40’s adaptabil-
ity for LaTeX revision, a more complex task than
plain text revision due to LaTeX-specific keywords.
To evaluate its performance, we randomly select
100 LaTeX paragraphs from papers with LaTeX
source files in the TETRA dataset. More details
are shown in Appendix D.8. To facilitate LaTeX
keyword detection, we integrate a LaTeX keyword
detection program into the keyword detection tool
(Appendix E.2). Fig. 6 shows CRAFT-40 achieves
a higher LaTeX keyword preservation rate than
GPT-40. Table 8 shows that CRAFT-40 produces
fewer compilation errors and higher-quality LaTeX
revisions compared to GPT-40. This suggests that
CRAFT-4o can be effectively adapted to other sce-
narios with minor modifications.

Tool Usage. Tool usage plays a crucial role in

26866

Thought: | should remove ...

Action:
###TOOL:keyword_keep_removal_check(*
GPT-40’, ‘keep’), word_count_check(20,
‘less than’)

##H#PLAN: ...

Improve the
fluency of this
text. Keep the
keyword "GPT-40”
and contain less
than 20 words:
luse GPT-40 to
efine text, it’s very
good. It can corrct
the gramma in
your text. It can
even recognize
latex text. You
should try it out.

Revision: | use GPT-4 to refine text, and it
works good
Reward: R, =0, R;=0.69

Thought: Need to improve the fluency of
the text. Should use the ‘text quality’ tool, —>
‘keyword presence check’ tool, and

‘word_count’ tool.

Action:

###TOOL.: text_eval(),
keyword_keep_removal_check(‘GPT-40’,

‘keep’), word_count_check(20, ‘less than’)

###PLAN: ...

Success Node

Failure Node
Feedback

Reflection
Revision: | use GPT-4o to refine text, and it
works really well. It can correct gramma
errors and recognize LaTeX code. You
should definitely give a try.

Reward: R; = 0.5, R;= 0.83

Tool Feedback

Thought: | should replace ‘gramma’ into
‘grammar’. | should also remove
unnecessary words. Should use the ‘text
quality’ tool, ‘keyword presence check’
tool, and ‘word_count’ tool.

Action:

###TOOL: text_eval().... - —> ###TOOL: text_eval()....
###PLAN:

Revision: | use GPT-4o to refine text—it
corrects grammar and understands LaTeX.
Recommend trying it.

Reward: R. = 1.0, R;=0.81

Text Quality Feedback:
The fluency can be improve by
changing ‘gramma’ into ‘grammar’
Constraint Feedback:

The constraint of keeping GPT-40
has been satisfied. The constraint
of less than 20 words has not
met, the revision has 28 words

Thought: | should paraphrase the last
sentence into ‘I strongly recommend it’.
Should use the ‘text quality’ tool
Action:

###PLAN: ...

Revision: | utilize GPT-4o for text
refinement; it reliably corrects grammar
and accurately processes LaTeX. | strongly
recommend it.
Reward: R, = 1.0, R;=0.88

Reflection.

Tool Feedback

Text Quality Feedback:

The fluency can be improve by
paraphrasing the last
Constraint Feedback:

The constraint of keeping GPT-
4o has been satisfied. The
constraint of less than 20
words has been satisfied

Figure 7: A qualitative example illustrating CRAFT’s constrained text revision process.

providing feedback and evaluation. We assess the
planner’s (7)) tool usage quality using the F; score.
Fig. 8 (Left) shows that 7, significantly outper-
forms both its base model and GPT-40. Notably, m,
achieves strong performance on C4, a domain ex-
cluded from training, demonstrating 7,,’s ability to
generalize to unseen scenarios. Furthermore, Fig. 8
(Right) highlights a consistent improvement in tool
usage across iterations, underscoring the effective-
ness of the iterative self-training alignment method.
Our case study in Fig. 10 illustrates that, unlike
GPT-40 which frequently generates redundant or
incorrect tool calls and misinterprets mathematical
symbols, m, effectively mitigates these errors.

100 —-Co—e- C1
B GPT-40

= Llama3.1
m Planner

—-C2-e- 3

F1 Score
F1 Score
8
t
2

111 1-2 -3 1-4

ConsIimprove Self-Training Iteration

Figure 8: F; score (in %) for tool usage quality.
Left: Tools usage generated by GPT-40, Llama-3.1-
8B-Instruct, and the planner. Right: Tool usage quality
across four iterations (I-1 to I-4).

Case Study. Fig. 7 presents a qualitative example
of the CRAFT workflow. CRAFT begins by using
a planner to generate a sequence of thoughts and
actions based on the given instruction and input
text. The reviser then produces a draft revision ac-
cording to the plan specified in the actions. These
actions are evaluated by external tools identified
by the planner, which assign rewards and provide
feedback. CRAFT then applies TG-MCTS to se-
lect the optimal revision. Tool feedback serves as a

reflection signal, enabling the planner to refine its
future strategies. In the example in Fig. 7, the tools
highlight ways to improve fluency and suggest re-
ducing unnecessary words. This reflective process
helps the planner generate more effective plans in
subsequent iterations. Repeating this loop results
in progressively higher-quality revisions that better
satisfy the specified constraints.

8 Conclusion

This paper introduces the CTR task, which better
reflects real-world text revision scenarios. To sup-
port this task, we developed the CORD dataset, a
comprehensive benchmark for evaluating systems
on constrained text revisions. Furthermore, we
conceptualize CTR as an iterative planning and
searching problem and propose CRAFT to address
the complexities of paragraph-level text revisions
under diverse constraints. Experimental results
demonstrate that CRAFT consistently outperforms
baseline approaches and exhibits robustness across
various text revision scenarios.

9 Limitations

Despite the comprehensive analysis and experimen-
tal results presented in this work, our study is lim-
ited by the computational cost of the tree-based
search method. Additionally, while our approach
does not rely on specific features of a particular
text environment, its effectiveness has only been
evaluated on English plain text and LaTeX revision.

26867

Acknowledgments

This research is supported by the National Research
Foundation Singapore under its Al Singapore Pro-
gramme (Award Number: AISG3-RP-2022-030).
We thank the anonymous reviewers for their in-
sightful comments. We are also grateful to Junyi
Li for his helpful discussions.

References

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and Al in games.

Hannan Cao, Wenmian Yang, and Hwee Tou Ng. 2021.
Grammatical error correction with contrastive learn-
ing in low error density domains. In Findings of
EMNLP.

Hannan Cao, Hai Ye, and Hwee Tou Ng. 2025. Ratio-
nalize and align: Enhancing writing assistance with
rationale via self-training for improved alignment. In
Findings of ACL.

Hannan Cao, Liping Yuan, Yuchen Zhang, and
Hwee Tou Ng. 2023. Unsupervised grammatical er-
ror correction rivaling supervised methods. In Proc.
of EMNLP.

Antoine Chaffin, Vincent Claveau, and Ewa Kijak. 2022.
PPL-MCTS: Constrained textual generation through
discriminator-guided MCTS decoding. In Proc. of
NAACL, pages 2953-2967.

Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and
Zhendong Mao. 2024. Benchmarking large language
models on controllable generation under diversified
instructions. In Proc. of AAAI pages 17808-17816.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Preprint, arXiv:2210.11416.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming
Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and
Maosong Sun. 2024. Ultrafeedback: Boosting lan-
guage models with scaled ai feedback. Preprint,
arXiv:2310.01377.

Wanyu Du, Vipul Raheja, Dhruv Kumar, Zae Myung
Kim, Melissa Lopez, and Dongyeop Kang. 2022.
Understanding iterative revision from human-written
text. In Proc. of ACL.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Linda Flower and John R Hayes. 1980. The cognition
of discovery: Defining a rhetorical problem. College
Composition & Communication, 31(1):21-32.

Takumi Goto, Justin Vasselli, and Taro Watanabe. 2024.
Improving explainability of sentence-level metrics
via edit-level attribution for grammatical error cor-
rection. Preprint, arXiv:2412.13110.

Fantine Huot, Reinald Kim Amplayo, Jennimaria Palo-
maki, Alice Shoshana Jakobovits, Elizabeth Clark,
and Mirella Lapata. 2025. Agents’ room: Narrative
generation through multi-step collaboration. In Proc.
of ICLR.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun
Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. 2024. Follow-
Bench: A multi-level fine-grained constraints fol-
lowing benchmark for large language models. In
Proc. of ACL.

Seungyoon Kim and Seungone Kim. 2024. Can lan-
guage models evaluate human written text? case
study on korean student writing for education.
Preprint, arXiv:2407.17022.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit
based monte-carlo planning. In Proc. of ECML.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kath-
leen McKeown. 2020. WikiLingua: A new bench-
mark dataset for cross-lingual abstractive summariza-
tion. In Proc. of EMNLP Findings.

Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pas-
cale N Fung, Mohammad Shoeybi, and Bryan Catan-
zaro. 2022. Factuality enhanced language models for
open-ended text generation. In Proc. of NeurIPS.

Huang Lei, Jiaming Guo, Guanhua He, Xishan Zhang,
Rui Zhang, Shaohui Peng, Shaoli Liu, and Tianshi
Chen. 2024. Ex3: Automatic novel writing by ex-
tracting, excelsior and expanding. In Proc. of ACL.

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao
Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
Shunyu Yao, Feiyu Xiong, et al. 2024a. Control-
lable text generation for large language models: A
survey. arXiv preprint arXiv:2408.12599.

Yi Liang, You Wu, Honglei Zhuang, Li Chen, Jiaming
Shen, Yiling Jia, Zhen Qin, Sumit Sanghai, Xuanhui
Wang, Carl Yang, et al. 2024b. Integrating planning
into single-turn long-form text generation. arXiv
preprint arXiv:2410.06203.

26868

https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2310.01377
https://arxiv.org/abs/2412.13110
https://arxiv.org/abs/2412.13110
https://arxiv.org/abs/2412.13110
https://openreview.net/forum?id=HfWcFs7XLR
https://openreview.net/forum?id=HfWcFs7XLR
https://arxiv.org/abs/2407.17022
https://arxiv.org/abs/2407.17022
https://arxiv.org/abs/2407.17022

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.
SimPO: Simple preference optimization with a
reference-free reward. In Prof. of NeurlPS.

Masato Mita, Keisuke Sakaguchi, Masato Hagiwara, To-
moya Mizumoto, Jun Suzuki, and Kentaro Inui. 2024.
Towards automated document revision: Grammatical
error correction, fluency edits, and beyond. In Proc.
of BEA.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulgehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proc. of CoNLL.

Chau Minh Pham, Simeng Sun, and Mohit Iyyer. 2024.
Suri: Multi-constraint instruction following in long-
form text generation. In Proc. of EMNLP Findings.

Muhammad Reza Qorib and Hwee Tou Ng. 2023. Sys-
tem combination via quality estimation for grammat-
ical error correction. In Proc. of EMNLP.

Haoran Que, Feiyu Duan, Liqun He, Yutao Mou,
Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,
Zekun Moore Wang, Jian Yang, Ge Zhang, et al.
2024. Hellobench: Evaluating long text generation
capabilities of large language models. arXiv preprint
arXiv:2409.16191.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog.

Vipul Raheja, Dhruv Kumar, Ryan Koo, and Dongyeop
Kang. 2023. CoEdIT: Text editing by task-specific
instruction tuning. In Findings of EMNLP.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Proc. of NeurIPS.

Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu,
Omar Khattab, and Monica Lam. 2024. Assisting
in writing Wikipedia-like articles from scratch with
large language models. In Proc. of NAACL.

Wentao Shi, Zichun Yu, Fuli Feng, Xiangnan He, and
Chenyan Xiong. 2025. Efficient multi-agent sys-
tem training with data influence-oriented tree search.
arXiv preprint arXiv:2502.00955.

Lei Shu, Liangchen Luo, Jayakumar Hoskere, Yun Zhu,
Yinxiao Liu, Simon Tong, Jindong Chen, and Lei
Meng. 2024. Rewritelm: An instruction-tuned large
language model for text rewriting. In Proc. of AAAL

Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan.
2023. Evaluation metrics in the era of GPT-4: Reli-
ably evaluating large language models on sequence
to sequence tasks. In Proc. of EMNLP.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Bao-
hua Dong, Ran Lin, and Ruohui Huang. 2024.
Conifer: Improving complex constrained instruction-
following ability of large language models. arxiv
preprint arXiv:2404.02823.

Tianyi Tang, Junyi Li, Zhipeng Chen, Yiwen Hu, Zhuo-
hao Yu, Wenxun Dai, Wayne Xin Zhao, Jian-yun Nie,
and Ji-rong Wen. 2022. TextBox 2.0: A text gener-
ation library with pre-trained language models. In
Proc. of EMNLP.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Proc. of NeurlPS.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In Proc. of ICLR.

Shunyu Yao, Howard Chen, Austin W. Hanjie, Runzhe
Yang, and Karthik R Narasimhan. 2024. COLLIE:
Systematic construction of constrained text genera-
tion tasks. In Proc. of ICLR.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In Proc. of ICLR.

Ryoma Yoshimura, Masahiro Kaneko, Tomoyuki Ka-
jiwara, and Mamoru Komachi. 2020. SOME:
Reference-less sub-metrics optimized for manual
evaluations of grammatical error correction. In Proc.
of COLING.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text genera-
tion. Proc. of NeurIPS.

Urchade Zaratiana, Nadi Tomeh, Pierre Holat, and
Thierry Charnois. 2024. GLiNER: Generalist model
for named entity recognition using bidirectional trans-
former. In Proc. of NAACL.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. ReST-MCTS*:
LLM self-training via process reward guided tree
search. In Proc. of NeurIPS.

Di Zhang, Jianbo Wu, Jingdi Lei, Tong Che, Jiatong
Li, Tong Xie, Xiaoshui Huang, Shufei Zhang, Marco
Pavone, Yuqgiang Li, et al. 2024b. Llama-berry: Pair-
wise optimization for ol-like olympiad-level mathe-
matical reasoning. arXiv preprint arXiv:2410.02884.

Han Zhou, Xingchen Wan, Yinhong Liu, Nigel Collier,
Ivan Vuli¢, and Anna Korhonen. 2024. Fairer prefer-
ences elicit improved human-aligned large language
model judgments. In Proc. of EMNLP.

26869

https://openreview.net/forum?id=3Tzcot1LKb
https://openreview.net/forum?id=3Tzcot1LKb
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5
https://openreview.net/forum?id=8rcFOqEud5

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-

ation for large language models. arXiv preprint
arXiv:2311.07911.

Appendix
A More Related Work

Writing Related Agents. Previous studies (Lei
et al., 2024; Shao et al., 2024; Huot et al., 2025)
have investigated the use of agents for generating
long-form content. Specifically, Lei et al. (2024);
Huot et al. (2025) focused on employing agents for
novel writing, while Shao et al. (2024) explored
their application in generating Wikipedia-style arti-
cles. Unlike these approaches, our work develops
an agent designed to revise paragraph-level text
while adhering to various constraints.

Monte Carlo Tree Search for LLM. Monte Carlo
Tree Search (MCTS) (Browne et al., 2012) has
been explored from various perspectives to enhance
LLMs. Specifically, Zhang et al. (2024b) employ
MCTS for solving mathematical problems, while
Zhang et al. (2024a); Shi et al. (2025) investigate
its use in generating synthetic data to improve LLM
performance. In this work, we are the first to apply
MCTS to constrained text revision task, introduc-
ing a Tool-Guided Monte Carlo Tree Search frame-
work that enables flexible adaptation to diverse use
cases.

B Further Analysis

Named Entity Analysis. Preserving named enti-
ties is essential for maintaining the original mean-
ing during text revision. We compute the named
entity preservation rates of GPT-40 and CRAFT-4o
using GLiNER (Zaratiana et al., 2024), a SOTA
named entity recognition (NER) model. As shown
in Fig. 9 (Left), CRAFT-40 demonstrated a higher
preservation rate (81.7%) compared to GPT-40
(64.7%). Further analysis shows that excluding
preservation calculations from R, reduces the
preservation rate to 76.5%. Additionally, omitting
feedback results in a significant decrease, lowering
the rate to 65.2%. This highlights the critical role
of tool feedback and evaluation in TG-MCTS.

B.1 Other Easy Constraints

We further analyze constraint types that are rela-
tively easy for LLMs to follow, specifically focus-
ing on Domain & Style and Semantic constraints.

Preservation Rate Distribution

CRAFT-40
54 GPT-40

CRAFT-40: 81.7%
GPT-40:64.7%

Amount
w

0.0 0.2 0.4 0.6 0.8 1.0
Preservation Rate

Figure 9: The Named Entity preservation rate distribu-
tion.

These constraints are constructed based on the
guidelines and definitions provided by Chen et al.
(2024). As shown in Table 9, although the base-
line model already performs well on these con-
straints, our agent still achieves additional perfor-
mance gains.

Cons. Text Quality
Acc.f PPL| SOME?T BARTScoret
DomainStyle
Iter. 96.7 453 85.3 -1.32
CRAFT-40 98.2 43.1 86.1 -1.20
Semantic

Iter. 95.4 429 86.7 -1.93
CRAFT-40 97.9 40.2 86.9 -1.87

Table 9: Performance of CRAFT-40 and GPT-40 (Iter.)
on easy constraints.

B.2 Factuality Analysis

Following Lee et al. (2022), we evaluate factual-
ity using both the named entity error rate (NEgR)
and the entailment ratio (Entail). Table 10 shows
that CRAFT-40 exhibits a lower factual error rate
compared to GPT-4o.

Factuality NEggr| Entailf
Iter 314 13.4
CRAFT-40 16.2 24.3

Table 10: Factuality Evaluation of CRAFT-40.

B.3 Case Study

Fig. 10 presents a case study on tool usage.

B.4 Computation Cost

Table 11 presents the average computational cost of
our TG-MCTS search algorithm across 5 domains.

26870

Instruction Please refine the following text:

_mpstool texteval)
GPT- text_eval(), word_count_check(350, ‘less
40 stool than’), sentence_count_check(20, ‘less than’),

sentence_length_check(25, ‘less than’)

Instruction Refine the following text for better fluency and
coherence while ensuring the output exceeds
400 tokens. Keep the third and nineteenth sen-
tences unchanged, and ensure each sentence
contains more than six words:

mp stool text_eval(), word_count_check(400, ‘more
than’), sentence_modification_check(3, 19 ,
‘unchange’), sentence_length_check(6, ‘more
than’)
" GPT- text_eval(), sentence_count_check(400, ‘more
40 stool than’), sentence_modification_check(2, 18 ,

‘unchange’), sentence_length_check(6, ‘more
than’)

Figure 10: Tool usage output. Blue indicates correct
tool usage, while red denotes wrong tool usage.

Notably, our method introduces minimal compu-
tational overhead compared to the best baseline,
while achieving strong performance in both text
quality and constraint adherence.

cO0 C1 C2 (C3 4

Iter Cnt. x0.8 xI1.1 x1.2 x1.2 x1.3
Inf. x0.9 x1.1 x1.3 x14 x1.6
Input. x0.9 x1.2 x14 x14 x1.7
Output. x0.9 x1.1 x1.2 x1.2 xI1.3

Table 11: Computation Cost relative to the Iter baseline.
Iter Cnt. denotes the number of iterations, Inf. indi-
cates the inference time, # Input. refers to the number
of input tokens, and # Output. refers to the number of
output tokens.

C CORD Details

C.1 Dataset Information

Source. We select the academic papers from the
TETRA dataset (Mita et al., 2024), and select the
WikiHow from the English portion of WikiLingua
(Ladhak et al., 2020). We follow Que et al. (2024)
to select human-written stories from the subreddit
r/shortstories collections.

Statistics. We list the detailed information about
the number of tokens and sentences in each domain
in Table 12. We also list the number of constraints
for each subtype in Table 13.

C.2 Program Template and Instruction
Rendering

Program Template. A list of constrained instruc-
tions generated by the program template is shown
in the ‘Instruction’ column of Table 14.

Instruction Rendering. Program templates allow
us to generate constrained instructions based on
extracted features. However, the instructions pro-
duced by these templates may lack fluency. Ad-
ditionally, combining multiple sentences under a
single constraint can further reduce readability. To
address this issue, we follow Yao et al. (2024) and
use GPT-40 to refine the instructions. Specifically,
we employ the following prompt to refine the in-
structions:

Please rewrite the following paragraph
to improve fluency without altering the
original meaning. You should provide
the revised paragraph directly. Original
paragraph: {prompt}

C.3 Constraint Type

Chen et al. (2024) examined the ability of LLMs to
follow various constrained instructions, including
length, keyword, sentiment, and topic constraints.
Among these, keyword and length constraints pose
the greatest challenges, yielding the lowest accu-
racy rates. In contrast, sentiment and topic con-
straints achieve nearly 90% accuracy.

Text revision primarily aims to preserve the origi-
nal meaning while maintaining consistency in topic
and sentiment. As a result, topic and sentiment
constraints are less relevant to text revision tasks.
Furthermore, as noted by Chen et al. (2024), unlike
length and keyword verification, which are deter-
ministic, topic and sentiment verification rely on
probabilistic models such as BERT, making them
less reliable. Therefore, our focus is on length and
keyword constraints, as they are more challeng-
ing, easier to verify, and more pertinent to text
revision scenarios.

Table 14 outlines 19 clearly defined and eas-
ily verifiable text revision constraints used in the
CORD dataset. These constraints are selected
based on their verifiability and prevalence in real-
world applications. C1 includes a single constraint,
while C2—-C4 encompasses multiple constraints: C2
contains two, C3 contains three, and C4 contains
four constraints from this Table.

D Implementation Details

D.1 Preliminary Details

We show the prompts for GPT-40 to generate the
text revision plans in Appendix E.4, and prompts
for GPT-40 to generate revisions according to the
text revision plan in Appendix E.7.

26871

Domain #Essays #Sentences #Tokens
Co 100 3,256 60,897
C1 100 3,182 59,654
C2 100 3,075 59,349
C3 100 3,133 58,015
C4 100 3,106 58,636

Table 12: The detailed information about the number of
essays, sentences, and tokens in each domain.

Constraint Type Count
Keep Sentence 103
Modify Sentence 108
Word Count 155
Sentence Count 148
Per Sentence Length 167
Include Keyword 106
Remove Keyword 103
Keyword Frequency 110
Total 1000

Table 13: Detailed breakdown of constraint sub-types.

D.2 Synthetic Trajectory Details
We show our ICL example in Appendix E.3, and

the prompt used by GPT-40 to generate trajectory
is shown in Appendix E.1.

D.3 Scaling

We normalize SOME to a scale of 0-100 using the
formula SOME;,p, = 100 x SOME. Similarly, the
min-max normalization method is applied to scale
the PPL and BARTScore values to the same range.
The normalization equations are as follows:

PPLyin — PPL
PPLyin — PPLiay

BART — BARTin
BART ax — BART i

PPL,om = 100 x (6)

BART o = 100 x (7
where PPL refers to the current perplexity score,
while PPL,,;, and PPL,.x denote the minimum and
maximum perplexity scores, respectively. Simi-
larly, BART refers to the current BARTScore, with
BART i, and BART), representing the minimum
and maximum BARTScore values. During the
implementation, BART,,«x is set to the value of
‘BARTScore(init_text, init_text)’ as specified by
the authors 3. Here, ‘init_text’ refers to the origi-
nal input text. Additionally, BARTy;, is assigned

3https: //github.com/neulab/BARTScore/issues/1
1#issuecomment-1025988744

a value of -10. For perplexity, PPL, is set to O,
and PPL,,;, is defined as ‘PPL(init_text)’, which
represents the perplexity score of the original input
text.

D.4 Action Scoring

To evaluate the quality of verification tool usage
(Sy), we calculate the F; score by comparing the
predicted tool usage with the predefined tool us-
age for the given constrained instructions. Revised
text is generated by feeding a; into a text-editing
LLM. The quality of the revised text (S,) is as-
sessed using the arithmetic mean of normalized
perplexity (PPL), BARTScore, and SOME, follow-
ing the method described in Appendix D.3. Finally,
the quality score S, is computed by employing
the predefined tool usage for each instruction to
verify the accuracy of the revised text. We treat
Llama-3.1-8B-Instruct as the vanilla LLM to gen-
erate revisions according to a;4 1.

D.5 TG-MCTS implementation details

To calculate R., we utilize tools generated by
mp to verify whether the revised text meets the
specified requirements, assessing performance us-
ing accuracy as the metric. For normalized PPL,
SOME, and BARTScore calculations, we follow
the method outlined in Appendix D.3. Our TG-
MCTS terminates when either the revision quality
(in terms of both text quality and constraint adher-
ence) ceases to improve or the maximum number
of iterations is reached.

D.6 Experimental Details

We use a one-tailed sign test with bootstrap resam-
pling for statistical significance tests (Cao et al.,
2021).

Hyper-parameters. To emphasis more accurate
tool usage by m,, we set A, to 0.5, and both A,
and A, to 0.25. Following Meng et al. (2024), the
parameters S and «y in Eq. 2 are set to 2.5 and
1.375, respectively. For TFG-MCTS, « in Eq. 3
is set to 0.2, with three child nodes expanded per
parent node. The maximum depth of the tree is 6
layers, and the maximum number of iterations is
30. For GPT-40 models, we set the temperature to
0.7 and used the ‘gpt-40-2024-08-06" model card,
and for GPT-4, we used the ‘gpt-4-0613° model
card.

Implementations and Computation Hardware.
Our experiments were conducted on four A100

26872

https://github.com/neulab/BARTScore/issues/11#issuecomment-1025988744
https://github.com/neulab/BARTScore/issues/11#issuecomment-1025988744

Constraint Group Sub Group

Instruction

Do not change the {I}-th sentence.

Keep Sentence

Sentence Constraint

Do not change the {I}-th, and {J}-th sentence.
Do not change the {I}-th, {J}-th, and {K}-th sentence.

Only change the {I}-th sentence.

Modify Sentence Only change the {I}-th, and {J}-th sentence.
Only change the {I1}-th, {J}-th, and {K}-th sentence.
Output contain more than {N} words.

Word Count Output contain less than {N} words.

Output contain less than {N} words and more than {M}

words.

Length Constraint

Sentence Count

Output contain more than {N} sentences.
Output contain less than {N} sentences.

Output contain should contain exactly {N} sentences.

Per Sentence Length

Each sentence should contain more than {N} words.
Each sentence should contain less than {N} words.

Include Keyword

Do not change the word ‘{A}’.

Remove Keyword

Do not use the word ‘{A}’.

Keyword Constraint
Keyword Frequency

The word ‘{A}’ should appear {N} times.
The word ‘{ A}’ should appear at least {N} times.

The word ‘{A}’ should appear less than {N} times.

Table 14: A list of 19 verifiable text revision constraints. ‘{I}’, ‘{J}’, and ‘{K} represent the sentence ids, while
‘{N}’ and ‘{M}’ denote the number of words, sentences, or occurrences. ‘{ A}’ represents the keyword.

80GB GPUs with CUDA version 12.1. The plan-
ner’s code is based on the Hugging Face TRL
package*, and CPO_SIMPO?. We employed Deep-
Speed’s Zero-Offload® and LoRA techniques for
fine-tuning the planner. The supervised fine-tuning
(SFT) process took approximately 6 hours, while
each self-training alignment process required about
12 hours. Inference for CRAFT-40 and CRAFT-3.1
was performed using the vLLM package and took
approximately four hours in total.

Baselines. We compare the CRAFT with sev-
eral strong baselines for the text revision and
instruction-following task as follows:

* CoEDIT-C (Raheja et al., 2023). CoEDIT-
Composite is a SOTA text revision LLM fine-
tuned on the Flan-T5 (Chung et al., 2022) using
composite text revision instructions. These in-
structions encompass grammatical error correc-
tion, paraphrasing, and simplification tasks. How-
ever, rather than processing paragraph-level in-
put, CoEDIT-C is trained to handle only sentence-
level input. To establish a CoOEDIT-C baseline,
we first segment texts into individual sentences,

*https://github.com/huggingface/trl

5https://github.com/fe1ixxu/CPO_SIMPO/tree/ma
in

https://github.com/microsoft/DeepSpeed

26873

apply CoEDIT-C to revise each sentence using
detailed instructions and then recombine the re-
vised sentences into texts.

Evol-Instruct (Xu et al., 2024). Evol-Instruct is
the publicly available WizardLM-Evol-Instruct
dataset, comprising 143k samples that integrate
Alpaca and ShareGPT-evolved data. Follow-
ing the methodology outlined in the original pa-
per, we fine-tune Llama-3.1-8B-Instruct on this
dataset to establish the Evol-Instruct baseline.

Conifer (Sun et al., 2024). Conifer is a lan-
guage model optimized for following complex,
constraint-based instructions. It employs a pro-
gressive learning strategy, gradually increasing
task complexity to enhance its ability to handle
intricate instructions. The dataset, curated using
GPT-4, provides diverse and challenging instruc-
tion sets, making Conifer particularly effective
in real-world applications requiring precise ad-
herence to instructions. Following the original
paper’s methodology, we fine-tune Llama-3.1-
8B-Instruct on this dataset and further fine-tune it
using the UltraFeedback (Cui et al., 2024) dataset
with DPO to establish the Conifer baseline.

https://github.com/huggingface/trl
https://github.com/fe1ixxu/CPO_SIMPO/tree/main
https://github.com/fe1ixxu/CPO_SIMPO/tree/main
https://github.com/microsoft/DeepSpeed

D.7 LLM-as-a-Judge Setting

The detailed prompts used for GPT-4 scoring from
fluency, coherence, and grammaticality aspects are
provided in Appendix E.5. For pairwise compar-
isons, we utilize the prompt template presented in
Table 15. To mitigate potential position bias dur-
ing evaluation, we randomly assign the generated
revisions by CRAFT-40 as either “System A” or
“System B”.

Source text: [Input]

Revised Text Candidate A: [Candidate_A]
Revised Text Candidate B: [Candidate_B]
Question: [Aspect_Prompt]

Answer:

Table 15: Prompt template for pairwise comparison
between WRA-40 and GPT-40. The [Input] represents
the original text, [Candidate_A] denotes the revision
produced by System A, [Candidate_B] denotes the
revision produced by System B, and [Aspect_Prompt]
for different aspects are provided in Appendix E.6.

D.8 LaTeX Selection Details

TETRA (Mita et al., 2024) comprises 64 research
papers written by non-native speakers. Among
them, we identified nine papers with available La-
TeX source code. Table 16 presents the URLs
for these papers. From these papers, we extracted
100 paragraphs containing at least two LaTeX key-
words.

S

URL

https://arxiv.org/abs/1805.11267
https://arxiv.org/abs/1603.03116
https://arxiv.org/abs/1705.00823
https://arxiv.org/abs/1704.04859
https://arxiv.org/abs/1606.01323
https://arxiv.org/abs/1810.05104
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/1705.00316
https://arxiv.org/abs/1805.07043

O 00 3 O\ DN A~ W~

Table 16: URLSs of papers from which we obtained the
LaTeX source.

26874

##H#THOUGHT: [Thought_1]
###ACTION:

- ##H#TOOLS: [Tool_1]

- ##H#PLAN: [Plan_1]
###OBSERVATION: [Observation_1]

###THOUGHT: [Thought_n]
#+#+#ACTION:

- ###TOOLS: [Tool_n]

- ##H#PLAN: [Plan_n]
###OBSERVATION: [Observation_n]

Table 17: An example of [In Context Examples]
includes n rounds of text refinements.

E Prompts

E.1 Trajectory Generation Prompt

Below, we present the prompt used by GPT-40 and the Planner, 7, to generate the trajectory. The [Tool
Descriptions] are provided in Appendix E.2, and the [In-Context Examples] are shown in Table 17.

You are an agent tasked with improving text according to the user’s specific
instructions, using the framework outlined below.
Text Improvement Framework
1. Identify Areas for Improvement:

- Based on the user’s instructions, determine the specific aspects that need
enhancement (e.g., grammar, clarity, style, word choice).

- Decide which text quality evaluation tools to use from the provided list.
2. Evaluate Text Quality:

- Select appropriate evaluation tools to obtain feedback on the text’s quality.

- Use the tools as specified to check for grammaticality, fluency, coherence, and
other conditions.
3. Analyze Each Sentence:

- For each sentence in the input text, perform the following steps:

- Sentence: “[Original Sentence]”; Improvement Plan: “[Your plan for improving

the sentence]”
Available Evaluation Tools
[Tool Descriptions]
Response Format
When you respond, strictly follow this format to present your thoughts and actions:
1. ###THOUGHT:
- Describe your thought process on how to improve the text.
2. ###ACTION:
- #HHTOOLS:

- *xxInstructions:*x List any tool function calls you are making, using the
exact function call format as specified in the “Available Evaluation Tools” section,
including the function name and parameters. Write them as code lines without
additional explanations.

- xxExample:*x*

word_count_check (300, “less than”)

keyword_keep_removal_check(“few years.”, “remove”)

sentence_count_check(18, “more than”)

sentence_length_check(20, “less than”)

sentence_modification_check(3, “change”)

keyword_frequency_check(“eat”, 2, “less than”)

- HHHPLAN:

For each sentence:

Sentence: “[Original Sentence]”; Improvement Plan: “[Your plan for improving
the sentence]”

Note:
- After each action, the user will provide the tools’ output in the following format:

26875

“###0OBSERVATION: Tool’s output result.”
[In Context Examples]

E.2 Tool Description

###H 1. Text Quality Tool
- Function: ‘text_eval() — score’

- Purpose: Evaluates the text’s overall quality in terms of grammaticality,
fluency, and coherence.

- Output: Returns a score reflecting the overall text quality.

2. Keyword Detection Tool
- Function: ‘detect_keyword() - word’
- Purpose: Evaluates the keywords to be preserved in the text.
- Output:
- ‘word’: returns the detected keyword in the text.

3. Condition Checking Tools
- a. Word Count Check
- Tool: ‘word_count_check(count: int, relation: str) — count, label’
- Purpose: Checks if the word count meets a specified condition.

- Parameters:
- ‘count’: Target word count.
- ‘relation’: “less than”, “more than”, or “equal”.
- Output:
- ‘count’: Actual word count.
- ‘label’: ‘@’ if the condition is met, ‘1’ otherwise.

- b. Keyword Presence Check
- Tool: ‘keyword_keep_removal_check(keyword: str, relation: str) — label’
- Purpose: Checks if a keyword is present or absent in the text.

- Parameters:
- ‘keyword’: The keyword to check.
- ‘relation’: “keep” (keyword should be present) or “remove” (keyword should
be absent).
- Output:
- ‘label’: ‘@’ if the condition is met, ‘1’ otherwise.

- c¢. Keyword Frequency Check
- Tool: ‘keyword_frequency_check(keyword: str, frequency: int, relation: str) —
occurrence, label’
- Purpose: Counts the occurrences of a keyword and checks if it meets the
specified frequency condition.
- Parameters:
- ‘keyword’: The keyword to count.
- ‘frequency’: Target number of occurrences.

- ‘relation’: “less than”, “more than”, or “equal”.
- Output:
- ‘occurrence’: Actual occurrence count.
- ‘label’: ‘@’ if the condition is met, ‘1’ otherwise.

- d. Sentence Modification Check
- Tool: ‘sentence_check(sentence_id: list, relation: str) — label’
- Purpose: Checks if specified sentences have been changed or remain unchanged.

26876

- Parameters:

- ‘sentence_id’: List of sentence indices (e.g., ‘[1, 31’ means the target
sentence are the 1st and the 3rd sentences).
- ‘relation’: “change” (sentences should be modified) or “unchange” (sentences
should remain the same).
- Output:
- ‘label’: ‘@’ if the condition is met, ‘1’ otherwise.

- e. Sentence Count Check
- Tool: ‘sentence_count_check(count: int, relation: str) — label’
- Purpose: Checks if the total number of sentences meets a specified condition.

- Parameters:
- ‘count’: Target number of sentences.
- ‘relation’: “less than”, “more than”, or “equal”.
- Output:
- ‘count’: Actual sentence count.
- ‘label’: ‘@’ if the condition is met, ‘1’ otherwise.

- f. Sentence Length Check
- Tool: ‘sentence_length_check(length: int, relation: str) — label’
- Purpose: Checks if each sentence’s length meets a specified condition.

- Parameters:
- ‘length’: Target sentence length (in words).
- ‘relation’: “less than”, “more than”, or “equal”.
- Output:
- ‘label’: ‘@’ if all sentences meet the condition, ‘1’ otherwise.

E.3 ICL Example for Synthetic Trajectory

Due to the extensive nature of paragraph-level text revision plans, we provide a representative, human-
labeled partial example from TETRA (Mita et al., 2024) below:

Sentence: Large-scale parsing-based statistical machine translation (MT) has made
remarkable progress in the last few years.

Improvement Plan: Clarify that it is the field or work of large-scale parsing-based
statistical machine translation that has made progress, not the translation
itself. Remove the phrase ’in the last few years’ and consider replacing it with a
synonym or phrasing that communicates on-going progress without a specific time frame.

Sentence: The systems being developed differ in whether they use source- or
target-language syntax.

Improvement Plan: Clarify that the systems vary based on their reliance on the
syntax of either the source language or the target language.

Sentence: For instance, the hierarchical translation system of Chiang (2007)
extracts a synchronous grammar from pairs of strings, Quirk et al. (2005), Liu et al.
(2006) and Huang et al. (2006) perform syntactic analyses in the source language,
and Galley et al. (2006) use target-language syntax.

Improvement Plan: Break down the sentence to improve clarity by listing the specific
contributions of each referenced work separately. Ensure the sentence clearly
explains how each work approaches translation, focusing on the use of synchronous
grammar, source-language syntactic analysis, and target-language syntax.

Sentence: A critical component in parsing-based MT systems is the decoder,
26877

which is complex to implement and scale up.

Improvement Plan: Simplify the wording to make the sentence more accessible and
clarify the complexity of implementing and scaling the decoder in parsing-based
machine translation systems.

Sentence: Most of the systems described above employ tailor-made, dedicated
decoders that are not open-source, which results in a high barrier to entry for
other researchers in the field.

Improvement Plan: Simplify the sentence structure and clarify that the use of
proprietary decoders limits access for researchers, thus hindering collaboration and
innovation in the field.

Sentence: However, with the algorithms proposed in (Huang and Chiang, 2005;
Chiang, 2007; Huang and Chiang, 2007), it is possible to develop a general-purpose
decoder that can be used by all the parsing-based systems.

Improvement Plan: Simplify the sentence structure and clarify the references to
make the statement more concise and easier to understand. Use more straightforward
language to convey the idea that the algorithms allow for the creation of a versatile
decoder applicable to various parsing-based systems.

E.4 Plan Generation Prompt for GPT-40
Below, we present the prompt used by GPT-40 to generate text revision plans for a given text.
You are an expert writing assistant specializing in text revision. Your task is to

analyze a given text and generate a revision plan for each sentence while following
the specific format:

Sentence: [Original sentencel]; Improvement Plan: [Suggested revision strategy].

For each sentence, identify any issues related to clarity, grammar, conciseness,
tone, or logical flow. Then, propose a concrete improvement plan to enhance the
sentence while maintaining its original intent.

Example Output Format:

Original Text:

“[Insert text herel”

Sentence-by-Sentence Revision Plan:

Sentence: “[Original sentence]”; Improvement Plan: “[Brief but clear revision
strategy]”.
Sentence: “[Original sentence]”; Improvement Plan: “[Brief but clear revision
strategy]”.
Sentence: “[Original sentencel]”; Improvement Plan: “[Brief but clear revision
strategy]”.

(Continue for all sentences in the text.)

The improvement plan should be specific and actionable, explaining what should
be changed and why. Avoid vague feedback—focus on how to improve clarity,
conciseness, structure, and readability. If necessary, suggest alternative phrasing
or restructuring.

26878

E.5 GPT-4 Scoring Prompt for Grammaticality, Fluency and Coherence

Grammaticality. Prompt from Sottana et al. (2023) for GPT-4 to score the Grammaticality:

You’re GPT4 and are about to start a task where you will be shown some sentences
written by learners of English. Some of these sentences will contain errors, and
alongside each sentence you will be shown 2 possible corrections, and you will be asked
to evaluate the quality of the correction based on some metrics defined below. This
task is called Grammatical Error Correction (GEC), and is the task of automatically
detecting and correcting errors in text. The task not only includes the correction
of grammatical errors, such as missing prepositions and mismatched subject-verb
agreement, but also orthographic and semantic errors, such as misspellings and
word choice errors respectively. Note that not all sentences you will see include
grammatical errors; if they do not, we would expect the corrected version to be
identical to the source. We ask that you carefully read the original sentence and rank
each of the 4 corrections according to the following metrics, which are defined below.

Semantics. This assesses whether the meaning of the text is preserved following the
GEC. Semantic preservation is assessed on a 5-point Likert scale from 1 (Meaning Not
Preserved) to 5 (Meaning fully preserved). NOTE: You should penalize corrections
which change the meaning unnecessarily. For example, the sentence “I wentt at
Rome for my birthday” should be corrected to “I went to Rome for my birthday”. A
correction such as “I went to Rome for my anniversary” should be penalised in this
category as it introduces unnecessary changes to the meaning.

Grammaticality. This assesses the quality of the correction and answers the
question “How many errors are left in the corrected sentence?”. Please provide a
count of the remaining errors, regardless of whether they were present in the source
or they were newly introduced errors in the supposed corrected version. The options
are “0”, “1”, “2 or more”. Note that, unlike for semantics where a score of 5 is
better than a score of 1, here a score of “0” is better than a score of “1” which is
better than a score of “2 or more” (this is because if there are @ errors remaining,
the GEC task has been fulfilled).

Over-correction. Since there can be multiple ways to correct a sentence,
this assesses whether the correction is unnecessarily verbose or makes unnecessary
syntax changes. The best correction should be done with the minimum number of
edits. For example, if the sentence “I wentt at Rome for my birthday” is corrected
to “I decided to go to Rome for my birthday” this should be penalized under this
category because it contains unnecessary syntax changes, even though the final
sentence is grammatically correct. This metric answers the question: Is the system
over-correcting or making unnecessary syntax changes? The answers should be “No”,
“Minor over-correction”, “Moderate over-correction” or “Substantial over-correction”.

We will pass you the input you need to rank in json format.

Please reply with the scores in json format.

This is an example json query where “original_input” is the source sentence, “id” is
the unique identifier, and all other keys represent the output corrected sentences
which you need to evaluate.

[Input_Example]

26879

Your answer should contain the id and the scores, for example, using the example
given above, if you wish to give 1lama3 a semantics score of 5, a grammaticality
score of “@”, an overcorrection score of “No”, and you wish to give llama3_agent
a semantics score of 4, a grammaticality score of “1”, an overcorrection score of
“Minor over-correction”, then you should return the following output (note how the
id item needs to be preserved to allow for identification):

“llama3”: “semantics”: 5, “grammaticality”: “Q”, “overcorrection”: “No”,
“llama3_agent”: “semantics”: 4, “grammaticality”: “1”, “overcorrection”: “Minor
over-correction”, “id”: “12”

Is this clear? Do you have any questions or are you ready to start?

Fluency and Coherence. Prompt adapted from Sottana et al. (2023) for GPT-4 to score the Fluency and
Coherence are shown below:

You’re GPT-4 and are about to start a task where you will be shown some pieces of text
taken mostly from older articles, alongside 2 different possible text refinement
options, and you will be asked to evaluate the quality of the refined text based
on some metrics defined below. The purpose of text refinement is to make the text
more fluent and more grammatical without changing its overall meaning, omitting
unimportant details while retaining the key content of the original text. We ask
that you carefully read the original text and rank each of the refined text according
to the following metrics, which are defined below.

Fluency. This assesses the quality of individual sentences. Sentences in the
refined text should have no formatting problems, capitalization errors, or obviously
ungrammatical sentences (e.g., fragments, missing components) that make the text
difficult to read. Fluency is assessed on a 5-point Likert scale from 1 (Not Fluent)
to 5 (Super Fluent)

Coherence. This assesses the collective quality of all sentences. The refined text
should be well-structured and well-organized. The refined text should not just be a
heap of related information but should build from sentence to sentence to a coherent
body of information about a topic. Coherence is assessed on a 5-point Likert scale
from 1 (Not Coherent) to 5 (Super Coherent)

Consistency. This assesses the factual alignment between the refined text and
the source. A factually consistent refinement contains only statements that are
entailed by the source document. Refinements that contain hallucinated facts
(information which is not present in the source document) should be penalized.
Consistency is assessed on a 5-point Likert scale from 1 (Not Consistent) to 5 (Super
Consistent)

We will pass you the input you need to rank in json format.

Please reply with the scores in json format.

This is an example json query where “original_input” is the source text, “id” is
the unique identifier, and all other keys represent output texts which you need to
evaluate.

[Input_Example]

Your answer should contain the id and the scores, for example, using the
example given above, if you wish to give 1lama3 a fluency score of 5, a coherence

26880

score of 4, and a consistency score of 4, and you wish to give 1lama3_agent a fluency
score of 5, a coherence score of 1 and a consistency score of 3, then you should
return the following output (note how the id item needs to be preserved to allow for
identification):

“llama3”: “fluency”: 5, “coherence”: 4, “consistency”: 4, “llama3_agent”: “fluency”:
5, “coherence”: 1, “consistency”: 3, “id”: “12”

Is this clear? Do you have any questions, or are you ready to start?

E.6 GPT-4 Pairwise Comparision Prompt

Fluency. The prompt used to conduct pairwise comparison from the fluency perspective:

Assess and contrast the fluency of the two improved text options provided for the
given input. Determine which text option demonstrates superior fluency. If candidate
A excels, respond with ’A’; if candidate B is better, respond with ’B’. Your reply
must solely indicate the chosen option.

Grammaticality. The prompt used to conduct pairwise comparison from the grammaticality perspective:

Assess the grammatical quality of the two revised text options based on the provided
input. A text is considered grammatical when it is free from grammar errors. Among
the two options, the text with fewer grammar errors is more grammatical, while the
one with more errors is less grammatical. Determine which revised text demonstrates
superior grammar. If candidate A has better grammar, respond with ’A’. If candidate
B has better grammar, respond with ’B’. Your response must strictly indicate the
choice only.

Coherence. The prompt used to conduct pairwise comparison from the coherence perspective:

Assess the coherence of the two refined text options based on the provided input
text. Evaluate coherence in terms of clarity and logical progression. A coherent
text effectively conveys the essential information from the input while maintaining
a clear and organized structure. Determine which refined text option demonstrates
superior coherence. If candidate A is better, respond with ’A’. If candidate B is
better, respond with ’B’. Provide only your selection.

E.7 Generate Revision According to Plan

The prompt used to generate the revision based on the text revision plan is shown below:

INSTRUCTIONS:
Using the information provided in each text editing plan (### INPUT), generate the
polished version of each sentence by applying the specified improvements. Maintain

the original order of sentences.

*xxIn your output, provide only the final polished sentences, one after another,
without any prefixes, numbering, or additional text.=**

#it# INPUT:

E.8 Feedback Prompts

Fluency. The prompt used to generate the linguistic feedback from the fluency perspective:
26881

Please analyze the following text for fluency issues, including awkward phrasing,
unnatural word choices, sentence flow, and readability problems. For each of the
sentences that contain fluency problems, please format the output strictly as follows:
‘Original: [original text]; Suggestion: [corrected text]’. If a sentence has no
issues, do not include it in the output. Do not include any additional content.
Text:

Grammaticality. The prompt used to generate the linguistic feedback from the grammaticality perspec-
tive:

Please analyze the following text for grammatical errors, including issues with
sentence structure, punctuation, subject-verb agreement, tense consistency, pronoun
usage, and any other common grammar mistakes. For each of the sentences that contain
grammar errors, please format the output strictly as follows: ‘Original: [original
text]; Suggestion: [corrected text]’. Do not include any additional content. Text:

Coherence. The prompt used to generate the linguistic feedback from the coherence perspective:

Please analyze the following text for coherence problems, such as unclear connections
between ideas, lack of logical flow, abrupt transitions, or inconsistencies in the
overall message. For each sentence or section that contains a coherence problem,
format the output strictly as follows: ‘Original: [original text]; Suggestion:
[corrected text]’. If a sentence or section has no issues, do not include it in the
output. Do not include any additional content. Text:

26882

