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Abstract

Generative methods significantly advance
event argument extraction by probabilistically
generating event argument sequences in a
structured format. However, existing ap-
proaches primarily rely on a single prompt
to generate event arguments in a fixed, prede-
termined order. Such a rigid approach over-
looks the complex structural and dynamic in-
terdependencies among event arguments. In
this work, we present GEMS, a multi-prompt
learning framework that Generates Event ar-
guments via Multi-perspective prompts and
ontology Steering. Specifically, GEMS uti-
lizes multiple unfilled prompts for each sen-
tence, predicting event arguments in varying
sequences to explicitly capture the interrela-
tionships between arguments. These predic-
tions are subsequently aggregated using a vot-
ing mechanism. Furthermore, an ontology-
driven steering mechanism is proposed to en-
sure that the generated arguments are contex-
tually appropriate and consistent with event-
specific knowledge. Extensive experiments
on two benchmark datasets demonstrate that
GEMS achieves state-of-the-art performance,
particularly in low-resource settings. The
source code is available at: https://github.
com/AONE-NLP/EAE-GEMS.

1 Introduction

Event argument extraction (EAE) is a crucial yet
challenging task in Natural Language Understand-
ing (NLU), focused on identifying role-specific
spans of text within a given event (Sundheim,
1992; Chen et al., 2015; Sha et al., 2018; Du and
Cardie, 2020a). For instance, consider the sen-
tence from the ACE05 dataset, Pearl was murdered
by terrorists in Pakistan. The verb “murdered”
triggers a “Life.Die” event, and the EAE task
aims to identify “Pearl”, “terrorists”, and “Pak-
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Figure 1: Example of different prompt designs that var-
ious generation-based EAE model utilize.

istan” as event arguments with the roles of “vic-
tim”, “agent”, and “place”, respectively.

Traditional approaches to EAE generally in-
volve first identifying potential argument candi-
dates and then assigning specific roles via multi-
label classification (Wadden et al., 2019; Lin et al.,
2020; Liu et al., 2024). Other methods treat
EAE as a reading comprehension problem (Du and
Cardie, 2020b; Liu et al., 2020), employing ques-
tion templates to guide the extraction process. In
contrast, recent advancements in generation-based
EAE methods (Li et al., 2021; Lu et al., 2021; Hsu
et al., 2022; Ma et al., 2022) have demonstrated
superior generalizability and competitive perfor-
mance. These methods offer enhanced flexibility
(Liu et al., 2021), as they can easily accommodate
new event types with minimal adjustments to the
prompts and decoding schemes.

In this context, generation-based methods prob-
abilistically populate the structured slots by lever-
aging contextual semantics. Various prompt de-
signs, shown in Figure 1, are employed to guide
this process: (1) linearized prompts (Lu et al.,
2021, 2022; Wang et al., 2023; Ren et al., 2023),
where arguments are presented in a sequentially or-
dered format, following a predefined structure; (2)
discrete prompts (Li et al., 2021; Ma et al., 2022;
Hsu et al., 2023a; Luo and Xu, 2023; Zhang et al.,
2024; Li et al., 2024), which integrate natural lan-
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guage with special tokens to designate roles or la-
bels; (3) resource-enhanced prompts (Hsu et al.,
2023b; Zhang et al., 2023; Wang et al., 2023; Yang
et al., 2024), which incorporate external knowl-
edge (e.g., syntactic information), to guide the gen-
eration by providing additional contextual cues.

Despite the effectiveness of these methods, they
typically rely on fixed left-to-right argument gen-
eration orders, which overlook the complex inter-
dependencies among event arguments, leading to
potential limitations: (1) Insufficient capture of
argument correlations. Unlike natural text gen-
eration, prompt-based argument generation strug-
gles with fixed-sequence structures, which are in-
compatible with the dynamic and interdependent
nature of event arguments (Li et al., 2023); (2) In-
effective knowledge querying. Existing methods
struggle to query relevant information effectively
during decoding (Bouraoui et al., 2020; Schick
and Schütze, 2021a). As a result, the generated
outputs often reflect only a lower bound of the
model’s knowledge (Jiang et al., 2020a), leading
to arguments that may be contextually inconsistent
or semantically inaccurate; (3) Inconsistent per-
formance. Fixed-order generation approach strug-
gles to maintain uniformity across different event
contexts (Hu et al., 2022; Liu et al., 2021). This in-
consistency stems from the rigidity of prompt de-
sign, which fails to adapt to the diverse structure
and interdependency of event arguments, leading
to fluctuations in performance (Liu et al., 2022).

In this paper, we investigate generation-based
EAE within a multi-prompt learning scheme
and introduce a novel approach GEMS, that
systematically Generate Event arguments via
Multi-perspective prompts and ontology-guided
Steering. Specifically, we propose a strategy that
employs multiple unanswered prompts for a given
sentence, each predicting event arguments in dif-
ferent orders to explicitly capture the interactions
among multiple arguments (Sec 3.2). The predic-
tions from these diverse prompts are then ensem-
bled, exploiting the fact that different prompts may
be more effective for querying context oriented to-
wards specific arguments. To ensure coherent gen-
eration, we integrate an ontology-driven steering
mechanism via a dual-branch cross-attention pro-
cess (Sec 3.3). This guides the decoding process,
ensuring that the generated event arguments are
both contextually appropriate and aligned with the
event-specific knowledge defined in the ontology.
Our main contributions are as follows:

• We approach the challenge of event argu-
ment extraction (EAE) by explicitly model-
ing the interactions among event elements
through multivariate prompt permutation, ef-
fectively addressing the complex dependen-
cies between arguments.

• We incorporate an ontology-guided steer-
ing mechanism through a dual-branch cross-
attention process, ensuring the generation are
not only contextually relevant but also con-
sistent with the event-specific knowledge de-
fined in the ontology.

• Extensive experiments on ACE05-E and
ERE-EN datasets show that GEMS outper-
forms state-of-the-art models in EAE task,
particularly in low-resource scenarios.

2 Related Work

In recent years, significant progress has been
made in the task of Event Argument Extraction
(EAE). Early approaches predominantly relied on
multi-label classification methods, which focus
on identifying argument spans and assigning them
corresponding role labels. These approaches of-
ten incorporate auxiliary syntactic structures (Liu
et al., 2018; Pouran Ben Veyseh et al., 2020;
Zhang and Ji, 2021) or model semantic relation-
ships among event elements through sophisticated
network architectures (Chen et al., 2015; Sha et al.,
2018; Wadden et al., 2019; Lin et al., 2020; Ding
et al., 2022; Xu et al., 2023; Liu et al., 2024).
While these methods have improved performance,
they typically lose focus on the broader context
once candidate argument spans are identified, lead-
ing to a loss of contextual semantic integrity.

To address these limitations, sequential gener-
ation methods focus on leveraging complete con-
textual information throughout the extraction pro-
cess to guide the model’s decoding. These meth-
ods emphasize carefully designed prompts that di-
rect the generation of sequences centered around
arguments and their roles, transforming the argu-
ment extraction task into a sequence-to-sequence
generation problem. Early research employed lin-
earized prompts (Paolini et al., 2021; Ren et al.,
2023), which directly concatenate arguments with
their corresponding roles in a target format. To
better capture the event-based organizational struc-
ture of argument roles, Li et al. (2023) incorpo-
rated event structures to establish role dependen-
cies, combining event roles with soft prompts. Ad-
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ditionally, Lu et al. (2021, 2022); Wang et al.
(2023) constructed event elements in a linearized
target format using a structured templates.

More recent advancements have focused on
incorporating richer representations of argument
roles and event structures by leveraging discrete
prompts (Li et al., 2021; Hsu et al., 2023a; Zhang
et al., 2024). These prompts involve manually de-
signed, human-introspected templates tailored to
each event type, which enhance the models abil-
ity to capture the nuanced semantic relationships
among event roles (Ma et al., 2022; Hsu et al.,
2022; Luo and Xu, 2023; Li et al., 2024). Simulta-
neously, several studies have introduced resource-
enhanced prompts, drawing on external auxiliary
resources such as syntactics and abstract mean-
ing representation (AMR) structures (Hsu et al.,
2023b; Zhang et al., 2023; Wang et al., 2023; Yang
et al., 2024). These resource-enhanced approaches
further enrich the context and event schemas used
during extraction, improving the quality of argu-
ment role representation. Despite the improve-
ments in performance, these methods reliance on
rigid, predefined prompts limits their flexibility in
adapting to the interdependencies of event argu-
ments, leading to fluctuations in performance.

To overcome these limitations, recently,
prompt ensembling, a method of using multiple
prompts during inference, has been shown to
reduce performance variations and enhance the
generalization of language models on downstream
tasks (Liu et al., 2023). It leverages the com-
plementary advantages of different prompts to
boost prediction stability and consistency across
various linguistic and semantic contexts (Lee
et al., 2025; Tonolini et al., 2024). Inspired by
traditional ensemble learning in machine learning
and deep learning (Zhou et al., 2002), prompt
ensembling varies in how it aggregates predictions
from different prompts, with methods ranging
from simple averaging of predicted probabilities
or logits (Jiang et al., 2020b; Schick and Schütze,
2021a) to more sophisticated mechanisms like
weighted averaging (Qin and Eisner, 2021; Schick
and Schütze, 2021b; Khattak et al., 2023) and
majority voting (Lester et al., 2021).

3 Methodology

3.1 Task Definition

We formulate EAE task as a prompt-based argu-
ment generation problem defined on a given con-

text C. Let S = {s1, s2, ..., s|x|} denote the to-
ken sequence of C, and e be a predetermined event
type with t ∈ S as corresponding trigger. Given
the event-specific role set Re, the objective of the
EAE is to extract argument spans ai ∈ S and as-
sign each argument ai a corresponding role ei ∈
Re, resulting in argument-role tuples {aei , rei }.

3.2 Multi-perspective Prompt Design

We introduce a multi-perspective prompting mech-
anism to systematically control the prediction or-
der of event elements. To this end, we employ ded-
icated element markers that encode the structural
roles of event components (Paolini et al., 2021).
Specifically, we use [T] for trigger terms te, and
[A] together with [R] for arguments aei and their as-
sociated roles rei in the set {(aei , rei )|1 ≤ i ≤ |Re|}.
Each element is prefixed with its corresponding
marker, while a special symbol [SSEP] is em-
ployed to concatenate these components in a spec-
ified permutation pi.

Element-wise Prompt Permutation. To ex-
plore diverse structural configurations of trig-
ger terms, arguments, and corresponding roles,
we define four distinct element-wise prompt per-
mutations: [T] [A] [R]; [T] [R] [A]; [A] [R] [T];
[R] [A] [T]1. [T] [A] [R] indicates that both the
prompt construction and the subsequent prediction
should follow the order t ⇒ a ⇒ r.

To illustrate, consider the sentence: Police ar-
rests a killer., with the event type “Justice.Arrest-
Jail” and three pre-defined argument roles: agent,
person and place. For the permutation [T] [A] [R],
we concatenate S with prompt to obtain xe and the
respective input-target sequence pair (xepi , g

e
pi) for

training is constructed as follows:
Input

(
xepi

)
: Police arrests a killer. [T] arrests

[SSEP] [A] [R] place [SSEP] [A] [R] person [SSEP] [A] [R]

agent.
Target

(
gepi

)
: [T] arrests [SSEP] [A] null [R] place

[SSEP] [A] killer [R] person [SSEP] [A] Police [R] agent.
Argument-wise Prompt Permutation. In ad-

dition to the element-wise permutation, we in-
troduce an argument-wise prompt permutation
scheme to explicitly capture interactions among
multiple arguments within a single event. Un-
der this scheme, the arguments of an event
“Justice.Arrest-Jail” can be rearranged in various
valid orders (e.g., agent, person, place; place, per-

1We do not permute the trigger marker [T] between
[A] and [R], as interleaving it would exponentially increase
prompt configurations, complicating model training.
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Figure 2: Overview of GEMS structure. GEMS generates multiple prompts by permuting event elements and
encoding them with concatenated context and event-specific ontology. The decoder then generates argument se-
quences for each permutation independently, capturing diverse structural interactions among event arguments. The
predictions are then aggregated through majority voting for final results.

son, agent; person, place, agent), reflecting per-
mutations of different arguments in a single event.
This flexibility allows our model to account for
varying argument interactions. When multiple ar-
guments share the same role, we simply concate-
nate their terms in the order in which they appear.

3.3 Event-steering Argument Generation
Given contextual sequence S with m randomly se-
lected prompt permutations and event-specific on-
tology O, this module generates event arguments
by leveraging event-specific context, utilizing stan-
dard Transformer-based Encoder and Decoder.

Encoder. We first leverage a multi-layer trans-
former encoder to obtain the semantic representa-
tions for contextual token sequence with prompt
xepi and event-specific ontology description Oe:

Hs = Encoder(xe
pi) ∈ Rns×d;

HO = Encoder(Oe) ∈ RnO×d,
(1)

where ns and nO are the maximum token
lengths of the input text and the event-specific on-
tology description, respectively, and d denotes the
embedding dimension.

Contextual-aware Event Steering. To guide
the generation distribution with knowledge from
the event ontology, we adopt a translation transfor-
mation factor fCAM following insights from Han
et al. (2024). This factor is designed to steer each
word embedding during decoding toward the tar-
get semantic space defined by the event ontology.
Concretely, fCAM is derived via a dual-branch
cross-attention mechanism (CAM) that captures
contextual associations between the contextual se-
quence Hs and the event-specific ontology HO.

We then project Hs and HO into two dis-
tinct semantic spaces, context-oriented space and
ontology-oriented space, respectively, as follows:

hs = H⊤
s W

s ∈ R1×d; hO = H⊤
OWO ∈ R1×d, (2)

where W s ∈ Rns×1, WO ∈ RnO×1 are train-
able matrices. To integrate the contextual features
from both semantic spaces, we treat hs and hO

as CLS-like tokens, enabling them to exchange se-
mantics with word tokens in the other semantic
space (HO and Hs) via CAM. Formally, the at-
tention operations are defined as:

qs = Wqh
O, ks = Wk

[
Hs ∥ hO

]
, vs = Wv

[
Hs ∥ hO

]
,

qO = Wqh
s, kO = Wk [HO ∥ hs] , vO = Wv [HO ∥ hs] ,

h
′s = softmax

(
qsks⊤/Dn

)
vs + hs,

h
′O = softmax

(
qOkO⊤

/Dn

)
vO + hO,

(3)

where ∥ denotes concatenation operations. Wq,
Wk, Wv ∈ Rd×Dn

2
are learnable parameters. a

is the number of attention heads. Dn denotes as√
d/a. Finally, the output factor fCAM of the

CAM module, which integrates contextual associ-
ation information h

′s and h
′O for both semantic

spaces via layer normalization is formulated as:

fCAM = LN(h
′s) + LN(h

′O). (4)

Decoder. We condition on text with prompt x
to generate the output g′, modeled as:

g′j , hg′j
= Decoder(Hs, g

′
j−1, fCAM ), (5)

During decoding, we redesign the calculation of
each word output likelihoods. Typically, From the
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view of word embedding, the dot product H⊤
s hg′j

between a computed context vector and a learn-
able output word embedding hg′j for token g′j is
usually used as the word logit. In our model,
we additionally apply a linear factor fCAM from
attention-aware event steer and the final token
probability P among whole vocabulary V is de-
fined as follows:

P(g′j |Hs, fCAM ) =
exp

(
H⊤

s

(
hg′j

+ fCAM

))

∑
u∈V exp (H⊤

s hu)
, (6)

Training. From the view of overall model train-
ing, given the input-target pair (x, g) as described
in Section 3.2. we can fine-tune a pre-trained
sequence-to-sequence language model, minimiz-
ing the following negative log-likelihood loss:

LNLL = −E log L (g|x)

= −E
ng∑

j=1

log L
(
g′j |x, g′<j

) (7)

where ng is the length of the target sequence g
and g′<j denotes previously generated tokens.

3.4 Multi-perspective Inference

During inference, we prompt the trained model
with randomly selected m prompt permutations.
Each permutation pi produces a set of predicted tu-
ples Dpi , where each set may contain one or more
argument-role pairs. We then aggregate these sets
and retain the most frequently appearing tuples
across perspectives as our final prediction. For-
mally, the aggregated result Dagg is defined as:

Dagg = {k|k ∈
m∪

i=1

Dpi and (
m∑

i=1

1Dpi
(k) ≥ m

2
)} (8)

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our model on two widely-
used EAE benchmarks: ACE05-E3 and ERE-EN4.
Following prior work (Wadden et al., 2019; Lin
et al., 2020; Hsu et al., 2022, 2023b), we prepro-
cess each dataset by splitting documents into in-
dividual sentences. Furthermore, we follow Hsu
et al. (2023b) and create different training splits
by sampling 5%, 10%, 20%, 30%, and 50% of the
original training data. See Appendix B.2 for de-
tailed statistics of datasets.

3https://catalog.ldc.upenn.edu/LDC2006T06
4https://catalog.ldc.upenn.edu/LDC2020T19

Evaluation Metrics. Following prior studies
(Lin et al., 2020; Ren et al., 2023; Hsu et al.,
2023b), we report F1-scores for argument predic-
tion: (1) Argument Identification F1 score (Arg-I):
An argument is considered correctly identified if
its predicted span exactly matches the span of any
gold-standard argument; (2) Argument Classifica-
tion F1 score (Arg-C): An argument is considered
correctly classified if the predicted span and the
role type both match the gold reference.

Baselines. To evaluate the performance of
GEMS, we compare it with the following mod-
els: (1) Multi-label Classification methods: Dy-
GIE++ (Wadden et al., 2019), OneIE (Lin et al.,
2020), Query and Extract (Wang et al., 2022),
AMR-IE (Zhang and Ji, 2021), and DEEIA (Liu
et al., 2024); (2) Sequential Generation methods:
PAIE (Ma et al., 2022), DEGREE (Hsu et al.,
2022), AMPERE (Hsu et al., 2023b), TagPrime
(Hsu et al., 2023a), and Scented-EAE (Yang et al.,
2024). We provide baseline descriptions and im-
plementation details of GEMS in Appendix B.1.

4.2 Overall Performance
Table 1 presents a performance comparison be-
tween our proposed GEMS and state-of-the-art
(SOTA) baselines on both ACE05-E and ERE-EN
datasets under varying training data proportions
(experimental results for argument identification
are listed in Appendix C.4). Our approach consis-
tently achieves superior results across all datasets,
demonstrating robustness regardless of the propor-
tion of training data utilized. Further analysis of
the experimental results reveals that: (1) GEMS
outperforms other generation-based EAE mod-
els that utilize a single fixed prompt for each
event type, indicating that the multi-perspective
prompt design effectively leverages the comple-
mentary strengths of various prompt permutations.
(2) The performance gap between GEMS and
SOTA models widens as the training data size
decreases. Under a fully supervised setting, the
gap between GEMS and the second-best model is
0.6% on ACE05-E and 1.1% on ERE-EN. However,
as the training data proportion reduces to just 5%,
the gap increases significantly to 2.4% on ACE05-E
and 3.3% on ERE-EN. Unlike other models, GEMS
leverages its multi-perspective prompt design to
guide the extraction of arguments, effectively com-
pensating for the lack of large-scale supervision.
(3) Multi-label classification models underper-
form compared to sequential generation mod-
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Model ACE05-E Test Set ERE-EN Test Set

5% 10% 20% 30% 50% 100% 5% 10% 20% 30% 50% 100%

DyGIE++ (2019) 29.3 42.2 49.5 53.2 54.4 57.4 40.0 44.6 49.5 52.0 53.7 56.0
OneIE (2020) 34.6 50.0 59.6 63.0 68.4 70.7 49.5 56.1 62.3 66.1 67.7 70.1
AMR-IE (2021) 36.8 48.5 58.3 62.6 66.1 70.3 44.1 53.7 60.4 65.7 68.9 71.5
Query and Extract (2022) 11.0 20.9 34.3 44.3 49.6 59.1 19.7 34.0 42.4 50.1 57.7 64.3
DEEIA (2024)♣ 38.4 50.5 55.7 65.4 69.1 72.3 58.3 60.0 63.0 66.3 68.7 72.0

PAIE (2022) 46.3 56.3 62.8 65.8 69.1 72.1 57.4 64.4 64.6 68.3 69.1 73.1
DEGREE (2022) 41.7 57.7 58.9 65.8 68.2 73.0 57.5 63.9 67.4 69.1 73.3 74.9
AMPEREAMRBart (2023b)♣ 50.7 58.9 66.2 68.5 70.7 72.3 63.3 66.3 68.0 70.9 71.4 74.5
AMPEREAMRRoberta (2023b)♣ 51.5 58.7 64.7 68.6 71.0 72.5 63.9 67.4 67.8 70.0 71.7 73.7
TagPrime (2023a)♣ 43.2 56.8 66.7 69.8 72.9 73.8 64.5 66.4 69.5 73.1 73.3 75.7
Scented-EAE (2024)♣ 50.2 60.1 66.8 69.0 70.9 73.1 61.3 65.4 68.2 71.0 72.0 73.2

GEMS 53.9 61.7 67.9 69.9 73.0 74.6 67.2 69.1 70.4 73.4 74.1 76.8

Table 1: Argument classification F1-scores (%) under different training data proportion settings for ACE05-E and
ERE-EN datasets. The best F1-scores are denoted in bold and the second highest scores are underlined. We
re-implemented the methods marked with ♣ by using their released code2, running each model five times with
different random seeds, and report the average F1-scores. The rest are retrieved from (Hsu et al., 2023b).

Settings ACE05-E ERE-EN

50% 30% 10% 50% 30% 10%

pi

[T] [A] [R] 72.4 68.2 60.2 74.5 73.2 69.0
[T] [R] [A] 73.5 68.5 60.0 73.6 72.9 68.8
[A] [R] [T] 72.4 69.6 59.8 74.0 72.8 68.1
[R] [A] [T] 72.4 70.3 61.3 74.0 72.8 68.5

Agg
GEMSrandom 72.2 68.5 60.6 74.0 72.8 68.2
GEMSrank 72.5 69.7 60.8 73.9 72.6 68.2
GEMSvote 73.0 69.9 61.7 74.1 73.4 69.1

Table 2: Performance on different element-wise
prompt permutation and different aggregation strate-
gies for Arg-C. The best results are marked in bold.

els. This performance gap arises from the chal-
lenges multi-label models face in capturing com-
plex dependencies and correlations between event
arguments. In contrast, sequential generation mod-
els, particularly GEMS, excel in both datasets,
with GEMS demonstrating a pronounced advan-
tage in data-scarce settings.

4.3 Ablation Study
To illustrate the effectiveness of our proposed
multi-perspective prompt and event-specific steer-
ing modules in GEMS, we conduct ablation stud-
ies on ACE05-E and ERE-EN datasets in Table 2.

Sensitivity to different prompt permutations.
As shown in the top portion of Table 2, we analyze
the performance achieved under several prompt
permutations. Our findings demonstrate that no
single permutation consistently outperforms the
others across varying training data sizes, highlight-

4We design manual templates for PAIE based on the
ERE-EN dataset to obtain the corresponding results.
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Figure 3: Performance on various numbers of prompt
permutations under different training data proportions.

ing the importance of aggregating outputs from
multiple, diverse prompts. This observation moti-
vates the exploration of ensemble-like strategies to
harness the complementary strengths of each per-
mutation. Full ablation studies under various train-
ing data ratios can be found in Appendix C.1.

Impact of different aggregation strategies.
We further explore three aggregation strategies
for generation results of our multi-perspective
prompts. Specifically, GEMSrank picks the
top-ranked output sequence according to a pre-
diction score according to Equation (9), while
GEMSrandom randomly samples one. In con-
trast, GEMSvote, which employs majority voting,
achieves the most stable and robust results, with F1
scores of 73.0%, 69.9%, and 61.7% on ACE05-E
and 74.1%, 73.4%, and 69.1% on ERE-EN under
varying training data sizes. The 0.8% to 1.1% ab-
solute F1 improvement over the other aggregation
strategies in the 10% data setting underscores the
importance of leveraging multiple perspectives to
mitigate instability in low-resource conditions.
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Settings 50% 20%
Arg-I Arg-C Arg-I Arg-C

GEMS 76.3 73.0 72.0 67.9

w/o h
′o 73.8 70.2 70.0 64.7

w/o h
′s 73.1 69.6 69.3 64.5

w/o steer 69.0 65.1 63.4 59.4

Table 3: Effect of different event steer settings in
ACE05-E dataset (F1-score,%).

Settings 50% 20%

Std.↓ BBox Vol.↑ Std.↓ BBox Vol.↑
GEMSwith steer 0.076 647.0 0.070 586.0
GEMSw/o steer 0.081 524.8 0.077 457.1

Table 4: Results of standard deviation (Std.) and log
bounding box volume (BBox Vol.) of output argument
word representations from decoder in ACE05-E dataset.
↓ means lower is better, while ↑ means higher is better.
The best results are denoted in bold.

Impact of various numbers of permutations.
We investigate how the GEMS’s performance
varies under different numbers of prompt permuta-
tions (m). As illustrated in Figure 3, transitioning
from single-perspective to multi-perspective train-
ing and inference yields substantial performance
gains. Specifically, the Arg-C F1-score improves
by 1.61% to 8.83% as the number of permuta-
tions increases from 1 to 4, with the most signif-
icant improvements observed under 10% training
data. Beyond 4 permutations, performance begins
to plateau and slightly decline within the 4 to 8
range, suggesting diminishing returns and poten-
tial noise introduced by excessive prompt permuta-
tions. The optimal configuration consistently falls
with 4 prompt permutations in our case.

4.4 Effectiveness of Event-specific Steering

Table 3 presents the F1-score results of GEMS
under different event-specific steering settings on
ACE05-E, evaluated with 50% and 20% of the train-
ing data. The removal of event-specific steering
(w/o steering) results in substantial performance
degradation, with F1 scores dropping by 7.3% and
8.6%. To further analyze the contributions of dif-
ferent steering components, we evaluate the ef-
fect of removing each branch of the cross-attention
module. The exclusion of ontology-oriented steer-
ing (w/o h

′O) leads to 2.0% to 3.2% performance
drop, indicating that structured knowledge from
the ontology space is essential for guiding event
argument extraction. Similarly, removing context-
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Figure 4: Visualization of output argument word rep-
resentations during decoding. We compare the disper-
sion area in samples associated with two event types
(Contact, Justice) under two model settings (with and
without Event Steer) in ACE05-E dataset.

oriented semantic representation (w/o h
′s) leads

to a similar 2.7% to 3.4% performance decline.
These effects are more pronounced with 20%
training data. These findings confirm that event-
specific steering is particularly beneficial in data-
scarce environments, providing structured guid-
ance that enhances model robustness.

To assess the impact of event steering on stabi-
lizing decoding and enhancing token diversity, we
calculate the standard deviation of cosine similar-
ity between output argument word representations
and the volume of their bounding boxes (Appendix
C.2). As shown in Table 4, employing Event-
specific Steering significantly increases the log
bounding box volume, which reflects an expanded
word representation space and promotes more di-
verse token generation. Additionally, we ob-
serve a reduction in the standard deviation of co-
sine similarity among tokens, suggesting a more
uniform token distribution across generated argu-
ments. These results demonstrate that event steer-
ing enhances the diversity of the representation
space, improving the robustness of the model and
mitigating the risk of representation collapse.

In order to more intuitively observe the guiding
effect of event steering, we visualize the output ar-
gument word representations during the inference
phase. Specifically, we collect the decoder out-
put hidden states for samples of two event types
(Contact, Justice) from the test dataset. Then, we
apply Singular Value Decomposition (SVD) to re-
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Figure 5: Performance on multiple events in ERE-EN.

Model ACE05-E ERE-EN

1% 2% 3% 1% 2% 3%

PAIE 31.1 35.8 42.6 16.5 44.3 49.1
AMPEREAMRBart 34.5 33.8 45.5 34.7 52.6 58.9
AMPEREAMRRoberta 36.2 37.1 46.7 32.6 53.4 58.5
TagPrime 25.7 30.3 41.6 33.6 49.8 57.3
Scented-EAE 28.1 30.2 45.4 32.2 45.3 58.2
DEEIA 24.2 31.2 39.5 26.4 41.0 47.6

GEMS 36.8 40.5 48.5 36.0 54.9 59.8

Table 5: Performance on extreme low-resource scenar-
ios (Arg-C F1,%).

duce the hidden states of the argument tokens to a
two-dimensional plane, as shown in Figure 4. Af-
ter adding event steering, the dispersion area of
tokens increases significantly, indicating that the
GEMS’s learned word vectors are more widely dis-
tributed in the feature space. This suggests better
representation capability and enhanced generation
diversity brought by the Event-specific Steering.

4.5 Performance on Multiple Events

In this section, we examine the effectiveness of
the proposed method in handling multi-event sce-
narios. We utilize the ERE-EN dataset, which con-
tains a higher proportion of multi-event instances
compared to ACE05-E, and categorize the develop-
ment sets based on event counts. As demonstrated
in Figure 5, we observe a declining trend in per-
formance for all models as the number of events
increases across three different training data pro-
portion scenarios. We attribute this decline to the
increased complexity of processing more events,
which requires the model to handle longer text and
more intricate contextual relationships. Addition-
ally, we observe a significant performance drop in
AMPEREAMRRoberta and AMPEREAMRBart when
the number of events exceeds two. In contrast,
GEMS shows a notable improvement in multi-
event contexts, highlighting its superiority in dis-
tinguishing the correlations between events.

Model ACE05-E

1% 5% 10% 100%

UIE 12.8 30.4 36.3 69.3
InstructUIEFlanT5-11B - - - 56.8
GoLLIECode-LLaMA-34B - - - 68.6
LLaMALLaMA2-7B 33.3 46.3 52.3 -
KnowCoderLLaMA2-7B 38.5 48.3 55.1 70.3

GEMST5-large 36.8 53.9 61.7 74.6

Table 6: Comparison with fine-tuning LLMs (Arg-C
F1,%).

4.6 Performance under Extreme
Low-resource Settings

To further evaluate the effectiveness of GEMS
in extreme low-resource scenarios, we follow the
sampling strategy of Hsu et al. (2022) and train
our model on 1%, 2%, and 3% of the training
data, while testing on the full original test set.
The results, presented in Table 5, demonstrate
that GEMS consistently outperforms all base-
line methods across both ACE05-E and ERE-EN
datasets, reinforcing its robustness in data-scarce
environments. Quantitatively, GEMS achieves
36.8, 40.5, and 48.5 Arg-C F1 on ACE05-E,
surpassing the previous best-performing model,
AMPEREAMRRoberta, by 0.6%, 3.4%, and 1.8%
points in the 1%, 2%, and 3% settings, respec-
tively. Similar trend can be observed in ERE-EN
dataset. Unlike other baselines that struggle with
extreme data limitations, as PAIE achieves only
16.5% on the ERE-EN dataset with 1% data, GEMS
maintains a relatively high 36.0%. These results
underscore GEMS’ advantage in low-resource set-
tings, where its multi-perspective approach lever-
ages diverse prompts and ontology-guided steer-
ing to extract event arguments.

4.7 Comparison with LLMs
To further assess the generalization ability of
GEMS for EAE task, we compare its performance
with fine-tuned Large Language Models (LLMs),
following the experimental setup used in Li et al.
(2024). We conduct this comparison across four
different partitions of the original training sets
(1%, 5%, 10%, 100%), and detailed descriptions
of models are provided in Appendix B.1.

To evaluate the effectiveness of our design on
LLMs, we replicate similar fine-tuning experi-
ments using FlanT5-11B, Code-LLaMA-34B and
LLaMA2-7B as described in Li et al. (2024). As
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shown in Table 6, GEMS significantly outper-
forms the fine-tuned LLMs across all data splits.
Specifically, GEMS achieves an Arg-C F1 score of
36.8% with 1% data, 53.9% with 5%, 61.7% with
10%, and 74.6% with 100%, outperforming the
best performing LLM models at each respective
data proportion, except with 1% training data. For
instance, KnowCoder fine-tuned with LLaMA2-
7B achieves 38.5% at 1%, 48.3% at 5%, and 55.1%
at 10%, but GEMS shows a clear advantage in all
low-resource settings, particularly at 5% and 10%,
where GEMS surpasses it by 5.6% and 6.6%, re-
spectively. These results highlight our model’s
strong generalization with limited training data.

4.8 Case Study

We conduct a case study to assess GEMS’s perfor-
mance in multi-event extraction. As shown in Ta-
ble 7, the document presents a scenario with two
identical events, which share overlapping argu-
ments “McCarthy”. This situation highlights the
challenge of extracting event arguments when mul-
tiple arguments share the same role within a single
event and when arguments are repeated across dif-
ferent events. By leveraging an ontology-driven
steering mechanism, GEMS successfully captures
the shared characteristics of these overlapping ar-
guments within a semantically enriched token rep-
resentation space. Without the event-specific con-
text supervision during decoding, GEMS fails
to predict “BZW”, “Kleinwort Benson”, and the
overlapping argument "McCarthy" in Event 1.
Moreover, for multi-word argument terms such as
“Department” and “Department of Trade and In-
dustry”, GEMS effectively distinguishes between
potential spans and accurately defines the bound-
aries of multi-word argument terms.

5 Conclusion

In this paper, we present GEMS, a generation-
based framework for EAE that leverages Multi-
perspective prompts and ontology-guided Steer-
ing. By using multiple unanswered prompts to pre-
dict event arguments in different orders, GEMS
effectively captures the interactions among event
elements. The ontology-driven steering mecha-
nism, implemented through a dual-branch cross-
attention process, ensures that the generated argu-
ments are contextually relevant and aligned with
event-specific knowledge. Extensive experiments
on the ACE05-E and ERE-EN datasets show that

Context: As well as previously holding senior positions at
Barclays Bank[Entity], BZW[Entity] and Kleinwort Benson[Entity],

McCarthy[Person] was formerly a top civil servant
at the Department of Trade and Industry[Entity].

Event1: Personnel:End-Position; Trigger: previously
Event2: Personnel:End-Position; Trigger: formerly

GEMS

Event1: Barclays Bank[Entity]; BZW[Entity];
Kleinwort Benson[Entity]; McCarthy[Person] ;

Event2: McCarthy[Person] ;
Department of Trade and Industry[Entity];

GEMSw/o steer

Event1: Barclays Bank[Entity]; BZW[Entity] ;
Kleinwort Benson[Entity] ; McCarthy[Person] ;

Event2: McCarthy[Person] ; Department[Entity] 7;

AMPERERoberta

Event1: Barclays Bank[Entity]; BZW[Entity];
Kleinwort Benson[Entity]; McCarthy[Person] ;

Event2: McCarthy[Person] ;
Department of Trade[Entity] 7; Industry[Entity] 7;

TagPrime

Event1: Barclays Bank[Entity] ; BZW[Entity];
Kleinwort Benson[Person] 7; McCarthy[Person] ;

Event2: McCarthy[Person] ;
Department of Trade and Industry[Entity];

DEEIA

Event1: Barclays Bank[Entity]; BZW[Entity];
Kleinwort Benson[Entity] ; McCarthy[Person] ;

Event2: McCarthy[Person] ;
Department of Trade[Entity] 7; Industry[Entity] 7;

Table 7: Case study on ACE05-E with 50% training data.
Red crossing line indicates missing predictions. Over-
lapping argument is Highlighted.

GEMS outperforms existing state-of-the-art mod-
els, particularly in low-resource settings.

Limitation

We acknowledge several limitations of our ap-
proach. First, the computational cost of GEMS
increases with the number of multi-perspective
prompt permutations. Second, GEMS currently
lacks an adaptive mechanism for selecting optimal
permutations, relying instead on predefined set-
tings. More intelligent strategies could improve ef-
ficiency. Finally, GEMS could be further extended
to structured information extraction tasks, present-
ing opportunities for future research.

Acknowledgements

We would like to thank the anonymous review-
ers for their valuable discussion and construc-
tive feedback. This work was supported by the
National Natural Science Foundation of China
(U22B2061), the National Key R&D Program of
China (2022YFB4300603) and the Natural Sci-
ence Foundation of Sichuan, China (2024NS-
FSC0496).

26400



References
Zied Bouraoui, Jose Camacho-Collados, and Steven

Schockaert. 2020. Inducing relational knowledge
from bert. In The 34th AAAI Conference on Ar-
tificial Intelligence, AAAI 2020, The 32nd Innova-
tive Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The 10th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, vol-
ume 34, pages 7456–7463. AAAI Press.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176,
Beijing, China. Association for Computational Lin-
guistics.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, and 12 others.
2022. Scaling instruction-finetuned language mod-
els. abs/2210.11416, CoRR.

Nan Ding, Chunming Hu, Kai Sun, Samuel Mensah,
and Richong Zhang. 2022. Explicit role interac-
tion network for event argument extraction. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2022, pages 3475–3485, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Xinya Du and Claire Cardie. 2020a. Document-level
event role filler extraction using multi-granularity
contextualized encoding. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 8010–8020, Online. Asso-
ciation for Computational Linguistics.

Xinya Du and Claire Cardie. 2020b. Event extraction
by answering (almost) natural questions. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, pages 671–
683, Online. Association for Computational Linguis-
tics.

Zhibin Gou, Qingyan Guo, and Yujiu Yang. 2023.
Mvp: Multi-view prompting improves aspect senti-
ment tuple prediction. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 4380–4397.
Association for Computational Linguistics.

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai
Sun, Nan Jiang, Tarek Abdelzaher, and Heng Ji.
2024. Word embeddings are steers for language

models. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 16410–16430,
Bangkok, Thailand. Association for Computational
Linguistics.

I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee,
Scott Miller, Prem Natarajan, Kai-Wei Chang, and
Nanyun Peng. 2022. DEGREE: A data-efficient
generation-based event extraction model. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1890–1908, Seattle, United States. Association for
Computational Linguistics.

I-Hung Hsu, Kuan-Hao Huang, Shuning Zhang,
Wenxin Cheng, Prem Natarajan, Kai-Wei Chang,
and Nanyun Peng. 2023a. TAGPRIME: A unified
framework for relational structure extraction. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 12917–12932, Toronto, Canada. As-
sociation for Computational Linguistics.

I-Hung Hsu, Zhiyu Xie, Kuan-Hao Huang, Prem
Natarajan, and Nanyun Peng. 2023b. AMPERE:
AMR-aware prefix for generation-based event ar-
gument extraction model. In Proceedings of the
61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 10976–10993, Toronto, Canada. Association
for Computational Linguistics.

Mengting Hu, Yike Wu, Hang Gao, Yinhao Bai, and
Shiwan Zhao. 2022. Improving aspect sentiment
quad prediction via template-order data augmenta-
tion. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 7889–7900, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu
Xie, Zixuan Zhang, Prem Natarajan, Kai-Wei
Chang, Nanyun Peng, and Heng Ji. 2024. Tex-
tEE: Benchmark, reevaluation, reflections, and fu-
ture challenges in event extraction. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 12804–12825, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020a. How can we know what language
models know? 8:423–438, Transactions of the As-
sociation for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020b. How can we know what language
models know? 8:423–438, Transactions of the As-
sociation for Computational Linguistics.

Muhammad Uzair Khattak, Syed Talal Wasim, Muza-
mmal Naseer, Salman Khan, Ming-Hsuan Yang,
and Fahad Shahbaz Khan. 2023. Self-regulating
prompts: Foundational model adaptation without

26401

https://doi.org/10.1609/AAAI.V34I05.6242
https://doi.org/10.1609/AAAI.V34I05.6242
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.18653/v1/2022.findings-emnlp.254
https://doi.org/10.18653/v1/2022.findings-emnlp.254
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/v1/2020.emnlp-main.49
https://doi.org/10.18653/V1/2023.ACL-LONG.240
https://doi.org/10.18653/V1/2023.ACL-LONG.240
https://doi.org/10.18653/v1/2024.acl-long.864
https://doi.org/10.18653/v1/2024.acl-long.864
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2022.naacl-main.138
https://doi.org/10.18653/v1/2023.acl-long.723
https://doi.org/10.18653/v1/2023.acl-long.723
https://doi.org/10.18653/v1/2023.acl-long.615
https://doi.org/10.18653/v1/2023.acl-long.615
https://doi.org/10.18653/v1/2023.acl-long.615
https://doi.org/10.18653/v1/2022.emnlp-main.538
https://doi.org/10.18653/v1/2022.emnlp-main.538
https://doi.org/10.18653/v1/2022.emnlp-main.538
https://doi.org/10.18653/v1/2024.findings-acl.760
https://doi.org/10.18653/v1/2024.findings-acl.760
https://doi.org/10.18653/v1/2024.findings-acl.760
https://doi.org/10.1162/TACL_A_00324
https://doi.org/10.1162/TACL_A_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324


forgetting. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 15190–
15200.

Sua Lee, Kyubum Shin, and Jung Ho Park. 2025.
Weighted multi-prompt learning with description-
free large language model distillation. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Hao Li, Yanan Cao, Yubing Ren, Fang Fang, Lanxue
Zhang, Yingjie Li, and Shi Wang. 2023. Intra-
event and inter-event dependency-aware graph net-
work for event argument extraction. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 6362–6372, Singapore. Asso-
ciation for Computational Linguistics.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-
level event argument extraction by conditional gener-
ation. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 894–908, Online. Association for Com-
putational Linguistics.

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren,
Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu,
Xiang Li, Zhilei Hu, and 1 others. 2024. Know-
coder: Coding structured knowledge into llms for
universal information extraction. In Proceedings
of the 62st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
Bangkok, Thailand. Association for Computational
Linguistics.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7999–8009, Online. Association for
Computational Linguistics.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, Online, November 16-20, 2020, pages 1641–
1651. Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
abs/2107.13586(9):1–35, CoRR.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
55(9), ACM Comput. Surv.

Wanlong Liu, Li Zhou, Dingyi Zeng, Yichen Xiao,
Shaohuan Cheng, Chen Zhang, Grandee Lee, Malu
Zhang, and Wenyu Chen. 2024. Beyond single-
event extraction: Towards efficient document-level
multi-event argument extraction. In Findings of
the Association for Computational Linguistics: ACL
2024, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Xiao Liu, Heyan Huang, Ge Shi, and Bo Wang. 2022.
Dynamic prefix-tuning for generative template-
based event extraction. In Proceedings of the 60th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
5216–5228, Dublin, Ireland. Association for Com-
putational Linguistics.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018.
Jointly multiple events extraction via attention-
based graph information aggregation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1247–1256,
Brussels, Belgium. Association for Computational
Linguistics.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu
Lin, Xianpei Han, Le Sun, and Hua Wu. 2022. Uni-
fied structure generation for universal information
extraction. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5755–5772, Dublin,
Ireland. Association for Computational Linguistics.

Lei Luo and Yajing Xu. 2023. Context-aware
prompt for generation-based event argument extrac-
tion with diffusion models. In Proceedings of the
32nd ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’23, page
17171725, New York, NY, USA. Association for
Computing Machinery.

Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi
Chen, Kun Wang, and Jing Shao. 2022. Prompt for
extraction? PAIE: Prompting argument interaction
for event argument extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
6759–6774, Dublin, Ireland. Association for Com-
putational Linguistics.

26402

https://openreview.net/forum?id=NDLmZZWATc
https://openreview.net/forum?id=NDLmZZWATc
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2023.findings-emnlp.421
https://doi.org/10.18653/v1/2023.findings-emnlp.421
https://doi.org/10.18653/v1/2023.findings-emnlp.421
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.48550/arXiv.2403.07969
https://doi.org/10.48550/arXiv.2403.07969
https://doi.org/10.48550/arXiv.2403.07969
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/v1/2020.acl-main.713
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.128
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.128
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.48550/arXiv.2405.01884
https://doi.org/10.48550/arXiv.2405.01884
https://doi.org/10.48550/arXiv.2405.01884
https://doi.org/10.18653/v1/2022.acl-long.358
https://doi.org/10.18653/v1/2022.acl-long.358
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.18653/v1/2022.acl-long.395
https://doi.org/10.1145/3583780.3614820
https://doi.org/10.1145/3583780.3614820
https://doi.org/10.1145/3583780.3614820
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466
https://doi.org/10.18653/v1/2022.acl-long.466


Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai, Ci-
cero Nogueira dos Santos, Bing Xiang, and Ste-
fano Soatto. 2021. Structured prediction as transla-
tion between augmented natural languages. In 9th
International Conference on Learning Representa-
tions, Virtual Event, Austria, May 3-7, 2021. Open-
Review.net.

Amir Pouran Ben Veyseh, Tuan Ngo Nguyen, and
Thien Huu Nguyen. 2020. Graph transformer net-
works with syntactic and semantic structures for
event argument extraction. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 3651–3661, Online. Association for Computa-
tional Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Compu-
tational Linguistics.

Yubing Ren, Yanan Cao, Ping Guo, Fang Fang, Wei
Ma, and Zheng Lin. 2023. Retrieve-and-sample:
Document-level event argument extraction via hy-
brid retrieval augmentation. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
293–306, Toronto, Canada. Association for Compu-
tational Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
and 6 others. 2023. Code llama: Open foundation
models for code. abs/2308.12950, CoRR.

Oscar Sainz, Iker García-Ferrero, Rodrigo Agerri,
Oier Lopez de Lacalle, German Rigau, and Eneko
Agirre. 2024. Gollie: Annotation guidelines im-
prove zero-shot information-extraction. In The 20th
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Main Vol-
ume, Online, April 19 - 23, 2021, pages 255–269.
Association for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021b. It‘s not just
size that matters: Small language models are also
few-shot learners. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2339–2352, Online. As-
sociation for Computational Linguistics.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang
Sui. 2018. Jointly extracting event triggers and
arguments by dependency-bridge rnn and tensor-
based argument interaction. In Proceedings of
the 32nd AAAI Conference on Artificial Intelli-
gence and 30th Innovative Applications of Artifi-
cial Intelligence Conference and 8th AAAI Sympo-
sium on Educational Advances in Artificial Intel-
ligence, AAAI’18/IAAI’18/EAAI’18, pages 5916–
5923. AAAI Press.

Beth M. Sundheim. 1992. Overview of the fourth Mes-
sage Understanding Evaluation and Conference. In
Proceedings of the 4th Conference on Message Un-
derstanding, MUC 1992, McLean, Virginia, USA,
June 16-18, 1992, pages 3–21. Association for Com-
putational Linguistics.

Francesco Tonolini, Nikolaos Aletras, Jordan Massiah,
and Gabriella Kazai. 2024. Bayesian prompt ensem-
bles: Model uncertainty estimation for black-box
large language models. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 12229–12272, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton-Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, and 49 others. 2023. Llama 2: Open foundation
and fine-tuned chat models. abs/2307.09288, CoRR.

David Wadden, Ulme Wennberg, Yi Luan, and Han-
naneh Hajishirzi. 2019. Entity, relation, and event
extraction with contextualized span representations.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, pages 5784–5789, Hong Kong,
China. Association for Computational Linguistics.

Sijia Wang, Mo Yu, Shiyu Chang, Lichao Sun, and Lifu
Huang. 2022. Query and extract: Refining event ex-
traction as type-oriented binary decoding. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 169–182, Dublin, Ireland. As-
sociation for Computational Linguistics.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang,
Siyuan Li, and Chunsai Du. 2023. Instructuie:
Multi-task instruction tuning for unified information
extraction. abs/2304.08085, CoRR.

Jing Xu, Dandan Song, Siu Cheung Hui, Fei Li, and
Hao Wang. 2023. Multi-view entity type overde-
pendency reduction for event argument extraction.
265(C), Knowledge-Based Systems.

Yu Yang, Jinyu Guo, Kai Shuang, and Chenrui Mao.
2024. Scented-EAE: Stage-customized entity type

26403

https://arxiv.org/abs/2101.05779
https://arxiv.org/abs/2101.05779
https://doi.org/10.18653/v1/2020.findings-emnlp.326
https://doi.org/10.18653/v1/2020.findings-emnlp.326
https://doi.org/10.18653/v1/2020.findings-emnlp.326
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2023.acl-long.17
https://doi.org/10.18653/v1/2023.acl-long.17
https://doi.org/10.18653/v1/2023.acl-long.17
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://openreview.net/forum?id=Y3wpuxd7u9
https://openreview.net/forum?id=Y3wpuxd7u9
https://doi.org/10.18653/V1/2021.EACL-MAIN.20
https://doi.org/10.18653/V1/2021.EACL-MAIN.20
https://doi.org/10.18653/V1/2021.EACL-MAIN.20
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.1609/AAAI.V32I1.12034
https://doi.org/10.1609/AAAI.V32I1.12034
https://doi.org/10.1609/AAAI.V32I1.12034
https://doi.org/10.3115/1072064.1072066
https://doi.org/10.3115/1072064.1072066
https://doi.org/10.18653/v1/2024.findings-acl.728
https://doi.org/10.18653/v1/2024.findings-acl.728
https://doi.org/10.18653/v1/2024.findings-acl.728
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/2022.findings-acl.16
https://doi.org/10.18653/v1/2022.findings-acl.16
https://doi.org/10.48550/ARXIV.2304.08085
https://doi.org/10.48550/ARXIV.2304.08085
https://doi.org/10.48550/ARXIV.2304.08085
https://doi.org/10.1016/j.knosys.2023.110375
https://doi.org/10.1016/j.knosys.2023.110375
https://doi.org/10.18653/v1/2024.findings-acl.309


embedding for event argument extraction. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2024, pages 5222–5235, Bangkok, Thai-
land and virtual meeting. Association for Computa-
tional Linguistics.

Jian Zhang, Changlin Yang, Haiping Zhu, Qika Lin,
Fangzhi Xu, and Jun Liu. 2024. A semantic mention
graph augmented model for document-level event ar-
gument extraction. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation, pages
1577–1587, Torino, Italia. ELRA and ICCL.

Kaihang Zhang, Kai Shuang, Xinyue Yang, Xuyang
Yao, and Jinyu Guo. 2023. What is overlap knowl-
edge in event argument extraction? APE: A cross-
datasets transfer learning model for EAE. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 393–409, Toronto, Canada. Associa-
tion for Computational Linguistics.

Zixuan Zhang and Heng Ji. 2021. Abstract Meaning
Representation guided graph encoding and decoding
for joint information extraction. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 39–49, On-
line. Association for Computational Linguistics.

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. 2002. En-
sembling neural networks: Many could be better
than all. 137(1):239–263, Artificial Intelligence.

Current Term Candidate Token List

[T] Input sentence, [SSEP]
[A] Input sentence, “null”, [SSEP]
[R] All argument roles, [SSEP]

[SSEP] [T], [A], [R]

Table 8: Candidate token lists of current terms in de-
coding process.

A Constrained Decoding Scheme

Given an input sentence, we construct multiple
prompts and corresponding targets in the same lin-
earized structure to guide the generation format.
However, the generated results may not conform
to the target schema format, especially in low-
resource settings (Lu et al., 2021, 2022; Gou et al.,
2023).

To make sure the predicted output complies
with the mandatory format, we apply the con-
strained decoding (CD) algorithm in experiments.
Rather than search the whole vocabulary for the
next token to decode, which may make the model
generate invalid sequences that do not match our
expectations, CD adjusts the candidate list dynam-
ically in terms of the current state token by token.
If the current token is decoded as “[”, which means
the next token should be selected from a list of
terms, i.e., “[T]”, “[A]”, “[R]” and “[SSEP]”. Ad-
ditionally, CD tracks the current term and decodes
the next following tokens based on Table 8.

B Baselines and Dataset

B.1 Baselines

We compare GEMS with several state-of-the-art
baselines in three categories:

(1) Multi-label Classification models:
DyGIE++ (Wadden et al., 2019) performs event

argument extraction by scoring spans with contex-
tualized representations, capturing both local and
global context for improved task performance.

OneIE (Lin et al., 2020) is a joint event ar-
gument extraction framework that incorporates
global features to capture cross-task and cross-
instance dependencies.

Query and Extract (Wang et al., 2022) uses
event types and argument roles as natural language
queries, leveraging attention mechanisms to cap-
ture semantic correlations and unify event annota-
tions from various ontologies.
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Hyperparameter Values
Batch size 8, 16

Weight decay 0.01
Optimizer AdamW
Adam ϵ 1 ×10−8

Max sequence length 250
Permutation number 4

Attention heads a 4

Table 9: Hyperparameters for GEMS across both
benchmarks.

AMR-IE (Zhang and Ji, 2021) introduces an
AMR-guided framework that captures non-local
word connections by aggregating neighborhood in-
formation and uses hierarchical decoding based on
AMR graph structure.

DEEIA (Liu et al., 2024) extracts event argu-
ments simultaneously using a multi-event prompt
mechanism with dependency-guided encoding
and event-specific information aggregation to en-
hance context understanding.

(2) Sequential Generation models:
PAIE (Ma et al., 2022) integrates prompt tuning

with span selectors for each role, using multi-role
prompts and bipartite matching loss for joint opti-
mization to extract event arguments efficiently.

DEGREE (Hsu et al., 2022) is a data-efficient
model for low-resource event argument extraction
that formulates it as a conditional generation prob-
lem, using manually designed prompts to generate
event summaries.

AMPERE (Hsu et al., 2023b) combines
discrete prompts with resource-enhanced meth-
ods, utilizing Abstract Meaning Representation
(AMR)-aware prefixes to guide the generation pro-
cess and improve event argument extraction.

TagPrime (Hsu et al., 2023a) employs
structure-generation techniques along with
resource-enhanced methods, aiming to unify
relational structure extraction tasks through a
unified framework.

Scented-EAE (Yang et al., 2024) utilizes dis-
crete prompts to guide event argument extraction,
focusing on stage-customized entity type embed-
dings to enhance non-autoregressive generation.

(3) LLM-driven models:
UIE (Lu et al., 2022) is a text-to-structure gener-

ation framework that models diverse information
extraction tasks, adapts to linearized target event
structure using schema-based prompts.

InstructUIE (Wang et al., 2023) is a text-
to-structure generation framework built on the
instruction-tuning mechanism, leveraging FlanT5-
11B5 (Chung et al., 2022) to model diverse tasks
and capture inter-task dependencies.

GoLLIE (Sainz et al., 2024) utilizes Code-
LLaMA6 (Rozière et al., 2023) as its backbone
for event argument extraction, refining on human-
annotated data to effectively follow annotation
guidelines.

LLaMA (Touvron et al., 2023) refers to the di-
rect fine-tuning of LLaMA2-7B7 on partial train-
ing data, following the approach of Li et al. (2024).

KnowCoder (Li et al., 2024) utilizes LLaMA2
for event argument extraction through code gener-
ation, incorporating a code-style schema represen-
tation and a two-phase learning framework with
code pretraining and instruction tuning.

Implementation Details. For the models we
re-trained, we keep all hyper-parameters the same
with default settings in their original papers. For
GEMS, we train model on single NVIDIA-A100
GPU. For each setting, we train models with 5
fixed seeds and 2 learning rates [1e-4, 9e-5]. Then
we record the test set performance of the model
that performs best on the development set for each
random seed. The final reported performance is
the average value of results w.r.t five different
seeds. We list other important hyperparameters
in Table 9. The event-specific ontology descrip-
tion can be accessed at https://nlp.jhu.edu/
schemas/.

B.2 Datasets
The dataset statistics of ACE05-E and ERE-EN for
main experiments are presented in Table 10. After
preprocessing, ACE05-E has 33 event types and 22
argument roles, while ERE-EN has 38 event types
and 21 argument roles in total. we pre-process
each dataset by splitting documents into individual
sentence. After splitting, ACE05-E contains 5,057
events with 6,040 arguments, and ERE-EN contains
7,284 events with 10,476 arguments in total. To
further investigate the performance of GEMS in
low-resource scenarios, we present statistics for
subsets of the original dataset, including 5%, 10%,
20%, 30%, and 50% of the data. The statistics on
the number of multiple events discussed in Section
4.5 are presented in Table 6.

5https://huggingface.co/google/flan-t5-xxl
6https://huggingface.co/codellama
7https://huggingface.co/meta-llama/Llama-2-7b
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Dataset Split Docs Sents Events Event
Types Args Arg

Types

ACE05-E

5% 25 649 212 27 228 21
10% 50 1688 412 28 461 21
20% 110 3467 823 33 936 22
30% 160 5429 1368 33 1621 22
50% 260 8985 2114 33 2426 22

100% 529 17172 4202 33 4859 22

Dev 28 923 450 21 605 22
Test 40 832 403 31 576 20

ERE-EN

5% 20 701 437 31 640 21
10% 40 1536 618 37 908 21
20% 80 2848 1231 38 1656 21
30% 120 4382 1843 38 2632 21
50% 200 7690 3138 38 4441 21

100% 396 14736 6208 38 8924 21

Dev 31 1209 525 34 730 21
Test 31 1163 551 33 822 21

Table 10: Statistics of datasets used in experiments.
“Split” denotes the proportion of training data sampled
from original datasets.

Event Nums 1 2 3 ≥ 4

Train Set (100%) 3966 2787 1225 946
Train Set (20%) 779 483 200 194
Train Set (5%) 229 203 123 85

Dev Set 295 239 91 105
Test Set 334 245 160 83

Table 11: Additional statistics on the number of multi-
ple events in Section 4.5.

C Additional Experimental Analysis

C.1 Analysis on Prompt Permutations and
Aggregation Strategies

We provide further analysis on the rank aggrega-
tion strategy used during inference. The detailed
experimental results are provided in Table 12 and
13. To select the most promising prompt orders,
we rank all possible prompts based on their av-
erage entropy. Specifically, after constructing a
set of input sequences xpi from the text S as de-
scribed in Section 3.2, we query the pre-trained
language model to obtain the scores for each se-
quence (Equation 9), based on the word logit for
each generated token yj . Each input sequence xpi
corresponding to permutation pi is then ranked,
and the outputs from the top m-ranked permuta-
tions are aggregated to produce the final results.

Scorerank =

ny∑

j

log P
(
yj |Hxpi

, y<j , fCAM

)
, (9)

As stated in Section 4.3, no single prompt
permutation consistently outperforms the others

across varying training data sizes. While the
prompt permutation [T][R][A] may outperform
other variants, achieving an Arg-I F-1 score of
76.65% under the fully supervised setting, it falls
short compared to all other variants when only
30% of the training data is used. This observa-
tion further reinforces the effectiveness of our pro-
posed aggregation strategies, with the voting strat-
egy emerging as the most stable and effective ap-
proach among the three evaluated strategies.

C.2 Interpretation of Assessment Indicators
for Event Steer in Table 4

Here is the supplementary explanation for Table 4.
We calculate the standard deviation of the cosine
similarity between the output argument word rep-
resentations. Given n generated argument tokens,
where each token’s hidden state is denoted as h′,
the cosine similarity between any two tokens h′i
and h′j is computed as:

ci,j =
h′i · h′j

∥h′i∥∥h′j∥
, i ̸= j (10)

The number of ci,j is k = n(n− 1)/2. The
standard deviation is then computed as:

Std. =

√√√√√1

k

k∑

i≠j


ci,j −

1

k

k∑

i′ ̸=j′
ci′,j′


 (11)

Additionally, the volume of the bounding boxes
surrounding these tokens is computed as:

BBox Vol. =
d∏

i=1

(max(h′[:, i])−min(h′[:, i]))

(12)
where d denotes the dimension of h′.

C.3 Effectiveness on Long-range Dependency
in WikiEvent

Event arguments in datasets like ACE05-E and
ERE-EN are typically confined to single sentences,
limiting the scope of argument extraction to more
straightforward cases. However, in real-world sce-
narios, event arguments often span across multi-
ple sentences, requiring models to capture and link
long-range dependencies within the text. To eval-
uate how well models handle such complex cases,
we additionally use the WikiEvent dataset, which
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ACE05-E 100% 50% 30% 20% 10% 5%

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

pi

[T] [A] [R] 76.09 73.98 75.78 72.38 71.79 68.19 71.39 67.56 65.47 60.23 57.95 51.35
[T] [R] [A] 76.65 74.63 76.75 73.52 71.75 68.47 72.50 69.15 66.23 60.02 56.56 51.54
[A] [R] [T] 76.11 74.00 75.79 72.38 72.76 69.64 71.62 67.93 66.04 59.77 59.30 53.03
[R] [A] [T] 76.27 74.05 75.31 72.43 73.09 70.27 71.81 68.07 67.72 61.30 57.59 52.43

Agg
Oursrandom 75.78 73.21 75.98 72.24 71.75 68.47 71.72 67.82 66.79 60.58 57.56 51.31

Oursrank 75.09 72.86 75.89 72.51 72.70 69.66 71.81 67.80 67.04 60.80 56.41 50.68
Oursvote 76.64 74.56 76.26 72.99 73.23 69.86 71.95 67.85 67.83 61.71 59.91 53.93

Table 12: Detailed results for the effect of the each permutation of element order along with different aggregation
strategies in ACE05-E dataset (F1-score,%).

ERE-EN 100% 50% 30% 20% 10% 5%

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

pi

[T] [A] [R] 80.20 76.70 79.24 74.48 78.18 73.21 73.88 69.94 75.66 68.97 71.15 66.11
[T] [R] [A] 79.75 76.25 78.61 73.63 77.99 72.92 73.81 69.43 75.76 68.78 72.46 67.51
[A] [R] [T] 80.62 77.10 78.80 74.03 77.80 72.81 74.06 70.20 75.61 68.08 71.21 66.41
[R] [A] [T] 80.47 77.20 78.80 74.03 78.40 72.83 74.13 69.76 75.76 68.53 72.53 67.31

Agg
Oursrandom 79.80 76.67 78.73 73.97 77.97 72.76 73.44 69.18 75.50 68.24 70.98 65.90

Oursrank 79.93 76.67 78.68 73.90 77.55 72.56 74.17 69.65 75.71 68.17 72.09 67.01
Oursvote 80.22 76.76 78.77 74.10 78.47 73.40 74.41 70.35 76.22 69.08 72.14 67.17

Table 13: Detailed results for the effect of the each permutation of element order along with different aggregation
strategies in ERE-EN dataset (F1-score,%).

WikiEvent Arg-I Arg-C

PAIE 69.8 65.2
AMPERE 59.9 53.3
TagPrime 70.3 65.5
DEEIA♣ 68.3 64.0

GEMS 71.6 67.6

Table 14: Performance on passages with long-range de-
pendencies using the WikiEvent dataset (F1-scores,%).
We reproduce the methods with ♣ by using their re-
leased code. The rest are retrieved from Huang et al.
(2024). The best results are denoted in bold.

consists of passages where event arguments may
be distributed across longer text spans.

As shown in Table 14, our model outperforms
previous methods by 1.3% in Arg-I F1 and 2.1% in
Arg-C F1 as compared to the second-best perform-
ing model TagPrime. These improvements demon-
strate the ability of GEMS to effectively capture
and extract event arguments that extend over long-
range dependencies. Additionally, the results on
WikiEvent further demonstrate GEMS’s potential
to generalize across different datasets with vary-
ing levels of complexity. While the ACE05-E and
ERE-EN datasets are more focused on sentence-
level argument extraction, the WikiEvent dataset
pushes the boundaries by testing the models ability

to handle more intricate, long-range dependencies.

C.4 Argument Identification (Arg-I) Results

Table 15 presents the argument identification re-
sults following our main experiments in Table
1, showing the performance of our proposed
GEMS model in comparison to other state-of-the-
art methods across various data proportions for
both the ACE05-E and ERE-EN datasets. For the
methods marked with ♣, we re-implemented them
using their released code and repeated each ex-
periment setting five times with different random
seeds to ensure the reliability of the results. We
report the average Arg-I F1-scores for each model
under each data proportion. The detailed results
show that GEMS also excels in Arg-I F1-score,
maintaining strong consistency across different
training data proportions.

D Generality of Multi-perspective
Prompt Concept

To the best of our knowledge, prompt ensemble
or multi-prompt methods in event argument extrac-
tion are virtually non-existent, with the exception
of GEMS. To investigate the effectiveness of the
multi-perspective prompt concept, we explore var-
ious single-prompt methods by aggregating predic-
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Model ACE05-E Test Set ERE-EN Test Set

5% 10% 20% 30% 50% 100% 5% 10% 20% 30% 50% 100%

DyGIE++ (2019) 39.2 50.5 57.7 59.9 61.0 63.6 53.3 52.9 55.9 59.1 60.5 63.4
OneIE (2020) 41.3 55.4 64.6 67.8 72.0 73.7 55.5 62.1 67.9 71.9 72.3 75.2
AMR-IE (2021) 43.2 53.3 63.2 67.2 69.5 73.6 47.8 59.1 65.8 71.4 73.9 76.5
Query and Extract (2022) 36.8 33.1 45.6 51.1 56.1 62.4 35.1 46.7 52.1 57.7 64.5 70.4
DEEIA (2024)♣ 41.4 55.1 58.4 69.1 72.4 73.8 63.3 66.2 66.5 70.6 73.9 75.6

PAIE (2022) 52.2 62.0 67.8 71.3 72.8 75.0 65.1 71.1 68.7 72.6 74.2 76.6
DEGREE (2022) 47.7 63.0 64.2 70.3 71.4 75.6 66.4 71.2 72.3 74.1 77.4 78.2
AMPEREAMRBart (2023b)♣ 55.4 64.0 70.2 70.8 73.6 73.8 71.3 72.1 72.0 75.2 75.5 77.2
AMPEREAMRRoberta (2023b)♣ 59.7 66.1 66.7 71.4 73.6 75.3 71.5 73.0 72.0 74.0 76.6 77.3
TagPrime (2023a)♣ 49.8 63.3 70.3 72.4 74.8 76.1 68.1 70.9 74.4 75.9 78.5 79.3
Scented-EAE (2024)♣ 58.7 66.2 69.9 72.1 73.2 75.8 67.7 71.9 73.8 75.1 77.5 77.3

GEMS 59.9 67.8 72.0 73.2 76.3 76.6 72.1 76.2 74.4 78.5 78.8 80.2

Table 15: Argument identification results under different data proportion settings for ACE05-E and ERE-EN datasets
(F1-score,%). The best Arg-I F1-scores are denoted in bold and the second highest scores are underlined.

Settings
100% 50% 30% 20% 10% 5% 3% 2% 1%

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

Aggrandom(seed=42) 75.56 73.25 71.21 68.42 71.52 67.36 70.63 66.84 63.27 57.43 53.73 48.68 48.22 42.30 34.22 30.08 30.84 27.93

Aggrandom(seed=3407) 73.97 71.30 71.68 69.34 73.79 69.57 69.99 64.64 64.04 58.18 51.47 44.47 49.47 42.40 33.82 28.22 32.89 27.59

Aggvote≥ 3
4

74.22 72.78 73.26 72.02 73.45 70.72 68.46 67.00 62.00 59.57 47.92 44.93 44.15 42.36 23.68 22.48 18.86 18.83

Aggvote≥ 1
2

77.11 74.76 75.93 73.14 75.25 71.77 72.45 69.61 68.68 64.32 58.96 52.86 55.89 51.09 43.60 38.80 40.94 38.23

Aggvote≥ 1
4

72.66 69.44 72.05 69.12 69.92 64.94 68.18 63.46 66.57 59.47 59.59 50.33 55.14 46.18 46.18 38.07 48.52 39.10

Table 16: Performance on models aggregation under different data proportion settings for ACE05-E dataset (F1-
score,%). The best Arg-C F1-scores are denoted in bold.

Settings
100% 50% 30% 20% 10% 5% 3% 2% 1%

Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C Arg-I Arg-C

Aggrandom(seed=42) 79.20 75.39 75.45 71.49 75.82 71.62 72.58 69.12 70.47 64.93 67.74 61.72 62.43 57.43 53.69 49.85 36.62 31.96

Aggrandom(seed=3407) 76.81 73.35 74.17 69.88 75.31 71.85 71.95 67.48 72.3 67.32 66.84 61.91 62.64 57.47 53.29 48.59 36.36 31.71

Aggvote≥ 3
4

78.29 76.15 75.07 71.53 74.91 72.16 71.56 69.36 71.24 67.00 66.67 64.44 60.44 57.34 47.97 46.15 25.79 23.94

Aggvote≥ 1
2

79.90 76.92 77.88 73.32 77.35 73.50 75.68 71.50 75.31 69.69 72.90 66.50 67.06 61.48 60.56 56.16 42.21 35.67

Aggvote≥ 1
4

78.37 74.76 76.92 72.17 75.03 70.37 73.55 68.12 72.41 65.31 69.57 62.94 64.20 57.06 60.51 53.94 46.94 37.91

Table 17: Performance on models aggregation under different data proportion settings for ERE-EN dataset (F1-
score,%). The best Arg-C F1-scores are denoted in bold.
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tions from AMPEREAMRBart, AMPEREAMRRoberta,
TagPrime, and Scented-EAE using different ag-
gregation strategies on the ACE05-E and ERE-EN
datasets. Each model was trained three times
using three different random seeds, and the av-
erage argument prediction results were taken as
the model’s output. The experimental results are
presented in Tables 16 and 17. Although intro-
ducing multiple models increases deployment and
computational costs significantly, the performance
achieves a new state-of-the-art level. This demon-
strates the versatility and synergistic potential of
the multi-perspective prompt approach.

26409


