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Abstract

Cognitive tasks originally developed for hu-
mans are now increasingly used to study lan-
guage models. While applying these tasks is
often straightforward, interpreting their results
can be challenging. In particular, when a model
underperforms, it is often unclear whether this
results from a limitation in the cognitive ability
being tested or a failure to understand the task
itself. A recent study argues that GPT 3.5’s
declining performance on 2-back and 3-back
tasks reflects a working memory capacity limit
similar to humans (Gong et al., 2024). By ana-
lyzing a range of open-source language models
of varying performance levels on these tasks,
we show that the poor performance is due at
least in part to a limitation in task comprehen-
sion and task set maintenance. We challenge
the best-performing model with progressively
harder versions of the task (up to 10-back) and
experiment with alternative prompting strate-
gies, before analyzing model attentions. Our
larger aim is to contribute to the ongoing con-
versation around refining methodologies for the
cognitive evaluation of language models.1

1 Introduction

Psychologists rely on behavioral experiments to
test hypotheses about cognitive constructs and pro-
cesses. For these experiments to be valid, partic-
ipants have to understand exactly what they are
being asked to do. To that end, human study proto-
cols often include detailed task instructions, demon-
strations, and practice runs. When adapting these
experiments for language models, ensuring task
comprehension can be more challenging, given that
these models are often more hesitant than humans
to express uncertainty (Zhou et al., 2024).

A recent study applies the n-back task (Figure 1)
to GPT 3.5 and concludes from the model’s poor 2-
back and 3-back performance that it has a working

1Code available at https://github.com/hxiaoyang/
lm-nback.
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Figure 1: The n-back task is a common working mem-
ory task in which subjects are presented with a sequence
of stimuli. At each step, they must decide whether the
current item matches the one appearing n step(s) earlier.
This requires them to continuously update a list of n
most recent stimuli in the working memory.

memory capacity limit (WMCL) of approximately
3, apparently similar to humans (Gong et al., 2024).
This interpretation raises two concerns. First, while
WMCL is well established in human cognition,
we cannot assume these same constraints exist or
can be meaningfully measured in language models.
Second, these results may reflect the model’s fail-
ure to understand the task requirements rather than
any inherent memory limitation.

In this paper, we show that low-performing lan-
guage models, even when provided with detailed n-
back task instructions and demonstrations, commit
errors that are consistent with a different m-back
task (m ̸= n). Notice that, if a human subject com-
mitted such systematic errors, we would conclude
that they had misunderstood the task. In compari-
son, intermediate models, including GPT 3.5, tend
to start with the correct task but drift toward a dif-
ferent one as errors accumulate, resulting in poor
average 2-back and 3-back performance, consistent
with Gong et al. 2024. High-performing models,
on the other hand, consistently execute the correct
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task, even for larger n’s, achieving task accuracies
of 90.08%, 90.08%, and 84.75% for n = 8, 9, 10.

The remainder of this paper is organized as fol-
lows. Section 2 covers relevant background and
related work. Section 3 introduces the dataset, mod-
els, prompting approach, and evaluation metrics.
Section 4.1 benchmarks each model on 1-back, 2-
back, and 3-back tasks, identifying three distinct
performance tiers. Section 4.2 investigates whether
these performance disparities are explained by dif-
ferences in task comprehension. Section 4.3 exam-
ines the models’ ability to consistently apply the
correct task set throughout each trial (task set main-
tenance). In Section 4.4, we challenge the best
model to perform 1-back through 10-back tasks
and notice a signature of task comprehension. In
Sections 4.5 and 4.6, we discuss additional exper-
iments with alternative prompting strategies for
comparison. In Section 4.7, we identify an atten-
tion pattern whose prevalence predicts 2-back task
performance.

2 Background and Related Work

There has been a growing body of work that evalu-
ates pre-trained language models using cognitive
tasks originally developed for humans. These ef-
forts often aim to identify whether the models ex-
hibit cognitive constructs or capabilities that are
present in humans. Subjects of study include the-
ory of mind (Strachan et al., 2024; Gandhi et al.,
2024), analogical reasoning (Hu et al., 2023; Webb
et al., 2023), cognitive biases (Binz and Schulz,
2023; Lampinen et al., 2024), and WMCL (Gong
et al., 2024), among many others. Such evaluations
are susceptible to both overclaiming and under-
claiming. On the one hand, false positives can re-
sult from training data contamination (Sainz et al.,
2023), potentially compromising the validity of
vignette-based assessments where models may pro-
duce memorized responses. On the other hand,
underestimation of model capabilities can happen
when we erroneously assume task comprehension,
especially for smaller models (Hu and Frank, 2024).
Prior studies have also investigated how well lan-
guage models adhere to prompt instructions, espe-
cially compared to humans (Webson and Pavlick,
2022; Webson et al., 2023). In light of other
methodological challenges in the cognitive eval-
uation of language models, such as prompt sensi-
tivity and cultural biases, Ivanova 2023 outlines
recommendations for best practices.

Virtually any task, from routine text compre-
hension to complex problem solving, involves the
creation of intermediate or partial results. Suc-
cessful task completion requires that these results
be maintained in a way that facilitates later ac-
cess. In humans, this mechanism is known as work-
ing memory, one of the most studied constructs
in psychology for over half a century (Miyake
and Shah, 1999). This concept can be extended
to transformer-based language models designed
to process interdependent, serial information. In
fact, the transformer architecture, particularly its
attention mechanism where key-query matching
drives retrieval (Vaswani et al., 2017), bears strik-
ing resemblance to cue-based parsing and retrieval
models proposed in psycholinguistics (Lewis et al.,
2006), making it a promising candidate for model-
ing human sentence processing. One of the most
salient and mysterious aspects of human working
memory is its severely constrained capacity (Miller,
1956; Cowan, 2012). One prominent task used to
measure working memory capacity is the n-back
task (Kirchner, 1958).

To the best of our knowledge, Gong et al. 2024
are the first to apply the n-back task to a language
model, specifically the GPT 3.5 TURBO variant of
ChatGPT. They experiment with different prompt-
ing strategies, including those incorporating feed-
back and reasoning. As n increases from 1 to 3,
they observe a sharp decline in model performance
and conclude that the model has a WMCL of ap-
proximately 3. Zhang et al. 2024 also examine
working memory in language models using a task
described as n-back, but with all stimuli presented
simultaneously. This departs from the standard
paradigm and imposes different working memory
demands. Moreover, while they acknowledge that
the poor performance in smaller models may stem
from limited understanding of the “intent of the
input”, they do not control for task comprehension
as a confounding variable.

Multi-hop question answering is another work-
ing memory task paradigm, in which two or more
reasoning steps must be performed sequentially to
resolve complex queries. This task is interestingly
different from n-back in that it places implicit de-
mands on working memory in a single forward
pass. For instance, answering “The spouse of the
performer of Imagine was...” requires first identify-
ing John Lennon as the performer of the song and
then determining that Yoko Ono was his spouse.
Biran et al. 2024 find that, after early model lay-
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ers resolve the initial step, later layers often prove
deficient in completing the second.

3 Methods

3.1 Data and Prompts
We use the dataset from Gong et al. 2024 (MIT
License). For each n-back task, there are 50 trials
in total. Each trial consists of a sequence of 24
letters. In exactly 8 random positions within each
sequence, the letters are the same as those appear-
ing n step(s) earlier. After each letter prompt, the
models are instructed to answer “{current letter}
and {letter n back} are {different / identical}” This
is designed to facilitate chain-of-thought reasoning
(Wei et al., 2022) and to make explicit the specific
letter retrieved by the model for comparison with
the current one.

SYS: [TASK INSTRUCTIONS]
USR: k
LLM: k and none are different.
USR: k
LLM: k and k are identical.
USR: a
LLM: a and k are different.

...





DEMO

SYS: [TASK INSTRUCTIONS]
USR: e
LLM: e and none are different.
USR: f
LLM: f and e are different.
USR: f
LLM: f and f are identical.

...





TEST

To teach the models the correct answer format
and maximize their chances of correctly inferring
the tasks, each trial begins with a demonstration,
which includes a sequence of 24 letters and the
correct responses. The “without demo” trials in
Section 4.2 are the only exception. Following the
demonstration, a new sequence of 24 letters is pre-
sented, one at a time, and the models are prompted
to respond after each letter. An example 1-back
trial is shown above; actual model responses are
underlined.

3.2 Models
We use GPT 3.5 TURBO and open-source
instruction-tuned models from the QWEN (Bai
et al., 2023), LLAMA (Dubey et al., 2024), and
GEMMA (Team et al., 2024) families. Each model
is prompted recursively to complete the trials. For

Tier Model 1bk 2bk 3bk

T3

QWEN 1.5 14B CHAT 1.00 0.09 0.08
LLAMA 3.1 8B INSTR. 1.00 0.14 0.17
GEMMA 2 9B INSTR. 1.00 0.15 0.20
QWEN 1.5 32B CHAT 1.00 0.14 0.22

T2 GEMMA 2 27B INSTR. 1.00 0.57 0.36
GPT 3.5 TURBO 1.00 0.51 0.43

T1 QWEN 2 72B INSTR. 1.00 0.81 0.84
LLAMA 3.1 70B INSTR. 1.00 0.99 0.93

Table 1: Average retrieval accuracies on 1-, 2-, and 3-
back tasks, organized by performance tier.

the open-source models, we analyze the token log
probabilities and attention patterns in addition to
the generated responses.

3.3 Metrics

The n-back task requires continuously matching
the current letter and the letter from n steps back
to determine the correct label. Compared to binary
labels, the retrieved letters offer better insight into
the models’ understanding of the task. And since
the correct label is almost always assigned given
the correct retrieval, our analyses focus on the re-
trieval accuracies and the log probabilities of the re-
trieved letters. One possibility for low performance
is that, despite being prompted to do the n-back
task, a model might be following m-back instruc-
tions instead. To investigate this, we adopt counter-
factual measures by providing n-back instructions
and evaluating the accuracies and log probabilities
of retrievals consistent with the m-back task. We
also apply variants of these measures, which we
detail in later sections.

4 Experimental Results

4.1 Task Performance

We begin by comparing retrieval accuracies across
models for all three tasks (Figure 2) and categoriz-
ing them into three performance tiers (Table 1).

T3: ≤ 20% on 2- and 3-back.
T2: ∼ 50% on 2-back; ∼ 40% on 3-back.
T1: > 80% on 2- and 3-back.
For subsequent analyses, we select the best-

performing model, LLAMA 3.1 70B INSTRUCT

(T1), the worst-performing model, QWEN 1.5 14B

CHAT (T3), and GEMMA 2 27B INSTRUCT (T2) to
represent each performance tier.
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Figure 2: Average retrieval accuracies on 1-, 2-, and 3-back tasks, grouped by model family.

Figure 3: Retrieval log probabilities for 1-back task
continuations, with and without demonstrations. From
top to bottom are results for QWEN 1.5 14B CHAT (T3),
GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1 70B
INSTRUCT (T1). Each point corresponds to the average
retrieval log probability of one trial.

4.2 Task Comprehension

To better understand the source of these perfor-
mance disparities, we ask: Can models infer the
task from the instructions and demonstrations—and
if so, which serves as a more effective cue? To ad-
dress these questions, we 1) provide n-back instruc-
tions with and without demonstrations, 2) present

three continuations, each consistent with a different
m-back task, and 3) measure the average retrieval
log probabilities for each trial.

Let P−
n,m be the average m-back retrieval log

probability given n-back instructions only. Let
Pn,m be the average m-back retrieval log probabil-
ity given n-back instructions and demonstrations.

1-back. Under 1-back instructions, P1,1 >
P1,2 > P1,3 across all models. The same is true
when no task demonstrations are provided, with no
significant difference between P1,m and P−

1,m for
m = 1, 2, 3, as shown in Figure 3. Overall, this is
unsurprising, given the near-perfect performances
of all models on 1-back trials.

2-back. We analyze the representative model
from each tier (Figure 4).

T3: Under 2-back instructions, including with
demonstrations, 1-back continuations are assigned
to be the most plausible, with both P−

2,1 > P−
2,2 >

P−
2,3 and P2,1 > P2,2 > P2,3. The task demonstra-

tions do bring P2,2 and P2,3 closer to P2,1, although
this is not enough to offset the strong 1-back priors.

T2: Under 2-back instructions only, the order-
ing of P−

2,m remains the same, albeit with P−
2,2 and

P−
2,3 noticeably closer to P−

2,1 than for T3. How-
ever, with additional task demonstrations, 2-back
continuations are assigned to be the most likely,
with P2,2 > P2,1 > P2,3.

T1: Somewhat surprisingly, we notice that
P−
2,2 > P−

2,1 > P−
2,3, showing that the model is

able to infer the task from the instructions alone.
However, the demonstrations do help further con-
solidate the mapping.

3-back. As shown in Figure 5, the 3-back pat-
terns are largely analogous to the 2-back case.

Summary. Through analyzing models from dif-
ferent performance tiers, we identify three distinct
levels of task comprehension capabilities. The T3
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Figure 4: Retrieval log probabilities for 2-back task
continuations, with and without demonstrations. From
top to bottom are results for QWEN 1.5 14B CHAT (T3),
GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1 70B
INSTRUCT (T1). Each point corresponds to the average
retrieval log probability of one trial.

model fails to map 2-back and 3-back instructions
to the correct responses, given either the instruc-
tions or demonstrations, suggesting it completely
misunderstands the task; the T2 model fails to map
2-back and 3-back instructions to the correct re-
sponses, given the instructions, but can do so if
demonstrations are also provided; the T1 model
can map 2-back and 3-back instructions to the cor-
rect responses based on the instructions alone, sug-
gesting a robust understanding of the tasks. The T3
model’s failure to understand the task is corrobo-
rated by analyses in Section 4.6. Even when pro-
vided with short demo sequences and immediate
corrective feedback, it still fails to get 2 consecu-
tive correct responses. This suggests that its poor
performance stems from an inability to understand
the task, rather than any memory limitation.

Figure 5: Retrieval log probabilities for 3-back task
continuations, with and without demonstrations. From
top to bottom are results for QWEN 1.5 14B CHAT (T3),
GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1 70B
INSTRUCT (T1). Each point corresponds to the average
retrieval log probability of one trial.

4.3 Task Set Maintenance

Each n-back trial consists of a sequence of 24 let-
ters. Successful task completion requires consistent
adherence to the task instructions as more stimuli
are presented. Here, we investigate whether lan-
guage models show a progressive decline in their
ability to produce n-back consistent responses over
time. Previously, performance metrics were av-
eraged across time steps for each trial. Now, we
average across trials for each time step. At each
time step i in the n-back task, we measure the av-
erage accuracy of m-back consistent retrievals for
each m ≤ n, given the model’s own responses up
to time step i− 1. Denote this as An,·(m, i).

1-back. Unsurprisingly, A1,·(1, i) stays close to
1 for each model as i increases (not shown).

2-back. As shown in Figure 6:
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Figure 6: A2,·(m, i) for m = 1, 2 and 3 ≤ i ≤ 24.
From top to bottom are results for QWEN 1.5 14B CHAT
(T3), GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1
70B INSTRUCT (T1).

T3: Throughout the task, A2,·(1, i) and A2,·(2, i)
stay close to 1 and 0, respectively, consistent with
findings from Section 4.2.

T2: A2,·(2, i) crosses below A2,·(1, i) halfway
through the task, suggesting a gradual shift from
2-back to 1-back behavior.

T1: Throughout the task, A2,·(2, i) and A2,·(1, i)
stay close to 1 and 0, respectively, contrary to T3.

3-back. As shown in Figure 7:
T3: Throughout the task, A3,·(1, i) stays close

to 1 while both A3,·(2, i) and A3,·(3, i) stay close
to 0, consistent with Section 4.2.

T2: After a transient initial lead, A3,·(3, i) is
quickly surpassed by A3,·(2, i), suggesting yet
greater difficulty with task set maintenance.

T1: Throughout the task, A3,·(3, i) remains close
to 1, though it shows a gradual decline over time.
Meanwhile, A3,·(1, i) and A3,·(2, i) remain low.

Figure 7: A3,·(m, i) for m = 1, 2, 3 and 4 ≤ i ≤ 24.
From top to bottom are results for QWEN 1.5 14B CHAT
(T3), GEMMA 2 27B INSTRUCT (T2), and LLAMA 3.1
70B INSTRUCT (T1).

Effect of error accumulation. Despite 2-back in-
structions and demonstrations, the T2 model grad-
ually drifts toward 1-back consistent responses
over time, suggesting that the accumulation of 1-
back consistent errors may have significantly bi-
ased subsequent responses. To test this hypothe-
sis, we manipulate the model’s response history
by providing m-back consistent responses for i
steps following n-back instructions and demon-
strations. We then compute the average m-back
accuracy for time steps i+ 1 through 24, denoted
as An,m(m, i + 1 : 24). Figure 8 shows that, as
1-back errors accumulate, 1-back responses are in-
creasingly favored by the T2 model for subsequent
steps, despite 2- or 3-back instructions and demon-
strations. In comparison, both A2,2(2, i + 1 : 24)
and A3,3(3, i+1 : 24) remain relatively low, show-
ing that correct responses do not bias subsequent
answers to the same degree.
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Figure 8: Top: A2,m(m, i + 1 : 24) for m = 1, 2
and 3 ≤ i ≤ 23, using GEMMA 2 27B INSTRUCT
(T2). Bottom: A3,m(m, i+ 1 : 24) for m = 1, 2, 3 and
4 ≤ i ≤ 23, using the same model.

4.4 T1 Model Performance as N Increases

Given that the best model, LLAMA-3.1-70B-
INSTRUCT, performs well for 1 through 3-back
tasks, we would like to know how its performance
might change for larger n’s. Figure 9 shows that
the retrieval accuracy gradually declines as n in-
creases; although, even at n = 8, 9, 10, the model
is still able to exactly retrieve the correct letters
75.25%, 66.08%, and 57.1% of the time, which
translates to task accuracies of 83.33%, 78.25%,
and 71.92%. In addition, we measure Pn,m for each
n,m ∈ {1, 2, 3, ..., 10}, as shown in Figure 10. We
notice that maxm Pn,m = Pn,n for 1 ≤ n < 10.
Moreover, Pn,m tends to decrease symmetrically
as m deviates from n. We argue that this pattern
points to true n-back task understanding.

4.5 Curriculum Learning

The practice of training models on examples of
increasing difficulty is known in machine learn-
ing as curriculum learning (Bengio et al., 2009).
Here, we repeat the experiments from Section 4.4
with in-context curriculum learning to gradually
familiarize the model with the task. Specifically,
before prompting LLAMA 3.1 70B INSTRUCT to
perform an n-back task, we provide instructions
and demonstrations that include letter sequences
and corresponding correct responses for tasks rang-

Figure 9: 1-back to 10-back accuracies for LLAMA
3.1 70B INSTRUCT with (bottom) and without (top)
curriculum learning. Each full bar corresponds to task
(identical/different categorization) accuracy. The blue
portion corresponds to retrieval accuracy.

Model 2bk 3bk

LLAMA 3.1 70B INSTR. 0.99 (–.00) 0.62 (–.31)
GEMMA 2 27B INSTR. 0.61 (+.04) 0.31 (–.05)
QWEN 1.5 14B CHAT N/A N/A

Table 2: Retrieval accuracies on 2-back and 3-back
tasks, for representative models, with interactive demos.

ing from 1-back to n-back. For example, to prepare
the model for the 4-back task, we prepend 4 com-
plete demonstration sequences (1-back to 4-back)
to the context, before starting the test sequence. As
shown in Figure 9, this approach leads to signif-
icant improvements in performance for larger n
values. The model achieves retrieval accuracies of
79.83%, 80.17%, and 71.67% and task accuracies
of 90.08%, 90.08%, and 84.75% for n = 8, 9, 10.

4.6 Interactive Demo

We explore an alternative prompting strategy that
more closely mirrors human study paradigms. Af-
ter receiving task instructions, human participants
typically go through brief demo sequences with an
experimenter to confirm their understanding. For 2-
back trials, we interleave short example sequences
of four letters in the forms A-B-A-C and A-B-C-B.
Feedback is given for each model response. If a
model provides two consecutive correct answers
(retrieval and label) within 10 attempts, we pro-
ceed with the test sequence. A similar procedure is
applied for 3-back trials.
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Figure 10: Retrieval log probabilities for 1-back to 10-
back task continuations under 1-back to 10-back task
instructions for LLAMA 3.1 70B INSTRUCT (T1).

Figure 11: 2-back MRAT counts between 0.2 and 1
for QWEN 1.5 14B CHAT (T3) and QWEN 2 72B IN-
STRUCT (T1), aggregated over all layers, heads, and
trials. QWEN 1.5 14B CHAT counts are scaled by a
factor of QWEN 2 72B Attention Count

QWEN 1.5 14B Attention Count = 3.2.

For both 2-back and 3-back tasks, QWEN 1.5
14B CHAT (T3) fails to achieve two consecutive
correct answers after 10 demo sequences, further
confirming the model’s difficulty with task compre-
hension. The complete 2-back dialogue is included
in Appendix A. Interestingly, GEMMA 2 27B IN-
STRUCT (T2) performs better on 2-back trials com-
pared to the original experiments but does worse
on 3-back trials, as shown in Table 2. LLAMA 3.1
70B INSTRUCT (T1) maintains high performance
at 99% on 2-back trials but shows a significant drop
in performance on 3-back.

4.7 Attention Analysis

Attentions in transformer-based language models
reveal how much each generated token attends to
every preceding token. We hypothesize that, for

Figure 12: QWEN 2 72B INSTRUCT (T1) attention pat-
tern with the highest MRAT (71.98%) at trial 48, layer
79, and head 63. The top left and bottom right sections
correspond to the demo and test sequences, respectively.

each retrieval, a more performant model should
attend more to the source token from n steps back.
This is precisely what we observe in the QWEN

models. For each (trial, layer, head), we obtain
the mean retrieval attention (MRAT) by averaging
the attention each retrieved token gives to the cor-
rect source token. Compared to the 14B model,
QWEN 2 72B INSTRUCT (T1) contains a much
larger proportion of high-MRAT attentions (Fig-
ure 11), with its highest scoring attention (71.98%)
closely matching our hypothesized pattern (Fig-
ure 12). However, LLAMA models do not ex-
hibit this pattern to the same degree. Attentions in
LLAMA 3.1 models are much more diffuse. The
maximum MRATs for LLAMA 3.1 8B INSTRUCT

and LLAMA 3.1 70B INSTRUCT are 4.86% and
8.52%, respectively.

5 Conclusion

In this work, we apply the n-back task, a com-
mon working memory test, to a range of language
models, identifying three distinct performance tiers.
We find that these tiers differ not only in retrieval
accuracy but also in our measure of task under-
standing and task set maintenance, suggesting that
the performance gap is due at least in part to these
differences. We challenge the best model to per-
form 1 through 10-back tasks, noticing a signature
of task comprehension and the benefit of in-context
curriculum learning for larger n’s. We find that
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interactive demos, though closer to human study
paradigms, are less effective at conveying the task.
Finally, we notice that more performant models
tend to have higher retrieval attentions.

6 Limitations

Prompt selection. Despite our careful selec-
tion of prompts and experimentation with various
prompting strategies, the potential for more effec-
tive prompts or techniques to enhance task under-
standing remains.

Mechanistic understanding. Another limitation
is that we do not examine the internal model cir-
cuits that may be responsible for inferring and
maintaining task sets. However, our experiments
with the n-back paradigm provide a good starting
point for future research. Causal interventions on
smaller models may yield insights into the underly-
ing mechanisms.

LLAMA 3.1 model attentions. As mentioned in
Section 4.7, LLAMA models seem to have much
more diffuse attentions. Whereas QWEN 1.5 14B

CHAT and QWEN 2 72B INSTRUCT reach maxi-
mum MRATs of 38.95% and 71.98%, respectively,
the same values for both LLAMA models are un-
der 10%, even though QWEN (Bai et al., 2023)
and LLAMA (Dubey et al., 2024) models both use
grouped query attention (Ainslie et al., 2023). We
are puzzled by this difference and call for closer
examination in future work.
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A Interactive Demo Dialogue

QWEN 1.5 14B CHAT (T3) 2-back interactive
demo dialogue.

<|im_start|>system
You are a participant in a cognitive task. You will
be shown a sequence of letters, one at a time. For
each letter, determine if it is the same as the
letter 2 steps before it. Answer in the following
format: '[current letter] and [letter 2 back] are
[identical/different].' Note that, for the first 2
letters, there won't be any letter 2 steps back;
write 'none' for '[letter 2 back]' in this case.
Let's think step by step.
<|im_end|>

<|im_start|>user
For example, given the sequence t, z, h, z,
the answers should be:
t and none are different.
z and none are different.
h and t are different.
z and z are identical.
Now, given the sequence t, z, t, h,
what should the answers be?
<|im_end|>

<|im_start|>assistant
t and none are different.
z and t are different.
t and z are different.
h and t are different.
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
t and none are different.
(There was no letter 2 steps ago.)
z and none are different.
(There was no letter 2 steps ago.)
t and t are identical.
(The letter 2 steps ago was t.)
h and z are different.
(The letter 2 steps ago was z.)
Now, given the sequence v, n, c, n,
what should the answers be?
<|im_end|>

<|im_start|>assistant
v and none are different.
n and v are different.
c and n are different.
n and n are identical.
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
v and none are different.
(There was no letter 2 steps ago.)
n and none are different.
(There was no letter 2 steps ago.)
c and v are different.
(The letter 2 steps ago was v.)
n and n are identical.
(The letter 2 steps ago was n.)
Now, given the sequence v, n, v, c,
what should the answers be?

<|im_end|>

<|im_start|>assistant
v and none are different.
n and v are different.
v and n are different.
c and v are different.
(The letter 2 steps ago was v.)
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
v and none are different.
(There was no letter 2 steps ago.)
n and none are different.
(There was no letter 2 steps ago.)
v and v are identical.
(The letter 2 steps ago was v.)
c and n are different.
(The letter 2 steps ago was n.)
Now, given the sequence k, l, b, l,
what should the answers be?
<|im_end|>

<|im_start|>assistant
k and none are different.
l and k are different.
b and l are different.
l and l are identical.
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
k and none are different.
(There was no letter 2 steps ago.)
l and none are different.
(There was no letter 2 steps ago.)
b and k are different.
(The letter 2 steps ago was k.)
l and l are identical.
(The letter 2 steps ago was l.)
Now, given the sequence k, l, k, b,
what should the answers be?
<|im_end|>

<|im_start|>assistant
k and none are different.
l and k are different.
k and l are different.
b and k are different.
(The letter 2 steps ago was k.)
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
k and none are different.
(There was no letter 2 steps ago.)
l and none are different.
(There was no letter 2 steps ago.)
k and k are identical.
(The letter 2 steps ago was k.)
b and l are different.
(The letter 2 steps ago was l.)
Now, given the sequence r, f, m, f,
what should the answers be?
<|im_end|>
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<|im_start|>assistant
r and none are different.
f and r are different.
m and f are different.
f and f are identical.
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
r and none are different.
(There was no letter 2 steps ago.)
f and none are different.
(There was no letter 2 steps ago.)
m and r are different.
(The letter 2 steps ago was r.)
f and f are identical.
(The letter 2 steps ago was f.)
Now, given the sequence r, f, r, m,
what should the answers be?
<|im_end|>

<|im_start|>assistant
r and none are different.
f and r are different.
r and f are different.
m and r are different.
(The letter 2 steps ago was r.)
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
r and none are different.
(There was no letter 2 steps ago.)
f and none are different.
(There was no letter 2 steps ago.)
r and r are identical.
(The letter 2 steps ago was r.)
m and f are different.
(The letter 2 steps ago was f.)
Now, given the sequence y, p, w, p,
what should the answers be?
<|im_end|>

<|im_start|>assistant
y and none are different.
p and y are different.
w and p are different.
p and p are identical.
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
y and none are different.
(There was no letter 2 steps ago.)
p and none are different.
(There was no letter 2 steps ago.)
w and y are different.
(The letter 2 steps ago was y.)
p and p are identical.
(The letter 2 steps ago was p.)
Now, given the sequence y, p, y, w,
what should the answers be?
<|im_end|>

<|im_start|>assistant
y and none are different.
p and y are different.

y and p are different.
w and y are different.
(The letter 2 steps ago was y.)
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
y and none are different.
(There was no letter 2 steps ago.)
p and none are different.
(There was no letter 2 steps ago.)
y and y are identical.
(The letter 2 steps ago was y.)
w and p are different.
(The letter 2 steps ago was p.)
Now, given the sequence s, j, g, j,
what should the answers be?
<|im_end|>

<|im_start|>assistant
s and none are different.
j and s are different.
g and j are different.
j and j are identical.
<|im_end|>

<|im_start|>user
This is incorrect.
The answers should be:
s and none are different.
(There was no letter 2 steps ago.)
j and none are different.
(There was no letter 2 steps ago.)
g and s are different.
(The letter 2 steps ago was s.)
j and j are identical.
(The letter 2 steps ago was j.)
Now, given the sequence s, j, s, g,
what should the answers be?
<|im_end|>

<|im_start|>assistant
s and none are different.
j and s are different.
s and j are different.
g and s are different.
(The letter 2 steps ago was s.)
<|im_end|>

B Reciting N Most Recent Stimuli

We experiment with an alternative answer format
that encodes task requirements in greater detail.
For 2-back trials, models are instructed to answer
“current: {current letter}, 1 back: {letter 1 back}, 2
back: {letter 2 back}; current letter {current letter}
and letter 2 back {letter 2 back} are {different /
identical}.” The 3-back format is analogous.

Retrieval accuracies show significant improve-
ments, including for T3 models, though their perfor-
mances still lag slightly on 3-back trials (Figure 13).
We include these results only for comparison, given
that this format changes the original task into one
that allows covert verbal rehearsal. In human exper-
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Figure 13: Average retrieval accuracies on 1-, 2-, and 3-back tasks, grouped by model family.

iments, participants would not have enough time to
recite all n most recent letters upon presentation of
each new letter. However, these results do highlight
the malleability of language models’ performance
on working memory tasks.
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