
Findings of the Association for Computational Linguistics: ACL 2025, pages 26274–26290
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

PLAY2PROMPT: Zero-shot Tool Instruction Optimization
for LLM Agents via Tool Play

Wei Fang†, Yang Zhang‡, Kaizhi Qian‡, James Glass†, Yada Zhu‡
†Massachusetts Institute of Technology, Cambridge MA, USA

‡MIT-IBM Watson AI Lab, Cambridge MA, USA
{weifang,glass}@mit.edu, {yang.zhang2,kqian}@ibm.com, yzhu@us.ibm.com

Abstract

Large language models (LLMs) are increas-
ingly integrated with specialized external tools,
yet many tasks demand zero-shot tool usage
with minimal or noisy documentation. Existing
solutions rely on manual rewriting or labeled
data for validation, making them inapplicable
in true zero-shot settings. To address these
challenges, we propose PLAY2PROMPT, an au-
tomated framework that systematically “plays”
with each tool to explore its input-output behav-
iors. Through this iterative trial-and-error pro-
cess, PLAY2PROMPT refines tool documenta-
tion and generates usage examples without any
labeled data. These examples not only guide
LLM inference but also serve as validation to
further enhance tool utilization. Extensive ex-
periments on real-world tasks demonstrate that
PLAY2PROMPT significantly improves zero-
shot tool performance across both open and
closed models, offering a scalable and effective
solution for domain-specific tool integration1.

1 Introduction

Recently, there has been growing research inter-
est in agentic large language model (LLM) frame-
works, where, rather than having LLMs answer
requests and queries from their own knowledge,
LLMs can call a set of external tools with special-
ized capabilities. This allows LLMs to address
more complex tasks and produce responses more
accurately (Mialon et al., 2023; Qin et al., 2024a).
One key challenge in developing agentic LLM
frameworks is how to dynamically learn to use new,
user-defined tools, which is crucial because having
a fixed, general-purpose tool set is often insufficient
for real-world scenarios requiring domain-specific
functionalities.

The existing mainstream paradigm for dynami-
cally incorporating new tools is by supplementing

1Source code is available at https://github.com/
wfangtw/play2prompt.

user-defined tools at inference time in a zero- or
few-shot manner via prompting (Lu et al., 2023;
Shen et al., 2023), leveraging zero-shot tool-calling
capabilities of current LLMs that have been tuned
with tool-use instructions. The success of this
paradigm depends on providing sufficient infor-
mation about the new tool in the prompt. Specif-
ically, existing approaches generally rely on two
types of information: ❶ Comprehensive tool doc-
umentation detailing the tool’s functionalities and
input/output formats, and ❷ In-context demonstra-
tions that include example queries and correspond-
ing tool calls (Hsieh et al., 2023; Patil et al., 2023).
Inadequate documentation can lead to failures in
tool usage, such as syntax errors in both zero-shot
and fine-tuned models (Zhang et al., 2023a), hallu-
cinations due to incomplete or incorrect tool doc-
umentation (Hsieh et al., 2023), and diminished
performance resulting from inadequate demonstra-
tions (Xu et al., 2023).

However, in many practical scenarios, it is of-
ten not realistic to rely on users, who are often
non-experts in AI, to provide adequate documenta-
tion for their tools, nor to craft tool-use examples.
When users do provide documentation, it may lack
crucial details needed for LLMs to call the tools
correctly. While automatic prompt optimization
techniques (Wang et al., 2024) could enhance tool
documentation, they still require sufficient tool-use
examples, which are unavailable in true zero-shot
settings. In short, without tool-use examples, nei-
ther polished documentation nor in-context demon-
strations can be supplied, leading to significant
performance degradation in integrating new tools.

To address these challenges in zero-shot tool
utilization, we introduce PLAY2PROMPT, an auto-
mated framework that generates both high-quality
tool documentation and tool-use demonstrations,
as illustrated in figure 1. Unlike prior works,
PLAY2PROMPT does not rely on any external la-
beled examples. Instead, it systematically interacts

26274

mailto:weifang@mit.edu
https://github.com/wfangtw/play2prompt
https://github.com/wfangtw/play2prompt


with the new tools—mimicking human trial-and-
error—and observes both successful and failed at-
tempts to gather evidence about each tool’s cor-
rect usage. Using insights from this “tool-play”,
PLAY2PROMPT creates example demonstrations
and refines the tool documentation that better guide
LLMs in subsequent inference.

PLAY2PROMPT consists of two steps. In Step
1, a set of tool-use examples are generated via a
trial-and-error process, where an LLM agent itera-
tively call the target tool with different invocation
parameters until correct invocation is found. Then,
for each correct tool invocation instance, a query
is generated such that it can be answered by the
tool invocation, forming a question-answer pair
as a tool-use example. In step 2, the tool docu-
mentation are refined, using the generated tool-use
examples as a validation set. In both steps, We em-
ploy self-reflection (Madaan et al., 2023; Pryzant
et al., 2023; Shinn et al., 2023) to generate error
feedback, thereby directing the search algorithm
towards progressively improved outputs. Because
PLAY2PROMPT operates entirely in a zero-shot
manner and is inherently task-agnostic, it offers a
practical and scalable solution for enhancing LLM
tool utilization without additional labeled data or
human intervention.

We evaluate PLAY2PROMPT with benchmark on
real-world scenarios. On the Berkeley Function-
Calling Leaderboard (Yan et al., 2024) and the Sta-
bleToolBench benchmark (Guo et al., 2024), our
approach consistently surpasses baseline methods
for both open (Dubey et al., 2024; Liu et al., 2025;
Lin et al., 2025) and closed models (Achiam et al.,
2023). Extensive experiments and analyses further
underscore the robustness of our approach.

Our contributions can be summarized as follows:

• We propose PLAY2PROMPT, a novel automated
framework that iteratively refines tool documen-
tation and generates usage examples, enabling
more effective zero-shot tool utilization without
any labeled data.

• PLAY2PROMPT integrates a search-based trial-
and-error process augmented with self-reflection,
allowing LLMs to explore and “play” with tools
to refine both tool documentation and demonstra-
tions for enhanced performance.

• PLAY2PROMPT is entirely zero-shot, scalable,
and task-agnostic, making it broadly applicable
across diverse tools and domains, and practical
for large-scale enhancement of LLM tool use

without additional manual effort.

2 Methodology

2.1 Problem Formulation and Notation.

A typical agentic LLM framework contains two
components: ❶ A task LLM, denoted asMT , and
❷ a set of tools, F = {F1:K}, where K represents
the number of tools, and 1 : K represents a set of
indices running from 1 to K. Given an input query
x, rather than directly answering it based on its
own knowledge, the task LLM MT first selects a
sequence of N tools, (Fk1:N ), generates the appro-
priate input parameters, Ikn , to call each tool, i.e.,
Fkn(Ikn), and finally produces the answer y based
on the tool outputs.

We consider the setting where the tool list F is
ad-hoc and dynamic. In order for the task LLM to
learn to use the tools in F at inference time, we fol-
low the conventional prompting-based pipeline (Lu
et al., 2023; Hsieh et al., 2023), where the prompt,
in addition to an instruction, contains the following
tool-specific information:
• Tool Documentation, denoted as D = {D1:K};
• In-context examples of tool-use, denoted as E =

{E1:M}, where each example Em contains an input
query, x, the tool invocation details, (Fk1:N , Ik1:N ),
and the answer, y.

In many real-world scenarios where users supply
their own tool list, it is unrealistic to require them
to supply high-quality documentation or tool-use
examples. To model these scenarios, we adopt a
challenging zero-shot setting with the following
constraints: ❶ The initial documentation D0 is sub-
optimal and may lack important details, and ❷ No
tool-use examples E are available. Given these con-
straints, our objective is to generate tool-use exam-
ples and refine the tool documentation to enhance
the task LLM’s tool-use performance.

2.2 PLAY2PROMPT Overview

The primary goal of PLAY2PROMPT is to utilize
knowledge gained from tool interactions to opti-
mize tool documentation and example demonstra-
tions. PLAY2PROMPT consists of the following
two steps. First, a tool-use example set, E, is gener-
ated. Second, using E as the validation set, a refined
tool documentation D is generated based on the ini-
tial one D0. After the two steps are accomplished,
D and a subset of E will be fed as the prompt to the
task LLM during inference.

26275



Figure 1: The PLAY2PROMPT framework: Beam search iteratively searches tool-use examples, incorporating
tool play into the proposal process. After examples are generated, beam search is once again applied to optimize
documentation by incorporating tool-use outputs and errors. Finally, optimized tool-use examples and documentation
are used as prompts forMT at inference.

In both steps, we adopt a tree search framework
similar to Wang et al. (2024) to generate tool-use
examples or tool documentation. Therefore, we
will first briefly introduce the beam search frame-
work (see figure 1) in Section 2.3, and then elab-
orate on the two steps in Sections 2.4 and 2.5, re-
spectively.

2.3 Search Framework

The beam search framework is an iterative algo-
rithm to generate high-quality samples, denoted
S = {S(i)}, which correspond to E in step 1, and D
in step 2. At the start of iteration t, the algorithm
has access to St−1 = {S(i)

t−1}, which are samples
generated in the previous iteration, as well as their
corresponding reward {R(i)

t−1}, which depicts the
quality of each sample. Then iteration t involves
the following procedure to generate a set of im-
proved samples:
• Sample Proposal. For each old sample, S

(i)
t−1,

generate L new samples from the proposal distribu-
tion p(S

(i)
t |S(i)

t−1, R
(i)
t−1), based on the reward of the

old sample. This is accomplished by prompting
a generator LLM, denoted as G, to perform self-
reflection on why the old sample is imperfect, how
to improve the sample quality, and finally generate
the improved samples. All the new samples form
a new sample set, denoted as S ′

t, whose size is L

times the size of St−1.
• Sample Evaluation. For each new sample S

(i)
t in

S ′
t, compute its reward R

(i)
t .

• Subsampling. Trim S ′
t down to the size of St−1

by keeping the samples with the highest reward.
Denote the trimmed sample set as St.

The iterations terminate when the pre-set max-
imum number of iterations is reached. With the

beam search framework, the algorithm design boils
down to designing ❶ the sample proposal distri-
bution, and ❷ the reward and feedback of each
sample. In the following sections, we detail how
these design choices are set in tool-use example
generation and tool documentation optimization.

2.4 Tool-Use Example Generation

In this work, we only consider generating examples
where only a single tool is used. We will show that
(Section 3.2) the task LLM can still learn to solve
queries that require multiple tools with the exam-
ples of single tool use. In this way, examples for
different tools can be generated separately. Specif-
ically, examples of using tool Fk take the form of
E = (x, Fk, Ik, y), which can be generated via the
beam search framework in Section 2.3, with the
design choices detailed below.

Sample Proposal. The sample proposal is per-
formed by prompting an example generator LLM,
denoted as GE . Since the tool is fixed to Fk, it only
needs to propose new samples for the query x, the
invocation parameters Ik, and the final answer y.
However, the challenge lies in the limited infor-
mation available about Fk—only an (incomplete)
initial documentation D0 and no user-supplied ex-
amples—making it likely that the generated sam-
ples fail to invoke the tool correctly.

To address this, we generate samples in reverse
order: first, we explore valid invocations Ik, ob-
serve the tool’s output, and then construct a cor-
responding query x and answer y. This approach
effectively "plays with" the tool to understand its
behavior before defining its use cases.

Legitimate samples of Ik are generated in a
rejection-sampling process, where GE first gener-

26276



ates a tentative sample invocation given D0, ob-
serves the tool outputs and error messages, per-
forms self-reflection, and generates the next one.
Note that this inner loop is nested in the outer loop
of the beam search framework, so the rejection
sampling is also conditional on the tool-use exam-
ples generated in the previous outer iteration t− 1,
along with their reward (see Section 2.3), except
for in outer iteration 0. This inner loop terminates
at a fixed number of steps, after which L legitimate
invocations are selected.2

For each sampled legitimate invocation, we feed
the invocation and the tool output to GE, which is
then prompted to generate a query and an answer by
performing NE steps of self-reflecting refinement,
which concludes the sample proposal procedure.

Reward Design. For each generated sample
E(i) = (x(i), Fk, I

(i)
k , y(i)), the corresponding reward

consists of two terms,

R(i) = R(i)
q + λR(i)

e . (1)

R
(i)
q evaluates the quality of the generated example,

including clarity and coherence between the input
query and tool use. This is evaluated by prompt-
ing GE to output a score of 1-3 given the grading
criteria. R(i)

e evaluates the performance of the task
LLMMT in answering the query in this example:

R(i)
e = −P{MT (x

(i);D0,∅); y(i), Fk, I
(i)
k }, (2)

where P{M̂ ; y, Fk, Ik, } denotes the task perfor-
mance metric (the higher the better, e.g., accuracy)
of the model output M̂ against the ground-truth
answer y and tool invocation Fk, Ik;MT (x

(i);D0,∅)

denotes the output of the task LLM in answering
the query x(i) given the initial documentation D0

and no in-context examples (because we don’t have
any yet at this stage).

The negative sign in Eq. 2 indicates that we en-
courage difficult examples – examples that the task
LLM cannot get right, because difficult examples
bring more surprise to the task LLM and thus are
more effective in shaping the LLM’s behavior.

2.5 Tool Documentation Optimization
The goal of tool documentation optimization is to
generate improved tool documentation D based on
the initial one D0, which is again achieved by the
beam search framework, where the documentation
sample with the highest reward will be chosen as
the final tool documentation.

2If the number of legitimate invocations is smaller than L,
we will limit the number of proposed samples accordingly.

Sample Proposal. The sample proposal process
primarily follows the approach described in Sec-
tion 2.3. We provide the generator LLM GD, which
differs from GE used in the previous step, with
the current documentation D(i) along with tool use
errors fromMT . By conditioning the proposal dis-
tribution on these errors, we inform GD of the docu-
mentation’s deficiencies or ambiguities, prompting
more effective revisions.

Reward Design. The reward is computed on the
tool-use example set E generated in the previous
step, essentially treating E as the validation set for
documentation optimization. For each tool docu-
mentation sample, D(i), the corresponding reward
is the tool use performance given D(i) on a small
batch in the validation set:

R(i) = E(x,F,I,y)∈E
[
P{MT (x;D(i),∅); y, F, I}

]
. (3)

By comparing Eqs. 2 and 3, it can be observed that
tool-use example generation and tool documenta-
tion optimization have adversarial objectives, the
former seeking to reduce the tool use performance
(while maintaining quality and alignment), and the
latter to improve it. This resembles the active learn-
ing strategy of choosing high-loss examples (Yoo
and Kweon, 2019), which reveals that maximiz-
ing the performance on the most difficult examples
leads to high learning efficiency.

3 Experiments

3.1 Experimental Setup

Dataset: Berkeley Function-Calling Leader-
board (BFCL). We evaluate on the Berkeley
Function-Calling Leaderboard (Yan et al., 2024),
a benchmark of real-world data that assesses
LLMs’ tool-use abilities. Its data includes a non-
executable subset evaluated by abstract syntax trees
and an executable subset assessed by running the
functions. We use the executable subset (referred
to as Executable), because actual tool-play is cen-
tral to our approach, reflecting realistic scenarios in
which most real-world APIs are callable. This sub-
set has four categories of Python functions (single-
tool, multi-tool, parallel tool-calling, and multi-
tool parallel tool-calling) and plus one category of
REST functions, yielding 310 test queries.

Dataset: StableToolBench. We also evaluate on
StableToolBench (Guo et al., 2024), an updated
version of ToolBench (Qin et al., 2024b), one of

26277



the most widely-used tool-use dataset, which ad-
dressed RapidAPIs’ instability through a fallback
system with caching and API simulation. Our ex-
periments use all six of its testing subsets, includ-
ing single-tool (I1), multi-tool (I2-same category
and I3-different category) queries. Individual APIs,
grouped under “tools”, correspond to Fk, so I1
test queries usually require calls to multiple APIs
within a tool and are not single-tool under our defi-
nition. The original dataset’s categorization based
on tool overlap with training data are thus less rel-
evant for our strictly zero-shot setting. In total,
these six subsets cover 790 queries, spanning 2479
unique APIs with an average of 5.3 APIs per query.

Inference and Evaluation. We adhere to official
inference settings of each benchmark, where a set
of tools is provided for each test query. For task
LLMMT , we tested the 8B and 70B LLaMA mod-
els (Dubey et al., 2024), and GPT-3.5 and GPT-4o
were used for GPT (Achiam et al., 2023). We also
tested on BFCL two state-of-the-art LLMs trained
specifically for tool-calling, namely ToolACE (Liu
et al., 2025) and Hammer (Lin et al., 2025), with
both models achieving high rankings on the BFCL
leaderboard as of this publication. For BFCL,
single-turn prompting with official prompts is used
as the baseline inference method for LLaMA mod-
els, while direct function-calling mode is used for
the GPT models, ToolACE, and Hammer. We do
not provide tool-use examples or additional docu-
mentation in these baseline runs, complying with a
zero-shot setting. For PLAY2PROMPT, optimized
in-context examples and documentation are sup-
plied as prompts and runs the baseline inference
methods. It supports multi-tool queries by indepen-
dently optimizing examples and documentation for
each tool and then performing inference. We use
the official evaluation metric of accuracy, with ex-
act or structural matches depending on categories
to determine correctness. We report the average
across five categories, and, following the official
setup, the weighted average (“Simple” categories
weighted by 0.5).

StableToolBench employs a more complex
chain-of-thought inference method, ReAct (Yao
et al., 2023). We compare against EasyTool (Yuan
et al., 2024), which uses direct prompting to opti-
mize tool documentation and generate usage sce-
narios, but requires documentation and labeled in-
context examples from additional tools and is thus

not entirely zero-shot3. Additionally, we compare
against DRAFT (Qu et al., 2025), a concurrent
work, which optimizes tool documentation only in
an iterative manner 4. An evaluation LLM is used
to judge whether a response adequately answers
a user query, due the dataset’s free-form output
design. We follow the official pipeline, using offi-
cial ReAct prompts and report solvable pass rate,
which measures the percentage of queries deemed
solvable by the evaluation LLM. Further details are
provided in appendix B.

Optimization Details. PLAY2PROMPT first uses
beam search to optimize tool-use examples. We set
λ = 1, NE = 3, limit depth to 3, and explore L = 3

beams per node. We use beam width W = 10 for
BFCL and W = 3 for StableToolBench to gener-
ate and select the top W examples for each tool,
which then are passed to the documentation opti-
mization procedure. Beam search is again applied
to select the best tool documentation. We employ
llama-3.1-8b-instruct as both GE and GD.

3.2 Results and Analyses

Results on BFCL and StableToolbench. In ta-
ble 1, we summarize the results on BFCL with
LLaMA and GPT task models, both with and with-
out tool-use examples and tool documentation pro-
duced by PLAY2PROMPT. With PLAY2PROMPT,
absolute gains of 4-7% are observed for the open
models and GPT-3.5, while GPT-4o achieves 3% in-
crease in average accuracy despite its already high
baseline. Notably, PLAY2PROMPT addresses chal-
lenging categories such as REST for LLaMA-8B
and Hammer-7B, and Multiple-Parallel for all mod-
els, yielding improvements of 10-17%. These gains
suggest that optimized in-context examples and
documentation can correct specific shortcomings in
tool usage. Moreover, for the more difficult multi-
tool queries in Multiple and Multiple-Parallel, we
see larger gains compared to single-tool, even when
we optimize each tool independently.

In table 2, we show the solvable pass rates on Sta-
bleToolBench for LLaMA and GPT models with
and without PLAY2PROMPT. Our approach sur-

3We use the optimized tool documentation and usage
scenarios provided at https://github.com/microsoft/
JARVIS/tree/main/easytool. The inference setting of
Yuan et al. (2024) differs from ours as we follow the official
inference prompts provided with StableToolBench.

4We use the optimized documentation very recently open-
sourced at https://github.com/quchangle1/DRAFT. Note
that Qu et al. (2025) tested only on the I2-Cat and I3-Inst
subsets.

26278

https://github.com/microsoft/JARVIS/tree/main/easytool
https://github.com/microsoft/JARVIS/tree/main/easytool
https://github.com/quchangle1/DRAFT


Base Model Method Simple-
Python

Simple-
REST Multiple Parallel Multiple-

Parallel
Weighted

Avg Avg

LLaMA-8B Prompting 96.0 70.0 96.0 90.0 77.5 86.6 85.9
+PLAY2PROMPT 97.0 87.1 96.0 92.0 92.5 93.1 92.9

LLaMA-70B Prompting 100.0 91.4 96.0 84.0 82.5 89.6 90.8
+PLAY2PROMPT 100.0 91.4 98.0 88.0 95.0 94.2 94.5

GPT-3.5 Function-calling 97.0 94.3 90.0 86.0 67.5 84.8 87.0
+PLAY2PROMPT 98.0 95.7 94.0 90.0 85.0 91.5 92.5

GPT-4o Function-calling 98.0 98.6 94.0 94.0 77.5 91.0 92.4
+PLAY2PROMPT 99.0 95.7 98.0 92.0 90.0 94.3 94.9

ToolACE-8B Function-calling 96.0 92.9 92.0 86.0 70.0 85.6 87.4
+PLAY2PROMPT 95.0 90.0 94.0 90.0 82.5 89.8 90.3

Hammer-7B Function-calling 96.0 72.9 88.0 86.0 70.0 82.1 82.6
+PLAY2PROMPT 95.0 82.8 92.0 86.0 80.0 86.7 87.2

Table 1: Results on BFCL Executable. Accuracy scores are shown.

Base Model Method I1-Inst I1-Cat I1-Tool I2-Inst I2-Cat I3-Inst Avg

LLaMA-8B

ReAct 50.6 59.3 53.2 58.0 61.3 52.3 55.8
ReAct+EasyTool 54.7 58.9 57.9 56.1 64.2 48.1 56.7
ReAct+DRAFT - - - - 62.6 57.9 -
ReAct+PLAY2PROMPT 56.6 65.7 60.9 62.5 63.5 63.8 62.2

LLaMA-70B

ReAct 58.4 68.3 61.1 63.1 63.2 64.3 63.1
ReAct+EasyTool 59.0 70.3 63.3 67.6 70.6 63.0 65.6
ReAct+DRAFT - - - - 68.5 62.3 -
ReAct+PLAY2PROMPT 67.5 73.6 64.1 66.5 72.8 70.7 69.2

GPT-3.5

ReAct 56.0 64.6 67.4 56.0 63.4 57.4 60.7
ReAct+EasyTool 57.3 61.4 69.5 61.5 68.3 60.7 63.1
ReAct+DRAFT - - - - 68.3 56.1 -
ReAct+PLAY2PROMPT 61.1 66.6 66.2 67.0 68.3 66.3 65.9

GPT-4o

ReAct 54.0 69.7 66.1 59.8 65.3 61.7 62.8
ReAct+EasyTool 49.9 69.0 65.2 61.3 65.3 52.5 60.5
ReAct+DRAFT - - - - 62.1 63.9 -
ReAct+PLAY2PROMPT 60.7 68.7 71.9 58.8 63.7 65.6 64.9

Table 2: Results on StableToolBench. Solvable pass rates are shown.

passes all baselines with average gains of 5-7%
across LLaMA models and GPT-3.5, and outper-
forms the specifically designed EasyTool, which is
not fully zero-shot as it requires in-context demon-
strations during optimization. PLAY2PROMPT is
also consistent across subsets, avoiding large per-
formance drops in multiple subsets when using
EasyTool, highlighting the benefits of real-time
“tool-play” and evaluation of candidate examples
and documentation during optimization. Moreover,
as GPT-4o exhibits more sensitivity to documenta-
tion and in-context demonstration changes on this
dataset, EasyTool degrades GPT-4o on all subsets,
whereas PLAY2PROMPT achieves a 2% improve-
ment on average. Overall, PLAY2PROMPT essen-
tially boosts performance of models up to the base-
line performance of the larger models. Compared
to DRAFT, which optimizes tool documentation
only, PLAY2PROMPT outperforms for all four mod-

els on both I2-Cat and I3-Inst. This suggests that
optimizing not only documentation, as DRAFT
does, but also generating tool-use examples, can
synergize and achieve even larger improvements.
Additionally, our optimization model of LLaMA-
8B is much smaller than the GPT-4o model used
in DRAFT, further confirming the effectiveness of
PLAY2PROMPT. It is noteworthy that most test
samples for all 6 subsets in StableToolBench, as
well as the Multiple and Multiple-Parallel subsets
in BFCL, are multi-tool queries (see Section 3.1),
underscoring the effectiveness of PLAY2PROMPT,
which operates on single tools independently dur-
ing optimization.

Robustness of PLAY2PROMPT. To evaluate the
robustness of PLAY2PROMPT under incomplete
documentation, we simulate noisy tool descriptions
on the BFCL Executable dataset by randomly drop-

26279



p = 0.0 p = 0.5 p = 1.0

65

75

85

95

+6.5%

+4.8%

+7%

+4.6%

+4.4%

+5.4%

+6.7%

+10.9%

+8.3%

+3.3%

+3%

+6.7%

+4.2%

+5.4%
+6%

+4.6%

+6.4%
+9.4%

+5%

+5.8%

+7.1%

A
cc

ur
ac

y
(%

)
LLaMA-8B LLaMA-70B GPT-3.5 GPT-4o ToolACE-8B Hammer-7B Average

Figure 2: Average (weighted) accuracy improvements with PLAY2PROMPT on BFCL, for different parameter
description dropout p.

Base Model Method BFCL STB

LLaMA-8B

Baseline 85.9 55.8
+P2P-Desc 89.9 57.9
+P2P-Demo 90.8 59.5
+P2P 92.9 62.2

LLaMA-70B

Baseline 90.8 63.1
+P2P-Desc 93.6 64.4
+P2P-Demo 92.7 67.8
+P2P 94.5 69.2

GPT-3.5

Baseline 87.0 60.7
+P2P-Desc 89.0 63.5
+P2P-Demo 91.9 65.3
+P2P 92.5 65.9

Table 3: Ablation on PLAY2PROMPT (P2P) using gen-
erated example demonstrations only (P2P-Demo) and
generated descriptions only (P2P-Desc). Scores indi-
cate average accuracy for BFCL and average solvable
pass rate for StableToolBench (STB).

ping parameter descriptions with increasing proba-
bilities p ∈ {0.0, 0.5, 1.0}, while retaining overall
tool descriptions and parameter names. This setup
reflects varying degrees of real-world documen-
tation sparsity. As expected, the degradation of
documentation leads to reduced baseline accuracy
across all models.

Despite these challenges, PLAY2PROMPT con-
sistently improves tool-use performance across all
models and noise levels. As shown in figure 2,
PLAY2PROMPT achieves steady accuracy gains,
with average improvements growing from 5.0% at
p = 0.0 and reaching 7.1% at p = 1.0. Notably,
the benefit of PLAY2PROMPT becomes even more
pronounced as documentation quality deteriorates,
demonstrating its ability to compensate for miss-
ing parameter details and its strong robustness in
low-resource settings. Detailed per-model results

Base Model Method STB

LLaMA-8B
ReAct 55.8
+PLAY2PROMPT-Easy 60.7
+PLAY2PROMPT 62.2

LLaMA-70B
ReAct 63.1
+PLAY2PROMPT-Easy 68.2
+PLAY2PROMPT 69.2

Table 4: Ablation on demonstration difficulty for
PLAY2PROMPT. We report average solvable pass rates.

can be found in appendix C.

Comparing Demonstrations and Documenta-
tion. We investigate how much the optimized
examples contribute to PLAY2PROMPT’s perfor-
mance gains compared documentation. Using the
same optimization procedure, we test two inference
settings: one employs new in-context demonstra-
tions alongside original documentation, and the
other uses updated documentation without demon-
strations. As shown in table 3, employing only op-
timized demonstrations yields larger improvements
than solely relying on optimized documentation,
and combining both consistently achieves the best
results. These findings suggest that demonstrations
and documentation complement each other in guid-
ing LLMs’ tool use, confirming the effectiveness
of our two-stage approach.

Ablation on Example Difficulty. We further ex-
amine how challenging examples influence perfor-
mance by removing the Re term during example
generation and only using Rq. Without Re, the
model no longer targets difficult examples, yield-
ing what we denote as P2P-Easy. Under the same
inference configuration, we substitute these exam-

26280



Figure 3: An example of PLAY2PROMPT facing incorrect documentation. We show the beam search trajectory with
the highest solve rate on the validation set. At each step, a new documentation is explored based on error feedback.

Search strategy Pass
Rate

# Proposals
Explored

ReAct 64.3 -
+P2P-MC (depth= 1) 65.2 3
+P2P-MC (depth= 5) 66.7 15
+P2P-MC (depth= 5) & NE= 3 68.9 45
+P2P-Beam (depth= 5) & NE= 3 70.7 135

Table 5: Ablation on search strategies, on the I3-Inst
subset of StableToolBench. LLaMA-70B is used for
task modelMT . MC denotes Monte Carlo search.

ples in place of the original demonstrations and
report results for LLaMA on StableToolBench in
table 4. Ignoring difficult examples reduces final
performance by an average of 1-2% across all sub-
sets, confirming that generating in-context exam-
ples with higher difficulty enhance tool usage.

Ablation on Search Strategy. We investigate
alternative strategies for exploring the example-
documentation space by comparing beam search
in PLAY2PROMPT to Monte Carlo search (MC) at
various depths, sharing the same sample proposal
scheme but with different number of proposals and
sub-sampling approach. We also study the role of
NE self-reflection steps during example generation.
Results are shown in table 5, focusing on I3-Inst,
which combines multiple tools from different cat-
egories and is thus more challenging. The results
show that MC underperforms beam search due to
its limited exploration and is more subject to ran-
domness, while deepening the search and adding
self-reflection actions significantly improves perfor-
mance, highlighting the importance of systematic

search in optimizing examples and documentation.
Given the tradeoff between performance and ef-
ficiency, a suitable search method can be chosen
when using PLAY2PROMPT based on the user’s
computational budget.

Qualitative Analysis. We give an example in fig-
ure 3 to show how PLAY2PROMPT leverages tool
play errors to refine tool documentation. The docu-
mentation is outdated, specifying start_date and
end_date instead of from and to, and wrongly la-
beling them as required. Initially, PLAY2PROMPT

is confused by contradictory information but grad-
ually incorporates more precise details, solves
queries without needing those parameters, and
eventually identifies the correct names, leading to
superior performance. An additional example of
typical improvements appears in appendix D.

Human Evaluation of Generation Quality.
Since our primary objective is to improve LLMs’
tool-use capabilities, our main evaluation focuses
on tool-use accuracy, which directly measures the
effectiveness of our approach. While the quality
of documentation and examples may not directly
reflect tool-use improvements, they can provide
complementary insights—particularly in enhancing
clarity for human users and serving as secondary
evidence of optimization quality. To assess these
aspects, we conducted human evaluations on 50
randomly selected documentation outputs and 30
tool-use examples using six annotators. For docu-
mentation, we follow Qu et al. (2025) and assess

26281



Dataset Completeness Conciseness Accuracy

STB
P2P Raw Equal P2P Raw Equal P2P Raw Equal

85% 2% 13% 35% 47% 18% 43% 19% 37%

BFCL
P2P Raw Equal P2P Raw Equal P2P Raw Equal

79% 5% 17% 15% 70% 15% 18% 19% 63%

Table 6: Human evaluation on tool documentation quality, comparing
completeness, conciseness, and accuracy of PLAY2PROMPT versus
raw (initial) documentation.

Examples Naturalness Alignment

BFCL Test Set 4.39 4.68

PLAY2PROMPT 4.17 4.52

Table 7: Human evaluation on tool usage
example (question-function call) quality,
rated on a scale of 1 (low) to 5 (high).

completeness, conciseness, and accuracy relative
to the original dataset-provided descriptions. For
tool-use examples, we adopt the evaluation criteria
from Shen et al. (2024), scoring the naturalness
of the query and its alignment with the function
call5, each on a scale of 1 to 5. As shown in ta-
ble 6, our optimized documentation achieves sig-
nificantly higher completeness and comparable or
better accuracy, though with reduced conciseness
due to increased verbosity. As shown in table 7, the
zero-shot-generated examples are rated similarly to
manually curated ones in terms of both naturalness
and alignment, demonstrating their practical utility.

4 Related Work

LLMs for Tool Use. Recent years have seen no-
table advances in employing large language mod-
els (LLMs) as agents to master tool use for solv-
ing complex tasks (Mialon et al., 2023; Qin et al.,
2024a), thereby enhancing LLMs’ capabilities in
multi-modal understanding (Gupta and Kembhavi,
2023; Surís et al., 2023; Wu et al., 2023), program-
ming tools (Gao et al., 2023; Paranjape et al., 2023;
Team et al., 2023; Zhang et al., 2023b; Cai et al.,
2024), and other domain-specific functionalities.
The conventional approach involves training base
models with tool-use data (Thoppilan et al., 2022;
Dubey et al., 2024) or fine-tuning LLMs (Patil et al.,
2023; Schick et al., 2023; Yang et al., 2023; Parisi
et al., 2022; Liu et al., 2025; Lin et al., 2025),
but may require continual learning as new tools
are added. Hao et al. (2023) addressed scalability
by training tool embeddings plug-and-play usage,
though still requiring labeled data. Alternatively,
LLMs can be augmented with meta-prompts or
tool-use instructions at inference time (Lu et al.,
2023; Shen et al., 2023; Song et al., 2023; Qin
et al., 2024b; Zhuang et al., 2024). As the range of
applications and tools expands, enhancing LLMs’

5We omit the complexity metric used in Shen et al. (2024),
as PLAY2PROMPT generates single-tool usage examples.

capacity to handle new tools remain pivotal, which
we address through PLAY2PROMPT.

Tool-Use Instructions and Optimization. Tool
documentation and example demonstrations are
key to prompting LLMs for effective tool use.
Hsieh et al. (2023) highlighted the risk of hallu-
cinations when documentation is lacking, and Xu
et al. (2023) showed performance declines with-
out in-context examples. To automate generating
tool-use instances, Shen et al. (2024) leveraged a
graph of tool relations for back-instructing queries,
relying on the availability of external tool graphs.
Yuan et al. (2024) proposed direct prompting to
rewrite tool documentation, which relies on labeled
documentation examples and lacks systematic op-
timization and the ability to measure optimization
quality. Qu et al. (2025) explored LLMs inter-
acting with tools, focusing on tool documentation
only with single-thread iterative refinement. Auto-
matic prompt tuning (Pryzant et al., 2023; Wang
et al., 2024) adapts prompts to domain-specific
tasks but require held-out test sets, rendering it un-
suitable for zero-shot tool instruction rewriting (Wu
et al., 2024). These constraints underscore the need
for approaches that optimize tool instructions and
demonstrations without labeled data or manual ef-
fort, which PLAY2PROMPT achieves by interacting
directly with the tool itself.

5 Conclusion

We present PLAY2PROMPT, an automated frame-
work that iteratively refines tool documentation and
creates usage demonstrations, enhancing LLMs’
tool use in zero-shot settings. Through a search-
based trial-and-error process with self-reflection,
PLAY2PROMPT allows models to explore and im-
prove tool use without labeled data or extensive
manual effort. This approach addresses the limita-
tions of methods that rely on handcrafted prompts
or labeled data, providing a scalable and task-
agnostic solution for real-world applications.

26282



Acknowledgments

This research is supported by the MIT-IBM Watson
AI Lab and the Centre for Perceptual and Interac-
tive Intelligence (CPII) Ltd. under the Innovation
and Technology Commission’s InnoHK Scheme.
The views and conclusions are those of the authors
and should not be interpreted as representing those
of IBM.

Limitations

In this work, PLAY2PROMPT optimizes a single
tool, but it’s still applicable to queries that require
multiple tools by optimizing each tool indepen-
dently, and then using the optimized examples and
documentation from multiple tools together at infer-
ence. Although results (on Multiple and Multiple-
Parallel in BFCL and the entirety of StableTool-
Bench) on multi-tool queries show sizeable per-
formance gains, scaling the optimization process
itself from single-tool scenarios to multiple tools
can likely enhance LLM’s tool use effectiveness
even more. Additionally, for example demonstra-
tions, we use rejection sampling to generate tool
invocations first, which do not work for functions
whose parameter space is too large, for instance
parameters that take long ID string inputs or au-
thentication tokens that require calls to other tools
beforehand. Exploring multi-tool dependencies
could potentially resolve this issue and improve
tool play. In our work we focus on tool documen-
tation and demonstrations only, relegating other
information as meta-information, which could be
potential next steps to explore.

Ethics Statement

We used publicly available models and datasets for
training and evaluation, and did not collect data or
any personal information in this work. The trained
models could however potentially be misused and
pose ethical risks typical of large language models
when deployed in real-world applications, if not
thoroughly audited.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2024. Large language models as
tool makers. In The Twelfth International Conference
on Learning Representations.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang,
Yujia Qin, Peng Li, Zhiyuan Liu, Maosong Sun, and
Yang Liu. 2024. StableToolBench: Towards stable
large-scale benchmarking on tool learning of large
language models. In Findings of the Association for
Computational Linguistics ACL 2024, pages 11143–
11156, Bangkok, Thailand and virtual meeting. As-
sociation for Computational Linguistics.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14953–14962.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Ad-
vances in neural information processing systems, 36.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-
tion enables zero-shot tool-usage with large language
models. arXiv preprint arXiv:2308.00675.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie,
Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu Zhou,
Cheng Cheng, Yin Zhao, Jun Wang, and Weinan
Zhang. 2025. Robust function-calling for on-device
language model via function masking. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Weiwen Liu, Xu Huang, Xingshan Zeng, xinlong hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2025.
ToolACE: Winning the points of LLM function call-
ing. In The Thirteenth International Conference on
Learning Representations.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

26283

https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.18653/v1/2024.findings-acl.664
https://openreview.net/forum?id=yVQcr4qjD6
https://openreview.net/forum?id=yVQcr4qjD6
https://openreview.net/forum?id=8EB8k6DdCU
https://openreview.net/forum?id=8EB8k6DdCU


Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: iterative refinement with
self-feedback. In Proceedings of the 37th Interna-
tional Conference on Neural Information Processing
Systems, pages 46534–46594.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ramakanth Pasunuru, Roberta
Raileanu, Baptiste Roziere, Timo Schick, Jane
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann
LeCun, and Thomas Scialom. 2023. Augmented lan-
guage models: a survey. Transactions on Machine
Learning Research. Survey Certification.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. arXiv preprint arXiv:2303.09014.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957–7968, Singapore. Association for Computa-
tional Linguistics.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2024a. Tool learning with foundation
models. Preprint, arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024b. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2025. From exploration to mastery: Enabling
llms to master tools via self-driven interactions. In

The Thirteenth International Conference on Learning
Representations.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2024. Taskbench: Benchmark-
ing large language models for task automation. In
ICLR 2024 Workshop on Large Language Model
(LLM) Agents.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-
gpt: Connecting large language models with real-
world applications via restful apis. arXiv preprint
arXiv:2306.06624.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Hao-
tian Luo, Jiayou Zhang, Nebojsa Jojic, Eric Xing, and
Zhiting Hu. 2024. Promptagent: Strategic planning
with language models enables expert-level prompt op-
timization. In The Twelfth International Conference
on Learning Representations.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xi-
aodong Wang, Zecheng Tang, and Nan Duan.
2023. Visual chatgpt: Talking, drawing and edit-
ing with visual foundation models. arXiv preprint
arXiv:2303.04671.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,
Michihiro Yasunaga, Kaidi Cao, Vassilis N Ioan-
nidis, Karthik Subbian, Jure Leskovec, and James

26284

https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=QKBu1BOAwd
https://openreview.net/forum?id=QKBu1BOAwd
https://openreview.net/forum?id=ZUbraGNpAq
https://openreview.net/forum?id=ZUbraGNpAq
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=22pyNMuIoa


Zou. 2024. Avatar: Optimizing llm agents for
tool-assisted knowledge retrieval. arXiv preprint
arXiv:2406.11200.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models. arXiv preprint arXiv:2305.16504.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji, Tianjun
Zhang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. 2024. Berkeley function calling leader-
board.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Advances in Neural Information Processing Systems,
36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Donggeun Yoo and In So Kweon. 2019. Learning loss
for active learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction. arXiv preprint
arXiv:2401.06201.

Kexun Zhang, Hongqiao Chen, Lei Li, and William
Wang. 2023a. Syntax error-free and generalizable
tool use for llms via finite-state decoding. arXiv
preprint arXiv:2310.07075.

Tianhua Zhang, Jiaxin Ge, Hongyin Luo, Yung-Sung
Chuang, Mingye Gao, Yuan Gong, Xixin Wu, Yoon
Kim, Helen Meng, and James Glass. 2023b. Natural
language embedded programs for hybrid language
symbolic reasoning. Preprint, arXiv:2309.10814.

Yuchen Zhuang, Xiang Chen, Tong Yu, Saayan Mitra,
Victor Bursztyn, Ryan A. Rossi, Somdeb Sarkhel,
and Chao Zhang. 2024. Toolchain*: Efficient action
space navigation in large language models with a*
search. In The Twelfth International Conference on
Learning Representations.

A Dataset License

BFCL and StableToolBench are both licensed un-
der Apache License 2.0. We adhere to intended
uses stated in the license.

B Additional Implementation Details

For task LLM MT , llama-3.1-8b-instruct is
used for LLaMA-8B, llama-3.3-70b-instruct
for LLaMA-70B, gpt-3.5-turbo-0125 for
GPT-3.5, gpt-4o-2024-11-20 for GPT-4o,
toolace-2-llama-3.1-8b for ToolACE-8B,
and hammer2.1-7b for Hammer-7B. On Stable-
ToolBench, we use llama-3.3-70b-instruct
as the evaluation LLM, which produces stable
assessments.

For GPT models, we keep the exact same in-
ference setting as used in the original benchmark,
except for requiring it to return a single action at
each step from the provided toolset by supplying
a flag to the OpenAI API. For LLaMA models,
on BFCL we follow the exact official inference
prompts, and on StableToolBench we adapt the Re-
Act prompts into LLaMA-3’s prompt format but
keep everything else fixed as much as possible. For
ToolACE and Hammer on BFCL, we also follow
the exact official inference prompts.

During inference, for PLAY2PROMPT we set the
number of tool-use example demonstrations to 5
per tool for BFCL and 1 per tool for StableTool-
Bench, as StableToolBench averages more tools per
query. The sampling temperature is set to 0.001.
We report scores averaged over 3 independent runs.

As both our optimization and inference stages
perform only LLM inference, we call hosted infer-
ence APIs and do not report total computation in
GPU hours. An estimated 1M API calls were made
in total for this work.

C Details on Robustness Experiments

To assess the robustness of PLAY2PROMPT, we
artificially introduce noise to tool documentation
in BFCL Executable by dropping each parameter
description with a probability p, leaving general
tool descriptions and signatures intact. As shown
in table 8, with p = 0.5, this degradation reduces
baseline performance by about 5% for the LLaMA
models and GPT-4o, and by 10% for GPT-3.5, es-
pecially for the most challenging Multiple-Parallel
category (c.f. table 1). With PLAY2PROMPT, per-
formance consistently exceeds baselines across all
models, improving by 3-4% for the larger LLaMA-
70B and GPT-4o models, 5% for LLaMA-8B, and
most significantly, recovering the full 10% loss for
GPT-3.5.

In table 9, we further include experiments on
BFCL with an even higher parameter description

26285

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2309.10814
https://arxiv.org/abs/2309.10814
https://arxiv.org/abs/2309.10814
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8
https://openreview.net/forum?id=B6pQxqUcT8


Base Model Method Simple-
Python

Simple-
REST Multiple Parallel Multiple

Parallel
Weighted

Avg Avg

LLaMA-8B Prompting 91.0 67.1 92.0 84.0 70.0 81.3 80.8
+PLAY2PROMPT 94.0 81.4 92.0 82.0 82.5 86.1 86.4

LLaMA-70B Prompting 96.0 90.0 92.0 80.0 72.5 84.4 86.1
+PLAY2PROMPT 95.0 88.6 92.0 84.0 87.5 88.8 89.4

GPT-3.5 Function-calling 92.0 87.1 84.0 76.0 50.0 74.9 77.8
+PLAY2PROMPT 98.0 88.6 86.0 84.0 80.0 85.8 87.3

GPT-4o Function-calling 93.0 95.7 92.0 88.0 75.0 87.3 88.7
+PLAY2PROMPT 98.0 94.3 94.0 88.0 82.5 90.3 91.6

ToolACE-8B Function-calling 92.0 84.3 86.0 80.0 57.5 77.9 80.0
+PLAY2PROMPT 93.0 84.3 90.0 82.0 72.5 83.3 84.4

Hammer-7B Function-calling 93.0 71.4 78.0 82.0 62.5 76.2 77.4
+PLAY2PROMPT 92.0 82.9 86.0 82.0 75.0 82.6 83.6

Table 8: Results on BFCL Executable, with parameter description dropout p = 0.5. Accuracy scores are shown.

Base Model Method Simple-
Python

Simple-
REST Multiple Parallel Multiple

Parallel
Weighted

Avg Avg

LLaMA-8B Prompting 85.0 62.9 84.0 82.0 55.0 73.7 73.8
+PLAY2PROMPT 88.0 78.6 90.0 82.0 67.5 80.7 81.2

LLaMA-70B Prompting 86.0 87.1 86.0 76.0 55.0 75.9 78.0
+PLAY2PROMPT 89.0 87.1 92.0 80.0 65.0 81.3 82.6

GPT-3.5 Function-calling 84.0 87.1 78.0 72.0 40.0 68.9 72.2
+PLAY2PROMPT 92.0 84.3 82.0 86.0 52.5 77.2 79.4

GPT-4o Function-calling 85.0 95.7 84.0 84.0 47.5 76.5 79.2
+PLAY2PROMPT 91.0 94.3 92.0 88.0 60.0 83.2 85.0

ToolACE-8B Function-calling 88.0 80.0 86.0 82.0 52.5 76.1 77.7
+PLAY2PROMPT 89.0 85.7 90.0 86.0 65.0 82.1 83.1

Hammer-7B Function-calling 85.0 75.7 76.0 84.0 52.5 73.2 74.6
+PLAY2PROMPT 90.0 82.9 88.0 86.0 70.0 82.6 83.4

Table 9: Results on BFCL Executable, with parameter description dropout p = 1.0. Accuracy scores are shown.

dropout with p = 1.0, that is, dropping out all
parameter descriptions. The documentation still
contains information from the overall tool descrip-
tion and parameter name in this scenario. These
results illustrate PLAY2PROMPT’s robustness to
incomplete documentation, and especially shines
when initial documentation is poor.

D Additional Qualitative Example

We show another example to illustrate how
PLAY2PROMPT commonly aids LLMs’ tool usage
in figure 4.

E Detailed Optimization Procedures

Below, we present the full procedures for both ex-
ample demonstration optimization and documenta-
tion optimization as pseudo-code, shown in Algo-
rithm 1 and Algorithm 2, respectively. Please refer
to Section 2.1 for notations. In the algorithms, mi

represents meta-prompts.

F Meta-Prompts

The meta-prompts are listed below in tables 10
through 17.

26286



Figure 4: A typical example of PLAY2PROMPT assisting LLMs in correcting errors in generating parameter values.
The task model MT (LLaMA-8B) gets confused by the query specifying the year, which PLAY2PROMPT first
attempts to remove “year” from the description, and further explicitly promptsMT to not use the parameter.

Algorithm 1 EXAMPLEOPTIMIZATIONSTEP

Input: St = Et = (xt, F, It, yt): tool-use example, D0: documentation, at: reflection
Output: St+1 = Et+1 = (xt+1, F, It+1, yt+1): updated example, rt+1: score, at+1: reflection

1: c← false
2: while ¬c do ▷ Rejection Sampling of tool invocation i

3: It+1 ∼ pGE (I|It, c,D0, at,m1) ▷ Sample candidate tool invocation, incorporating reflection at

4: ot+1 ← F (It+1) ▷ Execute tool function
5: c ∼ pGE (c|It+1, ot+1,D0,m2) ▷ Verify validity of tool call
6: end while
7: for n← 1 to NE do ▷ Rollout for with self-reflection policy
8: xt+1 ∼ pGE (x|It+1, ot+1,D0,m3) ▷ Sample user query x

9: yt+1 ∼ pGE (y|It+1, ot+1, xt+1,D0,m4) ▷ Sample corresponding answer y
10: Rq∼ pGE (r|yt+1, It+1, ot+1, xt+1,D0,m5) ▷ Evaluate example quality
11: Re← −P{MT (xt+1;D0,∅); yt+1, F, It+1} ▷ Evaluate example difficulty
12: rt+1 ←Rq +Re

13: at+1 ∼ pGE (a|rt+1, yt+1, it+1, ot+1, xt+1,D0,m6) ▷ Generate self-reflection action
14: end for

Algorithm 2 DOCUMENTATIONOPTIMIZATIONSTEP

Input: St = Dt: documentation, E = {(xj , F, Ij , yj)}Wj=1: validation set, at: reflection
Output: : St+1 = Dt+1: updated documentation, rt+1: score, at+1: reflection

1: Dt+1 ∼ pGD
(D|Dt, at,m7) ▷ Sample documentation Dt+1 from GD , applying reflection at

2: M̂j , ej ←MT (xj ;Dt+1,∅) ∀j ▷ Gather I/O & errors ej from runningMT on validation set E with Dt+1

3: rt+1 ← Ej [P{M̂j ; yj , F, Ij}] ▷ Evaluation score on E
4: at+1 ∼ pGD (a|Dt+1, rt+1, {xj , Ij , yj , M̂j , ej},m8) ▷ Self-reflection action

26287



You are given an API tool with the following documentation: {Documentation}

Your task is to write 1 example API call for the given API tool given its purpose and parameters list. The API call you produced
will be executed as function call later and return result if correct, or error if you provide incorrect syntax, format, or parameters.
Given the documentation and description, think of possible example API calls and produce those that are likely to be correctly
executed. Think of parameter values that are reasonable, make sense, and are likely API calls that people use in the real world.
The generated API call must be executable and real. Parameter values must be filled in and not placeholding text. You must
include the required parameters, and optionally give parameters that are labeled as "optional parameters". Do not hallucinate and
produce parameters that are not under "required" or "optional". Produce diverse parameter values, but be factual and do not use
fake parameters.
You can only use the given function {function_name}. Create an API call that include the function name, and the parameters to
be input to the API. Include all the required and optional parameters in a single dictionary without separating them. Do not
include the URL or other irrelevant information. The output should be in the following JSON format that represents a function
call: {"name": "function_name","parameters": {"properties": {"parameter_1": value 1}}} You must strictly follow the output
format, including "name", "parameters", "properties", and parameters.

Previously you generated the following API calls for this function, which where then executed and critiqued:
fn_call="{fn_call}" fn_output="{fn_output}" status={status} reflection="{reflection}"

Table 10: Meta-prompt m1

You are given an API tool with the following documentation: {Documentation}

Previously you were asked to write an example API call for the function {function_name} given its purpose and parameters list,
and you generated the following function call: {fn_call}. The function call you produced was later executed and returned the
following result: "{fn_output}".

Your task is to analyze the response and check if there are any errors.
1. If there are no errors and everything looks reasonable, give an err_code of 0, and don’t provide analysis.
2. If there is an error, give an err_code of -1. Then in your analysis, describe and analyze in detail why the error occurred based
on the error message. Then, based on your analysis, give detailed suggestions to improve the function call so that no errors
will be produced. You must give detailed analysis and suggestions, do not simply repeat the error message. The analysis and
suggestions should be in the "analysis" field in the output.
Note that even if the "error" field in the result is empty, the "response" field may contain an error when using the function call. If
this is the case you must treat this as an error and analyze the failure. The response field may also be in HTML format.

Your output should be in the following JSON format: {"analysis": your analysis and suggestions, "err_code": error code (-1 for
error, 0 for correct)}

Table 11: Meta-prompt m2

26288



You are given an API tool with the following documentation: {Documentation}

For the function {function_name}, you are given the following function call: {fn_call}, and executing the function call
returned the following result: {fn_output}.

Your task is to generate a user instruction in natural language that requires the given function call to be completed. Here are
some guidelines to follow:
1. The instruction must be a scenario or problem that cannot be solved without calling the given function {function_name}.
This is your main objective.
2. You should not directly or explicitly ask for the function to be called; the problem itself must inherently be solved by the
function.
3. Based on the function, function call, its parameters, parameter values, and function execution responses, you should produce a
real and reasonable instruction.
4. You must use information from the parameter values of the function call to create the response. You must include the value
of every parameter from the given function call in the user instruction you generated, including each list/dict element of the
parameter values. Do not ignore any parameters/values from the function call.
5. You must not include specific function calls in your response. You should not explicitly show the function names. You should
also never explicitly name the parameter names in your response. You should not show any variable names.
6. Your response has to be in natural language. Do not show any variables, function calls, or code.
7. You should respond in the user’s first-person perspective.
8. You are a human user. You are asking a question or giving an instruction. Do not answer in the perspective of an AI assistant.
Remember, the user does not know about the API function and thus cannot ask to call the function.
9. Remember, you are asking a question, so do not answer your own question in the response. Your goal is to give a querying
instruction or question, not producing answers or function calls.

Your output should be in the following JSON format: {"instruction": generated instruction}

Previously you generated the following instructions for this function call, which were rated and analyzed: instruc-
tion="{instruction}" score={score}
Based on these ratings, you are given the following analysis: {reflection}. You should improve your instructions based on
these suggestions.

Table 12: Meta-prompt m3

You are given an API tool with the following documentation: {Documentation}

You are given the following instruction: "{instruction}" To produce a response to the instruction, you made an API call to the
given tool, which returned the following results: {fn_output}
Given the instruction and the results of API call, produce an effective and short answer to the user in natural language. Your
answer must be based on the results of the API call, do not hallucinate or answer anything not in the API results. You must
not include code, comments, JSON data structures, notes, or other irrelevant information in your answer. If there is an error or
failure using the tool, you must report the error in your answer and do not make things up, especially when you receive an input
about invalid parameters.

Table 13: Meta-prompt m4

You are given an instruction "{instruction}", function call "{fn_call}" and an answer "{answer}", your task is to give a
‘score‘ based on the following rules:
1. You must return 1 if any of the following conditions is met (for instruction only): (1) instruction is empty, nonsense, or not
in natural language; or (2) instruction is explicitly including function calls or asking for function calls or contains function
names; or (3) instruction includes exact function parameter names; or (4) instruction includes code or variable assignment; or (5)
instruction is longer than 3 sentences or 300 letters; or (6) instruction does not include a question, query, request, or problem to
be solved; or (7) instruction is not in first-person perspective, or is in the perspective of an AI assistant instead of a user; or (8)
any parameter value in the function call is not present in the instruction
An instruction that satisfies any of these conditions is a bad instruction and should be scored a 1.
2. If the answer is a error message or mentions any errors (API error, invalid parameter error, ..., etc.), mentions cannot use API
or cannot respond, return 1.
3. If the answer is a positive response for the given instruction, you have to further check.
3.1 If the answer is not sufficient to determine whether they solve the instruction or not, return 2.
3.2 If you are confident that the answer is sufficient to determine whether the solve the instruction or not, return 3 if solvable or 1
if unsolvable.

Finally, organize your output in the following JSON format:{"analysis": your reasoning, "score": score}

Table 14: Meta-prompt m5

26289



You are given an API tool with the following documentation: {Documentation}

Previously, given the function call {fn_call}, you were asked to generate example instructions that require the use of the
function {function_name} to complete. The example instructions generated by you were then scored by an expert on whether
the instructions can be fulfilled using the given API function. Scores are in a scale between 1 (lowest) and 3 (highest).

Below are the generated instructions, scores, and analyses:
instruction="{instruction}" score={score} analysis="{analysis}"

Task:
1. Firstly, identify and contrast the patterns of instructions and function calls that have achieved good scores with those that have
not. If there are no bad scores, only summarize the patterns of the good ones.
2. Next, specify the suggestions that can lead to improved performance for the generated instructions and function calls with bad
scores. You should focus on capturing the high-level pattern of the examples relevant to the API documentation. Note that both
the function and the function call cannot be changed, and focus your suggestions on how to improve the example instructions,
including deciding what information to use from parameters of the function call.

Table 15: Meta-prompt m6

You are given an API tool with the following documentation: {Documentation}

Previously, the given tool was used in solving instructions by a tool assistant with the following descriptions:
Iteration #{iteration}, description="{description}", score={score}%, stdev={stdev}.

Furthermore, an analysis was performed on the descriptions for the previous iterations: "{analysis}"

Your task is to further enhance the description for the function {function_name} based on these results for the next iteration,
with the objective of maximizing the score, minimizing the stdev, and help the assistant correctly use the function without
errors. The descriptions for each parameter might be unclear, underspecified, or incorrect, so you should include clear parameter
descriptions and usage for every single required and optional parameter, including its type, usage, and possible values. Be as
clear, descriptive, and comprehensive as possible. Be factual and do not consider parameters that are not listed. Incorporate the
analysis and generate the enhanced descriptions.

Table 16: Meta-prompt m7

You are given an API tool with the following documentation: {Documentation}

Previously, the given tool was used in solving instructions by a tool assistant with the following descriptions:
Iteration #{iteration}, description="{description}"

Here are the instructions the assistant tried to solve with this tool description, with their corresponding answers and errors
produced by the assistant:
instruction="{instruction}", answer="{answer}", errors: function_call={function_name}, arguments={arguments}, er-
ror={error_message}, ground truth should be {fn_call}

Overall the performance of this description is: score={score}

Now your task is to critique the descriptions based on these results. A good description maximizes the score, minimizing the
stdev, and helps the assistant correctly use the function without errors. In your analysis:
(1) Identify how the descriptions affect the function call errors of the assistant. Be specific on which errors the assistant tends to
make, and find patterns in the description that causes the assistant to make such errors.
(2) Identify and contrast the patterns of descriptions that have achieved good scores (> 60%) with those that have not. Analyze
how the description can be improved.

Table 17: Meta-prompt m8

26290


