
Findings of the Association for Computational Linguistics: ACL 2025, pages 26410–26429
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

RomanLens: The Role of Latent Romanization in Multilinguality in LLMs

Alan Saji1†‡ , Jaavid Aktar Husain2†, Thanmay Jayakumar1,3, Raj Dabre1,3,4,5§

Anoop Kunchukuttan1,6, Ratish Puduppully7‡

1Nilekani Centre at AI4Bharat, 2Singapore University of Technology and Design,
3Indian Institute of Technology Madras, India,

4National Institute of Information and Communications Technology, Kyoto, Japan,
5Indian Institute of Technology Bombay, India, 6Microsoft, India, 7IT University of Copenhagen

Abstract

Large Language Models (LLMs) exhibit strong
multilingual performance despite being pre-
dominantly trained on English-centric corpora.
This raises a fundamental question: How do
LLMs achieve such multilingual capabilities?
Focusing on languages written in non-Roman
scripts, we investigate the role of Romaniza-
tion—the representation of non-Roman scripts
using Roman characters—as a potential bridge
in multilingual processing. Using mechanistic
interpretability techniques, we analyze next-
token generation and find that intermediate lay-
ers frequently represent target words in Ro-
manized form before transitioning to native
script, a phenomenon we term Latent Roman-
ization. Further, through activation patching
experiments, we demonstrate that LLMs en-
code semantic concepts similarly across native
and Romanized scripts, suggesting a shared
underlying representation. Additionally, for
translation into non-Roman script languages,
our findings reveal that when the target lan-
guage is in Romanized form, its representa-
tions emerge earlier in the model’s layers com-
pared to native script. These insights con-
tribute to a deeper understanding of multilin-
gual representation in LLMs and highlight the
implicit role of Romanization in facilitating lan-
guage transfer. Code and data are available at
https://github.com/AI4Bharat/Romanlens.

1 Introduction

The majority of modern Large Language Models
(LLMs) (Touvron et al., 2023; Dubey et al., 2024;
Team et al., 2024) are trained predominantly on
English-dominated corpora. Nonetheless, they ex-
hibit strong multilingual performance across di-
verse languages (Shi et al., 2023; Huang et al.,
2023; Zhao et al., 2024a; Zhang et al., 2023). This
raises a fundamental question: How do LLMs de-
velop such robust multilingual capabilities despite
their English-centric training?

To address this, prior work by Wendler et al.
(2024) suggests that LLMs encode multilingual
information within a shared, language-agnostic la-
tent space, albeit with an inherent bias toward En-
glish due to training data composition and archi-
tectural choices. Building on this perspective, we
investigate a complementary mechanism that may
underlie multilingual processing, particularly for
languages written in non-Roman scripts.

We hypothesize that LLMs leverage romanized
forms of non-Roman script languages as an inter-
mediate bridge between their language-agnostic
concept space and language-specific output repre-
sentations. Romanization—the representation of
non-Roman scripts using Roman characters—may
facilitate this process by aligning non-English lan-
guages more closely with English. Supporting this,
Jaavid et al. (2024) demonstrated that explicitly
romanizing inputs improves model performance
on multilingual tasks, suggesting an inherent align-
ment between romanized text and English repre-
sentations. We investigate whether LLMs indeed
use romanization as a bridge between language-
agnostic concepts and language-specific outputs
given its potential implications for understanding
multilingual processing in LLMs.

Our primary experiment visualizes next-token
generation using the logit lens (Nostalgebraist,
2020), applying the language modeling head to
intermediate layers. As illustrated in Figure 1, we
prompt the LLaMA-2 7B (Touvron et al., 2023)
model with “Francais: porte - Eh�dF:” to translate
“door” from French to Hindi. Our results show that
in the middle-to-top layers (layers 20–29), roman-
ized Hindi subwords intermittently appear before
transitioning to native script, suggesting an internal
representation of romanized text as an intermediary.

†Work done during employment at AI4Bharat.
§Work done during employment at NICT, Japan.
‡ Correspondence: Alan Saji (alansaji2001@gmail.com)

, Ratish Puduppully (rapu@itu.dk)

26410

https://github.com/AI4Bharat/Romanlens
mailto:alansaji2001@gmail.com
mailto:rapu@itu.dk

Output

Figure 1: Logit lens visualization of Llama-2 7B model translating ‘door’ from French to Hindi. We visualize the
output (drvA)A, ‘Darwaza’ is the romanized form) taking shape using logit lens producing a next-token distribution
for each position (x-axis) and layers 14 and above (y-axis). Interestingly in the middle to top layers (20 - 29) we
could observe romanized subwords of the Hindi word (vA - w; a)A - aza ;) -azz; j - j) and dependent vowels (A
-a,eh ; E - i) before they are represented in their native script. Color represents entropy of next-token generation from
low (blue) to high (red). Plotting tool: (Belrose et al., 2023).

Additionally, these romanized representations in-
crease in prominence across timesteps as the target
word is generated.

To further probe this phenomenon, we employ
activation patching (Ghandeharioun et al., 2024;
Variengien and Winsor, 2024; Chen et al., 2024;
Dumas et al., 2024), a technique that replaces acti-
vations from one forward pass with another to ana-
lyze the resulting outputs (c.f. Section 3.3). Dumas
et al. (2024) found that LLMs process language and
conceptual information as distinct entities. Build-
ing on this, we perform layerwise activation patch-
ing between romanized and native-script inputs to
examine whether LLMs encode conceptual infor-
mation similarly across scripts.

Based on our experiments, we list down a summary
of our contributions below:
1. Latent Romanization Across Layers: During
multilingual next-token generation, intermediate
layers occasionally represent tokens in Romanized
form before resolving to native script (Figure 1).
We term this phenomenon Latent Romanization.
2. Consistent Semantic Encoding Across Scripts:
Activation patching experiments reveal that LLMs
encode semantic concepts similarly, regardless of
whether the input is in native or Romanized script.
3. Earlier Emergence of Target Representations:
When translating into Romanized versus native
script, Romanized target representations emerge

: :
fr -> mlfr -> ml romanized

Figure 2: Translation comparison: Romanized vs.
Native script. Next-token generation is visualized us-
ing the logit lens for the Gemma-2 9B model translating
"flower" from French to Malayalam in romanized (left)
and native script (right). The x-axis shows next-token
distributions; the y-axis covers layers 30 and above. Tar-
get language representations (e.g.,“push",“poo") appear
1–2 layers earlier in romanized outputs compared to
native script outputs.(, ’pa’ is its romanized repre-
sentation). Push is a prefix of pushpam, the romanized
form of the translation of “flower”; also, poo is another
romanized translation of “flower”.Color represents en-
tropy of next-token generation from low (blue) to high
(red). Plotting tool: (Belrose et al., 2023).

earlier in the model’s layers—typically one or two
layers prior to native script representations (c.f. Fig-
ure 2).

2 Related Work

Recent studies have explored various aspects of
LLMs’ multilingual behavior: examining whether

26411

English emerges as a latent language in English-
centric LLMs (Wendler et al., 2024), how the com-
position of training corpus mixtures influences la-
tent representations (Zhong et al., 2024) and how
LLMs handle multilingual capabilities (Zhao et al.,
2024b). Kojima et al. (2024) describe distinct
phases in multilingual information processing: ini-
tial layers map language-specific lexical and syn-
tactic representations to a language-independent
semantic space, middle layers maintain this se-
mantic abstraction, and final layers transform these
representations into language-specific lexical and
syntactic forms. Interpretability tools relevant to
this work include logit lens (Nostalgebraist, 2020),
tuned lens (Belrose et al., 2023) and direct logit
attribution (Elhage et al., 2021) which are key tools
for decoding intermediate token representations
in transformer models. The logit lens applies the
language modeling head to earlier layers without
additional training, while the tuned lens in addition
to this trains an affine mapping to align intermedi-
ate states with final token predictions. Direct logit
attribution attributes logits to individual attention
heads. This work focuses on the logit lens (Section
4.1) to investigate whether English-centric decoder
only LLMs when prompted in a non-Roman script
language, processes via romanized latent states be-
fore producing native language text. Tuned lens is
avoided as its training process might obscure the
intermediate romanized states by aligning them to
final native script outputs, potentially masking the
phenomenon under investigation.

Activation patching (Meng et al., 2022) is a key
interpretability technique employed in our study.
This technique has been used to draw causal in-
terpretations of LLMs representations (Variengien
and Winsor, 2024; Geiger et al., 2022; Kramár
et al., 2024; Ghandeharioun et al., 2024; Chen et al.,
2024). Building on these approaches, we adopt an
activation patching-based experimental framework
to investigate and compare how concepts are en-
coded in romanized versus native scripts.

Previous studies have demonstrated that roman-
ization can serve as an effective approach to interact
with LLMs (Jaavid et al., 2024). Liu et al. (2024)
and Xhelili et al. (2024) employ an approach based
on contrastive learning for post-training alignment,
contrasting sentences with their transliterations in
Roman script to overcome the script barrier and
enhance cross-lingual transfer.

However, our work distinguishes itself from
prior research by exploring the presence of roman-

ized representations in the latent layers of an LLM
during multilingual tasks, an aspect that, to the best
of our knowledge, has not yet been investigated.

3 Background

We give a quick background of the transformer’s
forward pass, romanization and the basics of mech-
anistic interpretability approaches such as logit lens
and activation patching which we leverage in this
paper.

Transformer’s Forward Pass Decoder-only
transformer models (Vaswani, 2017) employ a
residual architecture to process input sequences
through multiple layers, producing a sequence of
hidden states (latents). These latents, whose dimen-
sionality remains the same, are updated iteratively
across layers through transformer blocks fj , where
j ∈ [0, k] indicates the layer index and k is the final
layer index. For next-token prediction, the final la-
tent h(k)i is transformed by an unembedding matrix
U ∈ Rv×d to produce logit scores for vocabulary
tokens which are then converted to probabilities
via the softmax function (c.f. Appendix A).

3.1 Romanization

Transliteration is the conversion of text written in
one script to another. Romanization is a subcat-
egory of transliteration where the target script is
English/Latin. Within romanization there are multi-
ple romanization schemes available, each based on
different considerations. One key aspect of roman-
ization schema is if it is lossy or lossless. A lossless
scheme is required in cases where we have to con-
vert the output back to native script. Typically,
deterministic transliterations are lossless, whereas
natural transliterations are lossy.

Example: The Hindi word for “flower” in De-
vanagari and its romanization:

• Devanagari (native script): P� l

• Romanization: phool

3.2 Interpretability Tool: Logit lens

Generally, in a decoder only LLM, the unembed-
ding matrix U is multiplied with the final hidden
state and a softmax is taken on the product to pro-
duce the token distributions at that token generation
step. Since all hidden states of an LLM are in the
same shape, it is possible to apply the unembedding

26412

matrix and softmax on all layers, thereby generat-
ing token distributions at all layers. This method of
prematurely decoding hidden states is referred to as
logit lens (Nostalgebraist, 2020). Logit lens reveals
how the latent representations evolve across layers
to produce the final output, providing insights into
the progression of computations within the model.

3.3 Interpretability Tool: Activation Patching

Activation patching involves modifying or patching
the activations at specific layers during a forward
pass and observing the effects on the model’s out-
put. In this work, we adopt the activation patching
setup introduced in Dumas et al. (2024).

In the context of activation patching, let ℓ denote
the language of a word, C denote the concept of a
word and w(Cℓ) denote that word. For example, if
C = cow and ℓ = ‘en’, then w(Cen) = ‘cow’. Simi-
larly w(Cfr) = ‘vache’. We use 5-shot translation
prompts to create paired source S = (CS , ℓ

in
S , ℓ

out
S)

and target prompt T = (CT , ℓ
in
T , ℓ

out
T), with differ-

ent concept, input language, and output language.
Unless otherwise specified, ℓS and ℓT refer to the
output languages of S and T , respectively.

For each transformer block fj , we create
two parallel forward passes: one processing the
source prompt S = (s1, . . . , sns , . . . , snS) and
the other processing the target prompt T =
(t1, . . . , tnt , . . . , tnT). It should be noted that ns,
nt represents the position of the last token of the
object to be translated whereas nS , nT represent
the last token position of the source and target
prompt to be translated. In Figure 3 in the tar-
get prompt translating sun from French to Hindi,
nt would be the position of the subword “eil” high-
lighted in red, whereas nT would be the position
of “dF" the last subword of the prompt. Simi-
larly, for the source prompt in Figure 3 translat-
ing elephant from German to Italian both ns and
nS would be the position of “ant” highlighted in
red. After creating the parallel forward passes, we
extract the residual stream of the last token of the
word to be translated at ns after layer j, denoted
as h(j)ns (S) and all subsequent layers, and insert it
at the corresponding layer at the corresponding po-
sition nt in the forward pass of the target prompt,
i.e. by setting h

(j)
nt (T) = h

(j)
ns (S), h

(j+1)
nt (T) =

h
(j+1)
ns (S), . . . , h

(k)
nt (T) = h

(k)
ns (S). We then com-

plete the altered forward pass and analyze the next
token distribution to evaluate source concept CS

encoded in the target language. An illustration of

Korean,
Chinese

한국어: '고양이' - 中文: '猫'
한국어: '코끼리

S
Source Prompt

Latents at
objects

last token

layer j-1

layer j

layer j+1

last layer

CS
Source ConceptlS(in),lS(out)

German,
Italian CT

Target Concept

T
Target Prompt

French,
Hindi

lT(in),lT(out)

Français: "livre" - िहंदी: "िकताब"
 Français: "soleil" - िहंदी: "

Latents from
the context

tokens

Latents at
last token
position

Latents at
object's

last token

Patching the
means over

source
prompts

Next token
probabilities

Deutsch: "Katze" - Italiano: "gatto"
 Deutsch: "Elefant

Latents from
the context

tokens

layer 0

P(सूरज)
P(हाथी)
P(Sole)

P(Elefante)

Figure 3: Activation patching illustration. For two
given concepts, say, elephant and sun, we generate mul-
tiple source prompts which translate elephant, and a tar-
get prompt for translating sun from French to Hindi. We
then extract the residual stream associated with the final
token of the word to be translated after a specific layer j
and all subsequent layers from the source prompts. The
mean residuals at each layer are computed and inserted
into the corresponding positions during the forward pass
of the target prompt. The resulting next token probabili-
ties will be dominated by the source concept in target
language (ELEPHANTHI, i.e., hATF) when patching at
layers 0–15, and by the target concept in target language
(SUNHI, i.e., s� rj) for layers 16–31. Adapted from
Dumas et al. (2024).

this setup is shown in Figure 3.

4 Methodology

We design our analysis setup with the intention of
addressing the following research questions:
RQ1: Do LLMs exhibit latent romanization during
multilingual text completion tasks? (Section 4.1)
RQ2: How does the representation of semantic
concepts in LLMs compare between native and
romanized scripts of non-Roman script languages?
(Section 4.2)
RQ3: What are the differences in hidden layer
representations when processing the same language
in romanized and native scripts? (Section 4.3)

Prompt design. We design prompts that facili-
tate next-token (xn+1) prediction from the given
context (x1, . . . , xn). This is adopted across all
analysis setups. The prompts are designed around
translation, repetition, and cloze tasks, as described
below.

Translation task. We prompt the model to translate

26413

a word given five in-context examples.

Repetition task. We prompt the model to repeat a
word in the same language given five in-context
examples.

Cloze task. We prompt the model to predict the
masked word in a sentence given two in-context
examples.

These tasks cover a range of multilingual text
completion setups. Among these, the repetition
task is more syntactic in nature compared to transla-
tion and cloze tasks. Appendix B provides a Hindi
example of prompts across each of the three tasks,
along with their English translations and romanized
forms.

4.1 Latent Romanization Analysis

Translation, repetition, and cloze tasks are explored
by providing the respective prompts as inputs to an
LLM to generate the corresponding output word.
We romanize the output word, tokenize it, retaining
only the tokens present in the model’s vocabulary,
and analyze the occurrence of these tokens in the
latent layers across timesteps of the output word
generation. The analysis is done using logit lens by
examining whether the probability of a romanized
token in the next token distribution at a given layer
exceeds 0.1. We refer to this hereafter as the latent
romanization condition. The 0.1 threshold is empir-
ically determined to optimize detection accuracy,
i.e. minimizing false positives and maximizing
true positives (compared to alternative thresholds
0.05 and 0.01). Our analysis focuses on the final
10 layers of an LLM, where coherent romanized
representations emerge according to logit lens vi-
sualizations (c.f. Figures 1 and 8 - 12).

We track romanized tokens using a timestep-
specific tokenization scheme optimized for de-
tection accuracy. In the first output generation
timestep, we check for tokens that include the full
romanized word and its prefixes. During intermedi-
ate timesteps, we check for all possible substrings
of the romanized word in the latent layers. In the
final output generation timestep, we probe the pres-
ence of only the full romanized word and its suf-
fixes as potential tokens (c.f. Appendix C).

Latent romanization is analyzed under three dis-
tinct scenarios:

(a) Constrained Word Generation: Using stan-
dard prompts and the target word, we guide
the model to generate the complete target

word. At each layer, we track how often ro-
manized tokens emerge during the decoding
process. We do this by checking each gener-
ation timestep for latent romanization condi-
tion. The ‘latent fraction’ for a layer repre-
sents how frequently these romanized tokens
appear across timesteps, averaged across all
samples (c.f. Appendix D).

(b) First Subword Only: We prompt for only
the initial subword and compute the latent
fraction. Despite having a single timestep, we
maintain the latent fraction terminology for
consistency.

(c) Last Subword Only: We augment the stan-
dard prompt with all but the final subword of
the target, then analyze the generation of the
final subword.

We document layerwise latent fraction sepa-
rately for first and last subword generation of the
output. Intuitively, there is a distinction between
the first and last token generation steps for a given
word. In the former, the model faces a greater
decision-making burden, while in the latter, the
model is typically more confident in its predic-
tions. We hypothesize that, in the latter scenario,
the model may reach a decision in the layers just
below the final few layers and express the output
in a romanized form, as language-specific neurons,
responsible for native script processing, are concen-
trated primarily in the last few layers (Tang et al.,
2024). This could lead to romanized tokens appear-
ing more frequently as the model progresses from
the first subword to the last.

4.2 Patching With Romanized Representation
Versus Native Representation

We intend to compare how concepts are encoded
in native script versus romanized script using trans-
lation task. In order to do this, we patch represen-
tations from source prompt where input language
is romanized and compare this with patching from
source prompt where input language is in native
script. We first perform patching using a single-
source prompt. Then, we repeat the process using
an averaged multi-source prompt, contrasting multi-
ple romanized source input languages with multiple
native script source input languages. Single-source
patching might be influenced by language or script-
specific characteristics. In contrast, multi-source

26414

patching reduces such biases, leading to more ro-
bust and generalizable findings.

In all scenarios from the resulting next token dis-
tribution, we compute the probabilities P (CℓT

S) i.e.
probability of source concept in target language,
and P (CℓT

T) i.e. probability of target concept in
target language. We track P (Cℓ), i.e., the proba-
bility of the concept C occurring in language ℓ, by
simply summing up the probabilities of all prefixes
of w(Cℓ) and its synonyms in the next-token distri-
bution (c.f. Appendix G). We analyze P (CℓT

S) to
evaluate how effectively a concept is encoded in a
given source input language ℓin

S .

4.3 Comparing Translations Into Romanized
vs. Native Script

This analysis examines translation task with tar-
get languages in native script and their romanized
equivalents. We focus on first-token generation
of the output word, also considering possible syn-
onyms.

In the next token generation step, the probability
of target language and latent language (English)
(Wendler et al., 2024) at each layer is examined
using logit lens. Each probability is computed by
summing over probabilities of all possible tokens
corresponding to the answer word(s) in that respec-
tive language (c.f. Appendix E). Tokens of latent
language and target language are derived using tok-
enization scheme for first token generation timestep
mentioned in Section 4.1.

5 Experimental Settings

Languages: We focus on five Indic languages:
Hindi, Gujarati, Tamil, Telugu, and Malayalam, as
well as Chinese and Georgian. Among these, Hindi
and Gujarati belong to the Indo-Aryan branch of
the Indo-European language family and use scripts
derived from the Devanagari and Gujarati scripts,
respectively. Tamil, Telugu, and Malayalam, on
the other hand, are part of the Dravidian language
family and each has its own distinct script. Chinese
belongs to the Sino-Tibetan language family and
is written using logographic characters. Georgian
is part of the Kartvelian language family and uses
the unique Georgian script. To examine the gener-
ality of latent romanization, we perform qualitative
analyses on five additional languages that use dif-
ferent writing systems: Greek, Ukrainian, Amharic,
Hebrew, and Arabic (c.f Appendix H).

Language Models: In this study, we focus
mainly on Gemma-2 9B, Gemma-2 9B instruction-
tuned (Team et al., 2024), Llama-2 7B, Llama-2
13B (Touvron et al., 2023) and Mistral-7B (Jiang
et al., 2023) (c.f. Appendix K) language models,
some of the best performing open weights English-
centric LLMs. Although the training data for these
models are primarily English, these models have
high multilingual capabilities (Huang et al., 2023;
Zhao et al., 2024a; Zhang et al., 2023).

Romanization: We have used the IndicXlit
scheme (Madhani et al., 2023) (c.f. Appendix F)
for Indic languages, pypinyin (Mozillazg, 2024) for
Chinese and Unidecode (Šolc, 2025) for Georgian
to romanize native scripts.

Data For Logit Lens Experiments: We use a
curated word-level dataset with synonyms trans-
lated from recent works in this field (Wendler et al.,
2024) using the Llama 3.3 70B model (Dubey et al.,
2024). The quality of translations were manually
verified to ensure accuracy and relevance. The
datasets are kept simple to facilitate the observa-
tion of how latents evolve at each token level.

Data For Activation Patching Experiments:
We adopt the dataset used in recent studies (Du-
mas et al., 2024), extending it to include both native
script and romanized versions of the languages con-
sidered in this study. Translations are performed
using the Llama 3.3 70B model (Dubey et al., 2024)
and the translations are romanized using IndicXlit
(Madhani et al., 2023), pypinyin (Mozillazg, 2024)
and Unidecode (Šolc, 2025). All translations were
manually validated to ensure data quality.

6 Results

6.1 Latent romanization

Our analysis demonstrates that LLMs do ex-
hibit latent romanization during text completion
tasks in six out of seven quantitatively analyzed
languages (c.f. Figure 4a), with Chinese being
the only exception where this phenomenon is not
observed. In Figure 4a we can see the latent frac-
tion of romanized tokens for the last 10 layers of
an LLM. This is across all tokens of the output
word. The frequency of romanized tokens tends to
increase just before the last layers. Qualitative logit
lens analysis done for Greek, Ukrainian, Arabic,
Amharic and Hebrew reveals similar patterns (c.f.
Appendix H).

26415

0

0.02

0.04

0.06

0.08

0.1

0.12

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

gu ta te hi ml ka zh

(a) All generation steps.

0

0.002

0.004

0.006

0.008

0.01

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

gu ta te hi ml ka zh

(b) First token generation step.

0

0.05

0.1

0.15

0.2

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

gu ta te hi ml ka zh

(c) Last token generation step.

Figure 4: Distribution of Romanized Tokens Across Model Layers: Analysis of First, Last, and All Generation
Timesteps. This distribution is plotted across the last 10 layers of Gemma-2 9b IT model for translation task with
English as source language and is averaged across 100+ samples. X-axes represents layer index, y-axes represents
latent fraction i.e. the fraction of timesteps where romanized tokens occur with a probability > 0.1 averaged over
samples for a specific layer. We plot the distributions for Gujarati (gu), Tamil (ta), Telugu (te), Hindi (hi), Malayalam
(ml), Georgian (ka) and Chinese (zh).

0

0.1

0.2

0.3

0.4

0.5

0.6

Hindi Gujarati Malayalam Tamil Telugu Georgian

Fr
eq

u
en

cy

Translation Repetition Cloze

Figure 5: Frequency distribution of romanized to-
kens across translation, repetition and cloze task.
We check if romanized tokens occur with a probability
> 0.1 in the last 10 layers of an LLM and compute fre-
quency of this occurrence across 100+ samples. Gemma
2 9B IT is the model used and English is the source lan-
guage for translation task.

In Figures 4b and 4c it is observed that the range
of the latent fraction of romanized tokens varies
from 0− 0.01 in the first token generation step to
0−0.2 in the last token generation step in most lan-
guages. This trend indicates that latent romaniza-
tion increases progressively from the initial token to
the final token of the output across languages. This
observation supports our hypothesis that the first
token generation involves more intricate decision-
making processes compared to the generation of
the final token within an output word.

Based on the above information, we quantify
romanization across tasks for the last token genera-
tion step. Here the criteria would be if a romanized
token occur at next token generation step with a
probability > 0.1 in the last 10 layers, it is counted
as a positive. As depicted in Figure 5, across trans-
lation, repetition and cloze task we observe a signif-
icant occurrence of romanized tokens in the latent
layers.

Among the three text completion tasks consid-

ered in the latent romanization experiment (Section
4.1), a relatively high latent romanization frequency
is observed for the repetition task (Figure 5). The
translation and cloze tasks function at a semantic
level, whereas the repetition task is purely syntac-
tic. This means that the repetition task being less
complex, the model may reach a decision of what
to predict sooner, potentially in earlier layers and
might express its prediction in romanized form in
intermediate layers. This behavior could be at-
tributed to language-specific neurons, responsible
for native script processing, being predominantly
concentrated in the initial and final few layers of
LLMs, (Tang et al., 2024) leaving the intermediate
layers without them.

6.2 Patching With Romanized Representation
vs. Native Representation

In Figure 6, we analyze two patching sce-
narios: In the single-source setup, we
compare patching from Hindi→Italian with
Hindi(romanized)→Italian source prompt, to
Malayalam→Italian target prompt. In the
multi-source setup, we contrast patching from
multiple native script prompts (Hindi→Italian,
Gujarati→Italian . . .) against their romanized
counterparts (Hindi(romanized)→Italian, Gu-
jarati(romanized)→Italian . . .). We compare the
probability distributions of source concept in target
language P (CℓT

S) across adjacent graphs where
native source input language is contrasted with
romanized source input language. It is evident that
these probability distributions show remarkable
similarity whether the source input language is
in romanized or native script, consistent across
both single-source and multi-source prompt setups.
The similarity is quantitatively supported by the
KL divergence measurements between adjacent

26416

Native Romanized DKL

0.0006

Single Source

0.001

Multi Source

Figure 6: Comparative Analysis of Patching from Source Prompts: Native Script vs. Romanized Script Inputs.
Concept probabilities across layers for different prompt setups are plotted in each graph. The x-axis represents the
patching layer, while the y-axis indicates the probability of correctly predicting the concept in language ℓ. Curves:
blue (target concept in Italian), orange (source concept in Italian), and green (source or target concept in English).
Results are reported as means with 95% Gaussian confidence intervals, calculated over a dataset of 200 samples.
The orange curve is compared across adjacent graphs and KL divergence DKL quantifies this. Languages involved:
Hindi (hi), Tamil (ta), Telugu (te), Malayalam (ml), Gujarati (gu) and Italian (it). Model: Gemma 2 9b it.

graphs, remaining below 0.01 in both setups. KL
divergence value close to zero indicates that the
two distributions are nearly identical.

This analysis reveals that LLMs encode seman-
tic concepts similarly regardless of whether the
input is in native or romanized script. Further-
more, this finding demonstrates that the model
achieves comparable levels of language understand-
ing when processing non-Roman script languages
in their romanized form as in their native script.

6.3 Comparing Translations Into Romanized
vs. Native Script

We quantify the observations from Figure 2 by an-
alyzing next-token predictions across layers using
logit lens. In Figure 7, panels 7c and 7d illus-
trate that for translations into native scripts, target
language tokens begin to emerge from layer 40
onward. Conversely, in panels 7a and 7b, where
the target language is in romanized script, target
tokens appear 1–2 layers earlier. This pattern in-
dicates that when processing non-Roman script
languages, the model forms internal representa-
tions of target tokens in earlier layers for roman-
ized script compared to native script. This trend
is consistent across language pairs and models (c.f.
Figures 16-18 in the Appendix). This suggests that

romanization facilitates faster progression toward
language-specific embeddings.

In Figure 7, in all four graphs consistent with
Wendler et al. (2024), English representations
emerge from the middle layers and persist until the
final few layers, where the target language represen-
tations gradually take shape. It is important to note
that native script curves (Figures 7c, 7d) exhibit
steeper gradients than their romanized equivalents
(Figures 7a, 7b).

Discussion. In our investigation of romanized
representations in the latent layers, we conclusively
identified romanized tokens in the last 6–7 layers
of an LLM across various multilingual text com-
pletion tasks. Based on previous works in this field
(Wendler et al., 2024; Zhao et al., 2024b), in an
English-centric decoder only LLM this region cor-
responds to the transition from an English-centric
language-agnostic concept space to a language-
specific space where the idea conceived in the
concept space is expressed in the target language.
Our findings suggest that romanization serves
as a bridge between the concept space and the
language-specific region for non-Roman script
languages, an observation strongly supported by
our analysis of six diverse writing systems. Ro-
manization acting as a bridge could explain why

26417

(a) fr → ml (romanized) (b) fr → ta (romanized)

(c) fr → ml (native) (d) fr → ta (native)

Figure 7: Language probabilities for latent layers
in translation from French to Malayalam and Tamil in
romanized (top row) and native scripts (bottom row)
across various samples using Gemma-2 9B IT model.
X-axis: layer index; Y-axis: probability of correct next
token (via logit lens) in a given language. Error bars:
95% Gaussian confidence intervals. English is the latent
language (orange curve). For romanized script, target
representations (blue curve) emerge 1-2 layers earlier
than native script, appearing before layer 40.

romanization based script barrier breaking methods
like Liu et al. (2024) and Xhelili et al. (2024) work.
Notably, we do not observe Latent Romanization
in Chinese, likely due to its logographic script and
relatively high-resource status.

7 Conclusion

Our findings show that LLMs implicitly use Ro-
manization as a bridge for non-Roman scripts, ex-
hibiting Latent Romanization in intermediate lay-
ers before switching to native scripts. Layerwise
analyses reveal that semantic concepts are encoded
similarly across native and Romanized inputs, in-
dicating a shared internal representation. More-
over, when translating into a Romanized script, tar-
get words emerge earlier, highlighting Romaniza-
tion as a structural link between language-agnostic
concepts and language-specific output. While our
study reveals initial insights into Latent Roman-
ization, future work could focus on applying these
findings to develop training strategies that enhance
performance across diverse linguistic communities.

8 Limitations

The handling of multilingual text by large lan-
guage models (LLMs) remains an active area of
research. Although evidence suggests that LLMs
process English representations within a language-
agnostic space, the specific mechanisms by which
these models adjust their interactions over different

timesteps during token generation are still not fully
understood. In our study, we observe that roman-
ized representations become increasingly promi-
nent in the hidden layers as token generation pro-
gresses from the first to the final token. This trend
suggests that latent romanization may help the
model mitigate differences in token fertility—that
is, the average number of tokens required to rep-
resent a word—between the output language and
its primary latent language, English. This effect
appears especially for non-Roman script languages,
with high token fertility. However, further research
is needed to confirm and generalize these observa-
tions.

The interpretability of non-Roman scripts at la-
tent layers is limited when models employ tok-
enization schemes that split non-Roman characters
into multiple bytes, complicating logit lens analy-
sis. Extending this work to models with alternative
tokenization methods would offer a more complete
understanding of multilingual capabilities and rep-
resentations.

This work identifies but does not explain the se-
lective occurrence and varying intensity of latent ro-
manization across languages—questions that merit
dedicated future investigation.

9 Ethics Statement

Through this work, our aim is to democratize ac-
cess to LLMs and address the issue of limited data
availability for low-resource languages. We em-
phasize that it is not our intention to diminish the
value or significance of the native scripts of the
languages included in this study.

The code and datasets created in this work will
be made available under permissible licenses. Gen-
erative AI systems were only used for assistance
purely with the language of the paper, e.g., para-
phrasing, spell-check, polishing the author’s origi-
nal content, and for writing boiler-plate code.

References
Nora Belrose, Zach Furman, Logan Smith, Danny Ha-

lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.
arXiv preprint arXiv:2303.08112.

Haozhe Chen, Carl Vondrick, and Chengzhi Mao. 2024.
Selfie: Self-interpretation of large language model
embeddings. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net.

26418

https://openreview.net/forum?id=gjgRKbdYR7
https://openreview.net/forum?id=gjgRKbdYR7

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Clément Dumas, Chris Wendler, Veniamin Veselovsky,
Giovanni Monea, and Robert West. 2024. Separat-
ing tongue from thought: Activation patching reveals
language-agnostic concept representations in trans-
formers. arXiv preprint arXiv:2411.08745.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom
Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al.
2021. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh
Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. 2022. Inducing causal
structure for interpretable neural networks. In In-
ternational Conference on Machine Learning, pages
7324–7338. PMLR.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lu-
cas Dixon, and Mor Geva. 2024. Patchscopes: A
unifying framework for inspecting hidden representa-
tions of language models. In Forty-first International
Conference on Machine Learning, ICML 2024, Vi-
enna, Austria, July 21-27, 2024. OpenReview.net.

Haoyang Huang, Tianyi Tang, Dongdong Zhang, Xin
Zhao, Ting Song, Yan Xia, and Furu Wei. 2023. Not
all languages are created equal in LLMs: Improv-
ing multilingual capability by cross-lingual-thought
prompting. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 12365–
12394, Singapore. Association for Computational
Linguistics.

J Jaavid, Raj Dabre, M Aswanth, Jay Gala, Than-
may Jayakumar, Ratish Puduppully, and Anoop
Kunchukuttan. 2024. Romansetu: Efficiently un-
locking multilingual capabilities of large language
models via romanization. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15593–
15615.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Takeshi Kojima, Itsuki Okimura, Yusuke Iwasawa, Hit-
omi Yanaka, and Yutaka Matsuo. 2024. On the multi-
lingual ability of decoder-based pre-trained language
models: Finding and controlling language-specific
neurons. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 6919–6971,
Mexico City, Mexico. Association for Computational
Linguistics.

János Kramár, Tom Lieberum, Rohin Shah, and Neel
Nanda. 2024. Atp*: An efficient and scalable method
for localizing llm behaviour to components. arXiv
preprint arXiv:2403.00745.

Anoop Kunchukuttan. 2020. The indicnlp library.

Yihong Liu, Chunlan Ma, Haotian Ye, and Hinrich
Schuetze. 2024. TransliCo: A contrastive learning
framework to address the script barrier in multilin-
gual pretrained language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2476–2499, Bangkok, Thailand. Association
for Computational Linguistics.

Yash Madhani, Sushane Parthan, Priyanka Bedekar,
Gokul Nc, Ruchi Khapra, Anoop Kunchukuttan,
Pratyush Kumar, and Mitesh Khapra. 2023. Aksha-
rantar: Open Indic-language transliteration datasets
and models for the next billion users. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 40–57, Singapore. Association
for Computational Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Mozillazg. 2024. pypinyin: A python library to convert
chinese characters to pinyin. Accessed: 2025-01-23.

Nostalgebraist. 2020. Interpreting GPT: The Logit Lens.
LessWrong.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2023.
Language models are multilingual chain-of-thought
reasoners. In The Eleventh International Conference
on Learning Representations.

Tianyi Tang, Wenyang Luo, Haoyang Huang, Dong-
dong Zhang, Xiaolei Wang, Xin Zhao, Furu Wei,
and Ji-Rong Wen. 2024. Language-specific neurons:
The key to multilingual capabilities in large language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 5701–5715, Bangkok,
Thailand. Association for Computational Linguistics.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

26419

https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://openreview.net/forum?id=5uwBzcn885
https://openreview.net/forum?id=5uwBzcn885
https://openreview.net/forum?id=5uwBzcn885
https://doi.org/10.18653/v1/2023.findings-emnlp.826
https://doi.org/10.18653/v1/2023.findings-emnlp.826
https://doi.org/10.18653/v1/2023.findings-emnlp.826
https://doi.org/10.18653/v1/2023.findings-emnlp.826
https://aclanthology.org/2024.acl-long.833/
https://aclanthology.org/2024.acl-long.833/
https://aclanthology.org/2024.acl-long.833/
https://doi.org/10.18653/v1/2024.naacl-long.384
https://doi.org/10.18653/v1/2024.naacl-long.384
https://doi.org/10.18653/v1/2024.naacl-long.384
https://doi.org/10.18653/v1/2024.naacl-long.384
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/ indicnlp.pdf
https://doi.org/10.18653/v1/2024.acl-long.136
https://doi.org/10.18653/v1/2024.acl-long.136
https://doi.org/10.18653/v1/2024.acl-long.136
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://github.com/mozillazg/python-pinyin
https://github.com/mozillazg/python-pinyin
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://openreview.net/forum?id=fR3wGCk-IXp
https://openreview.net/forum?id=fR3wGCk-IXp
https://doi.org/10.18653/v1/2024.acl-long.309
https://doi.org/10.18653/v1/2024.acl-long.309
https://doi.org/10.18653/v1/2024.acl-long.309

Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alexandre Variengien and Eric Winsor. 2024. Look
before you leap: A universal emergent decomposition
of retrieval tasks in language models. In ICML 2024
Workshop on Mechanistic Interpretability.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea,
and Robert West. 2024. Do llamas work in English?
on the latent language of multilingual transformers.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 15366–15394, Bangkok, Thai-
land. Association for Computational Linguistics.

Orgest Xhelili, Yihong Liu, and Hinrich Schuetze.
2024. Breaking the script barrier in multilingual pre-
trained language models with transliteration-based
post-training alignment. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 11283–11296, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Wenxuan Zhang, Mahani Aljunied, Chang Gao,
Yew Ken Chia, and Lidong Bing. 2023. M3exam: A
multilingual, multimodal, multilevel benchmark for
examining large language models. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Jun Zhao, Zhihao Zhang, Luhui Gao, Qi Zhang, Tao
Gui, and Xuanjing Huang. 2024a. Llama beyond
english: An empirical study on language capability
transfer. arXiv preprint arXiv:2401.01055.

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji
Kawaguchi, and Lidong Bing. 2024b. How do large
language models handle multilingualism? In Ad-
vances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

Chengzhi Zhong, Fei Cheng, Qianying Liu, Junfeng
Jiang, Zhen Wan, Chenhui Chu, Yugo Murawaki,
and Sadao Kurohashi. 2024. Beyond english-centric
llms: What language do multilingual language mod-
els think in? arXiv preprint arXiv:2408.10811.

Tomaž Šolc. 2025. Unidecode: Ascii transliterations of
unicode text. Accessed: 2025-01-23.

A Transformer’s Forward pass: Detailed

For an input sequence x1, . . . , xn ∈ V , where
n is the sequence length, the initial latents
h
(0)
1 , . . . , h

(0)
n ∈ Rd are obtained from a learned

embedding matrix. The update rule for the latent
at position i in layer j is expressed as:

h
(j)
i = h

(j−1)
i + fj(h

(j−1)
1 , . . . , h

(j−1)
i)

The logit scores are computed as:

zi = Uh
(k)
i

These are converted to probabilities via the soft-
max function:

P (xi+1 = t|x1, . . . , xi) ∝ exp(zi,t)

B Sample Prompts

A Hindi example, its English translation and
transliteration for the translation, repetition and
cloze task prompt designs mentioned in Section 4
are provided below.

Hindi example.
Translation task. A translation prompt from French
to Hindi.'

&

$

%

Français: “poisson" Eh�dF: “mClF”
Français: “mangue" Eh�dF: “aAm”
Français: “frère" Eh�dF: “BAI”
Français: “odeur" Eh�dF:“g\D”
Français: “soleil" Eh�dF: “s� rj”

Français: “fleur" Eh�dF:

Repetition task.

'

&

$

%

Eh�dF: “mClF” Eh�dF: “mClF”
Eh�dF: “aAm” Eh�dF: “aAm”
Eh�dF: “BAI” Eh�dF: “BAI”
Eh�dF: “g\D” Eh�dF: “g\D”
Eh�dF: “s� rj” Eh�dF: “s� rj”

Eh�dF: “P� l” Eh�dF:

Cloze task..

ek “ ” khAEnyA pxn� k� Ele upyog
EkyA jAtA h{। uttr : “p� -tk”
P� VbA�l aOr bA-k�VbA�l j{s� K�l K�ln� k�
Ele “ ” kA upyog EkyA jAtA h{। uttr :
“bA�l”
ek “ ” a?sr uphAr k� !p m�\ EdyA
jAtA h{ aOr yh bgFco\ m�\ pAyA jA sktA
h{। uttr :

English Translation.

Translation task.

26420

https://openreview.net/forum?id=DRrzq93Y5Y
https://openreview.net/forum?id=DRrzq93Y5Y
https://openreview.net/forum?id=DRrzq93Y5Y
https://doi.org/10.18653/v1/2024.acl-long.820
https://doi.org/10.18653/v1/2024.acl-long.820
https://doi.org/10.18653/v1/2024.findings-emnlp.659
https://doi.org/10.18653/v1/2024.findings-emnlp.659
https://doi.org/10.18653/v1/2024.findings-emnlp.659
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/117c5c8622b0d539f74f6d1fb082a2e9-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2024/hash/1bd359b32ab8b2a6bbafa1ed2856cf40-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1bd359b32ab8b2a6bbafa1ed2856cf40-Abstract-Conference.html
https://github.com/avian2/unidecode
https://github.com/avian2/unidecode

'

&

$

%

Français: “poisson" Hindi: “fish”
Français: “mangue" Hindi: “mango”
Français: “frère" Hindi: “brother”
Français: “odeur" Hindi: “smell”
Français: “soleil" Hindi: “sun”
Français: “fleur" Hindi:

Repetition task.'

&

$

%

Hindi: “fish” Hindi: “fish”
Hindi: “mango” Hindi: “mango”
Hindi: “brother” Hindi: “brother”
Hindi: “smell” Hindi: “smell”
Hindi: “sun” Hindi: “sun”
Hindi: “flower” Hindi:

Cloze task.

A “___" is used to play sports like soccer and
basketball. Answer: “ball"
A “___" is used for reading stories. Answer:
“book"
A “___" is often given as a gift and can be
found in gardens. Answer:

English Transliteration.

Translation task.'

&

$

%

Français: “poisson" Hindi: “machhalee”
Français: “mangue" Hindi: “aam”
Français: “frère" Hindi: “bhaee”
Français: “odeur" Hindi: “gandh”
Français: “soleil" Hindi: “sooraj”
Français: “fleur" Hindi:

Repetition task.'

&

$

%

Hindi: “machhalee” Hindi: “machhalee”
Hindi: “aam” Hindi: “aam”
Hindi: “bhaee” Hindi: “bhaee”
Hindi: “gandh” Hindi: “gandh”
Hindi: “sooraj” Hindi: “sooraj”
Hindi: “phool” Hindi:

Cloze task.

Phutball aur baasketball jaise khel khelane
ke lie “___" ka upayog kiya jaata hai. Uttar:
“ball"
Ek “___" kahaaniyaan padhane ke lie upayog
kiya jaata hai. Uttar: “ball" Ek “___" aksar
upahaar ke roop mein diya jaata hai aur yah
bageechon mein paaya ja sakata hai. Uttar:

C Latent romanization: Tokenization
scheme for the romanized word

Mathematically, we track the following romanized
tokens for a given romanized word w of length n:

First timestep: {w[0 : i] | 1 ≤ i ≤ n} ∪
{"_ " + w[0 : i] | 1 ≤ i ≤ n}, "_ " represents
single leading space and w[0 : i] represents
prefixes of w
Intermediate timesteps: {w[i : j] | 0 ≤ i <
j ≤ n} , w[i : j] represents sub-strings of w
Final timestep: {w[i : n] | 0 ≤ i < n}, ,
w[i : n] represents suffixes of w

Similarly we construct token sets for the native
script (Tnative) and English (Tenglish) by including
prefixes of the corresponding word, both with
and without leading spaces, for all timesteps
except the last. For the final timestep, we use
suffixes of the corresponding word. We discard the
sample if there is any overlap between romanized
tokens (Tromanized) and either the native (Tnative) or
English tokens (Tenglish) as shown by the following
condition:

Tromanized ∩ (Tnative ∪ TEnglish) = ∅

Lets take an example with a prompt translating
“rope” from French to Hindi and derive romanized,
English and native tokens for its first token gen-
eration timestep. The Hindi translation of “rope”
is r-sF and its romanized form is “rassi”. So
the romanized word tokens would be Tromanized =
“r”, “ra”, “ras”, “rass”, “rassi”, “_r”, “_ra”,
“_ras”, “_rass” and “_rassi”. The correspond-
ing English word tokens would be TEnglish = “r”,
“ro”, “rop”, “rope”, “_r”, “_ro”, “_rop”, and
“_rope”. The corresponding Hindi word tokens
would be Tnative = r, rs, r-s, r-sF, r, rs,
r-s, r-sF. Here Tromanized∩(Tnative∪TEnglish) =
{r, _r} which is not null. As such we will exclude

26421

this example translating rope to Hindi from the
dataset to analyze Latent Romanization.

D Latent Fraction

Formally, we compute the latent fraction as fol-
lows:

For layer l, timestep t, sample i and set of
corresponding romanized tokens R :
1. Latent romanization condition:

r
(i)
l,t =




1, if max

r∈R
P (xt = r | l, t) > 0.1

0, otherwise

2. Latent fraction for a layer ℓ:

L.F(l) =
1

N

N∑

i=1

1

T

T∑

t=1

r
(i)
l,t

where N is the number of samples, T is the
number of generation timesteps and P (xt =
r|l, t) is the probability of generating token r
at timestep t and layer ℓ.

E Computing Language probabilities -
For translation towards native script vs
translation towards romanized script
task

To compute language probabilities, we search the
LLM’s vocabulary for all tokens that could be the
first token of the correct ouput word(s) in the re-
spective language. We search the models vocabu-
lary for all prefixes of the word(s) with and without
leading space. For a language ℓ with corresponding
output word w1 and its synonyms w2, w3, . . ., we
define:

P (lang = ℓ) =
∑

tℓ∈Wprefix

P (xn+1 = tℓ)

where Wprefix is the set of all prefixes of output
word w1 and its synonyms w2, w3, . . ., including
versions with and without leading spaces. For
example to get probability for english when the
output word is “fast” and its synonym is “swift”,
then P (lang = EN) = P (xn+1 = “f”) +
P (xn+1 = “fa”)+P (xn+1 = “fas”)+P (xn+1 =
“fast”)+P (xn+1 = “_f”)+P (xn+ 1 = “_fa”)+
P (xn+ 1 = “_fas”) + P (xn+ 1 = “_fast”) +
P (xn+ 1 = “s”)+P (xn+1 = “sw”)+P (xn+1 =
“swi”) + P (xn+1 = “swif”) + P (xn+1 =

“swift”) + P (xn+1 = “_s”) + P (xn+ 1 =
“_sw”) + P (xn+ 1 = “_swi”) + P (xn+ 1 =
“_swif”) + P (xn+ 1 = “_swift”) (all the token-
level prefixes of “fast”, “_fast”, “swift” and
“_swift”). “_” represents a single leading space.

F Romanization scheme: Indic languages

We have taken into consideration two romanization
schemes for Indic languages: (a) ITRANS scheme
from IndicNLP library (Kunchukuttan, 2020) and
(b) IndicXlit scheme (Madhani et al., 2023). Based
on our initial experiments, we observed that the In-
dicXlit scheme produces better romanization than
ITRANS scheme. Thus for romanization we have
used the IndicXlit scheme (Madhani et al., 2023).
It generates romanization as is commonly used by
native speakers and is trained on parallel transliter-
ation corpora.

G Computing Probabilities : Activation
Patching Experiment

Probability for a concept C in language ℓ can be
formulated as :

P (Cℓ) =
∑

tℓ∈Wprefix

P (xn+1 = tℓ)

where Wprefix is the set of all prefixes of output
word w(Cℓ) and its synonyms (note that a word’s
tokens are its prefixes).

We keep source concept CS and target concept
CT distinct to avoid ambiguity when both are ex-
pressed in the same target language lTout.

Cases of token overlap between w(CℓT
S) i.e.

word representing source concept in target lan-
guage and w(CℓT

T) i.e. word representing target
concept in target language and their synonyms are
excluded. Token overlap would cause ambiguity.
Therefore in the final dataset,

T (w(CℓT
S)) ∩ T (w(CℓT

T)) = ∅

Where T (w) represents all the prefixes of w and its
synonyms.

H Latent Romanization Qualitative
Analysis

We list qualitative logit lens analysis for Greek,
Ukrainian, Hebrew, Arabic and Amharic (see Fig-
ures 8 to 12).

26422

Languages. Greek is part of the Hellenic branch
of the Indo-European language family and is writ-
ten using the Greek alphabet. Ukrainian belongs
to the East Slavic group of the Indo-European fam-
ily and employs the Ukrainian alphabet, a variant
of the Cyrillic script. Amharic is a South Ethio-
Semitic language within the Afroasiatic family and
is written using the Ge’ez script, an abugida where
each character represents a consonant-vowel com-
bination. Hebrew is a Northwest Semitic language
within the Afroasiatic family and is written using
the Hebrew alphabet, an abjad script originating
from the Aramaic alphabet. Arabic is a Central
Semitic language, also part of the Afroasiatic fam-
ily, and utilizes the Arabic script, another abjad
that evolved from the Nabataean alphabet. Notably,
both Hebrew and Arabic scripts are written from
right to left.

I Latent Romanization Quantitative
Analysis: Additional examples

Quantitative Analysis of latent romanization for
repetition task and cloze task with gemma 2 9b it
model can be seen in Figures 13 and 14 respectively.
Layerwise fractional distribution of romanized to-
kens across output token generation timesteps for
translation, repetition and cloze task with Gemma
2 9b, Llama 2 7b, and Llama 2 13b models are
present in Figure 15.

J Comparing Translations Into
Romanized vs. Native Script:
Additional examples

Translation towards native script is compared with
translation towards romanized script for gemma 2
9b it, gemma 2 9b and llama 2 13b models (see
Figures 16 to 18).

K Other Models: Mistral

We also perform our experiments on Mistral-7B
(Jiang et al., 2023), a popular LLM known for its
performance and efficiency. Layerrwise distribu-
tion of romanized tokens for initial, final and all
token generation steps are presented in Figure 19.

26423

Output

Figure 8: Logit lens illustration. We input Llama-2 13b model with a prompt translating ‘love’ from French to
Greek. We visualize the output (αγάπη , ‘agape’ is the romanized form) taking shape using logit lens producing a
next-token distribution for each position (x-axis) and layers 20 and above (y-axis).Interestingly in the middle to top
layers (20 - 29) we could observe romanized subwords of the Greek word (γ - ga ; άπη - ape ; πη -pe ; η - e)
before they are represented in their native script. Color represents entropy of next-token generation from low (blue)
to high (red). Plotting tool: (Belrose et al., 2023).

Output

Figure 9: Logit lens illustration. We input Llama-2 13b model with a prompt translating ‘good’ from French
to Ukrainian. We visualize the output (добро , ‘dobro’ is the romanized form) taking shape using logit lens
producing a next-token distribution for each position (x-axis) and layers 20 and above (y-axis).’ Українська ’
(romanized as ’Ukrayinska’) is the Ukrainian word for ’Ukrainian’.Interestingly in the middle to top layers (20
- 29) we could observe romanized subwords of the Ukrainian words (бро - bro ; ська - ska) before they are
represented in their native script. Color represents entropy of next-token generation from low (blue) to high (red).
Plotting tool: (Belrose et al., 2023).

26424

Output

Figure 10: Logit lens illustration. We input Llama-2 13b model with a prompt translating ‘time’ from French to
Hebrew. We visualize the output (Nזמ, ‘zman’ is the romanized form) taking shape using logit lens producing a
next-token distribution for each position (x-axis) and layers 20 and above (y-axis).Interestingly in the middle to top
layers (20 - 29) we could observe romanized subwords of the Hebrew word (NM - man ; N - an). Color represents
entropy of next-token generation from low (blue) to high (red). Plotting tool: (Belrose et al., 2023).

Output

Figure 11: Logit lens illustration. We input Llama-2 13b model with a prompt translating ‘door’ from French to
Arabic. We visualize the output (, ‘bab’ is the romanized form) taking shape using logit lens producing a
next-token distribution for each position (x-axis) and layers 20 and above (y-axis).Interestingly in the middle to top
layers (20 - 29) we could observe romanized subwords of the Arabic word (- bab; - ab) before they are
represented in their native script. Color represents entropy of next-token generation from low (blue) to high (red).
Plotting tool: (Belrose et al., 2023).

26425

Output

Figure 12: Logit lens illustration. We input Gemma-2 9b IT model with a prompt translating ‘music’ from French
to Amharic. We visualize the output (, ‘muzika’ is the romanized form) taking shape using logit lens
producing a next-token distribution for each position (x-axis) and layers 24 and above (y-axis).Interestingly in the
middle to top layers we could observe romanized subwords of the Amharic word (- muzy; - z) before
they are represented in their native script. Color represents entropy of next-token generation from low (blue) to high
(red). Plotting tool: (Belrose et al., 2023).

0

0.05

0.1

0.15

0.2

0.25

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

gu ta te hi ml

(a) Layerwise distribution of roman-
ized tokens averaged across output to-
ken generation steps and samples

0

0.05

0.1

0.15

0.2

0.25

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

gu ta te hi ml

(b) Layerwise distribution of roman-
ized tokens in the first token genera-
tion step averaged across samples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

gu ta te hi ml

(c) Layerwise distribution of roman-
ized tokens in the last token generation
step averaged across samples

Figure 13: Distribution of Romanized Tokens Across Model Layers: Analysis of First, Last, and All Generation
Timesteps. This distribution is plotted across the last 10 layers of Gemma-2 9b IT model for repetition task and is
averaged across 100+ samples. X-axes represents layer index, y-axes represents latent fraction i.e. the instances
where romanized tokens occur with a probability > 0.1 averaged over samples for a specific layer. We plot the
distributions for Gujarati (gu), Tamil (ta), Telugu (te), Hindi (hi) and Malayalam (ml).

26426

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

ka zh hi ml ta te gu

(a) Layerwise distribution of roman-
ized tokens averaged across output to-
ken generation steps and samples

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

33 34 35 36 37 38 39 40 41

La
te
n
t
fr
ac
ti
o
n

Layers

ka zh hi ml ta te gu

(b) Layerwise distribution of roman-
ized tokens in the first token genera-
tion step averaged across samples

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

32 33 34 35 36 37 38 39 40 41

La
te

n
t

fr
ac

ti
o

n

Layers

ka hi ml ta te gu zh

(c) Layerwise distribution of roman-
ized tokens in the last token generation
step averaged across samples

Figure 14: Distribution of Romanized Tokens Across Model Layers: Analysis of First, Last, and All Generation
Timesteps. This distribution is plotted across the last 10 layers of Gemma-2 9b IT model for cloze task and is
averaged across 100+ samples. X-axes represents layer index, y-axes represents latent fraction i.e. the instances
where romanized tokens occur with a probability > 0.1 averaged over samples for a specific layer. We plot the
distributions for Gujarati (gu), Tamil (ta), Telugu (te), Hindi (hi) and Malayalam (ml), Georgian (ka) and Chinese
(zh).

Gemma 2 9b Llama 2 13b Llama 2 7b

Translation

Repetition

Cloze

Figure 15: Layerwise fractional distribution of romanized tokens across output token generation timesteps.
This distribution is plotted across the last 10 layers of Gemma 2 9b ,LLama 2 13b and Llama 2 7b models (columns)
for (a) translation task from French, (b) Repetition task and is averaged across 100+ samples. X-axes represents
layer index, y-axes represents latent fraction i.e. the fraction of timesteps where romanized tokens occur with a
probability > 0.1 averaged over samples for a specific layer. We plot the distributions for Gujarati (gu), Tamil (ta),
Telugu (te), Hindi (hi) and Malayalam (ml).

26427

(a) fr → te romanized (b) fr → gu romanized (c) fr → hi romanized

(d) fr → te (e) fr → gu (f) fr → hi

Figure 16: Language probabilities for latent layers in translation from French to Telugu, Gujarati and Hindi
in romanized (top row) and native scripts (bottom row) across various samples using the Gemma-2 9B IT model.
On x-axes, layer index; on y-axes, probability (according to logit lens) of correct next token in a given language.
Error bars represent 95% Gaussian confidence intervals over input. In translations to non-English languages in
romanized scripts (top row), target representations emerge slightly earlier—approximately one to two layers before
layer 40—compared to their native script counterparts (bottom row), which only begin to appear from layer 40
onwards.

(a) fr → te romanized (b) fr → gu romanized (c) fr → hi romanized (d) fr → ml romanized (e) fr → ta romanized

(f) fr → te (g) fr → gu (h) fr → hi (i) fr → ml (j) fr → ta

Figure 17: Language probabilities for latent layers in translation from French to five Indic languages (Telugu,
Gujarati, Hindi, Malayalam, and Tamil) in romanized (top row) and native scripts (bottom row) using the Gemma-2
9B model. On x-axes, layer index; on y-axes, probability of correct next token in a given language. Error bars
represent 95% Gaussian confidence intervals over input. In translations using romanized scripts (top row), target
representations emerge approximately 1-2 layers earlier than their native script counterparts (bottom row).

26428

(a) fr → hi romanized (b) fr → ml romanized (c) fr → ta romanized

(d) fr → hi (e) fr → ml (f) fr → ta

Figure 18: Language probabilities for latent layers in translation from French to Indic languages (Hindi,
Malayalam, and Tamil) in romanized (top row) and native scripts (bottom row) using the Llama-2 13b model. On
x-axes, layer index; on y-axes, probability of correct next token in a given language. Error bars represent 95%
Gaussian confidence intervals over input. In translations using romanized scripts (top row), target representations
emerge approximately 1-2 layers earlier than their native script counterparts (bottom row).

All tokens First token Last token

Translation

Repetition

Cloze

Figure 19: Distribution of Romanized Tokens Across Model Layers: Analysis of First, Last, and All Generation
Timesteps. This distribution is plotted across the last 10 layers of Mistral-7B model for initial, final and all token
generation steps (columns) for (a) translation task from English, (b) Repetition task, (c) Cloze task (rows) and is
averaged across 100+ samples. X-axes represents layer index, y-axes represents latent fraction i.e. the fraction of
timesteps where romanized tokens occur with a probability > 0.1 averaged over samples for a specific layer. We plot
the distributions for Tamil (ta), Telugu (te), Hindi (hi), Georgian (ka) and Chinese (zh).

26429

