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Abstract

Speculative Decoding (SD) enforces strict dis-
tributional equivalence to the target model
when accepting candidate tokens. While it
maintains the target model’s generation qual-
ity, this strict equivalence limits the speedup
achievable by SD and prevents users from trad-
ing deviations from the target distribution in
exchange for further inference speed gains. To
address these limitations, we introduce Fuzzy
Speculative Decoding (FSD) - a decoding al-
gorithm that generalizes SD by accepting candi-
date tokens based on the divergences between
the target and draft model distributions. By
allowing for controlled divergence from the
target model, FSD enables users to flexibly
trade generation quality for inference speed.
Across several benchmarks, our method is able
to achieve significant runtime improvements
of over 5 tokens per second faster than SD at
only an approximate 2% absolute reduction in
benchmark accuracy. In many cases, FSD is
even able to match SD benchmark accuracy at
over 2 tokens per second faster, demonstrating
that distributional equivalence is not necessary
to maintain target model performance. Further-
more, FSD can be seamlessly integrated into
existing SD extensions; we demonstrate this by
applying FSD to EAGLE-2, greatly enhancing
this existing extension’s efficiency while allow-
ing it to leverage FSD’s tunable quality-speed
tradeoff.

1 Introduction

Speculative decoding (SD), introduced by
Leviathan et al. (2023) and Chen et al. (2023), is
a large language model (LLM) inference accel-
eration algorithm that leverages a smaller, faster
draft model to generate sequences of candidate
tokens which are then verified and accepted in
parallel by a larger target model. The speculative
sampling rule that SD employs to determine which
candidates to accept enforces a strict equivalence

of the final sampling distribution and the original
target model distribution. Thus, by cutting out
the expensive sequential generation from the
large target model, SD can lead to inference time
reductions of around 2-3X while maintaining the
same generation quality as the target model.

Despite this impressive speedup, SD suffers
from two major flaws. Firstly, in order to main-
tain strict distributional equivalence to the target
model, the SD candidate acceptance rule is overly
strict, and in many cases may reject tokens that if
accepted would have no impact on final generation
quality (Lin et al., 2025), thereby unnecessarily lim-
iting potential speed-ups. Secondly, the enforced
distributional equivalence means that users cannot
tune the SD acceptance rule to be more or less le-
nient in its candidate acceptance, preventing users
from trading deviations from the target model dis-
tribution in exchange for further inference speed
gains. However, the flexibility for users to tune
their LLM generation along an inference speed -
generation quality tradeoff would be highly ben-
eficial in real-world applications, as the relative
importance of inference speed compared to gen-
eration quality may vary across different contexts
within an application.

To address these limitations of SD, we intro-
duce Fuzzy Speculative Decoding - a generalized
SD algorithm that determines token acceptance
based on the divergence between the target and
draft model distributions, allowing users to tune
the generation quality - inference time tradeoff of
their model. With FSD, users have the flexibility to
tune a threshold parameter T that determines how
lenient candidate acceptance should be, and thus
can control how much they are willing to deviate
from the target model’s distribution in exchange for
further runtime reductions. As it doesn’t enforce
strict distributional equivalence, FSD can achieve
significant runtime improvements over SD by ac-
cepting a higher percentage of candidate tokens.
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Figure 1: Visual comparison between FSD and SD. SD accepts candidate token with a probability dependent on the
candidate’s relative likelihood under MD and MT . FSD determines candidate acceptance deterministically based on
whether the divergence between the MD and MT distributions at the candidate’s position exceeds a given threshold
T , allowing users to determine how many candidate tokens to accept by setting the threshold T accordingly.

We conduct extensive experiments across four
diverse benchmarks—spanning factoid QA, math,
and coding—using three different model pairs. Our
key findings are:

1. FSD matches SD’s accuracy while achieving
over 2 tokens per second speedup by relaxing
strict distributional equivalence.

2. FSD enables greater speedups (up to 5 tokens
per second) when a slight accuracy tradeoff is
acceptable (approximately 2% absolute drop).

3. FSD offers a superior tunability mechanism,
enabling a flexible tradeoff between accuracy
and inference speed that consistently achieves
higher accuracy than assigning queries be-
tween the target and draft models based on
a predefined proportion.

We also perform a broad range of ablation studies,
demonstrating that FSD’s performance shares many
similarities with SD, including dependence on draft
and target model alignment for a given text and
the ability to use both sample-based and greedy
decoding strategies. We also show that FSD can
be applied on top of existing SD extensions like
EAGLE-2, bringing the aforementioned tunability
to these otherwise inflexible methods.

2 Previous works

Several works have sought to improve speculative
decoding, primarily by increasing the acceptance
rate of draft-generated tokens, including but not
limited to (1) Verifying more tokens with tree-
structured proposals: Some methods improve
efficiency by allowing the draft model to propose
tokens in a tree structure, enabling the target model
to verify multiple candidates in parallel using tree
attention mechanisms. This expands the search
space and increases the likelihood of accepting a
valid token (Li et al., 2024c,a; Cai et al., 2024;
Ankner et al., 2024; Miao et al., 2023; Chen et al.,
2024). (2) Aligning the draft model with the tar-
get model: Methods include fine-tuning the draft
model to mimic the target model’s outputs (Zhou
et al., 2023), granting the draft model access to
additional representation information from the tar-
get model (AishwaryaP et al., 2024; Zhang et al.,
2024b; Du et al., 2024), or even using a partial
version of the target model as the draft model it-
self—such as using partial layers (Liu et al., 2024a;
Elhoushi et al., 2024; Zhang et al., 2024a) or aug-
menting the target model with lightweight exten-
sions to improve alignment (Monea et al., 2023; Fu
et al., 2024; Santilli et al., 2023; Cai et al., 2024).
(3) Adaptive candidate length selection: Instead
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of fixing the number of candidate tokens per step,
some methods allow the draft model to determine
when to stop generating (Kim et al., 2023; Huang
et al., 2024), or enable the target model to verify
tokens before the draft model has finished drafting
(Liu et al., 2024b), leading to more flexible and ef-
ficient speculative decoding. While these methods
enhance SD efficiency, they enforce strict distri-
butional guarantees and offer limited flexibility in
balancing accuracy and efficiency. In contrast, our
framework demonstrates that such guarantees are
unnecessary and provides tunable tradeoffs. More-
over, its flexibility allows seamless integration with
existing approaches, paving the way for further
research and optimization.

The most similar method to ours is concurrent
work Judge Decoding (JD) (Bachmann et al., 2025),
an SD variant where a compact module is trained
on token embeddings to ‘judge’ and accept candi-
date tokens based on correctness rather than strict
alignment with the target model. This allows JD
to accept more tokens than SD with minimal per-
formance loss. However, JD has two major limi-
tations. First, it generalizes poorly to unseen data,
as token acceptance relies on a trained judgment
module. Its performance drops significantly on
out-of-distribution text (Bachmann et al., 2025). 1

Second, JD requires per-model training, preventing
out-of-the-box use for new model pairs. In contrast,
FSD is training-free, generalizes across datasets,
and can be applied to any model pair out-of-the-
box, effectively addressing JD’s weaknesses.

3 Speculative Decoding

We start by reviewing how SD works in order to
properly introduce FSD as an extension of this
method.

Consider a larger target model MT and a smaller
draft model MD. The biggest bottleneck when
generating from MT individually is that tokens are
sequentially dependent, and therefore each token
will require a full MT forward pass to be generate
conditional on the previously generated tokens. SD
mitigates this bottleneck by first generating a se-
quence of candidate tokens sequentially from the
faster MD, and then uses a single MT forward pass
only to verify which of these tokens to accept. Pro-
vided that MD is a good enough approximation of

1E.g., the accuracy on HumanEval drops from 86.6 to
80.4% when excluded from training (Bachmann et al., 2025),
which would be unacceptable for most applications.

MT such that a significant portion of these candi-
dates are accepted, the runtime saved by avoiding
sequential generation from MT outweighs the ad-
ditional runtime of running MD, resulting in an
overall speedup. In order to maintain MT ’s full
generation quality, SD accepts candidate tokens
based on an acceptance rule that guarantees the
final sequence of sampled tokens will still be dis-
tributed the same as they would under MT .

Specifically, at each SD step MD first gen-
erates a sequence of L candidate tokens, k =
[x0, x1...xL], which are then passed through MT to
calculate the likelihood of each candidate token xi
under MT . Using this likelihood, each candidate
xi is accepted with the probability:

Paccept(xi) = min (1,
PMT

(xi|x<i)

PMD
(xi|x<i)

)

making the final candidate token SD acceptance
rule:

Faccept(xi) =

{
1 if Paccept(xi) > y ∼ U(0, 1)
0, else

Once SD reaches the first rejection of the candi-
date sequence, it resamples a token at the rejected
candidate position from the adjusted distribution:

Mresample = PMT
(xi|x<i)− PMD

(xi|x<i)

(Note that PMT
and PMD

will already have been
calculated to determine the acceptance probability.)

By accepting tokens that are more likely un-
der MD than under MT with a probability of
PMT

(xi|x<i)

PMD
(xi|x<i)

and resampling rejected tokens from
an adjusted distribution, SD corrects for the bias
introduced by MD, ensuring that the final distribu-
tion remains the same as that of MT .

3.1 Determining SD speed-ups
The inference speed-up of SD heavily depends on
the percentage of candidate tokens accepted. Given
a fixed candidate length L, the more similar the dis-
tributions of MD and MT tend to be over a given
generation, the more frequently candidate tokens
will be accepted, and thus the greater the inference
acceleration. This makes the speed-ups achieved
by SD highly dependent on the distribution of text
the model is generating, which we can see in Table
1. This variation in acceptance percentages based
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Dataset Candidate length

5 10 15

CSQA Tk. / sec 9.3 9.3 7.9
% MD Tk. 75.7 82.8 84.6

GSM8K Tk. / sec 11.3 13.2 13.0
% MD Tk. 81.5 89.2 91.4

MMLU Tk. / sec 7.2 7.2 6.3
% MD Tk. 78.7 85.6 87.5

HumanEval Tk. / sec 13.7 16.0 16.3
% MD Tk. 81.5 88.7 91.4

Table 1: Inference speeds and percent of tokens origi-
nating from MD under SD on Llama3.1 8B + 70B. Tk.
/ s denotes tokens per second; % MD Tk. denotes per-
centage of total generated tokens originating from MD.

on text distributions means that each text will have
an optimal candidate length L for which the SD
inference speed is maximized. However, once the
optimal L has been found for the given text distri-
bution, the percentage of tokens accepted is effec-
tively fixed, capping the inference speed of SD to a
level beyond which it cannot be increased further.
This is the limitation of SD that FSD addresses.

4 Fuzzy Speculative Decoding

The defining difference of FSD is that it employs a
different token acceptance rule that can be tuned to
be more or less lenient in its acceptance decisions
based on a threshold parameter T , which can be
arbitrarily set by the user. This effectively allows
users to determine how much they are willing to di-
verge from the target distribution MT in exchange
for a higher percentage of candidates accepted, re-
sulting in speed-ups beyond SD.

While SD determines acceptance based on the
likelihood of candidate xi under PMT

and PMD
,

FSD calculates the distribution-level divergence
between these two distributions at each candidate
position. Then, based on the tunable divergence
threshold T , FSD will accept a candidate token if
the models’ divergence at the corresponding posi-
tion is less than T . This makes the FSD acceptance
rule:

Faccept(xi) =

{
1 if Div(PMT

[i], PMD
[i]) < T

0, else

where PMT
[i] and PMD

[i] are the MT and MD

next token distributions at candidate position i re-
spectively.

In the case of candidate token rejection, FSD
will sample from PMT

[i], that is the original target
model distribution at the rejected position, with
whatever sampling method the user sets for the
generation. The full FSD algorithm is depicted if
Figure 1 as a side-by-side comparison with SD.

4.1 Intuitive motivation

Just like SD, FSD aims to accept candidate tokens
at positions for which MT and MD are similar.
Instead of relying on strict equivalence in final dis-
tribution, FSD relies on the fact that across an en-
tire generation, MT and MD will produce similar
tokens when the divergence between their distribu-
tions is low. This in turn means that at positions
with low divergence, we can likely use tokens sam-
pled from MD in place of those sampled from MT

with minimal impact on the final generation.
By tuning T , users can directly dictate how le-

nient candidate acceptance rule should be, thereby
implicitly determining how much they are willing
to allow the final sampling distribution to diverge
from MT in exchange for further runtime reduc-
tions. In addition, as the FSD acceptance rule be-
comes more relaxed, users can also increase the
candidate length L past the value that was opti-
mal for SD to realize even further reductions in
inference time.

As a general framework, FSD can use any di-
vergence type that relies solely on PMT

and PMD
.

In this work, we focused on KL divergence, JS di-
vergence, and total variation distance. We define
these divergences in Appendix C. We also perform
an empirical evaluation of FSD performance un-
der these different divergence types in Appendix E,
and find that JS divergence is the best performing
divergence type for FSD.

4.2 Final divergence from MT under FSD

Unlike SD, FSD does not enforce distributional
equivalence to MT . Tokens generated via FSD are
sampled from a distribution that has diverged from
MT by an amount dependent on the threshold T .
Specifically, when generating a sequence of N to-
kens, the divergence between FSD sequence-level
distribution and the MT sequence level distribution
is upper bounded by:

Div(PMT
(x1:N ), PFSD(x1:N )) ≤ N ·%MD

· T

where PFSD is the distribution of a sequence
sampled from MD and MT using FSD, N is the
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sequence length, %MD
is the percentage of final to-

kens originating from MD, and T is the divergence
threshold set by the user. We show the derivation
of this bound in Appendix D.

While this bound establishes a theoretical limit
on divergence, it doesn’t directly indicate how
FSD impacts downstream performance. The re-
lationship between sequence-level divergence and
generation quality is non-trivial, as performance
degradation depends not only on the magnitude of
sequence-level divergence, but also on which to-
kens the models diverge on. Thus, an empirical
evaluation is necessary to quantify how different
choices of T impact model performance.

4.3 Reducing FSD to standard SD

As described, FSD accepts tokens purely based
on the divergence between distributions. While
we will show empirically that a sufficiently low
divergence threshold can retrieve SD performance
at matching or higher throughput, it may still be
desirable to have FSD reduce to SD at a sufficiently
low T . Therefore, we also introduce the following
FSD variant - reducible FSD (rFSD) - that accepts
tokens identically to SD when T = 0:

Faccept(xi) =





1 if Div(PMT
[i], PMD

[i]) < T

or Paccept(xi) > y ∼ U(0, 1)
0 else resample from Mresample

When T = 0, Div(PMT
[i], PMD

[i]) < T will
always be false (since divergences are strictly pos-
itive for all nonequivalent distributions), reduc-
ing the acceptance rule to that of traditional SD
(Paccept(xi) > y ∼ U(0, 1)). In cases of rejection,
rFSD would resample from the adjusted distribu-
tion Mresample much like traditional SD would.
While our main results will focus on regular FSD,
we have included results in appendix B showing
that empirically rFSD performs the same as tradi-
tional FSD.

5 Main experiments

5.1 Experiment design

We tested FSD at various thresholds in comparison
to SD on a range of benchmarks, reporting bench-
mark accuracy, inference speed (tokens/second),
and average length of accepted candidates se-
quences for three of these threshold levels (denoted
FSD (Low), (Med.), and (High)). We evaluated

on CommonsenseQA (Talmor et al., 2019) for fac-
tual knowledge, GSM8K (Cobbe et al., 2021) for
math, MMLU (Hendrycks et al., 2021) 2 for general
knowledge and reasoning, and HumanEval (Chen
et al., 2021) for code generation. We performed
experiments on 3 MD - MT model pairs of vary-
ing size: Llama3.1 8B + 70B (Grattafiori et al.,
2024), Gemma2 2B + 27B (Team et al., 2024),
and Qwen2.5 7B + 32B (Qwen et al., 2025). All
Gemma2 and Qwen2.5 tests were performed on 2
A6000s, while the Llama3.1 tests were performed
on 2 A100s. We use a batch size of 1 for all ex-
periments. JS divergence was chosen as the diver-
gence type following a preliminary experiments
that indicated it performed the best. An in depth
explanation of the experiment design can be found
in Appendix F, and the results of our preliminary
divergence type comparison in Appendix E.

5.2 Implementation

To perform our experiments, we modified hugging-
face’s transformers library (Wolf et al., 2020) to
implemented FSD within the library’s assisted gen-
eration functionality. This allows us to easily test
FSD using the transformers library and allows for a
fair comparison to SD, which is implemented in the
library by default. We share our FSD implementa-
tion at https://github.com/maxholsman/fsd.

5.3 FSD performance

We present our experimental results in Table 2 and
in Figure 2.

FSD generally matches SD accuracy at
noticeably faster inference speeds. When setting
T to lower values, FSD’s accuracy converges to
the level of SD, often reaching this level while
accepting more candidate tokens and thereby
realizing greater runtime improvements. This
clearly demonstrates that in many cases, the
distributional equivalence enforced by SD is not
necessary maintain the full MT performance
level. Particularly notable are the Llama3.1 and
Qwen2.5 GSM8K results, in which FSD is able
to outperform SD at around 3 and 4 tokens per
second faster, respectively.

As mentioned in section 2, many other SD
extensions have been able to achieve SD perfor-
mance at faster generation speeds, so this finding

2Due to runtime constraints, we used a subset of the full
MMLU dataset. This subset was sampled such that the relative
prevalence of each question subject was preserved
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GSM8K CSQA MMLU HumanEval

Llama3.1 8B + 70B

Acc Spd ALen Acc Spd ALen Acc Spd ALen Acc Spd ALen

M_D 84.6 31.8 - 73.8 32.5 - 72.2 32.8 - 63.2 33.0 -
M_T 94.9 8.5 - 83.6 8.9 - 86.2 9.3 - 79.1 9.3 -
SD 95.1 16.8 9.7 84.1 13.5 1.96 84.8 15.8 3.37 77.4 20.5 7.6
FSD (Low) 95.2 19.5 11.8 84.0 14.4 3.32 84.0 17.0 3.9 78.9 22.3 8.5
FSD (Med.) 94.3 21.2 12.4 83.7 17.5 4.3 83.0 18.1 4.1 77.6 23.2 8.6
FSD (High) 93.1 22.0 13.5 82.1 19.5 8.14 82.6 18.8 4.2 77.4 23.6 8.9

Gemma2 2B + 27B

Acc Spd ALen Acc Spd ALen Acc Spd ALen Acc Spd ALen

M_D 57.5 28.5 - 64.6 31.3 - 55.2 24.3 - 40.9 17.9 -
M_T 90.7 8.8 - 83.0 9.1 - 75.3 9.4 - 75.6 9.6 -
SD 90.8 16.2 5.7 83.1 11.5 2.07 76.8 12.2 2.7 76.2 12.4 3.7
FSD (Low) 89.6 18.4 6.8 82.3 13.9 2.5 75.6 13.3 2.9 78.7 13.6 4.02
FSD (Med.) 88.5 19.4 7.1 81.6 15.7 3.2 75.4 15.5 3.5 77.8 14.1 4.2
FSD (High) 86.1 21.5 11.1 79.5 17.5 3.9 74.2 16.1 3.7 75.8 14.3 4.3

Qwen2.5 7B + 32B

Acc Spd ALen Acc Spd ALen Acc Spd ALen Acc Spd ALen

M_D 89.9 34.8 - 80.2 36.6 - 71.9 35.6 - 68.1 26.9 -
M_T 94.9 8.8 - 86.9 9.1 - 82.7 9.6 - 80.9 9.6 -
SD 95.1 17.4 6.6 86.8 14.0 2.7 82.2 16.0 3.2 82.1 15.2 3.7
FSD (Low) 94.7 21.4 8.2 86.6 16.1 3.3 82.0 18.0 3.7 81.9 17.1 4.3
FSD (Med.) 94.2 22.4 9.2 86.1 19.5 6.6 81.6 19.5 4.0 79.0 17.2 4.4
FSD (High) 94.0 22.0 9.3 85.9 20.9 6.9 81.7 20.7 4.46 78.3 17.7 4.6

Table 2: Benchmark performance of FSD at varying threshold levels compared to MD, MT , and SD. “Acc” refers
to the QA accuracy. “Spd” refers to Inference Speed (tokens/sec.). “ALen” refers to the average accepted sequence
length.

isn’t necessarily unique to FSD. However, these
prior methods all still enforce strict distributional
equivalence to MT , making our findings notable
as they demonstrate this equivalence is often not
necessary. Furthermore, given this fundamental
difference, our method can easily be applied to
these existing SD extensions in order to further
extend their respective speedups, as we will
demonstrate in section 6.4.

FSD achieves even greater runtime im-
provements over SD when slight accuracy loss is
acceptable. As T increases, FSD is able to achieve
runtime speedups far greater than SD while only
sacrificing small reductions in benchmark accuracy.
The higher the divergence from MT we are willing
to tolerate when accepting tokens, the greater the
runtime improvement over SD. While benchmark
accuracy does eventually degrade as T increases,
we note how minimal this deterioration is. For
instance, FSD with Llama3.1 8B + 70B on CSQA
achieves a 6 token per second increase over the

inference speed of SD in exchange for only a 2%
absolute reduction in accuracy. We expect that
in many applications of LLMs, such a runtime
improvement would likely justify these small
reductions in generation quality.

FSD allows for a previously unattainable
accuracy - runtime tunability. The accuracy
- runtime tunability of FSD is demonstrated in
Figure 2. A model with good tunability should
satisfy two key requirements: (1) it should allow
flexibility in adjusting the speed-accuracy tradeoff
across the speed axis, and (2) it should achieve
the highest possible accuracy compared to other
methods at the same speed. Unlike SD, which has a
fixed efficiency, FSD enables flexible adjustments
along the speed axis while maintaining minimal
accuracy degradation, thereby meeting the first
requirement. To evaluate the second requirement,
we introduce a random allocation baseline, where
queries are randomly assigned between the
target and draft models, allowing tunability by
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Figure 2: FSD Benchmark accuracy - inference speed tradeoff compared to SD. Results were collected with
Llama3.1 8B + 70B as model pair

adjusting the proportion of queries sent to the
target model. We represent this baseline with a
greyline interpolating between the target and draft
models. As shown in Figure 2, FSD consistently
outperforms the random allocation method across
all speeds, demonstrating not only its flexibility
but also its superior tunability.

In addition to the results above, we also share our
full, more detailed results in Appendix A to help
characterize benchmark accuracy as a function of
T across the tested model pairs.

6 Ablation studies

6.1 FSD and SD variation across datasets

As expected, the acceptance percentages and
thereby the runtime improvements of both FSD
and SD are highly dependent on the benchmark.
We observe that FSD follows the same trends in ac-
ceptance percentages across datasets that SD does.
That is, the benchmarks on which SD accept more
candidate tokens (of course at the MT accuracy
level) are also the benchmarks on which FSD can
accepts more candidates when set to match this
MT accuracy level.

This trend points to an underlying difference in
draft and target model alignment across datasets
which is affecting both methods ability to accept
tokens. We illustrate this difference in MD and MT

model alignment across datasets in Figure 3, which
shows the distribution of JS divergences between
the Llama models on a subset of question from each
dataset. As we can see, the divergences are much
more heavily skewed to be much lower on datasets
for which both SD and FSD accept more tokens,
such as GSM8K and HumanEval. Intuitively, this
makes sense: the more similar distributions tend to
be across a given text generation, the lower their
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Figure 3: Distributions of JS divergences between MD

and MT across tested datasets. Long tail of distributions
(JS div. ≥ 0.3) truncated for better visibility.

divergences, and thus the more candidates FSD
will accept at a given threshold. Likewise, the
more similar the distributions, the more likely it is
that SD accepts a candidate, since the acceptance
probabilities will tend to be higher. Thus, it makes
sense that both FSD and SD’s runtimes follow the
same trend across benchmarks.

6.2 Selecting T

As previously discussed, the relationship between
an FSD threshold T and both the inference speed
and downstream benchmark performance is de-
pendent on the dataset and the candidate length
L. Thus, users will not preemptively know what
inference speed and downstream performance cor-
respond to each threshold T and candidate length
L.

However, we make two key observations that
allow users to easily select T to achieve a desired
performance or inference speed. First, we find that
the performance level corresponding to a given
threshold T loosely generalizes across datasets,
giving users a good starting point when setting
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T on an unknown distribution. Second, we find
that T can be tuned to achieve a desired inference
speed with a dev set as small as just 8-16 questions.

T -accuracy relationship across benchmarks.
Table 3 shows the performance of FSD for all
three model pairs at a single selected threshold
held constant across datasets for each pair. We can
see that for all three pairs, FSD with this constant
threshold consistently achieves approximately SD
accuracy at around 1-3 tokens per second faster
than SD across all datasets. Thus, similar to how
certain candidate lengths are known to be good
starting points for SD and can later be tuned based
on the specific text distribution, we show that the
similar out-of-the-box values thresholds values
exist for FSD.

Tuning T on small dev set. We demon-
strate that T can be accurately tuned on a small
development (dev) set in Table 4. For each dataset,
we sampled 10 dev sets of increasing size (4 -
32 questions) from the respective training splits.
Then, for a given threshold, we determine the
inference speed of FSD across the dev sets, as
well as on the full test set. We then calculate the
average difference between the dev set inference
speeds and the actual inference speed on the test
set as a measure of how accurately T can be tuned
to achieve a given inference speed on the dev
sets alone. We can see that across both datasets,
even a dev set as small as just 4-8 questions can
effectively be used to tune T with only minor error
to "true" inference speed, demonstrating that users
can easily tune T to achieve a desired inference
speed with very little overhead.

6.3 Greedy decoding vs. sample-based
decoding

As described in the experiment setup, we used
greedy decoding to generate candidate sequences
from MD, and used sample-based decoding to sam-
ple from the MT in the case of candidate rejection.
While greedy decoding from MD is standard prac-
tice when using SD, both greedy and sample-based
decoding are regularly used in SD to sample from
the adjusted distribution in case of rejection. Thus,
the question arises whether FSD is also able to
accommodate for greedy decoding, in addition to
sample-based, in the case of candidate rejection.

To test this, we evaluated FSD performance on
GSM8K and CSQA with greedy decoding and com-
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Figure 4: FSD performance compared on GSM8K and
CSQA with greedy decoding from MT distribution in
case of rejection. SD baselines also used greedy decod-
ing. Model pair used was Gemma2 2B + 27B.
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Figure 5: Accuracy-runtime tradeoff of FSD + EAGLE-
2 on Llama 3.1 8B Instruct

pared this performance to that of SD under greedy
decoding, to see whether the performance trend is
similar to what we observe in Table 2. As we can
see in Figure 4, FSD seems to follow the same per-
formance trend observed in the main results under
greedy decoding. We can again see FSD converge
to SD performance at lower thresholds, and achieve
significant runtime improvements at the cost of ac-
curacy at higher thresholds. Again we can also
see that the higher model alignment on GSM8K
we discussed above allows FSD to achieve more
impressive results over SD on this dataset, while
the performance on CSQA is slightly weaker. This
all is consistent with our main results in Table 2.
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Dataset Qwen2.5 7B + 32B Llama3.1 8B + 70B Gemma2 2B + 27B

SD Acc. FSD Acc.
@ T = 0.4

Speedup over SD
(tokens / second) SD Acc. FSD Acc.

@ T = 0.3
Speedup over SD
(tokens / second) SD Acc. FSD Acc.

@ T = 0.7
Speedup over SD
(tokens / second)

GSM8K 95.1 94.7 3.4 95.1 94.7 3.7 90.8 89.6 2.1

CSQA 86.8 86.4 3.6 84.2 83.8 2.8 83.1 82.3 2.4

MMLU 82.3 82.1 2.8 84.8 84.1 1.2 76.8 74.8 1.9

HumanEval 82.1 81.9 2.9 77.4 77.6 2.7 76.2 77.8 1.7

Table 3: FSD performance comparison across datasets at set thresholds

Dataset T
Avg. % error w/ dev. set size n Test set

spd (t/s)n = 4 n = 8 n = 16 n = 32

CSQA

0.5 6.1 2.6 3.9 1.2 1.4
0.7 4.2 2.9 2.7 1.2 1.5
0.9 4.6 1.9 2.2 1.4 2.0
1.1 3.6 2.7 2.2 1.5 1.3

GSM8K

0.5 3.3 3.0 2.5 2.2 1.8
0.7 5.4 3.7 2.2 1.3 0.9
0.9 4.4 2.9 2.3 1.6 1.2
1.1 4.2 3.4 1.2 1.3 1.4

Table 4: Average percentage error in inference speed
between test and dev. set at increasing dev. set sizes

6.4 FSD on existing SD extensions

Given its flexibility, FSD can be applied on top of
most existing SD extensions, bringing tunability
and even further speed-ups to the already acceler-
ated inference that these methods achieve. Since
FSD only needs the distributions of the draft and
target models to determine acceptance, virtually all
SD extensions can be used with FSD. To demon-
strate this, we apply FSD on top of EAGLE-2
(Li et al., 2024b), and report the accuracy-runtime
tradeoff on CSQA and GSM8K in Figure 5. As we
can see, FSD preserves the same benefits of tun-
ability and further acceleration by foregoing distri-
butional equivalence, even when applied to already
significantly accelerated SD extensions. We expect
this to hold true for most other SD extensions.

7 Discussion

7.1 Potential further developments

Unlike the probabilistic acceptance rule of SD, the
FSD acceptance criteria is deterministic given the
MD and MT logits. This means that FSD allows
for the generation of a token-level dataset of accep-
tance / rejected labels, since the FSD acceptance
decision relies solely on the MD and MT distri-
butions at each tokens position. This unlocks the
possibility of training a classifier to predict which
tokens will be accepted and which will be rejected,
based purely on the tokens up to the position being

generated. Such a classifier can be used to dynami-
cally set the candidate length generated by the draft
model, reducing the number of rejected tokens at
each SD step and thereby further increasing the
inference time speed ups.

The second area that we feel has potential for
future development is the testing and development
of a novel divergence types to identify which candi-
date tokens should be accepted with limited impact
on generation quality. Given that FSD was already
able to achieve very impressive results with sim-
ple divergence types like KL divergence and JS
divergence, we expect that the divergences tailored
specifically to this methods are likely to further mit-
igate the deterioration of generation quality as the
acceptance threshold T increases and allow FSD to
maintain quality at even higher generation speeds.
Judge Decoding (Bachmann et al., 2025) attempts
a similar approach to this by using learned token
correctness to determine acceptance, however as
discussed this method doesn’t generalize, leaving
this direction open for further research.

8 Conclusion

We have introduced FSD - a modified SD algo-
rithm that can accept divergence allows users to
tune how much divergence from MT they are will-
ing to accept in exchange for runtime improvement
beyond SD. This flexibility to achieve significantly
higher runtimes, in addition an ability to match SD
generation quality at faster inference in certain sce-
narios, makes FSD novel alternative to SD that we
expect can be valuable in many LLM applications.
We have shown that FSD is able to achieve very
strong empirical results on-par with SD, and is able
to achieve considerably higher generation speeds
the cost of only minor deteriorations in generation
quality.

9 Limitations

The biggest limitation of our method is that it is not
preemptively known what threshold T will result in
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what downstream generation performance, as this
relationship is highly dependent on the distribution
of the text being generated and the candidate length
L. Thus, as we have discussed, a practical applica-
tion of FSD will have to either perform calibration
tests on a text distribution similar to the eventual
generation’s distribution, or will have to use a po-
tentially suboptimal out-of-the-box value similar to
those discussed in section 6.2. However, we have
demonstrated that tuning T can be done with min-
imal computational overhead on a very small dev.
set, and therefore does not pose a substantial barrier
to the application of FSD. We also note that SD
suffers from a similar reliance on hyperparameter
tuning, as its inference speed is highly dependent
on using the correct L. In fact, an incorrect selec-
tion of L can result in SD having no impact on or
even decreasing the generation speed compared to
MT . Therefore, while FSD’s reliance on T does
represent an additional hyperparameter sensitivity,
it’s akin to SD’s dependency on L, and thereby is
not a limitation unique to our method.
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A Characterization of benchmark
accuracy as function of T

We share our full results with specific values of T
in Tables 5, 6, and 7

B rFSD performance

We share performance of rFSD in Table 8, demon-
strating that this FSD modification performs simi-
larly to traditional FSD.

C Divergence definitions

C.1 Kullback–Leibler (KL) Divergence:

DKL(PMT
∥PMD

) =
∑

t∈V
PMT

(t | x)

· log
(
PMT

(t | x)
PMD

(t | x)

)

where V is the vocabulary, PMT
(t | x) is the

probability assigned by model MT to token t given
context x, PMD

(t | x) is the probability assigned
by model MD to token t given context x.
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Dataset Type T Accuracy Inf. Spd. (tok. / sec) Acceptance length Candidate length Acceptance %

Llama 3.1 8B + 70B Instruct

GSM8K

MT - 94.9 8.5 - - -
MD - 84.9 31.8 - - -
SD - 95.1 16.8 9.7 14.2 91.4

FSD 0.3 95.2 19.5 11.8 14.2 92.9
FSD 0.4 94.7 20.6 12.1 14.2 93.1
FSD 0.5 94.3 21.2 12.4 14.2 93.3
FSD 0.6 94.2 21.5 12.6 14.2 93.4
FSD 0.7 93.9 21.8 13.5 14.2 93.9
FSD 0.8 93.1 22.0 13.6 14.2 93.9

CSQA

MT - 83.6 8.9 - - -
MD - 73.8 32.5 - - -
SD - 84.2 13.5 3.0 4.9 75.4

FSD 0.3 84.0 14.4 3.3 4.9 77.5
FSD 0.35 83.0 15.5 3.6 4.9 79.0
FSD 0.4 83.9 16.3 3.9 4.9 80.2
FSD 0.5 83.7 17.5 4.3 4.9 81.8
FSD 0.6 82.3 18.1 4.5 4.9 82.5

MMLU

MT - 86.2 9.3 - - -
MD - 72.2 32.8 - - -
SD - 84.8 15.8 3.4 5.0 77.4

FSD 0.3 84.1 15.6 3.4 5.0 77.6
FSD 0.35 83.9 16.5 3.6 5.0 78.6
FSD 0.4 84.1 17.0 3.8 5.0 79.6
FSD 0.5 83.0 18.2 4.1 5.0 80.7
FSD 0.6 82.6 18.8 4.2 5.0 81.0
FSD 0.7 81.3 20.5 11.0 14.6 92.1

HumanEval

MT - 79.1 9.3 - - -
MD - 63.2 33.0 - - -
SD - 77.4 20.5 7.6 9.8 88.7

FSD 0.2 79.6 20.7 8.2 9.8 89.4
FSD 0.3 78.9 22.3 8.5 9.8 89.8
FSD 0.4 77.6 23.2 8.8 9.8 90.1
FSD 0.5 77.4 23.6 8.9 9.8 90.3
FSD 0.6 75.0 24.8 9.6 9.8 90.9
FSD 0.7 73.9 24.9 9.6 9.8 90.9

Table 5: Characterized performance-accuracy tradeoff of FSD with Llama 3.1 8B + 70B Instruct

Dataset Type T Accuracy Inf. Spd. (tok. / sec) Acceptance length Candidate length Acceptance %

Gemma 2 2B + 27B Instruct

GSM8K

MT - 90.7 8.8 - - -
MD - 57.5 28.5 - - -
SD - 90.8 16.3 5.7 9.1 85.8

FSD 0.7 89.6 18.4 6.8 9.2 87.8
FSD 0.8 88.8 18.9 7.0 9.2 88.1
FSD 0.9 88.6 19.4 7.1 9.2 88.3
FSD 1.0 87.8 20.3 7.7 9.2 89.0
FSD 1.25 85.9 21.3 8.1 9.2 89.6
FSD 1.5 83.1 21.3 7.9 9.2 89.4

CSQA

MT - 83.0 9.1 - - -
MD - 64.6 31.3 - - -
SD - 83.1 11.5 2.1 4.7 68.7

FSD 0.5 82.4 12.0 2.2 4.6 70.5
FSD 0.6 82.1 13.0 2.4 4.6 71.7
FSD 0.7 82.3 13.9 2.5 4.5 73.0
FSD 0.8 81.5 15.1 3.2 4.5 77.3
FSD 0.9 81.7 15.7 3.2 4.8 77.8
FSD 1.0 81.1 16.2 3.3 4.5 78.5
FSD 1.25 79.5 17.5 3.9 4.5 80.8
FSD 1.5 77.1 18.0 3.9 4.5 81.1

MMLU

MT - 75.3 9.4 - - -
MD - 55.2 24.3 - - -
SD - 76.8 12.2 2.7 4.8 73.6

FSD 0.6 75.6 13.3 2.9 4.8 74.9
FSD 0.7 74.8 14.1 3.0 4.8 75.7
FSD 0.8 75.4 15.5 3.5 4.8 78.4
FSD 0.9 74.2 15.8 3.6 4.8 78.7
FSD 1.0 74.2 16.1 3.7 4.8 79.1

HumanEval

MT - 75.6 9.6 - - -
MD - 40.9 17.9 - - -
SD - 76.2 12.4 3.7 4.9 78.9

FSD 0.4 75.6 13.2 4.0 4.9 80.1
FSD 0.5 78.7 13.6 4.0 4.9 80.3
FSD 0.6 77.4 14.0 4.1 4.9 80.6
FSD 0.7 77.8 14.1 4.2 4.9 80.9
FSD 0.8 76.0 14.2 4.3 4.9 81.1
FSD 0.9 75.8 14.3 4.3 4.9 81.4

Table 6: Characterized performance-accuracy tradeoff of FSD with Gemma 2 2B + 27B Instruct
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Dataset Type T Accuracy Inf. Spd. (tok. / sec) Acceptance length Candidate length Acceptance %

Qwen 2.5 7B + 32B Instruct

GSM8K

MT - 94.9 8.8 - - -
MD - 89.9 34.8 - - -
SD - 95.1 17.4 6.5 9.7 87.1

FSD 0.3 94.8 20.0 7.8 9.7 89.1
FSD 0.4 94.7 20.9 8.0 9.7 89.4
FSD 0.5 94.7 21.4 8.2 9.7 89.6
FSD 0.8 94.3 22.4 9.2 9.7 90.8
FSD 0.9 93.9 22.0 9.3 9.7 90.8

CSQA

MT - 86.9 9.1 - - -
MD - 80.2 36.6 - - -
SD - 86.1 14.0 2.7 4.9 73.6

FSD 0.4 86.2 17.6 6.3 9.7 87.0
FSD 0.5 86.1 19.5 6.6 9.7 87.5
FSD 0.6 85.9 20.9 6.9 9.7 88.1

MMLU

MT - 82.7 9.6 - - -
MD - 71.9 35.6 - - -
SD - 82.3 16.0 3.2 5.0 76.5

FSD 0.3 82.0 18.0 3.7 5.0 79.3
FSD 0.4 82.1 18.8 3.9 5.0 80.0
FSD 0.5 81.6 19.5 4.0 5.0 80.6
FSD 0.6 81.7 20.7 4.5 4.9 82.1

HumanEval

MT - 80.9 9.6 - - -
MD - 68.1 26.9 - - -
SD - 82.1 15.2 3.7 4.9 79.0

FSD 0.4 81.9 17.1 4.3 4.9 81.2
FSD 0.5 79.5 17.2 4.4 4.9 81.6
FSD 0.6 79.1 17.4 4.4 4.9 81.8
FSD 0.7 80.5 17.7 4.5 4.9 82.0
FSD 0.8 79.9 17.7 4.5 4.9 82.1
FSD 0.9 78.3 17.7 4.6 4.9 82.3

Table 7: Characterized performance-accuracy tradeoff of FSD with Qwen 2.5 7B + 32B Instruct

Dataset Type Acc. Spd. (t/s) ALen CLen

CSQA

SD 82.9 7.78 2.06 5
FSD (Low) 81.9 9.82 2.85 5
FSD (Med.) 80.8 11.0 3.03 5
FSD (High) 79.6 11.7 3.22 5

GSM8K

SD 90.0 10.5 5.72 10
FSD (Low) 89.3 12.7 7.23 10
FSD (Med.) 88.2 13.0 7.38 10
FSD (High) 87.0 13.5 7.56 10

Table 8: Performance-accuracy tradeoff of rFSD com-
pared to regular SD. Acc. indicates benchmark accuracy,
Spd. indicates inference speed in tokens / second, ALen
indicates acceptance length, CLen indicates candidate
length

C.2 Jensen–Shannon (JS) Divergence:

DJS(PMT
∥PMD

) =
1

2
DKL(PMT

∥M)

+
1

2
DKL(PMD

∥M)

where M(t | x) is the mixture distribution (aver-
age of PMT

and PMD
):

M(t | x) = PMT
(t | x) + PMD

(t | x)
2

and DKL is the Kullback–Leibler divergence as
defined above.

C.3 Total Variation (TV) Distance:

DTV(PMT
, PMD

) =
1

2

∑

t∈V
|PMT

(t | x)

−PMD
(t | x)|

where: PMT
(t | x) and PMD

(t | x) are the prob-
abilities from models MT and MD respectively, as
defined above.

D Derivation of FSD sequence-level
divergence bound

D.1 KL divergence bound
Assume that M∗ denotes a model using FSD to
decode from target model MT and draft model MD.
Starting with the sequence-level KL divergence
decomposed autoregressively:

DKL(PMT
∥PM∗)

=
T∑

t=1

EPMT
[DKL(PMT

(t | x)∥PM∗(t | x))]

where the expectation is taken over the sequence
of tokens x1:t−1. By assumption, at each step when
the MD - MT divergence exceeds τ , model M∗

will use PMT
instead of PMD

, making the diver-
gence between PM∗ and PMT

0. Let puse be the
probability that PMD

is used:

DKL(PMT
(t | x)∥PM∗(t | x)) ≤ puseτ
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Summing over T steps:

DKL(PMT
∥PM∗) ≤

T∑

t=1

puseτ = Tpuseτ

D.2 JS divergence bound
The JS divergence is defined as:

DJS(PMT
∥PM∗) =

1

2
DKL(PMT

∥M)

+
1

2
DKL(PM∗∥M)

Using the KL decomposition for both terms and
applying the same per-step bound τ for when PMD

is used:

DJS(PMT
∥PM∗) ≤ 1

2

T∑

t=1

puseτ +
1

2

T∑

t=1

puseτ

= Tpuseτ

D.3 TV distance bound
The sequence-level TV distance decomposes simi-
larly via subadditivity:

DTV(PMT
, PM∗) ≤

T∑

t=1

EPMT
(x1:t−1)[DTV(PMT

(t | x), PM∗(t | x))]

By assumption, if PMD
is used, the per-step TV

distance is bounded by τ :

DTV(PMT
(t | x), PM∗(t | x)) ≤ puseτ

Summing over T steps:

DTV(PMT
, PM∗) ≤

T∑

t=1

puseτ = Tpuseτ

Final Result: For all three divergences, the up-
per bound is:

D(PMT
∥PM∗) ≤ Tpuseτ.

E Divergence comparison under FSD

We referenced in the section 5.1, we performed
preliminary tests on the different divergence types
to see which divergence was best able to maintain
SD accuracy as T increases. The results of this
preliminary experiments can be seen below.
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(a) FSD performance of different divergence types on
GSM8K.
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(b) FSD performance of different divergence types on CSQA.

Figure 6: Comparison of FSD performance on GSM8K
and CSQA with different divergence types.

F In-depth experiment design

Below are more details on the procedure we used to
collect our main results. While this procedure was
generally followed throughout, some additional
data points were collected and reported (e.g., re-
porting T = 0.35 results).

For each benchmark, we start by empirically de-
termining the approximately optimal SD candidate
length L by testing SD with L = [5, 10, 15, 20]
on a small subset of questions, and select the L
with the fastest inference speed as the candidate
length to be used in our SD baseline. We denote
this SD optimal candidate length as L′. We then
test FSD with threshold T = [0.1, 0.2, ...0.9, 1.0]
at L′ on the same small subset of question to deter-
mine the threshold TSD that accepts approximately
the same percentage of candidate tokens as SD.
Starting from this ’equivalent’ TSD, we then eval-
uate FSD’s benchmark performance at threshold
increasing in increments of 0.1, until benchmark
performance has degraded by approximately 20%
of the performance difference between MD and
MT . (e.g. if MT scores 90%, MD scores 80%,
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Figure 7: CSQA performance of regular FSD vs FSD
with random token acceptance at varying percentages of
MD tokens. % MD Tok. denotes the percentage of final
generated tokens originating from MD. Experiment was
performed on Gemma2 2B + 27B model pair

we test FSD at increasing T until accuracy reaches
90− ((90− 80) ∗ 0.2) = 88%) For each threshold,
we complete three trials, using greedy decoding
to generate the candidate sequences from MD and
sample-based decoding to sample from MT in the
case of candidate rejection. We use the same sam-
pling strategy for our SD baseline, as this is the
default for the huggingface assisted generation im-
plementation we used.

Importantly, as the acceptance percentage in-
creases beyond that of SD, L′ may no longer be
the optimal candidate length. Thus, we increased
L′ to the next highest length in [5, 10, 15, 20] if we
observed that FSD is accepting close to all candi-
dates.

To quantify the performance-runtime tunability
of our method, we report the FSD benchmark accu-
racy, inference speed (tokens/second), and average
length of accepted candidates sequences at three
increasing threshold levels (denoted FSD (Low),
(Med.), and (High)). These three levels are meant
to simulate scenarios in which users are willing
to accept increasing drops in generation quality in
exchange for increasing generation speeds.

We would also like to note that a single Llama
IT token was accidentally included in the Gemma2
prompt for the CSQA evaluations. We’ve verified
that this erroneous inclusion had minimal impact
on the benchmark accuracy, and have therefore
retained the previous results.

G Random baseline

In Table 2, we can clearly see that benchmark ac-
curacy is highly sensitive to the percentage of can-

didate tokens accepted. For every benchmark, FSD
accuracy is almost identical to SD accuracy when
the threshold T is set such FSD accepts a similar
percentage of candidate tokens. This begs the ques-
tion: is benchmark performance simply a function
of the candidate acceptance percentage, irrespec-
tive of which tokens are being accepted?

To test this, we performed a random FSD base-
line, in which FSD was set to randomly accept a
certain percentage of candidate tokens. By doing
this, we are able to determine whether the diver-
gences between distributions is an effective method
of determining which tokens can be accepted with
minimal impact on downstream performance, or
whether this performance is mostly determined by
how many MD tokens are accepted. We report
these results in Figure 7. As expected, we can
see that FSD with random candidate acceptance
does significantly worse than regular divergence-
based FSD, even when significantly fewer candi-
dates from MD are being accepted. Thus, it does
seem that MD-MT divergence is an effective crite-
ria for deciding which candidates to accept, imply-
ing that the development of better divergences will
likely improve FSD performance even further.

26273


