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Abstract

Regulatory data compliance is a cornerstone
of trust and accountability in critical sectors
like finance, healthcare, and technology, yet its
complexity poses significant challenges for or-
ganizations worldwide. Recent advances in nat-
ural language processing, particularly large lan-
guage models, have demonstrated remarkable
capabilities in text analysis and reasoning, of-
fering promising solutions for automating com-
pliance processes. This survey examines the
current state of automated data compliance, an-
alyzing key challenges and approaches across
problem areas. We identify critical limitations
in current datasets and techniques, including
issues of adaptability, completeness, and trust.
Looking ahead, we propose research directions
to address these challenges, emphasizing stan-
dardized evaluation frameworks and balanced
human-AI collaboration.

1 Introduction

Regulatory data compliance – ensuring an orga-
nization’s data handling processes, practices, and
documentation adhere to applicable laws and regu-
lations – has become increasingly critical in today’s
business landscape. Organizations must maintain
comprehensive documentation, implement secu-
rity measures, and regularly audit their practices to
comply with regulations like the General Data Pro-
tection Regulation (GDPR) (European Parliament,
2016) in the European Union, the California Con-
sumer Privacy Act (CCPA) (California State Legis-
lature, 2018) in the U.S. state of California, among
others.1 The stakes are high, as non-compliance
can result in substantial fines, legal consequences,
and reputational damage (Armour et al., 2015).

1While organizations must be compliant with several kinds
regulations, such as data, financial, environmental, we focus
on data-protection regulations due to (1) the significant body
of NLP work in this field; and (2) the sizeable impact of
these regulations on organizations’ everyday functioning and
expenses (Chander et al., 2021; McQuinn and Castro, 2019).

The challenge of maintaining compliance has
grown significantly. Organizations often need to
comply with multiple regulatory frameworks across
jurisdictions. The traditional approach of manual
compliance checking faces significant limitations
in scale, consistency, and adaptability. As regula-
tions grow more complex and organizations handle
increasing volumes of data, manual verification
becomes impractical and error-prone.

Recent advances in Natural Language Process-
ing (NLP) and Large Language Models (LLMs)
have demonstrated remarkable success in complex
text analysis tasks. These models have achieved
near human-level performance in document sum-
marization (Zhang et al., 2024), legal document
analysis (Martin et al., 2024), and code understand-
ing (Chen et al., 2021; Yu et al., 2024). Their ability
to process complex text at scale offers promising so-
lutions for automating compliance processes. NLP
and LLMs can assist with data compliance in sev-
eral ways: analyzing privacy policies and compli-
ance documents for completeness, verifying soft-
ware systems against stated policies, making regu-
lations accessible through question-answering sys-
tems, and helping prepare for regulatory changes.
These technologies can reduce manual effort while
improving accuracy and comprehensiveness, let
alone facilitating accountability and governance,
basic tenets of Responsible AI.

This survey examines the use of NLP and ma-
chine learning techniques for regulatory data com-
pliance. While automated compliance has received
significant attention in policy research and industry
practice, the application of NLP techniques to this
domain remains relatively underexplored in aca-
demic literature. Despite promising advances, the
field lacks standardized benchmarks and system-
atic comparisons of approaches, making it difficult
to track progress or establish best practices. Our
survey provides the first comprehensive overview
of NLP applications in automated data compli-
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ance, highlighting its current state and identifying
promising future directions.

This paper is organized as follows. Section 2 es-
tablishes the case for automated data compliance by
examining limitations of manual approaches. Sec-
tion 3 explores key problems and surveys current
techniques. Section 4 reviews available datasets
and their characteristics. Section 5 discusses the
current state of the field and future directions.

2 The Case for Automated Regulatory
Compliance

Modern organizations face increasingly complex
regulatory requirements that govern how they han-
dle data, develop and deploy software, and conduct
business. Manual compliance checking – the tradi-
tional approach – faces several critical limitations
that make it inadequate for today’s needs.

First, regulatory frameworks have grown signif-
icantly in complexity and scope.2 For example,
the GDPR contains 99 articles with intricate re-
quirements, and organizations often need to com-
ply with multiple such frameworks simultaneously.
This complexity makes manual interpretation time-
intensive and requires scarce, expensive expertise.3

Second, compliance checking involves analyzing
large volumes of documents and software systems.
Organizations maintain numerous documents and
software codebases that must align with regula-
tory requirements. Manual verification of all these
artifacts is practically infeasible. Third, manual
compliance checking is prone to human error and
inconsistency. This risk increases when dealing
with multiple jurisdictions or when regulations are
updated. Recent advances in NLP/LLMs offer
promising solutions to these challenges. LLMs
can process and understand complex text, while
specialized tools can automate document analysis
and code checking. This paper surveys these auto-
mated approaches to regulatory data compliance,
examining their current capabilities and limitations.

3 Problems and Techniques in Automated
Regulatory Compliance

Ensuring regulatory data compliance is a complex
task involving multiple stakeholders (regulatory

2https://www.tmf-group.com/en/news-insights/
articles/global-business-complexity/
global-compliance-challenges-business-complexity/

3https://www.thomsonreuters.com/en-us/
posts/investigation-fraud-and-risk/
2023-cost-of-compliance-report/

bodies, data subjects, data controllers, and data
processors), processes, and documentation. Due to
this complexity, there are several distinct problems
that can be automated. In this section, we examine
the most widely studied automation approaches in
the literature. Examples of some tasks are listed in
Figure 1 while the papers are organized in Figure 2.

3.1 Document Compliance Analysis

Regulations such as the GDPR require maintaining
several sets of documents, each with a specific func-
tion vis-à-vis the responsibilities of the entity han-
dling personal data (Hamdani et al., 2021). These
documents include Data Processing Agreements
(DPAs), Privacy Policies/Notices, Data Subject Ac-
cess Requests, among others. Therefore, a substan-
tial component of regulatory compliance checking
is the verification of document compliance, which
involves checking if two documents are compliant
with each other. Based on whether one of those
documents is a regulation, this task can be further
divided into document-to-regulation compliance
checking, and document-to-document compliance
checking (Hamdani et al., 2021).

Document-to-Regulation Compliance Given a
document D and piece of regulation R, the task
is to validate the completeness or compliance of
D against R. A completeness check determines
whether D contains all the information mandated
by R, while compliance-checking further requires
that the provisions of D are permissible under R.
For instance, R may mandate that D disclose what
personal information is collected and stored; a com-
prehensive description of such information would
render D complete with respect to R. However,
if R additionally stipulates that only information
strictly necessary for service provision may be col-
lected, this compliance constraint must also be sat-
isfied for D to be compliant with R.

Majority of literature surveyed uses the
GDPR (European Parliament, 2016) as the regu-
lation R, due to its complexity (11 chapters, 99
articles) and reach (covers all EU residents). Pri-
vacy policies4 and Data Processing Agreements
(DPAs),5 as defined by the GDPR, are commonly

4In the context of the GDPR, a Privacy Policy is a publicly
available statement that informs data subjects about the pur-
poses, legal basis, and methods of processing their personal
data, as well as their rights under the GDPR.

5In the context of the GDPR, a DPA is a contractual agree-
ment between a controller and a processor that governs the
processing of personal data, ensuring compliance with GDPR
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Figure 1: Illustrative examples of inputs, summary of processing steps, and outputs involved in automated data
compliance tasks.

considered as the document D in question.
Many approaches pre-process the relevant pro-

visions of the GDPR, employing techniques such
as semantic role labeling and verb-predicate match-
ing to extract actions, their actors, and benefi-
ciaries (Cejas et al., 2023; Xiang et al., 2023;
Liu et al., 2021; Zhang et al., 2023; Azeem and
Abualhaija, 2024). Alternatively, researchers con-
struct taxonomies of information types mandato-
rily, optionally, or conditionally required to be dis-
closed by data controllers and processors, as delin-
eated in GDPR articles (Amaral et al., 2021, 2023,
2022; Hamdani et al., 2021). These structured sets
are then compared against documents using rule-
based (Cejas et al., 2023; Xiang et al., 2023) or ML-
based methods. The latter can be broadly divided
into two categories: the first involves the use of
textual similarity scoring techniques (Zhang et al.,
2023; Amaral et al., 2022) while the second trains
classifiers for predicting whether a clause in D sat-
isfies a specific condition extracted from R during
pre-processing (Amaral et al., 2023; Hamdani et al.,
2021; Liu et al., 2021; Amaral et al., 2022; Azeem
and Abualhaija, 2024; Fan et al., 2020).

Although regulations need to only be pre-
processed once and their computation cost is
amortized across multiple document analyses,
these approaches necessitate substantial manual
re-engineering when regulations are revised and
prove challenging to generalize across different
jurisdiction frameworks. Additionally, their limi-

obligations as outlined in Article 28.

tations, as identified by Hamdani et al. (2021) and
others, include the lack of explainability in ML-
based techniques, the inability of textual similarity
scores to capture legal nuance, and their inability
to correctly reason about complex cases such as the
partial satisfaction of a requirement.

Conversely, approaches such as Hassani et al.
(2024); Rodríguez Torrado et al. (2024) directly
feed text chunks from documents and regulations
into LLMs such as Llama (Touvron et al., 2023)
and GPT (Brown et al., 2020), circumventing
manual processing entirely. These methods offer
greater adaptability across regulation revisions and
jurisdictions and provide some explainability ow-
ing to LLMs’ ability to generate plausible justi-
fications (Agarwal et al., 2024). However, they
sacrifice on extracting high-fidelity, structured in-
formation from R, thereby needing more computa-
tionally expensive LLMs during inference.

Document-to-Document Compliance By re-
quiring documentation at every step of data flow,
the GDPR establishes a hierarchical chain of doc-
uments that need to be consistent with each other.
For instance, the DPA between a processor and sub-
processor must provide data protection guarantees
equivalent to the DPA between the processor and
the controller. As these documents are not static,
only end-to-end automated approaches that do not
require any manual processing can be applied here.
Although none of the literature we surveyed ad-
dresses this task directly, Hassani et al. (2024);
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Rodríguez Torrado et al. (2024) and other similar
methods will apply here with little modification.

3.2 Operational Compliance Analysis

Operational data compliance ensures that pro-
cesses, guidelines, and systems managing data ad-
here to the compliance documentation governing
their processing. This is a multifaceted problem,
encompassing aspects such as the organization’s
information security practices, employee protocols
and training around handling sensitive data, miti-
gation strategies in case of a data breach, and the
data-handling software and infrastructure. This sec-
tion focuses on the latter – verifying the compliance
of a software system with a regulatory document.

Such assessment of a software system can ei-
ther be carried out with complete access to the
software’s code base, configuration, and documen-
tation, or only with opaque access to a running
instance of the software or its decompiled machine-
level code. The former setting is typical of open-
source software or organizations auditing their own
systems, often in partnership with an external audi-
tor, regulatory, or certification authority. Due to the
complexity of modern software systems, this task
often involves several layers of checks, including
manual code reviews, static code analysis checks,
as well as a compliance-focused test suite (some-
times known as “Compliance as Code”). Several
proprietary and open-source6 software platforms
exist for this purpose. Based on the recent suc-
cess of LLMs in code understanding and genera-
tion (Chen et al., 2021; Yu et al., 2024), we hypoth-
esize that LLM-based code understanding may be
able to augment, replace, or unify several compo-
nents of these systems. We identify the develop-
ment of such LLM-based tools and analysis of their
performance and trade-offs as a promising research
direction.7

The problem of checking compliance of a soft-
ware system with only opaque access to its run-
ning instance or decompiled machine-level code
arises in the context of end-users, regulatory author-
ities, or software marketplaces (such as the Google

6Examples of open-source compliance verification soft-
ware include OpenSCAP (https://www.open-scap.org),
Chef Inspec (https://github.com/inspec/inspec) and
OpenVAS (https://www.openvas.org), among others.

7While proprietary compliance tools like Google Checks
(https://checks.google.com) have introduced the use of
LLMs for compliance as a beta release at the time of writing,
we could not identify significant scholarly research or open-
source software specifically designed for this task.

Play Store8 and the Apple App Store9) verifying
whether the software satisfies its stated privacy
policies and complies with applicable regulations.
Techniques commonly used for this task include
reverse-engineering or decompiling the bundled
software to analyze its use of protected data, run-
ning it in an isolated sandbox environment, and
monitoring network calls, operating system calls,
and information written to disk.

Slavin et al. (2016) manually curated a map of
privacy policy phrases and Android API10 end-
points providing access to protected data attributes
mentioned in those phrases. They used this map
to scan the decompiled bytecode of Android apps
for calls to API endpoints that provide access to
data attributes not disclosed, or only vaguely dis-
closed, in the privacy policy. Similarly, Story et al.
(2019) and Zimmeck et al. (2019) compared the
decompiled bytecode of Android apps with privacy
practices identified in their privacy policies using
ML-based classifiers. Their analysis tracks sensi-
tive Android API calls, requested permissions, and
the first or third-party libraries those calls originate
from, using a simplified threat model that flags data
as compromised upon any sensitive API access.
Fan et al. (2020) compared the protected data at-
tributes requested by health-focused Android apps
from users with those explicitly mentioned in their
privacy policies. Additionally, they examined the
use of Transport Layer Security (TLS) protocols in
the network calls that transmit this protected data.

However, these methods suffer from limitations
such as the inability of code decompilers to ef-
fectively analyze native or dynamically loaded li-
braries (Cao et al., 2024) and the difficulty in recon-
structing optimized and obfuscated code (Dramko
et al., 2024). Further, proprietary software li-
cense agreements often prohibit reverse engineer-
ing or decompilation of software,11 which may also
be restricted by applicable copyright protection
laws, such as the Digital Millennium Copyright
Act (United States Congress, 1998) in the U.S.

8https://play.google.com
9https://www.apple.com/app-store

10The Android Platform Application Programming Inter-
face (API) is a set of libraries that allow Android apps
to interact with the underlying Android operating system
(https://developer.android.com/reference).

11As an example, Microsoft’s services agreement (https:
//www.microsoft.com/en-us/servicesagreement) con-
tains such a clause at the time of writing.

26632

https://www.open-scap.org
https://github.com/inspec/inspec
https://www.openvas.org
https://checks.google.com
https://play.google.com
https://www.apple.com/app-store
https://developer.android.com/reference
https://www.microsoft.com/en-us/servicesagreement
https://www.microsoft.com/en-us/servicesagreement


Document Com-
pliance Analysis

Operational Com-
pliance Analysis

Improving Compli-
ance Accessibility

Majorly Rule
Based Approaches

NLP Approaches with
Manual Pre-Processing

End-to-End Auto-
mated Approaches

Cejas et al. (2023)
Xiang et al. (2023)

Hamdani et al. (2021)
Liu et al. (2021)

Amaral et al. (2022)
Zhang et al. (2023)
Amaral et al. (2023)

Azeem and Abualhaija (2024)

Hassani et al. (2024)
Rodríguez Torrado et al. (2024)

Slavin et al. (2016)
Story et al. (2019)

Zimmeck et al. (2019)
Fan et al. (2020)

Format Standardization
and Section Alignment

Opt-out Choice
Identification

Summarization

Question Answering

P3P Spec (Marchiori, 2018)
Kelley et al. (2009)

Ramanath et al. (2014)
Liu et al. (2014)

Sathyendra et al. (2017b)
Bannihatti Kumar et al. (2020)

Tomuro et al. (2016)
Zaeem et al. (2018)

Nokhbeh Zaeem et al. (2020)
Keymanesh et al. (2020)

Sun et al. (2024)

Ravichander et al. (2019)
Ahmad et al. (2020)

Abualhaija et al. (2022)

Figure 2: Organization of papers according to their problem area and technique used.

3.3 Improving Compliance Accessibility

Privacy policies are notoriously hard to read, and
the time required to read them for all software and
online services that an individual may use may
be prohibitive (McDonald and Cranor, 2009; Cate,
2010; Cranor et al., 2006). Consequently, many
users often encounter but do not read privacy poli-
cies (Pew Research Center, 2019), undermining
their effectiveness in informing users about their
data-related rights and choices. As a result, as-
sistive technologies that simplify understanding
privacy policies for users or suggest actions based
on their privacy preferences are crucial steps for-
ward to empower users to make informed decisions
about their data. We present key developments in
this area, and refer readers to Ravichander et al.’s
(2021) survey for a more detailed review.

Format Standardization and Section Alignment
The World Wide Web Consortium’s Platform for
Privacy Preferences (P3P) Specification (Marchiori,
2018) was an early attempt at defining a standard-
ized, machine-readable format in which websites
could express their privacy policies. P3P user
agents such as PrivacyBird (Cranor et al., 2006)
could interpret privacy policies in the P3P format,
compare them against the user’s pre-specified pri-
vacy preferences, and display the results to the user
or take action such as blocking cookies. The speci-
fication, however, did not gain widespread use and
was marked as obsolete in 2018. Kelley et al.’s
(2009) “nutrition labels” for privacy policies are
another attempt at displaying privacy information
in a digestible format to users. While these works
focus on defining structured formats with desirable
properties, the need to manually encode privacy
policies likely contributed to their limited adoption.
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More recently, Ramanath et al. (2014) and Liu et al.
(2014) used HMMs to align similar sections across
privacy policies. This alignment can be used by
end users to compare policies of multiple providers
of the same service or as an input to information
extraction and summarization pipelines.

Choice Identification A recent study by the Pew
Research Center (2019) suggests that US adults
prefer better tools for allowing people to control
their personal information themselves to stronger
laws governing the use of their information by data
controllers. One such tool could be for easily iden-
tifying opportunities to opt-out of data collection,
which are otherwise buried in privacy policy text.
Sathyendra et al. (2017b) trained logistic regression
classifiers for identifying such choice statements,
the party offering the choice, and its purpose in
privacy policies. Bannihatti Kumar et al. (2020) fo-
cused on finding opt-out hyperlinks and developed
a browser extension, Opt-Out Easy, for surfacing
this information to the user.

Summarization Automated text summarization
offers a promising approach to distill lengthy pri-
vacy policies into brief, accessible summaries.
Since most text summarization techniques are
domain-agnostic or readily adaptable, we direct
readers to Zhang et al.’s (2024) comprehensive sur-
vey, focusing here only on approaches specific to
privacy policies. Tomuro et al. (2016) uses an en-
semble of keyword identification-based and ma-
chine learning based techniques to extract and clas-
sify important sentences in privacy policies. Zaeem
et al. (2018); Nokhbeh Zaeem et al. (2020); Key-
manesh et al. (2020) focus on identifying and cate-
gorizing “risky” statements or sections in privacy
policies – statements that could pose a privacy risk
to the end user. More recently, Sun et al. (2024)
explored the use of LLM agents for digital privacy
management, including privacy policy summariza-
tion, and reported promising results.

Question Answering QA systems complement
summarization by allowing users to explore spe-
cific topics in detail, addressing a key limitation
of summary-based approaches (Sathyendra et al.,
2017a). Ravichander et al. (2019) and Ahmad et al.
(2020) introduced two privacy policy QA datasets,
PrivacyQA and PolicyQA, respectively (see Sec-
tion 4). Their work demonstrates that BERT-like
transformers (Devlin et al., 2019) struggle with pri-
vacy policy QA, especially when evidence spans

are longer or while identifying unanswerable ques-
tions. Abualhaija et al. (2022) focused on question
answering over compliance documents to simplify
the task of requirements engineering, although their
approach would also be applicable to privacy poli-
cies. They used text similarity measures to iden-
tify chunks of the document relevant to the query,
which they passed through BERT-based models to
generate answers. Similarly, though Rodríguez Tor-
rado et al. (2024) developed their LLM-based pri-
vacy policy QA system for compliance checking,
it can also help users understand policies through
direct questioning.

4 Datasets

The availability of high-quality datasets is crucial
for advancing automation of compliance processes.
Table 1 summarizes datasets commonly used in
regulatory data compliance research, categorized
by focus:

Privacy Policy Understanding Datasets like the
OPP-115 Corpus (Wilson et al., 2016), MAPP
Corpus (Arora et al., 2022), and MAPS Policies
Dataset (Zimmeck et al., 2019) provide annotated
privacy policies at varying scales, useful for devel-
oping tools that analyze privacy policies, summa-
rize key practices, and improve user understanding.

Regulatory Alignment The Privacy Law Cor-
pus (Gupta et al., 2022) and OPP-115/GDPR
(Poplavska et al., 2020) link privacy policy content
to regulations like GDPR, facilitating automated
data compliance checks.

User Choices and Controls The Opt-out Choice
datasets (Sathyendra et al., 2017a; Bannihatti Ku-
mar et al., 2020) focus on identifying user options
for data collection and sharing, such as opt-out
mechanisms.

Question Answering Datasets like the Priva-
cyQA Corpus (Ravichander et al., 2019), PolicyQA
corpus (Ahmad et al., 2020), and GenAIPABench
(Hamid et al., 2023) support the development of
interactive systems for answering user questions
about privacy policies and regulations.

Large-scale Policy Retrieval MAPS Policies
Dataset (Zimmeck et al., 2019) and ACL/COLING
2014 Corpus (Ramanath et al., 2014; Liu et al.,
2014) enable large-scale analysis of privacy poli-
cies for pattern detection and policy comparison.
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Table 1: Datasets for Automated Regulatory Compliance. The datasets contain English language texts unless
specified otherwise.

Dataset Description Documents Labels Size

OPP-115 (Wilson et al., 2016) Annotated online privacy policies by law
students, focusing on data practices.

Online Privacy
Policies

Yes 115 policies

MAPP (Arora et al., 2022) App privacy policies annotated for data prac-
tices (English and German text).

Mobile App Pri-
vacy Policies

Yes 155 policies

MAPS Policies (Zimmeck et al.,
2019)

Privacy policy URLs from Google Play
Store apps.

Mobile App Pri-
vacy Policies

No 441,626 poli-
cies

Privacy Law (Gupta et al., 2022) Privacy laws and guidelines from 183 juris-
dictions in plain text and translations.

Global Privacy
Laws

No 1,043 laws

OPP-115/GDPR (Poplavska
et al., 2020)

Aligns OPP-115 annotations with GDPR
principles.

Online Privacy
Policies, GDPR

Yes 115 policies

Opt-out Choice (Bannihatti Ku-
mar et al., 2020)

Annotated privacy policies for identifying
opt-out mechanisms and data categories.

Online Privacy
Policies

Yes 236 policies

PrivacyQA (Ravichander et al.,
2019)

QA pairs annotated for understanding mo-
bile app privacy policies.

Mobile App Pri-
vacy Policies

Yes 1,750 QA
pairs

PolicyQA (Ahmad et al., 2020) QA examples curated from privacy policies
with human-annotated questions.

Online Privacy
Policies

Yes 25,017 QA
pairs

GenAIPABench (Hamid et al.,
2023)

Benchmark for evaluating generative AI pri-
vacy assistants using annotated questions.

GDPR, CCPA,
Online Privacy
Policies

Yes 5 policies, 38
QA pairs

APP-350 (Zimmeck et al., 2019) Android app privacy policies annotated for
privacy practices.

Mobile App Pri-
vacy Policies

Yes 350 policies

Ramanath et al. (2014); Liu et al.
(2014)

Website privacy policies annotated and seg-
mented for analysis.

Privacy Policies Yes 1,010 policies

5 Discussion and Desiderata

Automated regulatory data compliance has evolved
significantly in recent years, driven by advances in
NLP and the emergence of LLMs. Current systems
show promise in several areas: they can analyze
the compliance and completeness of documents,
compare them to the behavior of software systems,
and help stakeholders understand complex legal
language (Zaeem et al., 2018; Nokhbeh Zaeem
et al., 2020; Sun et al., 2024). However, significant
challenges remain unsolved. Systems struggle to
adapt to regulatory changes and often fail to cap-
ture nuanced legal requirements. Most research
focuses narrowly on specific documents and reg-
ulations like privacy policies and GDPR, limiting
generalization across jurisdictions. We lack reliable
methods to verify if software systems meet regu-
latory requirements under realistic threat models,
or to ensure consistency between different com-
pliance documents. The field also faces broader
challenges around trust and reliability – systems
need to explain their decisions and maintain accu-
racy across different contexts. These limitations
point to several future research directions.

Adapting to Regulatory Changes Current auto-
mated compliance techniques often rely on static
features and taxonomies that are manually ex-
tracted from regulations, as discussed in Section 3.
When regulations change, these features must be
updated—a process that is both time-consuming
and prone to errors. This challenge of adapting to
change extends beyond existing regulations. Orga-
nizations invest significant resources in preparing
for upcoming regulatory changes.12 Yet, the poten-
tial role of automation in anticipating and preparing
for such changes remains largely unexplored. The
problem becomes more complex for organizations
operating across borders – they must navigate dif-
ferent, often conflicting regulatory requirements.13

Most current techniques and their evaluations focus
narrowly on specific regulations like the GDPR and
English language text, limiting their applicability
to this broader compliance landscape.

The emergence of LLM-based approaches that
do not require manual feature extraction (Hassani

12https://kpmg.com/us/en/articles/2023/
cco-survey-2023-gated.html

13https://blog.cscglobal.com/
trends-in-global-compliance/
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et al., 2024; Rodríguez Torrado et al., 2024) already
represents the first steps in this direction. As the
multilingual capabilities of LLMs improve (Ahuja
et al., 2024), the applicability of these approaches
to jurisdictions worldwide will continue to grow.
Alongside these improvements, the evaluation and
benchmarking of these approaches in multiple lan-
guages and on documents pertaining to various ju-
risdictions and regulatory changes is also necessary
to garner confidence in their reliability.

Creating Standardized Benchmarks The lack
of standardized evaluation methods presents a ma-
jor challenge to progress in automated data com-
pliance. Current research evaluates techniques on
different datasets and with variable evaluation cri-
teria, making it difficult to compare approaches
effectively. Without standardized benchmarks, it
remains impossible to identify state-of-the-art ap-
proaches for specific compliance tasks, leaving
practitioners to implement and evaluate methods
independently. We need comprehensive benchmark
datasets that capture the breadth of data compliance
tasks, spanning multiple languages and jurisdic-
tions, and including complex scenarios that require
understanding regulatory nuance.

Research in benchmark development (Reuel
et al., 2024; Cao et al., 2025; Weber et al., 2019) has
established best practices for creating AI-focused
evaluation frameworks. The process begins with
defining tasks and scope, as outlined in Sections 3
and 4. The benchmark should include regula-
tory documents from various jurisdictions, such
as South Korea’s Personal Information Protection
Act, Japan’s Act on the Protection of Personal In-
formation, and Brazil’s General Data Protection
Law, in their original languages and English trans-
lations. After identifying relevant tasks and col-
lecting aligned data, the next step is standardizing
evaluation metrics. Since most automated compli-
ance tasks map to established NLP problems like
question answering and text classification, existing
evaluation metrics can be adapted (Blagec et al.,
2022).

Improving Operational Compliance Automa-
tion The challenge of verifying whether software
systems comply with regulations remains under-
explored, as discussed in Section 3.2. Current
approaches rely on a combination of manual re-
view and basic automated checks, with few com-
prehensive automated solutions in the scientific
literature. Recent advances in LLMs for code un-

derstanding offer promising directions for automat-
ing compliance verification. However, research
exploring their application to compliance checking
remains limited. In particular, we need methods
that can understand complex regulatory require-
ments and verify their implementation across large
codebases. Another crucial gap lies in analyzing
bundled software—where source code may not be
available—against its stated policies. Current tech-
niques employ oversimplified threat models that
may miss compliance violations; more sophisti-
cated approaches are needed to detect potential
violations under realistic scenarios.

Building Trust in Compliance Systems For au-
tomated compliance checking to move beyond re-
search prototypes and into widespread adoption,
systems must earn the trust of regulatory bodies, or-
ganizations, and end users. This requires progress
in several areas. First, compliance systems must
demonstrate reliable and consistent performance.
Many current approaches rely on LLMs, which
can produce hallucinations or inconsistent outputs
when analyzing complex legal text (Huang et al.,
2024). We need techniques that achieve demon-
strably high accuracy on benchmarks and provide
consistent results.

Second, systems must explain their decisions
clearly. When a compliance violation is identified,
the system should point to the specific regulatory
requirement that was violated and explain how it
arrived at this conclusion. While recent work has
shown that LLMs can generate plausible explana-
tions for their decisions (Agarwal et al., 2024), the
critical challenge for regulatory compliance is en-
suring these explanations are not just convincing,
but also faithful to the underlying reasoning. This is
particularly important where compliance decisions
can have significant legal or financial implications.

However, recent studies indicate that reason-
ing produced by LLMs is frequently unfaithful
to the computations that actually drive their pre-
dictions (Chen et al., 2025; Turpin et al., 2023).
Promising interpretability approaches—ranging
from token-level SHAP attributions (Goldshmidt
and Horovicz, 2024; Mosca et al., 2022) to anal-
yses that trace decisions to model internals (Lind-
sey et al., 2025; Wu et al., 2024)—aim to bridge
this faithfulness gap by grounding explanations
in verifiable model evidence. Continued progress
on these methods and their integration into com-
pliance pipelines is essential to improve trust in
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LLM-based compliance automation.

FATE Considerations The automation of regu-
latory compliance raises distinct challenges around
fairness, accountability, transparency, and ethics
(FATE). While these principles apply to all AI sys-
tems, compliance automation’s legal implications
demand particular attention. Organizations need
to demonstrate to regulators that their compliance
systems operate reliably. This includes maintaining
clear documentation of automated vs. human de-
cisions, and tracing decisions back to specific reg-
ulatory requirements. When an AI system makes
a compliance decision with legal or financial con-
sequences, clear chains of responsibility become
crucial. This necessitates frameworks for human
oversight that specify when human review is re-
quired and establish procedures for handling sys-
tem errors. These considerations highlight why full
automation of compliance processes may be nei-
ther feasible nor desirable – while automation can
handle routine tasks, human judgment remains es-
sential for interpreting complex requirements and
taking responsibility for critical decisions.

Limitations

This survey has two key limitations. First, there
is limited visibility into how large organizations
implement compliance for complex systems in
practice, including proprietary software tools and
industry case studies. Understanding these prac-
tices would require collaborative efforts between
industry, regulatory bodies, and academia. Sec-
ond, while research in the fields of law, software
engineering, and software security offers valuable
insights about the problems discussed in this sur-
vey, it remains outside the scope of this survey as
we focus solely on machine learning and natural
language processing research.
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