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Abstract

Recent Large Language Models (LLMs) have
demonstrated impressive translation perfor-
mance without requiring fine-tuning on ad-
ditional parallel corpora. However, they still
face significant challenges in certain scenarios,
particularly when translating low-resource lan-
guages. A common approach to address this
issue is to provide external knowledge, such
as few-shot examples, to assist LLMs in trans-
lating specific source sentences. However, this
method is fundamentally limited by the quality
or quantity of relevant sources, which cannot
always be guaranteed. To reduce LLMs’ re-
liance on external sources, we propose BridG
MT, a method that combines Sentence Bridg-
ing, which generates a sequence of sentences
as a bridge that gradually transition from easy-
to-translate to more difficult, and Gradual MT,
which sequentially translates these sentences
using earlier translations as few-shot examples
for subsequent ones. Experiments conducted on
four LLMs across seven languages demonstrate
that our method effectively enhances transla-
tion performance, even outperforming transla-
tion methods that rely on a large number of
few-shot examples.

1 Introduction

Recent Large Language Models (LLMs) have
shown strong performance in translation tasks with-
out the need for fine-tuning on specific parallel
datasets. Previous studies have demonstrated that
LLMs’ translation capabilities are reliable in most
use cases, particularly when the source and target
language are high-resource languages (Zhu et al.,
2024; Robinson et al., 2023; Jiao et al., 2023). How-
ever, because LLMs require training on large cor-
pora, they still face challenges when translating
low-resource languages that are not sufficiently rep-
resented in the training corpora.(Stap and Araabi,
2023; Robinson et al., 2023; Enis and Hopkins,
2024).
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Figure 1: Figurative illustration of BridG MT. Machine
translation maps between source and target language
spaces. BridG MT expands well-performing areas (blue)
by leveraging neighboring examples, reaching poorly
performing areas (red). Circle sizes indicate output nois-
iness.

Previous research has attempted to address these
challenges by leveraging the in-context-learning
capabilities of large language models (LLMs), par-
ticularly through the use of external knowledge
such as few-shot examples or dictionaries during
inference. However, relevant examples are not al-
ways guaranteed to be available, and constructing
such external knowledge sources can be costly. A
potential solution is to reduce reliance on external
sources altogether.

In this paper, we investigate whether LLMs’
translation capabilities can be improved without
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relying on external knowledge. Our approach is
grounded in a fundamental idea: machine transla-
tion can be understood as a mapping between two
(sub)spaces representing the source and target lan-
guages. Within the source language space, some
regions yield accurate translations, while others do
not. The key question is whether we can expand
the model’s confident region by refeeding examples
from it, ultimately extending into weaker regions
and improving performance in those areas.

We propose BridG MT to enhance machine trans-
lation by bridging regions where the LLM performs
well with those where it struggles. BridG MT in-
tegrates two key techniques: Sentence Bridging
and Gradual MT. Sentence Bridging is a prompt-
ing method that generates a sequence of sentences,
progressively transitioning between them. Gradual
MT iteratively translates a list of sentences, us-
ing the model’s previous translations as few-shot
examples for subsequent ones. Sentence Bridging
helps bridge high- and low-performance regions,
while Gradual MT gradually expands the model’s
strong performance areas by leveraging in-context
learning. These concepts are visually illustrated in
Figure 1.

We evaluate the effectiveness of BridG MT
by applying it to four different LLMs: GPT-3.5,
Mistral-Nemo-Instruct, Llama-3.1-70B-Instruct,
and Llama-3.1-8B-Instruct. The experiments cover
seven target languages: German (De), Chinese (Zh),
Hindi (Hi), Korean (Ko), Swahili (Sw), Marathi
(Mr), and Bengali (Bn). The results demonstrate
that BridG MT significantly enhances the trans-
lation capabilities of LLMs, particularly in low-
resource languages. To the best of our knowledge,
we are the first to propose the concept of Sentence
Bridging.

2 Related Work

2.1 Enhancing LLMs’ Translation
Capabilities without Fine-tuning

Modern LLMs demonstrate strong translation ca-
pabilities in high-resource languages but struggle
with low-resource languages (Jiao et al., 2023; Stap
and Araabi, 2023; Zhu et al., 2024; Enis and Hop-
kins, 2024). Several studies have focused on en-
hancing LLMs’ translation performance without ad-
ditional fine-tuning. A primary approach involves
leveraging LLMs’ ability to learn from demonstra-
tions or descriptions through in-context learning
(Brown et al., 2020; Wei et al., 2022). Researchers

have explored methods such as selecting appropri-
ate exemplars for few-shot learning and demon-
strating linguistic knowledge (Agrawal et al., 2022;
Vilar et al., 2023; Zhang et al., 2024). Beyond sim-
ply providing examples, some approaches conduct
a prior analysis of the sentence to be translated,
using LLMs to extract relevant information. These
approaches then supplement the translation pro-
cess with resources such as chains of multilingual
dictionaries (Lu et al., 2024), or adopt human-like
strategies by providing the LLM with keywords,
topics, and generated demonstrations (He et al.,
2024). Other studies have instead focused on gener-
ating multiple translation candidates and selecting
the optimal output through ranking mechanisms
such Minimum Bayes Risk decoding (Fernandes
et al., 2022).

2.2 Self-Demonstration

Manually generating appropriate exemplars for in-
context learning can be resource-intensive. To ad-
dress this challenge, previous studies have explored
enabling models to generate their own few-shot ex-
amples for tasks such as classification (Lyu et al.,
2023; Kim et al., 2022) or other reasoning tasks
(Zhang et al., 2023; Li et al., 2024). Our work is
aligned with these efforts, as it also focuses on gen-
erating the model’s own few-shot examples. How-
ever, these techniques have yet to be applied to
translation, and BridG MT’s novel approach of in-
tentionally bridging confident regions to current
predictions remains unexplored.

3 Methodology

We introduce two major components of BridG
MT—Sentence Bridging and Gradual MT—in Sec-
tions 3.1 and 3.2, respectively, and then describe
how we combine them in Section 3.3.

3.1 Sentence Bridging

Sentence bridging is a prompting technique that
asks the model to generate a list of sentences that
gradually transition from a start sentence to an
end sentence. The objective of this technique is to
generate a list of sentences where each sentence
is distinct, yet not excessively different from its
adjacent sentences. We call these sentences the
bridge. In our experiments, we utilized three bridg-
ing examples from GPT-4(OpenAI et al., 2024) as
a few-shot to control the output format. See Ap-
pendices A and B for these examples and sample
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Figure 2: Illustration of the BridG MT algorithm. BridG MT integrates Sentence Bridging with Gradual MT. In Step
1, k start sentences are selected from a predefined start-sentence pool. In Step 2, these start sentences are bridged
to the end sentence, creating k individual bridges. Each bridge is then processed through Gradual MT, generating
translation results for every sentence along the path. In Step 3, the MT results from all bridges are aggregated into a
single output translation. Optional pre- and post-filtering steps can be applied between Steps 1 and 2, and again after
aggregation, to refine the sentences on which BridG MT is applied.

Algorithm 1 Pseudo Code for Gradual MT

Input: Bridge X = {x1, x2, ..., xn}, n = |X|,
Translation model M
Set fewshot = []
for xi ∈ X do
ŷi = M(xi, fewshot)
Append {xi, ŷi} to fewshot

end for
Output: ŷn

bridges. Following is the prompt that we use in our
experiments:

I will give you two sentences. Can you
gradually change the first sentence to
make it exactly the same as the second
sentence? Just give me the sentences and
don’t provide additional comments.
Sentence1: ⟨Sentence1⟩
Sentence2: ⟨Sentence2⟩

3.2 Gradual MT
Gradual MT is a prompting technique that enables
an LLM to leverage its previous translations as
prompts. This approach sequentially processes a
bridge, translating each source sentence while us-
ing the preceding translation results as few-shot
examples for the current sentence. An illustration
of the gradual MT algorithm is provided in Algo-
rithm 1. By applying gradual MT, we construct an
expanding set of few-shot examples, which become
increasingly useful for translating the final sentence
that the model must process.

3.3 Overall Method
BridG MT combines sentence bridging and gradual
MT. An illustration of the algorithm is shown in

Figure 2.

Step 0: Start Sentence Pool Creation Before
applying BridG MT, the start sentence pool must
first be created. This pool consists of sentences that
the zero-shot LLM can translate with high accu-
racy. Since we are considering a scenario where
there is no reliable gold translation, we utilize a
reference-free quality estimation(QE) model such
as CometKiwi(Rei et al., 2023) to construct the
start sentence pool. We refer to the source sentences
in the start sentence pool as start sentences.

Step 1: Start Sentence Selection BridG MT be-
gins with selecting k start sentences from the start
sentence pool by calculating the similarity with the
source sentence that the LLM is trying to translate,
which we call an end sentence. Measuring simi-
larity between sentences can be done in various
ways. In this paper, we utilized SBERT similar-
ity(Reimers and Gurevych, 2019) as a primary met-
ric. Details about start sentence selection strategy
can be found in Section 6.1.

Step 2: Sentence Bridging & Gradual MT Af-
ter selecting start sentences, sentence bridging is
performed between each start sentence and the
corresponding end sentence, creating k separate
bridges. The bridges are then processed through
the Gradual MT, generating translation results for
each sentence.

Step 3: MT Results Aggregation When the
number of start sentences is more than one, we
proceed to aggregate the translation results from
each bridge. This step is skipped if we choose to
work with single start sentence in Step 1. There
could be several methods for aggregating transla-
tions; in our approach, we input all the translation
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results into the LLM once again as few-shot ex-
amples to generate the final translation. A detailed
ablation of this aggregation strategy can be found
in Section 6.2. After aggregation, we obtain the
final translation, which we refer to as the output.

Pre- & Post-filtering BridG MT can be applied
to any sentence; however, it is often more effective
to use it selectively for two reasons. First, deter-
mining which sentences will undergo BridG MT
before its execution can significantly reduce com-
putational costs. Second, even after applying BridG
MT, it is better to discard the BridG MT result if
its quality is worse than the zero-shot translation.
We explored these two possibilities—referred to as
Pre-filtering and Post-filtering—in Section 6.3 and
show that these methos can improve quality with
smaller computation than full application of BridG
MT.

4 Experiment

4.1 Setup

Models For translation, we use four different
LLMs: GPT-3.5 (GPT-3.5-Turbo-0125)1, Mistral-
Nemo (Mistral-Nemo-Instruct-2407)2, and two
Llama models (Llama-3.1-70B-Instruct, Llama-
3.1-8B-Instruct) (Dubey et al., 2024). ChatGPT
is accessed via OpenAI’s API, while the other mod-
els ran on local GPU. For sentence bridging, we
employ Qwen2-72B-Instruct (Yang et al., 2024)
with 4-bit quantization as our primary bridging
model. We also tested Llama-3.1-8B-Instruct and
Llama-3.1-3B-Instruct to test the generalizability
of the method in more cost-efficient settings. See
Appendices D and E for settings for translation
and bridging. For pre- and post-filtering, we uti-
lize a reference-free QE model CometKiwi (Rei
et al., 2023) to avoid peeking at the gold trans-
lations. CometKiwi predicts a DA score, which
rates translation quality on a scale from 0 to 100,
normalized to a range of 0 to 1. Lastly, we used
all-mpnet-base-v23 for SBERT sismilarity calcu-
lation in retrieving start sentences and few-shot ex-
amples for baseline experiments. All experiments
were conducted once.

1https://platform.openai.com/docs/models/
gpt-3-5-turbo

2https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407/

3https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

Target Languages We fixed English as the
source language. The target languages tested in the
experiments are German (De), Chinese (Zh), Ko-
rean (Ko), Hindi (Hi), Swahili (Sw), Bengali (Bn),
and Marathi (Mr). Based on Joshi et al. (2020)’s 6
scale resource level, we classify German and Chi-
nese as high resource, Korean and Hindi as mid
resource, and the rest as low resource. For GPT
3.5, we experiment on every languages. For the
Llama 3.1 models, we only experiment on German
and Hindi, as they do not support other languages.
Mistral-Nemo does not officially support Ko, Hi,
Sw, Bn, and Mr, but we conduct experiments on
those languages nevertheless, as it has some capa-
bility to generate them.

Dataset We use the FLORES-200 benchmark
dataset (Team et al., 2022) for validation and eval-
uation. The development split is used to construct
the start sentence pool. For the test set, we sample
90% of the data and reserve the remaining 10% to
determine the QE score threshold for pre-filtering.
We also use NTREX-128 (Federmann et al., 2022)
to evaluate whether BridG MT remains effective
when the distribution of the start sentence pool
differs from that of the test set. The results for
NTREX-128 are presented in Section 7.

Start Sentence Pool Creation The start sentence
pool is created by translating source sentences from
the dev split of the FLORES-200 dataset using a
zero-shot approach. Each source sentence is trans-
lated five times and evaluated with CometKiwi-a
reference-free model. The most frequently occur-
ring translation is selected as the representative
translation. If no translation is repeated, the one
with a score closest to the average is chosen. After
selecting each representative translation, the top
100 translation pairs with the highest DA scores are
selected.

Baselines Since our focus is on scenarios where
providing relevant few-shot examples is not fea-
sible, we first compare BridG MT with zero-shot
baselines. We then extend the comparison to con-
ventional few-shot translation settings, where gold
translations sampled from the start sentence pool
are used as demonstrations (15, 30, and 50 exam-
ples). This enables us to evaluate how well BridG
MT—designed specifically for settings without ac-
cessible few-shot examples—performs relative to
standard few-shot approaches. We further compare
BridG MT with related methods: MAPS (He et al.,
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Table 1: xCOMET scores of BridG MT across different translation models and target languages. Sentence bridging
was performed using Qwen2-72B-Instruct. Scores are multiplied by 100 for readability. For each MT model and
language, the highest score is shown in bold and the second-highest is underlined. Cells are left blank when a
specific model or method does not support the corresponding language.

High Resource Mid Resource Low Resource
MT Model Method DE ZH HI KO SW BN MR

GPT 3.5

Zero-shot 97.63 91.30 71.89 89.48 81.23 68.73 44.53
MAPS 97.68 92.06 - - - - -
QA Decode 97.45 91.63 75.45 90.19 78.26 73.90 45.82
BridG Post 98.04 92.63 77.90 92.57 83.65 75.41 53.11
BridG Pre & Post 97.86 92.35 77.63 92.07 83.34 75.14 51.51

Llama 3.1 70B

Zero-shot 97.33 - 79.41 - - - -
MAPS 96.53 - - - - - -
QA Decode 97.37 - - - - - -
BridG Post 97.93 - 84.45 - - - -
BridG Pre & Post 97.73 - 84.31 - - - -

Llama 3.1 8B

Zero-shot 94.99 - 69.93 - - - -
MAPS 79.10 - - - - - -
QA Decode 88.08 - 77.67 - - - -
BridG Post 97.25 - 78.30 - - - -
BridG Pre & Post 96.99 - 77.37 - - - -

Mistral Nemo

Zero-shot 96.70 88.01 66.78 81.43 38.97 71.89 43.99
MAPS 85.75 88.71 - - - - -
QA Decode 96.33 87.18 64.42 80.34 28.86 68.59 35.37
BridG Post 97.70 90.99 73.95 89.45 45.67 78.35 57.24
BridG Pre & Post 97.70 90.99 73.82 89.34 45.18 77.83 54.55

TowerInstruct 97.69 89.89 - 91.29 - - -
NLLB 96.21 67.88 81.00 82.20 77.17 82.70 71.83

2024)4 and Quality Aware(QA) Decode (Fernan-
des et al., 2022)5. Among the target languages in
our experiments, MAPS provides few-shot exam-
ples only for De and Zh in its published codebase;
therefore, it was evaluated only on these languages.
For QA Decode, we used MBR reranking, as it
showed the best performance in their paper. Fi-
nally, to provide a broader context for comparison,
we benchmark BridG MT against strong baseline
models, including TowerInstruct 13B (Alves et al.,
2024) and NLLB-200-3.3B6. Among the languages
supported by TowerInstruct, only De, Zh, and Ko
overlapped with our target languages; thus, experi-
ments with TowerInstruct were conducted only on
these languages.

Evaluation We employ four different QE models
for evaluation; xCOMET, MetricX(Juraska et al.,
2023), CometKiwi, and BLEURT(Pu et al., 2021).
xCOMET, CometKiwi and BLEURT predict DA
score, and MetricX predicts MQM score. MQM
score assesses translation erorrs on a scale from 0
to 25, where lower scores indicate higher quality.
Lastly, we report BLEU and ChrF.

4https://github.com/zwhe99/MAPS-mt
5https://github.com/deep-spin/qaware-decode
6https://huggingface.co/facebook/nllb-200-3.3B

5 Results

We first conducted a series of ablation experiments
for En-Ko translation using GPT 3.5 to identify
the optimal configuration, including start selection
(Step 1) and result aggregation (Step 3). This opti-
mal configuration was then applied in the main
experiments across different translation models,
sentence bridging models, and target languages.
A detailed explanation of the ablation study is
provided in Section 6. In this section, we present
the xCOMET results of BridG MT across various
LLMs and target languages. The full results are
provided in Appendix F.

5.1 Comparing with Zeroshot Baselines

As shown in Table 1, BridG MT consistently im-
proves the translation performance of LLMs, par-
ticularly for low-resource languages. For example,
the performance gaps of GPT 3.5 between BridG
MT and the baseline are 0.4, 1.3, 6.0, 3.1, 2.4, 6.7,
and 8.6 for De, Zh, Hi, Ko, Sw, Bn, and Mr, re-
spectively. This trend remains consistent across
other evaluation metrics (Tables 12, 13, 14, 15, and
16). BridG MT also outperforms alternative meth-
ods—MAPS and QA Decode. Notably, similar pat-
terns are observed even when using QE models
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Table 2: xCOMET scores of BridG MT across different translation models, sentence bridging models, and target
languages. Scores are multiplied by 100 for readability, and the two highest scores for each MT model and language
are highlighted in bold and underlined. For languages not supported by each model, the corresponding cells were
left blank.

MT Model Method Bridging Model DE ZH HI KO SW BN MR

GPT 3.5 BridG MT
Qwen2 72B Instruct 98.04 92.63 77.90 92.57 83.65 75.41 53.11
Llama 3.1 8B 97.97 92.38 77.24 91.85 83.62 74.24 52.27
Llama 3.2 3B 97.97 92.35 76.44 91.48 83.49 74.35 52.13

Zero-shot N/A 97.63 91.30 71.89 89.48 81.23 68.73 44.53

Llama 3.1 70B BridG MT
Qwen2 72B Instruct 97.93 - 84.45 - - - -
Llama 3.1 8B 97.87 - 83.97 - - - -
Llama 3.2 3B 97.85 83.65 - - - -

Zero-shot N/A 97.33 - 79.41 - - - -

Llama 3.1 8B BridG MT
Qwen2 72B Instruct 97.25 - 78.30 - - - -
Llama 3.1 8B 96.93 - 77.83 - - - -
Llama 3.2 3B 97.14 77.65 - - - -

Zero-shot N/A 94.99 - 69.93 - - - -

Mistral-Nemo BridG MT
Qwen2 72b Instruct 97.70 90.99 73.95 89.45 45.67 78.35 57.24
Llama 3.1 8B 97.52 90.40 72.34 87.83 43.33 76.73 52.93
Llama 3.2 3B 97.42 90.04 71.62 86.55 42.30 75.83 51.66

Zero-shot N/A 96.70 88.01 66.78 81.43 38.97 71.89 43.99

other than COMET and when varying the choice
of bridging model. As shown in Table 2, using
smaller bridging models leads to a slight decline in
performance, but the overall improvement over the
baseline remains substantial.

5.2 Comparing with Baselines Using Labelled
Data

We further compared our results to a few-shot setup.
To provide few-shot examples under conditions
similar to our approach, we built a few-shot pool by
selecting 100 sentences from the FLORES-200 dev
set that the model translates well—similar to how
we created the start sents pool. However, in this
case, we employed xCOMET, a reference-based
QE model. Figure 3 presents the average trans-
lation scores of GPT-3.5 and Mistral-Nemo. The
results indicate that our method is comparable to,
and often outperforms, few-shot translations. This
demonstrates that even without high-quality gold
translations, BridG MT can surpass translations
generated by an LLM equipped with gold few-shot
references. Additionally, we observe a performance
drop when the model is given 50-shot examples,
suggesting that BridG MT achieves performance
levels that cannot be matched simply by increasing
the number of few-shot examples. These findings
remain consistent when using Llama models and
evaluating with other metrics. See Appendix F for
detailed results.

6 Ablation Study

To find the optimal configuration for the BridG MT,
we conducted an ablation study on En-Ko transla-

tion task using GPT-3.5 in terms of four different di-
mensions: Start sentence selection criteria, Number
of start sentences, MT result aggregation strategy,
and Filtering strategy. We utilized xCOMET with
gold translations in the ablation study to construct
the highest-quality start pool possible. Full results
with all different combination of ablation settings
can be found in Appendix G.

6.1 Start Sentence Selection Strategy

Based on the intuition that start sentences simi-
lar to the source sentence will be helpful, we em-
ployed three different metrics—SBERT similarity
(Reimers and Gurevych, 2019), Levenshtein dis-
tance (Levenshtein and others, 1966), and tree edit
distance (Zhang and Shasha, 1989)—to calculate
the similarity between sentences, and we combined
them in three different ways. The first approach,
Sort, sorts sentences using multiple metrics with
varying priorities. The second approach, Filter, ini-
tially selects the top 10 sentences based on SBERT
similarity and then sorts that selection using the
other metrics. The third approach, Tops, picks the
top sentence based on the highest similarity scores
from each metric. As shown in Table 3, the selec-
tion strategies that produced the highest scores dif-
fered across aggregation methods. We chose to sort
by SBERT similarity and then by tree edit distance
(Sort(S-T)), as this approach yielded the highest
average scores.
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Figure 3: xCOMET scores for few-shot translations (bars) and BridG MT translations (horizontal line). Both BridG
MT and few-shot scores represent the average xCOMET scores of GPT-3.5 and Mistral-Nemo.

Table 3: Averaged scores with different start selection
strategies, start sentence numbers and aggregation strate-
gies applied to EN-KO translation task. ‘Sort’, ‘Filter’,
and ‘Tops’ denote the start sentence selection methods.
Each letter in parentheses represents a similarity metric,
with the order indicating the priority of these metrics.
‘L’, ‘T’ and ‘S’ stands for Levenshtein distance, Tree
edit distance, and SBERT similarity, respectively. The
highest average values for each axis are highlighted in
bold. The highest values for each start sentence number
and aggregation strategy are highlighted in underline.

Start Selection Strategy
Start Sents.Num &

Aggregation Strategy Average
1 (n/a) 3 Poll 3 Prompt

Filter(T-L) 91.29 91.22 91.72 91.41
Filter(L-T) 91.67 91.23 91.59 91.50
Sort(L-S) 91.35 91.22 91.57 91.38
Sort(T-S) 90.95 91.09 91.65 91.23

Sort(L-T-S) 91.19 91.21 91.50 91.30
Sort(T-L-S) 91.19 91.00 91.93 91.37
Sort(S-T) 91.50 91.39 91.83 91.57

Tops - 91.23 91.69 91.46
Average 91.31 91.20 91.69

6.2 Number of Start Sentences & MT
Aggregation Strategy

When selecting the start sentences, we need to de-
cide whether to use more than one start sentence.
If we choose more than one, we must aggregate
each translation result generated by Gradual MT.
We investigated two distinct strategies for aggre-
gating the results of Gradual MT. The first method,
referred to as Polling, selects the MT result with

the highest number of duplicates, drawing inspira-
tion from prior research on self-consistency (Wang
et al., 2023). If no duplicates are found, a result is
selected randomly. The second method, Prompting,
involves feeding all Gradual MT results into the
LLM as few-shot examples to generate the final
MT output. As shown in Table 3, the prompting
strategy outperforms polling by 0.49 points. Polling
is often worse than using a single start sentence.

6.3 Filtering Strategy

We tested three strategies for filtering. The first
strategy, ‘Pre-filtering’, aims to minimize costs by
evaluating zero-shot translation results with a QE
model and applying BridG MT only when neces-
sary (i.e., when the QE score falls below a certain
threshold). The second strategy, ‘Post-filtering’,
prioritizes maximizing performance by applying
BridG MT first and using its output only if the
QE score exceeds that of the zero-shot translation.
The third strategy, ‘Pre- & Post-filtering’ combines
the first two: applying BridG MT when the zero-
shot translation’s QE score is below a threshold,
and only if BridG MT’s score is higher. We em-
ployed CometKiwi, a reference-free QE model, to
implement these strategies. To compare them, we
analyzed xCOMET scores and score changes of se-
lected outputs, applying the optimal strategies for
start selection (Sort(S-T)) and aggregation (Prompt-
ing). As shown in Table 4, all strategies improved
overall performance, with ‘Post-filtering’ achiev-
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Table 4: Average xCOMET scores and score changes of selected outputs when applying the optimal strategies
for start selection and aggregation in En-Ko translation. ‘Score change’ is calculated only for the adopted outputs.
We also report the number of end sentences for which bridging and Gradual MT is executed (‘# Bridging’) and
the number of end sentences for which the BridG MT output is selected over zero-shot translation (‘# Selected
Outputs’). The results show that ‘Pre & Post’ reduces the number of bridging by more than half while maintaining
nearly the same translation performance.

Filtering
Strategy Avg. Score Avg. Score Change

of Selected Outputs # Bridging # Selected Outputs

Zeroshot 89.48 - - -
All 91.22 1.74 911 (100%) 911 (100%)
Pre 91.50 4.49 410 (45%) 410 (45%)

Post 92.54 5.61 911 (100%) 497 (54%)
Pre & Post 92.08 8.50 410 (45%) 279 (31%)

ing a notable gain of over 1 point in QE scores
compared to zero-shot MT. The results also indi-
cate that ‘Pre- & Post-filtering’ reduces bridging by
more than half while maintaining comparable per-
formance to ‘Post-filtering’, offering an effective
compromise between computational efficiency and
translation quality. Results with every combination
of ablation strategies are shown in Table 18.

6.4 Optimal Configuration

Based on our ablation study, we found the opti-
mal strategy to be selecting start sentences using
SBERT similarity and tree edit distance (Sort(S-T)),
using three start sentences, aggregating Gradual
MT results by feeding them as few-shot examples
for the final translation, and applying post-filtering.
However, given the computational cost, using both
pre- and post-filtering can also be a good compro-
mise between efficiency and accuracy.

7 Discussion

7.1 Generalizability of Start Sentence Pool

To test the robustness of the start sentence pool, we
evaluated BridG MT on the NTREX-128 dataset,
which has a different distribution from FLORES-
200—the dataset used to construct the start pool.
We used Llama-3.1-8B for sentence bridging. The
results show that even when the same start pool is
used to translate a different dataset, BridG MT still
achieves a significant performance improvement.
Detailed results are provided in Table 5.

7.2 Balancing Performance and Speed in
BridG MT

BridG MT is useful in that it can significantly en-
hance the translation performance of LLMs. How-
ever, the additional inference time introduced by

sentence bridging and Gradual MT can be a draw-
back in scenarios where fast translation is required.
In such cases, it may be more important to pri-
oritize speed, even at the cost of a slight drop in
performance. We analyzed the cost-performance
trade-offs of three approaches to reduce cost: using
a smaller bridging model, applying bridge sam-
pling and pre-filtering. Assuming a setting where
sentences are translated one at a time, we measured
the time spent on each step of BridG MT and an-
alyzed the inference time and performance across
different configurations. A detailed breakdown of
the inference time and cost analysis results can be
found in Appendix C.

Smaller Model for Sentence Bridging Using
smaller models can significantly reduce the time
required for sentence bridging. As shown in Ta-
ble 8, even with these smaller models, our ap-
proach achieves performance comparable to that of
Qwen2-72B-Instruct while reducing the computa-
tion time by more than half.

Bridge Sampling Bridge sampling is a method to
reduce the computational cost by applying Gradual
MT only to the first(start), middle, and last(end)
sentences along the interpolation path. We tested
the bridge sampling using only one start sentence.
Bridge sampling reduces the time for Gradual MT
by 78% while showing higher performance than
baselines. Results are shown in Table 9.

Pre-Filtering Pre-filtering reduces the overall
computational cost by applying BridG MT only to
sentences that the model struggles to translate well.
While pre-filtering introduces an additional cost for
computing QE scores, this is outweighed by the
overall reduction in computational cost. According
to our statistics, pre-filtering reduced the overall
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Table 5: xCOMET results of BridG MT on the NTREX-128 dataset for various target languages.

MT Model Setting De Ch Hi Ko Sw Be Mr

GPT-3.5
Zeroshot 95.10 83.71 67.54 81.85 78.98 62.62 41.55

BridG MT 95.74 85.48 71.95 84.90 81.49 69.04 48.40

Llama-70B
Zeroshot 94.39 - 75.58 - - - -

BridG MT 95.50 - 80.03 - - - -

Llama-8B
Zeroshot 91.33 - 64.94 - - - -

BridG MT 93.79 - 73.47 - - - -

Mistral Nemo
Zeroshot 91.02 74.36 61.13 65.10 32.99 63.66 35.19

BridG MT 94.74 80.76 68.45 78.33 39.61 72.25 47.19

computation time by 28%. Results are shown in
Table 10.

Results from Cost-Efficient Configuration We
further tested the cost-efficient configuration, in
which we use Llama-3.1-8B for both sentence
bridging and translation, and applied bridge sam-
pling. We also applied pre-filtering, as we had al-
ready confirmed its effectiveness in our ablation
study (Section 6.3). The test result on Hindi shows
that applying these strategies can reduce inference
time by 63%, while compromising performance by
only 2.4 points.

Table 6: Comparison between the results of the main
experiment (‘Main’) and a more efficient configuration
(‘Efficient’). The translation model used is Llama-3.1-
8B, and the target language is Hindi.

Main Efficient Zeroshot

Components

Bridging Model Qwen2 72B Llama 8B -
Pre-filtering X O -
Path Sampling X O -
Post-filtering O X -

Avg. Inference Time 46.59 17.19 1.74
xCOMET 78.30 75.88 69.93

7.3 Sentence Bridging Analysis

We conducted an analysis of the sentences within
the sentence bridges. In particular, we examined
whether the sentences within a bridge gradually
become more similar to the end sentence on both
the source and target sides as illustrated in Figure 1.
The analysis revealed that the embedding distance
between the bridge sentences and the end sentence
progressively decreases on the source side, and a
similar trend is observed on the target side, where
the embedding distance between the gold transla-
tion and the translations generated at each step of
Gradual MT also decreases. A detailed analysis is
provided in Appendix I.

7.4 Quality of a Start Pool

We analyzed the impact of the start pool quality
using GPT-3.5 and Mistral-Nemo across four lan-
guages: Korean (Ko), Hindi (Hi), Swahili (Sw), and
Marathi (Mr). For each language, we selected three
distinct start pools from the FLORES-200 dev set,
sorted by their translation xCOMET scores: High,
Mid, and Low. The High start pool consists of the
100 sentences with the highest xCOMET scores.
The Low start pool includes the 100 sentences with
the lowest scores, while the Mid start pool is con-
structed using the 100 sentences located in the mid-
dle of the sorted dev set. We conducted BridG MT
with a single start sentence, without applying any
filtering method. The results show that the quality
of the start pool had a degrading effect on the fi-
nal translation when using Mistral-Nemo, whereas
GPT-3.5 demonstrated robustness. Full results can
be found in Appendix H.

8 Conclusion

In this paper, we proposed BridG MT, a novel
method to enhance the machine translation ca-
pabilities of various LLMs. BridG MT leverages
sentence bridging and gradual MT to guide mod-
els, eliciting stronger translation performance. Ex-
perimental results across various models and lan-
guages demonstrate that our approach consistently
improves translation quality, particularly in low-
resource languages. Our approach is practical in
that it does not require extra training and does not
conflict with previous methods that utilize other
kinds of prompting techniques.

Limitations

BridG MT has a limitation in that it introduces
computational overhead due to Sentence Bridging
and the recursive nature of Gradual MT. While we
have tested various methods to minimize the cost
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of BridG MT, such as pre-filtering and bridge sam-
pling, future work could focus on further optimiz-
ing computational efficiency. Additionally, since
the model used for sentence bridging did not per-
form well in languages other than English, we
had to limit our study to cases where English was
the source language. Exploring better prompting
techniques to interpolate non-English sentences
presents a promising direction for future research.

Acknowledgments

This work was supported in part by the National
Research Foundation of Korea (NRF) grant (RS-
2023-00280883, RS-2023-00222663); by the Na-
tional Super computing Center with super comput-
ing resources including technical support (KSC-
2023-CRE-0176, KSC-2024-CRE-0065); by the
Korea Institute of Science and Technology Informa-
tion (KISTI) in 2025 (No.(KISTI) K25L1M1C1),
aimed at developing KONI (KISTI Open Neural
Intelligence), a large language model specialized
in science and technology; and by the Institute of
Information & communications Technology Plan-
ning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (RS-2025-02263754); by the
Korea Medical Device Development Fund grant
funded by the Korea government (the Ministry
of Science and ICT, the Ministry of Trade, Indus-
try and Energy, the Ministry of Health & Welfare,
the Ministry of Food and Drug Safety, 2025의약
안003); partially supported by New Faculty Startup
Fund from Seoul National University.

References

Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke
Zettlemoyer, and Marjan Ghazvininejad. 2022. In-
context Examples Selection for Machine Translation.
_eprint: 2212.02437.

Duarte M. Alves, José Pombal, Nuno M. Guerreiro, Pe-
dro H. Martins, João Alves, Amin Farajian, Ben Pe-
ters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal,
Pierre Colombo, José G. C. de Souza, and André
F. T. Martins. 2024. Tower: An open multilingual
large language model for translation-related tasks.
Preprint, arXiv:2402.17733.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and others. 2020. Language models are few-
shot learners. Advances in neural information pro-
cessing systems, 33:1877–1901.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra-
jjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro-
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shao-
liang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Si-
mon Vandenhende, Soumya Batra, Spencer Whitman,
Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler,
Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vig-
nesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers,

26027

https://arxiv.org/abs/2212.02437
https://arxiv.org/abs/2212.02437
https://arxiv.org/abs/2402.17733
https://arxiv.org/abs/2402.17733


Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen
Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle
Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengx-
ing Chen, Zoe Papakipos, Aaditya Singh, Aaron
Grattafiori, Abha Jain, Adam Kelsey, Adam Sha-
jnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boe-
senberg, Alex Vaughan, Alexei Baevski, Allie Fein-
stein, Amanda Kallet, Amit Sangani, Anam Yunus,
Andrei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-
mon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, Danny Wyatt, David Adkins, David Xu, Da-
vide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
Montgomery, Eleonora Presani, Emily Hahn, Emily
Wood, Erik Brinkman, Esteban Arcaute, Evan Dun-
bar, Evan Smothers, Fei Sun, Felix Kreuk, Feng
Tian, Firat Ozgenel, Francesco Caggioni, Francisco
Guzmán, Frank Kanayet, Frank Seide, Gabriela Med-
ina Florez, Gabriella Schwarz, Gada Badeer, Geor-
gia Swee, Gil Halpern, Govind Thattai, Grant Her-
man, Grigory Sizov, Guangyi, Zhang, Guna Laksh-
minarayanan, Hamid Shojanazeri, Han Zou, Han-
nah Wang, Hanwen Zha, Haroun Habeeb, Harrison
Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon
Carvill, Jon Shepard, Jonathan McPhie, Jonathan Tor-
res, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,

Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,
Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The Llama 3
Herd of Models. arXiv preprint. ArXiv:2407.21783
[cs].

Maxim Enis and Mark Hopkins. 2024. From LLM to
NMT: Advancing Low-Resource Machine Transla-
tion with Claude. arXiv preprint. ArXiv:2404.13813
[cs].

Christian Federmann, Tom Kocmi, and Ying Xin. 2022.
NTREX-128 – news test references for MT evalua-
tion of 128 languages. In Proceedings of the First
Workshop on Scaling Up Multilingual Evaluation,
pages 21–24, Online. Association for Computational
Linguistics.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José G. C. de Souza, Perez Ogayo, Graham Neubig,
and Andre Martins. 2022. Quality-aware decoding
for neural machine translation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396–1412,
Seattle, United States. Association for Computational
Linguistics.

Zhiwei He, Tian Liang, Wenxiang Jiao, Zhuosheng
Zhang, Yujiu Yang, Rui Wang, Zhaopeng Tu, Shum-
ing Shi, and Xing Wang. 2024. Exploring human-

26028

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2404.13813
https://doi.org/10.48550/arXiv.2404.13813
https://doi.org/10.48550/arXiv.2404.13813
https://aclanthology.org/2022.sumeval-1.4
https://aclanthology.org/2022.sumeval-1.4
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.18653/v1/2022.naacl-main.100
https://doi.org/10.1162/tacl_a_00642


like translation strategy with large language models.
Transactions of the Association for Computational
Linguistics, 12:229–246.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, Shuming Shi, and Zhaopeng Tu. 2023. Is
ChatGPT A Good Translator? Yes With GPT-4 As
The Engine. arXiv preprint. ArXiv:2301.08745 [cs].

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the NLP
world. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics.

Juraj Juraska, Mara Finkelstein, Daniel Deutsch, Aditya
Siddhant, Mehdi Mirzazadeh, and Markus Freitag.
2023. MetricX-23: The Google Submission to the
WMT 2023 Metrics Shared Task. In Proceedings of
the Eighth Conference on Machine Translation, pages
756–767, Singapore. Association for Computational
Linguistics.

Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk
Kim, Kang Min Yoo, and Sang-goo Lee. 2022. Self-
Generated In-Context Learning: Leveraging Auto-
regressive Language Models as a Demonstration Gen-
erator. _eprint: 2206.08082.

Vladimir I Levenshtein and others. 1966. Binary codes
capable of correcting deletions, insertions, and rever-
sals. In Soviet physics doklady, volume 10, pages
707–710. Soviet Union.

Junlong Li, Jinyuan Wang, Zhuosheng Zhang, and Hai
Zhao. 2024. Self-Prompting Large Language Mod-
els for Zero-Shot Open-Domain QA. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pages 296–310, Mexico City, Mexico.
Association for Computational Linguistics.

Hongyuan Lu, Haoran Yang, Haoyang Huang, Dong-
dong Zhang, Wai Lam, and Furu Wei. 2024. Chain-
of-dictionary prompting elicits translation in large
language models. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 958–976, Miami, Florida, USA.
Association for Computational Linguistics.

Xinxi Lyu, Sewon Min, Iz Beltagy, Luke Zettlemoyer,
and Hannaneh Hajishirzi. 2023. Z-ICL: Zero-Shot
In-Context Learning with Pseudo-Demonstrations.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2304–2317, Toronto, Canada.
Association for Computational Linguistics.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,

Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,
Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim,
Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa
Lopez, Ryan Lowe, Patricia Lue, Anna Makanju,
Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew
Mayne, Bob McGrew, Scott Mayer McKinney, Chris-
tine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, An-
drey Mishchenko, Pamela Mishkin, Vinnie Monaco,
Evan Morikawa, Daniel Mossing, Tong Mu, Mira
Murati, Oleg Murk, David Mély, Ashvin Nair, Rei-
ichiro Nakano, Rajeev Nayak, Arvind Neelakan-
tan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,
Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe
Palermo, Ashley Pantuliano, Giambattista Paras-
candolo, Joel Parish, Emy Parparita, Alex Passos,
Mikhail Pavlov, Andrew Peng, Adam Perelman, Fil-
ipe de Avila Belbute Peres, Michael Petrov, Henrique
Ponde de Oliveira Pinto, Michael, Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea
Power, Boris Power, Elizabeth Proehl, Raul Puri,
Alec Radford, Jack Rae, Aditya Ramesh, Cameron
Raymond, Francis Real, Kendra Rimbach, Carl Ross,
Bob Rotsted, Henri Roussez, Nick Ryder, Mario
Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sas-
try, Heather Schmidt, David Schnurr, John Schulman,
Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jes-
sica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin,
Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such,

26029

https://doi.org/10.1162/tacl_a_00642
https://doi.org/10.48550/arXiv.2301.08745
https://doi.org/10.48550/arXiv.2301.08745
https://doi.org/10.48550/arXiv.2301.08745
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2023.wmt-1.63
https://doi.org/10.18653/v1/2023.wmt-1.63
https://arxiv.org/abs/2206.08082
https://arxiv.org/abs/2206.08082
https://arxiv.org/abs/2206.08082
https://arxiv.org/abs/2206.08082
https://doi.org/10.18653/v1/2024.naacl-long.17
https://doi.org/10.18653/v1/2024.naacl-long.17
https://doi.org/10.18653/v1/2024.emnlp-main.55
https://doi.org/10.18653/v1/2024.emnlp-main.55
https://doi.org/10.18653/v1/2024.emnlp-main.55
https://doi.org/10.18653/v1/2023.acl-long.129
https://doi.org/10.18653/v1/2023.acl-long.129


Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas
Tezak, Madeleine B. Thompson, Phil Tillet, Amin
Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick
Turley, Jerry Tworek, Juan Felipe Cerón Uribe, An-
drea Vallone, Arun Vijayvergiya, Chelsea Voss, Car-
roll Wainwright, Justin Jay Wang, Alvin Wang, Ben
Wang, Jonathan Ward, Jason Wei, C. J. Weinmann,
Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian
Weng, Matt Wiethoff, Dave Willner, Clemens Win-
ter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao,
Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Woj-
ciech Zaremba, Rowan Zellers, Chong Zhang, Mar-
vin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang
Zhuang, William Zhuk, and Barret Zoph. 2024. GPT-
4 Technical Report. _eprint: 2303.08774.

Amy Pu, Hyung Won Chung, Ankur P Parikh, Sebastian
Gehrmann, and Thibault Sellam. 2021. Learning
compact metrics for mt. In Proceedings of EMNLP.

Ricardo Rei, Nuno M. Guerreiro, JosÃ\copyright Pom-
bal, Daan van Stigt, Marcos Treviso, Luisa Coheur,
José G. C. de Souza, and André Martins. 2023. Scal-
ing up CometKiwi: Unbabel-IST 2023 Submission
for the Quality Estimation Shared Task. In Proceed-
ings of the Eighth Conference on Machine Trans-
lation, pages 841–848, Singapore. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Nathaniel Robinson, Perez Ogayo, David R. Mortensen,
and Graham Neubig. 2023. ChatGPT MT: Competi-
tive for High- (but Not Low-) Resource Languages.
In Proceedings of the Eighth Conference on Machine
Translation, pages 392–418, Singapore. Association
for Computational Linguistics.

David Stap and Ali Araabi. 2023. ChatGPT is not a
good indigenous translator. In Proceedings of the
Workshop on Natural Language Processing for In-
digenous Languages of the Americas (AmericasNLP),
pages 163–167, Toronto, Canada. Association for
Computational Linguistics.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No Language Left Behind: Scaling Human-
Centered Machine Translation. arXiv preprint.
ArXiv:2207.04672 [cs].

David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo,
Viresh Ratnakar, and George Foster. 2023. Prompt-
ing PaLM for Translation: Assessing Strategies and
Performance. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15406–
15427, Toronto, Canada. Association for Computa-
tional Linguistics.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilin-
gual e5 text embeddings: A technical report. arXiv
preprint arXiv:2402.05672.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and others. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
neural information processing systems, 35:24824–
24837.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 Techni-
cal Report. _eprint: 2407.10671.

Kaizhong Zhang and Dennis Shasha. 1989. Simple
fast algorithms for the editing distance between trees
and related problems. SIAM journal on computing,
18(6):1245–1262. Publisher: SIAM.

Kexun Zhang, Yee Man Choi, Zhenqiao Song, Taiqi
He, William Yang Wang, and Lei Li. 2024.
Hire a Linguist!: Learning Endangered Languages
with In-Context Linguistic Descriptions. _eprint:
2402.18025.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024. Multilingual Machine Translation with

26030

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://doi.org/10.18653/v1/2023.wmt-1.73
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/2023.wmt-1.40
https://doi.org/10.18653/v1/2023.wmt-1.40
https://doi.org/10.18653/v1/2023.americasnlp-1.17
https://doi.org/10.18653/v1/2023.americasnlp-1.17
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
https://doi.org/10.18653/v1/2023.acl-long.859
https://doi.org/10.18653/v1/2023.acl-long.859
https://doi.org/10.18653/v1/2023.acl-long.859
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2402.18025
https://arxiv.org/abs/2402.18025
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://doi.org/10.18653/v1/2024.findings-naacl.176


Large Language Models: Empirical Results and Anal-
ysis. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 2765–2781,
Mexico City, Mexico. Association for Computational
Linguistics.

A Few-shot Examples for Sentence
Bridging

In this study, we gave three examples to the bridg-
ing model. We arbitrarily picked start and end sen-
tences from the New York Times news articles.

A.1 Example 1
Sentence 1: Surprisingly often, animals
show up uninvited at sporting events.
Sometimes, it gets a little weird.
Sentence 2: D. Cohen tried to parry at-
tacks on his honesty as Todd Blanche,
Donald J. Trump’s lawyer, tried to de-
stroy his credibility with jurors.
Bridge

1. Surprisingly often, animals show up
uninvited at sporting events. Some-
times, it gets a little weird.

2. Often, unexpected events occur dur-
ing live events, and sometimes these
can get quite weird.

3. At public events, such as sports
or trials, unexpected guests often
cause disturbances, leading to weird
situations.

4. In public spectacles, like sports
or courtrooms, unexpected partic-
ipants can disrupt the normal pro-
ceedings in strange ways.

5. During public hearings, like in
court, surprising accusations and de-
fenses can emerge, often causing
odd disruptions.

6. In courtroom battles, unexpected ar-
guments and witnesses can often
turn the proceedings weird as each
side tries to undermine the other.

7. In legal battles, lawyers frequently
confront each other with surpris-
ing tactics to challenge credibility,
which can make the proceedings
seem strange.

8. Michael D. Cohen, during his trial,
encountered surprising tactics by
Todd Blanche, Donald J. Trump’s

lawyer, aiming to disrupt his credi-
bility in unusual ways.

9. Michael D. Cohen tried to parry
attacks on his honesty as Todd
Blanche, Donald J. Trump’s lawyer,
tried to destroy his credibility with
jurors.

A.2 Example 2

Sentence 1: Georgia’s Parliament
overrode a presidential veto to give
final approval on Tuesday evening to
a contentious bill that has plunged
the country into a political crisis and
threatened to derail the pro-Western
aspirations of many Georgians in favor
of closer ties with Russia.
Sentence 2: At that time, the buildings
were abandoned and inaccessible to
the public, and the famous ferry that
shuttled immigrants from the island to
Manhattan sank in a storm in 1968.
Bridge

1. Georgia’s Parliament overrode a
presidential veto to give final ap-
proval on Tuesday evening to a con-
tentious bill that has plunged the
country into a political crisis and
threatened to derail the pro-Western
aspirations of many Georgians in
favor of closer ties with Russia.

2. The decision made by Georgia’s
Parliament on Tuesday evening, to
override a presidential veto and
approve a controversial bill, has
sparked a political crisis in the
country and raised concerns about
the impact on the country’s pro-
Western stance and relations with
Russia.

3. The controversial bill approved by
Georgia’s Parliament on Tuesday,
despite a presidential veto, has
caused a political crisis and stirred
debates about the country’s West-
ern alignment and its relation with
Russia.

4. The unilateral move by Georgia’s
Parliament on Tuesday to push
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through a divisive bill despite op-
position from the president has led
to a political crisis and raised con-
cerns about the nation’s Western af-
filiations and ties with Russia.

5. The recent decision by Georgia’s
Parliament to defy the presidential
veto and pass a controversial bill
has created a political turmoil, ques-
tioning the country’s Western orien-
tation and relationship with Russia.

6. Georgia’s Parliament’s decision to
override the presidential veto and
approve the contentious bill has
caused a political crisis in the coun-
try, prompting discussions on the
impact on its Western ties and rela-
tions with Russia.

7. Georgia’s Parliament’s act of reject-
ing the presidential veto and endors-
ing the controversial bill on Tues-
day has resulted in a political crisis,
with implications for the country’s
pro-Western stance and connections
with Russia.

8. Georgia’s Parliament moved for-
ward with finalizing a contentious
bill on Tuesday, overriding the pres-
idential veto, which has triggered a
political crisis and raised concerns
about the nation’s Western aspira-
tions and relationship with Russia.

9. At that time, the buildings were
abandoned and inaccessible to the
public, and the famous ferry that
shuttled immigrants from the island
to Manhattan sank in a storm in
1968.

A.3 Example 3
Sentence 1: The cake has become one of
Jamaica’s most popular desserts, often
found in various stores.

Sentence 2: Some plans might
cover only generic versions of certain
contraceptives, but patients are still
entitled to coverage of a specific product
that their providers deem medically
necessary.

Bridge

1. The cake has become one of Ja-
maica’s most popular desserts, of-
ten found in various stores.

2. Some plans might only cover basic
versions of popular desserts like the
cake, while others are more compre-
hensive.

3. In many cases, plans might cover
only generic versions of popu-
lar products, but specific varieties
might still be available.

4. Some plans might cover only
generic versions of certain products,
with exceptions allowed for specific
needs.

5. Some plans might cover only
generic versions of certain health-
care products, but specific options
are still accessible if necessary.

6. Some plans might cover only
generic versions of certain contra-
ceptives, but patients can still get
specific types if deemed necessary.

7. Some plans might cover only
generic versions of certain contra-
ceptives, but patients are still enti-
tled to coverage of a specific prod-
uct that their providers deem medi-
cally necessary.

B Sample Sentence Bridge

Below is a sample of the bridge generated by
Qwen2-72b-Intstruct during the experiment.

B.1 Sample 1

Prompt
Sentence1: I am happy that there are
people willing to support me.
Sentence2: “We now have 4-month-old
mice that are non-diabetic that used to
be diabetic," he added.

Output

1. I am happy that there are people
willing to support me.

2. It’s good to know that support is
available when needed.

3. It’s reassuring to see support being
provided in various situations.
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4. He mentioned seeing positive
changes in different scenarios.

5. “We have seen positive transforma-
tions in our subjects," he added.

6. “We now have improved conditions
in our test subjects," he added.

7. “We now have 4-month-old mice
that are non-diabetic that used to
be diabetic," he added.

B.2 Sample 2

Prompt
Sentence1: The death toll is at least 15, a
figure which is expected to rise.
Sentence2: The moisture on your hands
will react with the outer layers, which
will feel funny and form a sort of shell.

Output

1. The death toll is at least 15, a figure
which is expected to rise.

2. The number affected is at least 15,
an amount which could increase
due to underlying factors.

3. An initial count shows at least 15
impacted, with this figure poten-
tially growing as outer layers are
peeled back.

4. A preliminary assessment reveals at
least 15 affected individuals, with
the outer layers revealing more as
they are examined.

5. The moisture on your hands will in-
teract with the outer layers, which
may reveal more than initially
thought.

6. The moisture on your hands will re-
act with the outer layers, which will
feel peculiar and begin to peel away.

7. The moisture on your hands will re-
act with the outer layers, which will
feel funny and form a sort of shell.

C Computational Cost

Tables 7, 8, 9 show the breakdown of the computa-
tional cost of BridG MT and the costs of possible
scenarios.

D Prompts and Settings for Translation

D.1 ChatGPT
ChatGPT(gpt-3.5-turbo-0125) was used via API for
translation with the same prompt from OpenAI’s of-
ficial documentation.7 Temperature and top_p were
set to 0.3 and 1, respectively. The actual prompt is
as follows:

System: You will be provided with a sen-
tence in English, and your task is to trans-
late it into ⟨ Target Language ⟩.
User: ⟨ Sentence ⟩

D.2 Llama-3.1 70B & 8B
Llama-3.1 Instruct models were run on one A6000
GPU, using transformers library. 70B model were
4-bit quantized.Temperature and top_p were set to
0.6 and 0.9, respectively. The actual prompt is as
follows:

System: You will be provided with a sen-
tence in English, and your task is to trans-
late it into ⟨ Target Language ⟩.
User: ⟨ Sentence ⟩

D.3 Mistral-Nemo-Instruct-2407
Mistral-Nemo-Instruct-2407 was run on one A6000
GPU, using transformers library. Temperature and
top_p were set to 0.6 and 0.9, respectively. The
actual prompt is as follows:

User: You will be provided with a sen-
tence in English, and your task is to trans-
late it into ⟨ Target Language ⟩.
Sentence: ⟨ Sentence ⟩

E Settings for Sentence Bridging

Qwen2-72B-Instruct model was used for main ex-
periments. It was run on one A6000 GPU with 4-bit
quantization using transformers library. Tempera-
ture and top_p were set to 0.6 and 0.9, respectively.

Llama-3.1-8B-Instruct model was used for addi-
tional experiments. It was run on one A6000 GPU
using transformers library. Temperature and top_p
were set to 0.6 and 0.9, respectively.

F Full Results with Different Metrics

Table 11, 12, 13, 14, 15, 16 shows full results of our
main experiment with different metrics; xCOMET,
CometKiwi, MetricX, BLEURT, BLEU and ChrF.

7https://platform.openai.com/docs/examples
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Table 7: Breakdown of inference time per component. The statistics are calculated from the FLORES test set into
Hindi using Llama-3.1-8b.

Step Average Computation Time per Sentence
Start Sentence Selection (FAISS) 0.09s (for whole dataset)
Pre-Filtering / Post-Filtering (batch size = 8) 6.22s
Sentence Bridging

w/ Llama-3.2-3B-Instruct 6.03s
w/ LlaMa-3.1-8B-Instruct 12.94s
w/ Qwen2-72b-Instruct 26.17s

Translation (Llama-3.1-8B-Instruct)
Zero-shot 1.74s
Gradual MT 10.28s
Gradual MT (w/ bridge sampling) 2.29s
3-shot (for the final output) 2.18s

Baselines
0 shot 1.74s
30 shot 2.33s
50 shot 2.65s

Table 8: Comparison of sentence bridging models in terms of inference time and average xCOMET score across
different MT models and languages.

Bridging Model Time for Sentence Bridging Time for Overall Process Average Score
Qwen2-72B-Instruct 26.17s 44.41s 81.37
Llama-3-1-8B-Instruct 12.94s (49.45%) 31.18s (70.21%) 80.40
Llama-3-2-3B-Instruct 6.03s (23.04%) 24.27s (54.65%) 80.00
0-shot Baseline 1.74s 1.74s 76.35
50-shot Baseline 2.65s 2.65s 78.71

G Results from Ablation

Table 17 shows the results for every combination of
strategies that we explored in the ablation study(6)
with En-Ko translation. Table 18 presents the av-
erage results and changes in xCOMET scores for
each combination of start selection strategies, the
number of start sentences, and MT aggregation
strategies.
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Table 9: Comparison of using the full bridge and bridge sampling in terms of inference time and xCOMET score
across different MT models and languages.

Bridge Sampling Time for Gradual MT Time for Overall Process Average Score (xCOMET)
Full Path 3 start sentence 10.28s 44.41s 81.37
Bridge Sampling 1 start sentence 2.29s (22.28%) 36.42s (82.01%) 79.96
0-shot Baseline 1.74s – 76.35
50-shot Baseline 2.65s – 78.71

Table 10: Comparison of filtering strategies in terms of time and xCOMET score across different MT models and
languages.

Filtering Time for Overall Process Average Score (xComet)
post-filtering 46.59s 81.37
pre-filtering 33.46s 80.25
0-shot Baseline 1.74s 76.35
50-shot Baseline 2.65s 78.71

Table 11: Full xCOMET results across different sentence bridging models, translation models and target languages.

GPT-3.5-turbo-0125 Llama-3.1-70B Llama-3.1-8B Mistral-Nemo
SETTING DE ZH HI KO SW BN MR DE HI DE HI DE ZH HI KO SW BN MR

BASELINE 0 Shot 97.63 91.30 71.89 89.48 81.23 68.73 44.53 97.33 79.41 94.99 69.93 96.70 88.01 66.78 81.43 38.97 71.89 43.99
BASELINE 15 Shot 98.01 92.16 73.13 90.73 81.59 69.70 45.54 97.10 77.95 96.26 73.70 97.68 90.94 69.54 88.71 42.79 73.60 52.26
BASELINE 30 Shot 97.92 91.87 72.98 90.48 81.62 68.58 45.33 96.73 74.67 96.55 73.74 97.72 90.79 69.84 88.06 42.59 74.10 52.52
BASELINE 50 Shot 97.99 91.95 72.85 90.93 82.10 67.72 44.84 96.56 72.68 96.42 73.36 97.72 90.92 69.35 88.29 42.53 73.80 52.04
BridG MT w/ Qwen2-72b

Post Filtering 98.04 92.63 77.90 92.57 83.65 75.41 53.11 97.93 84.45 97.25 78.30 97.70 90.99 73.95 89.45 45.67 78.35 57.24
Pre & Post Filtering 97.86 92.35 77.63 92.07 83.34 75.14 51.51 97.73 84.31 96.99 77.37 97.70 90.99 73.82 89.34 45.18 77.83 54.55

BridG MT w/ Llama-3.1-8b
Post Filtering 97.97 92.38 77.24 91.85 83.62 74.24 52.27 97.87 83.97 96.93 77.83 97.52 90.40 72.34 87.83 43.33 76.73 52.93

Pre & Post Filtering 97.95 91.54 76.96 91.42 83.52 74.06 50.86 97.73 83.90 96.82 73.09 97.41 90.40 71.19 87.42 43.09 76.23 51.29
BridG MT w/ Llama-3.2-3b

Post Filtering 97.97 92.35 76.44 91.48 83.49 74.35 52.13 97.85 83.65 97.14 77.65 97.42 90.04 71.62 86.55 42.30 75.83 51.66
Pre & Post Filtering 97.92 92.29 76.39 91.21 82.74 74.10 52.04 97.61 83.28 96.86 76.84 97.42 90.04 71.46 86.33 42.14 75.75 51.05

QA Decode 97.45 91.63 75.45 90.19 78.26 73.90 45.82 97.37 82.32 88.08 77.67 96.33 87.18 64.42 80.34 28.86 68.59 35.37
MAPS 97.68 92.07 - - - - - 96.53 - 79.10 - 85.75 88.71 - - - - -

Table 12: Full CometKiwi results across different sentence bridging models, translation models and target languages.

GPT-3.5-turbo-0125 Llama-3.1-70B Llama-3.1-8B Mistral-Nemo
SETTING DE ZH HI KO SW BN MR DE HI DE HI DE ZH HI KO SW BN MR

BASELINE 0 Shot 86.12 85.84 69.12 87.73 83.24 67.93 56.23 84.97 74.55 80.06 66.71 83.32 82.90 59.72 78.41 42.72 62.03 52.53
BASELINE 15 Shot 86.71 86.71 69.72 88.85 82.99 69.65 58.37 84.11 72.94 81.64 69.58 85.46 85.73 66.77 87.48 47.51 72.81 63.73
BASELINE 30 Shot 86.44 86.74 69.51 88.86 83.12 68.39 57.71 83.22 70.19 82.17 69.40 85.38 85.74 67.00 86.88 48.08 73.00 63.35
BASELINE 50 Shot 86.61 86.81 69.30 89.18 83.42 67.98 57.32 82.70 68.28 81.95 69.05 85.30 86.04 66.78 87.08 47.61 72.83 63.09
BridG MT w/ Qwen2-72b

Post Filtering 87.42 87.64 74.30 90.88 86.09 75.34 66.01 87.25 78.04 85.40 74.00 86.63 86.89 70.96 89.51 54.71 77.65 68.16
Pre & Post Filtering 86.80 87.23 74.12 90.65 85.92 75.09 64.94 86.33 77.96 84.44 73.52 86.63 86.89 70.85 89.48 54.40 77.26 66.82

BridG MT w/ Llama-3.1-8b
Post Filtering 87.28 87.42 73.83 90.36 85.76 74.30 64.86 87.16 77.91 84.86 73.25 86.48 86.39 69.42 88.17 51.82 75.79 64.70

Pre & Post Filtering 87.20 86.27 73.66 90.12 85.73 74.07 64.01 86.28 77.82 84.53 70.18 86.11 86.39 68.75 87.98 51.49 75.42 63.82
BridG MT w/ Llama-3.2-3b

Post Filtering 87.13 87.38 73.24 90.29 85.58 74.42 64.74 87.19 77.94 85.31 73.30 86.20 85.97 68.62 87.63 50.19 74.83 6371
Pre & Post Filtering 86.91 87.26 73.21 90.08 84.95 74.22 64.67 85.98 77.64 84.41 72.84 86.20 85.97 68.54 87.47 50.00 7480 6349

QA Decode 85.07 85.84 68.52 88.16 82.98 72.29 63.61 84.85 73.31 82.52 69.60 81.93 82.20 55.94 77.56 39.83 60.05 50.49
MAPS 85.61 86.39 - - - - - 83.48 - 71.19 - 71.06 84.61 - - - - -

Table 13: Full BLEURT results across different sentence bridging models, translation models and target languages.

GPT-3.5-turbo-0125 Llama-3.1-70B Llama-3.1-8B Mistral-Nemo
SETTING DE ZH HI KO SW BN MR DE HI DE HI DE ZH HI KO SW BN MR

BASELINE 0 Shot 78.58 73.70 68.31 68.77 75.80 67.95 68.03 77.57 71.34 74.69 66.96 76.27 69.87 60.95 59.13 51.51 62.29 64.20
BASELINE 15 Shot 79.27 74.16 68.49 69.41 75.84 68.46 69.29 77.12 70.61 75.69 68.54 77.95 72.05 66.52 66.94 54.71 70.14 70.75
BASELINE 30 Shot 79.06 74.19 68.75 69.41 76.01 67.87 69.00 76.35 69.32 75.99 68.62 78.07 72.30 66.64 66.56 55.00 69.79 70.91
BASELINE 50 Shot 79.10 74.20 68.74 69.54 76.13 67.82 68.56 76.10 68.68 75.80 68.41 77.89 72.40 66.46 66.49 55.19 70.15 70.46
BridG MT w/ Qwen2-72b

Post Filtering 79.11 74.11 69.91 70.28 76.51 70.85 71.22 78.56 72.39 76.98 69.20 77.91 71.38 66.85 67.17 56.50 71.71 71.40
Pre & Post Filtering 78.88 73.99 69.80 70.05 76.40 70.70 70.84 78.17 72.35 76.49 68.92 77.91 71.38 66.82 67.15 56.39 71.41 70.66

BridG MT w/ Llama-3.1-8b
Post Filtering 79.13 74.19 69.75 69.99 76.31 70.54 70.65 78.61 72.28 76.75 68.88 77.67 71.04 65.94 66.00 55.16 70.71 70.04

Pre & Post Filtering 79.11 73.85 69.69 69.59 76.24 70.41 70.32 78.19 72.33 76.61 67.85 77.48 71.04 65.58 65.79 55.14 70.42 69.56
BridG MT w/ Llama-3.2-3b

Post Filtering 78.94 74.16 69.51 69.62 76.31 70.10 70.61 78.55 72.30 76.93 68.84 77.65 70.94 65.59 65.03 54.61 70.02 69.45
Pre & Post Filtering 78.89 74.10 69.51 69.52 76.08 70.01 70.59 78.07 72.28 76.42 68.69 77.65 70.94 65.53 6492 54.56 70.00 69.33

QA Decode 78.72 74.07 69.83 69.45 76.60 71.63 72.04 78.41 72.67 76.78 70.00 76.11 69.81 60.85 59.18 51.42 61.93 64.32
MAPS 79.08 74.26 - - - - - 77.40 - 70.81 - 63.18 71.69 - - - - -
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Table 14: Full MetricX results across different sentence bridging models, translation models and target languages.

GPT-3.5-turbo-0125 Llama-3.1-70B Llama-3.1-8B Mistral-Nemo
SETTING DE ZH HI KO SW BN MR DE HI DE HI DE ZH HI KO SW BN MR

BASELINE 0 Shot 0.5864 1.1045 1.2189 0.5998 1.3240 2.2832 2.4860 0.6576 0.9091 1.0922 1.3274 0.6904 1.2751 1.6646 1.2064 7.2095 1.9082 2.6305
BASELINE 15 Shot 0.5428 1.0382 1.1840 0.5156 1.3116 2.0955 2.1551 0.7084 0.9696 0.7956 1.1012 0.5839 1.0667 1.2366 0.5462 6.3982 1.6427 1.6782
BASELINE 30 Shot 0.5477 1.0515 1.1629 0.5000 1.3188 2.1823 2.2366 0.7742 1.1978 0.7188 1.0863 0.5884 1.0718 1.2482 0.5842 6.3487 1.6230 1.8343
BASELINE 50 Shot 0.5532 1.0531 1.1319 0.5038 1.2999 2.2167 2.3578 0.7932 1.2621 0.7150 1.0899 0.5820 1.0725 1.2728 0.5568 6.5473 1.6864 1.8806
BridG MT w/ Qwen2-72b

Post Filtering 0.5432 1.0154 0.9179 0.4343 1.1661 1.5156 1.4508 0.5701 0.6854 0.6825 0.8481 0.5639 1.0808 1.0749 0.5559 5.3817 1.1181 1.2351
Pre & Post Filtering 0.5609 1.0370 0.9264 0.4460 1.1716 1.5285 1.5104 0.6058 0.6895 0.7356 0.8846 0.5639 1.0808 1.0809 0.5606 5.4107 1.1342 1.2881

BridG MT w/ Llama-3.1-8b
Post Filtering 0.5494 1.0534 0.9157 0.4822 1.1922 1.6673 1.5956 0.5868 0.7184 0.7214 0.9050 0.5784 1.1299 1.2340 0.6131 5.8600 1.3074 1.5470

Pre & Post Filtering 0.5497 1.0896 0.9205 0.4948 1.1984 1.6793 1.6469 0.6022 0.7205 0.7467 1.0581 0.6008 1.1299 1.2725 0.6371 5.8815 1.3304 1.5953
BridG MT w/ Llama-3.2-3b

Post Filtering 0.5471 1.0415 0.9824 0.4673 1.2055 1.6778 1.6031 0.5681 0.7210 0.6756 0.8896 0.6017 1.1462 1.2412 0.7434 6.1683 1.3213 1.6552
Pre & Post Filtering 0.5532 1.0404 0.9827 0.4759 1.2334 1.6827 1.6037 0.6146 0.7326 0.7168 0.9233 0.6017 1.1462 1.2521 0.7620 6.1826 1.3214 1.6684

QA Decode 0.5764 1.0660 0.9071 0.4992 1.2059 1.3878 1.2131 0.5948 0.7066 0.7348 0.7422 0.6983 1.2705 1.6804 1.1841 7.2072 1.9488 2.5831
MAPS 0.5516 1.0451 - - - - - 0.6939 - 5.9713 - 3.6419 1.1743 - - - - -

Table 15: Full BLEU results across different sentence bridging models, translation models and target languages.

GPT-3.5-turbo-0125 Llama-3.1-70B Llama-3.1-8B Mistral-Nemo
SETTING DE ZH HI KO SW BN MR DE HI DE HI DE ZH HI KO SW BN MR

BASELINE 0 Shot 40.45 45.58 23.06 27.86 32.93 9.99 5.94 38.71 29.09 30.81 21.54 35.70 38.83 17.46 20.17 12.13 8.35 5.31
BASELINE 15 Shot 40.86 46.02 22.98 28.81 33.80 9.67 7.54 37.33 25.54 32.13 22.14 36.89 40.65 20.88 25.08 14.40 11.03 7.30
BASELINE 30 Shot 40.86 46.00 23.08 29.08 33.57 9.10 6.94 36.13 23.29 32.75 22.36 36.96 41.03 21.05 25.45 14.44 11.13 7.45
BASELINE 50 Shot 40.96 45.98 23.51 28.90 33.95 9.75 6.08 35.39 22.84 32.61 22.37 36.72 41.14 21.05 25.28 13.75 11.16 7.69
BridG MT w/ Qwen2-72b

Post Filtering 40.87 46.35 23.72 29.01 33.30 11.06 8.00 38.42 28.08 32.43 22.12 35.79 37.76 18.53 23.96 14.09 10.06 7.19
Pre & Post Filtering 40.65 46.05 23.60 28.65 33.18 10.94 7.96 38.68 28.13 32.29 22.19 35.79 37.76 18.52 23.92 13.96 10.13 6.85

BridG MT w/ Llama-3.1-8b
Post Filtering 40.86 46.27 23.97 28.87 33.57 10.93 7.94 39.11 28.11 32.23 22.09 35.65 37.77 18.71 23.57 13.39 10.11 6.80

Pre & Post Filtering 40.82 45.65 23.87 28.22 33.46 10.81 7.79 39.08 28.25 32.15 21.97 36.23 37.77 18.51 23.83 13.35 10.07 6.47
BridG MT w/ Llama-3.2-3b

Post Filtering 40.79 46.18 23.53 28.66 33.30 10.86 8.42 38.95 28.36 32.37 22.09 36.08 37.49 18.82 22.89 12.96 9.87 6.07
Pre & Post Filtering 40.68 46.01 23.55 28.33 33.19 10.70 8.47 38.79 28.43 32.07 22.20 36.08 37.49 18.73 23.07 12.87 9.84 6.10

QA Decode 41.07 46.02 23.65 28.54 33.59 11.16 8.57 39.56 30.06 34.51 23.66 35.81 38.67 17.46 20.39 12.11 7.98 5.40
MAPS 40.83 46.15 - - - - - 38.45 - 11.04 - 17.74 40.63 - - - - -

Table 16: Full ChrF results across different sentence bridging models, translation models and target languages.

GPT-3.5-turbo-0125 Llama-3.1-70B Llama-3.1-8B Mistral-Nemo
SETTING DE ZH HI KO SW BN MR DE HI DE HI DE ZH HI KO SW BN MR

BASELINE 0 Shot 66.91 39.28 50.42 34.72 62.20 42.82 37.01 65.77 55.83 60.95 48.38 63.49 33.81 42.18 27.60 41.66 38.18 34.12
BASELINE 15 Shot 67.16 39.90 50.15 35.58 62.88 42.71 39.71 64.91 52.34 61.64 49.09 64.26 35.68 46.90 32.24 43.19 44.58 39.71
BASELINE 30 Shot 67.15 39.82 50.71 35.66 62.67 42.09 38.62 64.25 50.53 61.73 49.00 64.31 36.25 47.16 32.39 43.27 44.67 39.77
BASELINE 50 Shot 67.05 39.78 50.60 35.76 62.80 42.41 37.68 63.73 50.00 61.81 49.12 64.01 36.26 47.13 32.34 42.94 44.50 39.67
BridG MT w/ Qwen2-72b

Post Filtering 67.35 39.76 51.40 35.85 62.65 44.52 40.70 65.72 55.27 61.33 49.45 63.48 32.96 45.63 31.26 43.71 44.01 39.52
Pre & Post Filtering 67.11 39.51 51.31 35.48 62.56 44.42 40.48 65.76 55.28 61.52 49.30 63.48 32.96 45.61 31.26 43.68 43.96 39.04

BridG MT w/ Llama-3.1-8b
Post Filtering 67.24 39.69 51.53 35.61 62.62 44.31 40.34 66.16 55.26 61.63 49.39 63.49 32.90 45.24 30.70 42.99 43.52 38.10

Pre & Post Filtering 67.20 39.31 51.44 35.04 62.56 44.24 40.18 66.01 55.32 61.61 48.99 63.81 32.90 45.05 30.97 43.05 43.52 37.87
BridG MT w/ Llama-3.2-3b

Post Filtering 67.18 39.64 51.32 35.37 62.50 44.20 40.83 66.06 55.44 61.54 49.33 63.65 32.83 45.05 30.33 42.87 43.05 38.10
Pre & Post Filtering 67.17 39.47 51.33 35.09 62.44 44.13 40.82 65.92 55.57 61.45 49.34 63.65 32.83 44.94 30.51 42.88 43.04 38.06

QA Decode 67.26 39.65 51.19 35.31 62.68 44.28 41.06 66.47 56.82 62.92 50.60 63.47 33.81 41.99 27.75 41.76 38.07 34.05
MAPS 67.29 39.69 - - - - - 65.17 - 47.66 - 54.36 34.68 - - - - -
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Figure 4: MetricX scores for few-shot translations (bars) and BridG MT translations (horizontal line). Lower score
indicates better performance. Both BridG MT and few-shot scores represent the average MetricX scores of GPT-3.5
and Mistral-Nemo.
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Table 17: Full results on ablation study with En-Ko translation task. All scores are measured with DA score by
xCOMET. ‘Sort’, ‘Filter’, and ‘Tops’ denote the start sentence selection methods. Each letter in parentheses denotes
a similarity metric, with the order indicating the priority of the metrics. ‘L’ stands for Levenshtein distance, ‘T’
stands for tree edit distance, and ‘S’ stands for SBERT similarity. The highest results for each start selection strategy
are highlighted in bold, while the second-highest results are underlined.

Start
Selection Filtering Aggregation Baseline

(3shot)None Poll Prompt

Sort (S-T)

All 90.69 90.42 91.22

90.26
Pre 91.31 91.14 91.50
Post 92.29 92.18 92.54

Pre&Post 91.70 91.84 92.08

Sort (T-S)

All 89.93 90.02 90.93

90.57
Pre 90.31 90.71 91.24
Post 91.81 91.97 92.47

Pre&Post 91.74 91.64 91.98

Sort (L-S)

All 90.38 90.27 90.86

90.27
Pre 91.10 90.95 91.12
Post 92.08 91.96 92.41

Pre&Post 91.83 91.68 91.91

Sort (T-L-S)

All 90.17 89.99 91.32

90.44
Pre 90.54 90.29 91.53
Post 92.06 91.90 92.69

Pre&Post 92.00 91.81 92.20

Sort (L-T-S)

All 90.13 90.11 90.77

90.38
Pre 90.69 90.85 91.13
Post 91.99 92.05 92.24

Pre&Post 91.93 91.82 91.86

SBERT Filter
+ Sort (T-L)

All 90.36 90.23 91.07

90.35
Pre 91.04 90.88 91.30
Post 92.07 92.10 92.53

Pre&Post 91.70 91.69 92.00

SBERT Filter
+ Sort (L-T)

All 90.92 90.55 91.19

90.06
Pre 91.46 90.98 91.23
Post 92.37 92.29 92.61

Pre&Post 91.95 91.12 91.34

Tops

All - 90.12 90.98

90.10
Pre - 90.65 91.30
Post - 92.10 92.46

Pre&Post - 92.06 92.01

Table 18: Average xCOMET scores and score changes of selected outputs when applying every combination of
strategies for start selection and aggregation in En-Ko translation. ‘Score change’ is calculated only for the adopted
outputs. ‘All’ selects every output. ‘Pre-filtering’, denoted as ‘Pre’, applies zero-shot translation first and uses BridG
MT only when the CometKiwi score is below a threshold. ‘Post-filtering’, denoted ans ‘Post’, selects outputs only
if they outperform zero-shot translations. ‘Pre- & Post- filtering’, denoted as ‘Pre & Post’ combines these two
strategies. We also report the number of end sentences for which bridging and Gradual MT is executed (‘No. of
Interpolated End Sents’) and the number of end sentences for which the BridG MT output is selected over zero-shot
translation (‘No. of Selected Outputs’). The results show that ‘Pre & Post’ reduces the number of bridging by more
than half while maintaining nearly the same translation performance.

Filtering
Strategy Avg. Score Avg. Score Change

of Selected Outputs

No. of
Interpolated
End Sents(%)

No. of
Selected Outputs
(%)

Zeroshot 89.48 - - -
All 90.55 1.06 21864 (100%) 21864 (100%)
Pre 91.01 3.70 10468 (48%) 10468 (48%)

Post 92.21 5.30 21864 (100%) 11270 (52%)
Pre&Post 91.81 7.98 10468 (48%) 6664 (30%)
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H Evaluation Results of BridG MT with
Varying Start Pool Quality

Figure 5 shows xCOMET scores of BridG MT
when using start pools of varying quality.

I Analysis On Sentence Bridging

Below we present the analysis we conducted on
sentence bridges. We analyzed sentence bridges
from En-Ko translation results.

I.1 Progresses of Bridging.

We examined whether LLMs genuinely bridge start
and end sentences or simply generate random sen-
tences. To assess this, we use SBERT to embed
the sentences in bridge and calculate their Eu-
clidean distances from the end sentence. If these
distances generally decrease, it indicates successful
bridging. To mesure this, we defined progress as
progress = dn−1,e − dn,e where dn,e denotes the
euclidian distance between nth sentence in each
bridge and end sentence.

As shown in Figure 6, the average progress
of each bridge is generally positive on both the
source(English) and target(Korean) sides, indicat-
ing that the sentence bridging effectively connects
the two sentences. The mean and standard deviation
of average progress across bridges were 0.12 and
0.27 for English, and 0.06 and 0.031 for Korean,
respectively.

I.2 Visualization of Bridges

In addition to the analysis on progress, we con-
ducted visualizations on both the source and tar-
get sides to examine whether our experimental re-
sults align with the intuition illustrated in Figure
2. Specifically, we visualized the embeddings of
the sentences within the sentence bridges and the
Korean translations generated at each step of Grad-
ual MT. For English sentences, we used all-mpnet-
base-v2 to obtain embeddings, while for Korean
sentences, we used intfloat/multilingual-e5 (Wang
et al., 2024). On the Korean side, we additionally
plotted 50-shot example translations to examine
whether the intermediate translations produced at
each Gradual MT step gradually move closer to
the embedding of the gold translation, and how
they compare to the few-shot examples. The re-
sults of this analysis show that sentence bridging
effectively generates intermediate sentences that
bridge the start and end sentences on the source
side. Furthermore, we frequently observed that the

intermediate translations from Gradual MT also
move progressively closer to the gold translation.
These findings support the intuition underlying our
approach. The visualizations are shown in Figure 7
and Figure 8.
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En-Ko (GPT 3.5) En-Hi (GPT 3.5) En-Sw (GPT 3.5) En-Mr (GPT 3.5)

En-Ko (Nemo) En-Sw (Nemo)En-Hi (Nemo) En-Mr (Nemo)

Figure 5: xCOMET scores of BridG MT when using start pools of varying quality. In each plot, the horizontal axis
represents the xCOMET score of the start pool, while the vertical axis represents the xCOMET score of the final
output. A single start sentence was used for evaluation, without the application of any filtering method.
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Figure 6: Distribution of average progress from each sentence bridge. The sentence bridges are drawn from the
English-to-Korean BridG MT results. Progress indicates how much each sentence in the bridge moves closer to the
target sentence in terms of Euclidean distance.
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Start Sentence End Sentence

Figure 7: 24 samples of 2D scatter plots of embeddings from sentence bridges. The plots are projected from
SBERT embeddings onto a 2D plane using PCA. The X and Y axes of each plot represent the first and second
principal components, respectively. Arrows in each plot show the trajectory of sentence shifts from the start sentence
(blue-colored dot) to the end sentence (yellow-colored dot).
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Figure 8: 12 2D scatter plots of embeddings from Gradual MT. Sentence embeddings from the intfloat/multilingual-
e5-large model are projected onto a 2D plane using PCA. The X and Y axes represent the first and second principal
components, respectively. Green dots and sky-blue triangles indicate the few-shot examples and 50-shot MT outputs.
Purple and blue X marks denote the translations from each step and the final translation generated by Gradual MT.
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