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Abstract

Prompt-based text embedding models, which
generate task-specific embeddings upon receiv-
ing tailored prompts, have recently demon-
strated remarkable performance. However,
their resulting embeddings often have thou-
sands of dimensions, leading to high storage
costs and increased computational costs of
embedding-based operations. In this paper, we
investigate how post-hoc dimensionality reduc-
tion applied to the embeddings affects the per-
formance of various tasks that leverage these
embeddings, specifically classification, cluster-
ing, retrieval, and semantic textual similarity
(STS) tasks. Our experiments show that even
a naive dimensionality reduction, which keeps
only the first 25% of the dimensions of the em-
beddings, results in a very slight performance
degradation, indicating that these embeddings
are highly redundant. Notably, for classifica-
tion and clustering, even when embeddings are
reduced to less than 0.5% of the original di-
mensionality the performance degradation is
very small. To quantitatively analyze this re-
dundancy, we perform an analysis based on
the intrinsic dimensionality and isotropy of the
embeddings. Our analysis reveals that embed-
dings for classification and clustering, which
are considered to have very high dimensional
redundancy, exhibit lower intrinsic dimension-
ality and less isotropy compared with those for
retrieval and STS.

1 Introduction

Text embeddings are a foundational component
of many natural language processing (NLP) ap-
plications, including document retrieval, retrieval-
augmented generation (RAG), and text clustering.
Recent advances in large language models (LLMs)
renewed interest in text representation learning, ow-
ing to their strong language understanding and
generalization capabilities (Muennighoff, 2022;
Ni et al., 2022b,a; Yano et al., 2024; Springer
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Figure 1: The performance on classification and re-
trieval tasks under dimensionality reduction. The mod-
els used in the experiments are described in Section 2.

et al., 2024; Jiang et al., 2024). Among these,
prompt-based text embedding models, which pro-
duce task-specific embeddings by incorporating
natural language instructions or task descriptions,
have demonstrated remarkable performance on var-
ious tasks (Su et al., 2023; Asai et al., 2023; Lee
et al., 2024a,b; Wang et al., 2022; Li et al., 2023;
Xiao et al., 2024). However, prompt-based models
typically generate embeddings with thousands of
dimensions, leading to high storage costs and in-
creased computational costs of embedding-based
operations. For instance, E5-mistral (Wang et al.,
2024a), a model obtained by fine-tuning Mistral-
7B (Jiang et al., 2023), produces 4096-dimensional
embeddings. Reducing the dimensionality of LLM-
based text embeddings through post-processing
could thus offer substantial practical benefits.

In this work, we show that prompt-based text em-
bedding models can maintain surprisingly strong
performance even when their dimensionality is sub-
stantially reduced. Figure 1 summarizes our find-
ings. Even a naive dimensionality reduction that
keeps only the first 25% of the embedding dimen-
sions results in almost no performance degradation
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across a range of tasks, indicating that these embed-
dings are highly redundant. Notably, for classifica-
tion task, reducing embeddings to less than 0.5%
of the original dimensionality can almost preserve
their original performance. Furthermore, we find
that the embeddings after dimensionality reduction
perform better than the same-dimensional embed-
dings produced by smaller models. We also find
that the robustness of these models to dimension-
ality reduction varies by task type; while classifi-
cation and clustering exhibit a more gradual per-
formance decline, with the extent of degradation
varying across models, retrieval and STS tasks tend
to experience a more rapid drop in performance,
with several models showing similar trends.

To investigate why such a significant reduction is
feasible, we quantitatively assess the redundancy in
the generated embeddings. Specifically, we analyze
the intrinsic dimensionality (ID) and isotropy of
representations derived from different task-specific
prompts using IsoScore (Rudman et al., 2022). Our
findings reveal that prompt-based text embedding
models produce distinct representation properties
depending on the task prompt. For classification
and clustering tasks, we observe lower intrinsic di-
mensionality and less isotropic distributions, which
correlates with their high redundancy and robust-
ness to even drastic dimensionality reduction. In
contrast, for retrieval and STS tasks—where fine-
grained similarity is critical—embeddings exhibit
higher intrinsic dimensionality and more isotropic
distributions in the embedding space. Moreover,
we find a relationship between measures such as
ID and IsoScore and the robustness of embeddings
to dimensionality reduction; embeddings for classi-
fication and clustering tasks are highly redundant
and remain robust even under drastic reduction,
whereas those for retrieval and STS tasks are less
redundant and degrade more significantly when
dimensions are reduced.

2 Robustness of Text Embeddings for
Dimensionality Reduction

In this section, we demonstrate that prompt-based
text embeddings exhibit high robustness to dimen-
sionality reduction in specific tasks and reveal that
their embeddings contain redundancy.

2.1 Evaluation Tasks

To conduct a comprehensive analysis across var-
ious tasks, we evaluate text embedding models

using the Massive Text Embedding Benchmark
(MTEB) (Muennighoff et al., 2023). In this study,
we use several English datasets from four cate-
gories: classification, clustering, retrieval, Seman-
tic Textual Similarity (STS).

Classification Classification tasks evaluate the
quality of text embeddings by training a logistic re-
gression classifier to predict the labels of given
texts based on their corresponding embeddings.
The logistic regression classifier is trained on the
training set and evaluated on the test set. We use the
default settings to train the logistic regression clas-
sifier without modifications. Since the evaluation
metrics vary by task, we adopt the default metrics.
In this study, we employ five tasks: AmazonCoun-
terfactualClassification (O’Neill et al., 2021), Ama-
zonPolarityClassification (McAuley and Leskovec,
2013), AmazonReviewsClassification (Keung et al.,
2020), ImdbClassification (Maas et al., 2011), and
ToxicConversationsClassification.1

Clustering Clustering tasks evaluate how well
the clusters formed based on distances in the em-
bedding space align with the ground-truth clus-
ters. For evaluation, we use the V-Measure met-
ric (Rosenberg and Hirschberg, 2007), which is
the default evaluation metric in MTEB. In this
study, we use three tasks; RedditClustering, Stack-
ExchangeClustering (Geigle et al., 2021), and Arx-
ivClusteringS2S.2

Retrieval3 Retrieval tasks assess document re-
trieval performance based on embeddings. For
evaluation, search queries and a collection of doc-
uments are encoded into embeddings. The simi-
larity between query and document embeddings is
computed, and retrieval performance is assessed
by checking whether the relevant document ap-
pears among the top-ranked results. Cosine sim-
ilarity is a commonly used metric, and we use
it in this study as well. We use nDCG@10 as

1https://kaggle.com/competitions/
jigsaw-unintended-bias-in-toxicity-classification

2https://www.kaggle.com/datasets/
Cornell-University/arxiv

3For retrieval tasks, encoding the entire document collec-
tion, which comprises millions of examples, into embeddings
for each experiment is computationally infeasible. There-
fore, we use the down-sampled version officially provided
by MTEB for these evaluations. This version includes only
the document sets corresponding to 250 hard negatives col-
lected for each search query using BM25 or mE5 (Wang
et al., 2024b), and the maximum number of examples per
dataset has been reduced to 1,000 (see https://github.com/
embeddings-benchmark/mteb/pull/1236).
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the evaluation metric. For the evaluation datasets,
we use MIRACL (Zhang et al., 2022), Quora,4

HotpotQA (Yang et al., 2018), DBPedia (Hasibi
et al., 2017), Natural Questions (Kwiatkowski et al.,
2019), and MS MARCO (Nguyen et al., 2016).

STS Semantic textual similarity (STS) tasks eval-
uate how well the semantic similarity between sen-
tence pairs, as determined by their embeddings, cor-
relates with human-annotated similarity scores. For
evaluation, we adopt Spearman’s rank correlation
coefficient, in line with previous studies (Reimers
and Gurevych, 2019; Tsukagoshi et al., 2021; Gao
et al., 2021). In this study, we utilize seven tasks:
STS12–16 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017), and
SICK-R (Marelli et al., 2014).

2.2 Experimental Models
Prompt-based text embedding models can be cate-
gorized into two types; instruction-based text em-
bedding models, which use natural language in-
structions as prompts (Su et al., 2023; Asai et al.,
2023; Wang et al., 2024a; Lee et al., 2024a), and
prefix-based text embedding models, which add
pre-defined task-specific prefixes to the beginning
of texts (Wang et al., 2022, 2024b; Nussbaum et al.,
2024; Li et al., 2023; Xiao et al., 2024).

In general, instruction-based text embedding
models leverage the in-context learning capabil-
ities of large language models (LLMs) and are
often built by fine-tuning LLMs. In contrast,
prefix-based text embedding models are typically
constructed by fine-tuning smaller models, such
as BERT (Devlin et al., 2019), using large-scale
contrastive learning. We include both types of
models in our experiments. For example, the
instruction-based models consist of gte-Qwen2
with 7.6B parameters and an embedding dimen-
sion of 3,584, E5-mistral (Wang et al., 2024a)
and SFR-Embedding-2_R5 each with 7.1B param-
eters and an embedding dimension of 4,096, and
mE5-large-inst (Wang et al., 2024b) with 560M
parameters and an embedding dimension of 1,024.
These models incorporate task-specific instructions
to generate embeddings. Other models used in our
experiments include Unsup-SimCSE (Gao et al.,
2021), the small and large variants of E5 (Wang
et al., 2022), and Nomic (Nussbaum et al., 2024).

4https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

5https://huggingface.co/Salesforce/
SFR-Embedding-2_R

Unsup-SimCSE is a fine-tuned BERT-large with
contrastive learning, while E5 uses two prefixes,
“query:” and “passage:.” Nomic adapts to differ-
ent tasks by employing different prefixes. Specif-
ically, the prefix “search_query:” is used for re-
trieval queries, “search_document:” for retrieval
documents, “classification:” for classification
tasks, “clustering: for clustering tasks, and for
tasks such as STS in which the semantic content of
the text is embedded, no prefix is used. The task-
specific prompts used for the instruction-based text
embedding models are listed in Appendix A, and
more detailed descriptions of each model are pro-
vided in Appendix B.

2.3 Evaluation Method
For each text embedding model, we iteratively re-
duce the dimensionality of the embeddings and
evaluate the performance to observe the relation-
ship between dimensionality reduction and perfor-
mance degradation. While several methods for
dimensionality reduction, such as principal com-
ponent analysis, are conceivable, this study sim-
ply reduces the dimensionality by taking the first
d ∈ Z>0 dimensions of the output embeddings.
We do not normalize the output embeddings.

It is worth noting that, methods like matryoshka
representation learning (Kusupati et al., 2022) ex-
ist to enable dimensionality reduction by simply
taking the first d dimensions of embeddings. To
ensure that the results obtained in this study are not
attributable to such specific methods, we compared
the performance when reducing dimensionality by
randomly taking d dimensions rather than taking
the first d dimensions. The results showed no dif-
ferences that would affect the observed results. We
further conducted experiments using more sophis-
ticated dimensionality reduction methods such as
PCA; however, these did not reveal significant dif-
ferences in the general trends. Experimental re-
sults for dimensionality reduction methods other
than taking the first d dimensions, including tak-
ing the random d dimensions, PCA (Abdi and
Williams, 2010), UMAP (McInnes et al., 2020),
and Isomap (Tenenbaum et al., 2000) are presented
in Appendix C.

2.4 Experimental Results
Regarding the performance trends associated with
dimensionality reduction, the results for the various
tasks are presented in Figure 2 for classification
tasks, Figure 3 for clustering tasks, Figure 4 for
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Figure 2: The relationship between the number of di-
mensions and the average performance on classification
tasks. The horizontal axis is logarithmic. Circular mark-
ers with solid lines correspond to instruction-based text
embedding models, whereas triangular markers with
dashed lines correspond to other models.
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Figure 3: The relationship between the number of di-
mensions and the average performance on clustering
tasks. Other details are the same as in Figure 2.

retrieval tasks, and Figure 5 for STS tasks.

Classification For classification tasks, we ob-
served that the performance trends differ between
instruction-based models and other models. For
instruction-based models, the degradation in per-
formance was remarkably gradual. In particular,
both gte-Qwen2 and SFR-2 exhibited minimal per-
formance decline when the embedding dimension-
ality was reduced to merely 8 dimensions (0.2%
of the original dimensions). Notably, gte-Qwen2
achieved a score of 76.34 with just 2 dimensions,
surpassing the 75.69 score obtained using the full
1024-dimensional embeddings produced by E5-
large. In contrast, models like E5-large exhibited
a monotonic decrease in performance as the di-
mensionality was reduced. These results suggest
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Figure 4: The relationship between the number of di-
mensions and the average performance on retrieval tasks.
Other details are the same as in Figure 2.

that instruction-based text embeddings not only
generate high-quality representations for text clas-
sification, but also that the minimal performance
degradation observed after dimensionality reduc-
tion implies that these embeddings exhibit signifi-
cant redundancy.

Clustering The trends in clustering tasks dif-
fer slightly from those observed in classification
tasks. Although performance degradation is rel-
atively noticeable in clustering tasks, instruction-
based models remain robust to dimensionality re-
duction. Specifically, we observed that LLM-based
text embedding models exhibit negligible degrada-
tion even when the dimensionality is reduced to
around 128 dimensions (less than 4% of the origi-
nal dimensionality). On the other hand, in contrast
to the trends observed in classification tasks, while
E5 achieves high performance when using the full-
dimensional embeddings, for both E5-large and
E5-small the performance degradation becomes
substantial. When gte-Qwen2 embeddings are re-
duced to 128 dimensions (3.6% of the original), the
performance degradation is only about 0.8 points.
In contrast, when E5-large embeddings are reduced
to 128 dimensions (12.5% of the original), the per-
formance drops by approximately 13 points, sug-
gesting that the E5 embeddings contain little redun-
dancy.

Retrieval and STS We observed that the perfor-
mance degradation trends in retrieval and STS tasks
were largely similar across all models, with perfor-
mance consistently declining as the dimensionality
was reduced, in contrast to the trends observed in
classification and clustering tasks. That said, when
the dimensionality of gte-Qwen2 embeddings was
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Figure 5: The relationship between the number of di-
mensions and the average performance on STS tasks.
Other details are the same as in Figure 2.

reduced to 512 dimensions (approximately 14% of
the original), the performance loss in retrieval tasks
was only about 1.5 points, remaining relatively lim-
ited.

Overall After aligning the embedding dimension-
ality, those produced by larger, higher-performing
models consistently outperformed embeddings
from smaller models. Moreover, for classifica-
tion and clustering tasks, we found that instruction-
based text embeddings can maintain high perfor-
mance even when only the first several dimensions
of their embeddings were used, suggesting that
they may be redundant. Across tasks, classification
was the most resilient to dimensionality reduction,
followed by clustering, whereas retrieval and STS
tasks were more sensitive. Altogether, these results
indicate that the extent of embedding redundancy
varies by task.

3 Intrinsic Dimensionality and Isotropy
of Prompt-based Text Embeddings

To investigate why the robustness to dimensional-
ity reduction varies across tasks, we quantitatively
evaluate the redundancy of the embeddings.

3.1 Evaluation Method

We assess the degree of redundancy in the gener-
ated text embeddings as tasks vary. Specifically, we
measure the intrinsic dimension (ID) and isotropy
as indicators of redundancy, and we analyze how
these metrics change as the prompt is varied across
a collection of texts.

Intrinsic Dimension The intrinsic dimension
refers to the number of dimensions required to cap-

ture the essential structure of data representations.
Several methods have been proposed for estimating
the intrinsic dimension (Bruske and Sommer, 1998;
Fukunaga and Olsen, 1971; Levina and Bickel,
2004); among these, we employ TwoNN (Facco
et al., 2017). TwoNN estimates the intrinsic dimen-
sion by analyzing the ratio of distances between
each point and its two nearest neighbors changes
with a set of embeddings. In high-dimensional
spaces, the ratio of the distances to the first and sec-
ond nearest neighbors follows a Pareto distribution
for points uniformly distributed on a d-dimensional
manifold (Ansuini et al., 2019). TwoNN uses this
property to estimate the intrinsic dimension. No-
tably, TwoNN is robust even when the underly-
ing manifold is curved or the sampling density
is nonuniform, and it is computationally efficient.
We use the Python library scikit-dimension6 to
compute the intrinsic dimensions via TwoNN.

IsoScore IsoScore (Rudman et al., 2022) is a met-
ric used to evaluate the isotropy of embeddings.
Isotropy refers to the extent to which embeddings
are uniformly distributed across the entire embed-
ding space without bias toward specific dimensions.
Intuitively, IsoScore is computed by calculating the
variance-covariance matrix of the embedding rep-
resentations, normalizing it, and then measuring its
deviation from the identity matrix. IsoScore ranges
from 0 to 1, with values close to 1 indicating that
the embeddings are distributed isotropically and
values near 0 indicating anisotropic distribution.7

Evaluation Procedure We randomly sampled
10,000 texts from English Wikipedia and obtained
embeddings for each model and prompt.8 The mod-
els, instructions, and prefixes used are essentially
the same as those described in Section 2. Addi-
tionally, we included the BERT-large [CLS] em-
bedding and the average of output contextualized

6https://github.com/scikit-learn-contrib/
scikit-dimension

7Although IsoScore* (Rudman and Eickhoff, 2024) was in-
troduced to stabilize IsoScore computations on small datasets
and enable full differentiability, our study does not involve
training new embedding models; rather, we focus on evaluat-
ing the isotropy of embeddings produced by existing models.
Since IsoScore reliably computes stable scores when the num-
ber of data samples exceeds the embedding dimensionality—
and because it remains computationally efficient without re-
quiring additional regularization—we employed the original
IsoScore in our experiments.

8The texts from English Wikipedia were extracted from the
<p> tags in the HTML dump at https://dumps.wikimedia.
org/other/enterprise_html/. Some texts contain multiple
sentences, while others may be shorter than a full sentence.
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Prompt Type gte-Qwen2 E5-mistral SFR-2 mE5-large-inst nomic
ID IsoScore ID IsoScore ID IsoScore ID IsoScore ID IsoScore

Classification 22.02 .0052 22.26 .0057 37.03 .0077 21.85 .0191 27.75 .1556
Clustering 10.78 .0058 13.01 .0060 16.29 .0138 17.29 .0405 26.25 .1362
Retrieval

Query 31.90 .0779 51.36 .0761 81.38 .1117 36.59 .1750 34.74 .2112
Passage 35.94 .0813 36.69 .0332 35.07 .0555 35.58 .0752 33.78 .1930

STS 38.47 .0784 34.07 .0439 41.69 .0533 34.96 .1400 32.84 .2127

Table 1: Intrinsic dimensions and IsoScore for models using task-specific prompts, by model and prompt type.

Model Prompt ID IsoScore

E5-small query: 41.57 .4419
passage: 37.60 .3905

E5-large query: 42.44 .2022
passage: 38.50 .1977

Unsup-SimCSE 27.01 .1611
BERT (CLS) 20.78 .0186
BERT (Mean) 17.56 .0973

Table 2: Intrinsic dimensions and IsoScore for models
without task-specific prompts, by model and prompt.

word embeddings in our experiments. It is worth
noting that, for instruction-based text embedding
models, different prompts are used for each task
even within the same task type. Therefore, we com-
pute intrinsic dimensions and IsoScore for each
prompt and then take the average for each task type.
In retrieval tasks, different instructions or prefixes
may be used for queries and documents. Hence,
we calculate the intrinsic dimension and IsoScore
separately for each. As a result, the prompt types
consist of retrieval queries, retrieval documents,
STS, classification, and clustering.

3.2 Experimental Results

The results for the instruction-based text embed-
dings are shown in Table 1, and the results for the
other text embeddings are shown in Table 2. For all
models, the intrinsic dimensions were significantly
smaller than the actual dimensions of the embed-
dings. Larger models exhibited lower IsoScore
values, whereas smaller models demonstrated rela-
tively high isotropy.

Focusing on Table 1, instruction-based text em-
bedding models tended to have smaller intrinsic di-
mensions and lower IsoScore values when prompts
for classification or clustering tasks were used. In
contrast, prompts for retrieval queries, retrieval
documents, or STS tasks resulted in higher in-
trinsic dimensions and IsoScore values. When
comparing instruction-based models, those built
on LLMs exhibited greater differences in intrinsic

dimensions and IsoScore values between classifica-
tion/clustering tasks and retrieval/STS tasks. Fur-
thermore, instruction-based text embedding models
(e.g., gte-Qwen2, E5-mistral, SFR-2, mE5-large-
inst) showed an average difference of more than 10
in intrinsic dimension and approximately a tenfold
difference in IsoScore between embeddings gener-
ated for retrieval or STS tasks and those for clas-
sification or clustering tasks. That is, embeddings
for classification and clustering tasks are relatively
anisotropic, whereas those for retrieval and STS
tasks are comparatively isotropic, indicating that
embeddings for classification and clustering tasks
are relatively more redundant.

Table 2 illustrates that both text embedding mod-
els not based on prompts and prefix-based models
such as E5 generally exhibited relatively high in-
trinsic dimension and IsoScore values. Both Unsup-
SimCSE and E5-large showed higher intrinsic di-
mensions and IsoScore values than the original
BERT-large, which aligned with previous research
indicating that contrastive learning enhanced the
uniformity of embeddings (Gao et al., 2021). E5
consistently demonstrated high values regardless
of the prefix, often exhibiting larger intrinsic di-
mensions than those observed in LLM-based text
embeddings. These findings suggest that E5, which
employed the prefix for diverse tasks such as re-
trieval queries and text classification, might gen-
erate embeddings with lower redundancy in order
to preserve a broader range of information. This
distinction aligns with the differing requirements
of downstream tasks. Retrieval tasks require cap-
turing subtle semantic relationships between sen-
tences or documents, necessitating the retention
of a substantial amount of information within the
embeddings. In contrast, classification and cluster-
ing tasks require only the details relevant to spe-
cific classes. Indeed, our observations indicate that
prompt-based embedding models adapt to these
task characteristics by producing embeddings with
higher redundancy for classification and cluster-
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Figure 6: ID under dimensionality reduction. The
dashed line represents the actual dimensions.

ing tasks, while yielding embeddings with lower
redundancy for retrieval and STS tasks.

ID and Isotropy with Dimensionality Reduc-
tion As in Section 2, we performed dimensional-
ity reduction on the embeddings and evaluated the
changes in intrinsic dimension and isotropy. We
measured the ID and IsoScore at each dimension us-
ing embeddings from gte-Qwen2 for each prompt
type, and the results are shown in Figure 6 and
Figure 7. Regarding ID, the ordering of the IDs for
the full-dimensional embeddings did not change
with dimensionality reduction; across all prompt
types, the IDs remained nearly stable until approx-
imately 128 dimensions. Regarding IsoScore, the
trends in IsoScore differed between embeddings
for classification/clustering tasks and those for re-
trieval/STS tasks. Specifically, while the IsoScore
for embeddings intended for classification and clus-
tering remained around 0.75 even when reduced
to 2 dimensions, the IsoScore for embeddings in-
tended for retrieval and STS tasks nearly reached 1,
indicating that the corresponding subspaces were
isotropic.

4 Related Work

4.1 Text Embeddings

Early research on text embeddings focused on
deriving sentence embeddings from word em-
beddings (Shen et al., 2018; Mu and Viswanath,
2018; Arora et al., 2017; Ethayarajh, 2018), while
later methods such as InferSent (Conneau et al.,
2017), Sentence-BERT (Reimers and Gurevych,
2019), and Supervised SimCSE (Gao et al., 2021)
fine-tuned pre-trained language models on NLI
datasets (Bowman et al., 2015; Williams et al.,
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Figure 7: IsoScore under dimensionality reduction.

2018) for richer semantic representations. More-
over, to capture various types of information be-
yond semantics, prompt-based text embedding
models tailor embeddings to specific tasks using
prefixes (Wang et al., 2022, 2024b; Nussbaum et al.,
2024; Li et al., 2023; Xiao et al., 2024) or natural
language instructions (Su et al., 2023; Asai et al.,
2023; Wang et al., 2024a; Lee et al., 2024a; Muen-
nighoff et al., 2024).

Prefix-based approaches like E5 (Wang et al.,
2022), multilingual E5 (Wang et al., 2024b),
GTE (Li et al., 2023), and BGE (Xiao et al.,
2024) typically fine-tune smaller models such
as BERT (Devlin et al., 2019) or XLM-
RoBERTa (Conneau et al., 2020) with large-scale
contrastive learning. In contrast, instruction-based
text embedding models are designed to use the tar-
get text along with a natural language instructions.
Moreover, while LLMs are originally trained using
causal attention, instruction-based approaches of-
ten incorporate additional modifications to enhance
contextual understanding (Springer et al., 2024;
Jiang et al., 2024; Lei et al., 2024). Notably, one
common modification is the use of bidirectional
attention (BehnamGhader et al., 2024; Lee et al.,
2024a; de Souza P. Moreira et al., 2024). Although
these models aim to generate task-specific embed-
dings to improve performance, whether they are
truly capable of doing so and why performance im-
proves have remained unclear. Our study is the first
to qualitatively examine what embeddings prompt-
based text embedding models produce and how
their properties differ across prompts.

4.2 Embedding Dimensionality Reduction
Several attempts to reduce the dimensionality of
embeddings have long been explored, with tradi-
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tional methods such as PCA (Abdi and Williams,
2010) and Isomap (Tenenbaum et al., 2000). Wang
et al. (2023) investigated effective dimensionality
reduction methods by training models while ad-
justing the pooler’s output dimensionality for each
reduced dimension. Recently, learning methods
designed to support post-hoc dimensionality reduc-
tion of embeddings, such as Matryoshka Represen-
tation Learning (MRL) (Kusupati et al., 2022) and
Espresso Sentence Embeddings (LI et al., 2025),
have also emerged. These methods incorporate spe-
cialized mechanisms during and after training to
obtain high-performance embeddings even after di-
mensionality reduction. In contrast, our study aims
to demonstrate that prompt-based text embedding
models can achieve high performance on certain
tasks using a simple dimensionality reduction ap-
proach, without requiring additional training or spe-
cialized datasets, and to investigate the underlying
factors responsible for this behavior.

4.3 Intrinsic Dimension

The intrinsic dimension is defined as the minimum
number of dimensions required to represent the
underlying structure of data representations with-
out significant information loss, and various meth-
ods have been proposed for estimating intrinsic
dimensions (Bruske and Sommer, 1998; Fukunaga
and Olsen, 1971; Levina and Bickel, 2004; Facco
et al., 2017). Although the use of ID estimation
on text embeddings is not yet widespread, there
has been work applying ID-based methods to tasks
such as detecting AI-generated text (Tulchinskii
et al., 2023), by estimating the ID on sets of word
embeddings for each text document. Dinu et al.
(2025) investigate the impact of the temperature pa-
rameter on model performance. They demonstrate
that increasing the temperature reduces the intrinsic
dimensionality and degrades retrieval performance.
To address this, they propose temperature aggrega-
tion and specialization methods, which integrate
multiple temperatures directly into the contrastive
training objective to balance performance and com-
pressibility. While Dinu et al. (2025) consider tem-
perature variation on a single model trained without
any task-specific prompts, our findings indicate that
LLM-based embedding models inherently modu-
late intrinsic dimensionality via instructions.

4.4 Isotropy and Anisotropy

It is well established that the contextualized word
embeddings of language models are anisotropic,

meaning they are predominantly distributed along
a limited sub space within the embedding space. In
research on text embeddings, enhancing isotropy
has been shown to improve performance on STS
tasks (Mu and Viswanath, 2018; Li et al., 2020;
Su et al., 2021; Huang et al., 2021; Yokoi et al.,
2024). In particular, training embedding mod-
els using contrastive learning techniques has been
found to improve isotropy, thereby enhancing over-
all embedding quality (Gao et al., 2021; Zhuo et al.,
2023; Xiao et al., 2023). Moreover, methods em-
ploying text embedding models for information
retrieval (Karpukhin et al., 2020) have also re-
ported performance gains through improvements
in isotropy (Kim et al., 2024).

While improving the isotropy of embeddings has
long been regarded as a key factor in improving
their quality, recent studies have indicated that im-
proving isotropy is not universally beneficial across
all tasks. Specifically, Ait-Saada and Nadif (2023)
point out that enhancing isotropy does not neces-
sarily lead to improved performance in clustering
tasks, and Mickus et al. (2024) argue that there
exists a trade-off between the properties desirable
for classification and clustering tasks, as measured
by silhouette scores (Rousseeuw, 1987), and those
for isotropy, which is generally preferred in STS
and retrieval tasks. These findings indicate that the
optimal level of isotropy in text embeddings may
vary depending on the task. Our research supports
this claim and further suggests that recent mod-
els attempt to navigate this trade-off by adjusting
embeddings to exhibit varying degrees of isotropy.

5 Conclusion and Future Work

We demonstrated that the high-dimensional em-
beddings produced by prompt-based text embed-
ding models can maintain strong performance even
after dimensionality reduction by simply retain-
ing the first several dimensions. In particular, for
classification and clustering tasks, we showed that
even drastic dimensionality reduction to just a few
dimensions still preserved sufficient performance.
Through analyses using intrinsic dimensionality
and IsoScore, we found that prompt-based text em-
bedding models generate embeddings with varying
degrees of redundancy depending on the prompt.
Specifically, for classification and clustering tasks,
embeddings exhibit lower intrinsic dimensional-
ity and tend to be less isotropic, and that is, they
have higher redundancy. In contrast, for tasks like
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retrieval and STS, where fine-grained similarity is
critical, embeddings tend to have higher intrinsic di-
mensionality and are more isotropically distributed,
and that is, they have lower redundancy.

In future work, developing methods to construct
embeddings with properties suitable for each task
would be beneficial. Specifically, in contrastive
learning, the temperature parameter is known to
influence isotropy, with lower temperatures leading
to more isotropic embeddings and higher temper-
atures resulting in less isotropic ones (Wang and
Liu, 2021). Additionally, exploring more effec-
tive dimensionality reduction techniques for text
embeddings remains an important direction. Em-
beddings may contain certain crucial dimensions,
and if these dimensions can be identified, it may
enable more efficient dimensionality reduction.

Limitations

In our study, we demonstrated that instruction-
based text embedding models produce embeddings
with different levels of redundancy depending on
the prompt. However, we have not yet clarified
the underlying factors that contribute to this phe-
nomenon.

Furthermore, we estimated intrinsic dimension
and isotropy using English Wikipedia text but did
not conduct a detailed analysis of how these values
might vary depending on text length, domain, or
differences across languages. Expanding the range
of datasets and conducting a more comprehensive
analysis of downstream task performance would
provide a stronger validation of how prompt-based
text embeddings behave across different prompts.

Acknowledgement

This work was partly supported by JSPS KAK-
ENHI Grant Numbers 23KJ1134 and 24H00727.
We would also like to thank Ryo Ueda of the Uni-
versity of Tokyo for his insightful comments and
for discussing isotropy and intrinsic dimensional-
ity.

References
Hervé Abdi and Lynne J. Williams. 2010. Principal

component analysis. WIREs Computational Statis-
tics, 2(4):433–459.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Iñigo Lopez-Gazpio, Montse Maritxalar, Rada Mihal-
cea, German Rigau, Larraitz Uria, and Janyce Wiebe.

2015. SemEval-2015 Task 2: Semantic Textual Simi-
larity, English, Spanish and Pilot on Interpretability.
In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval), pages 252–263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. SemEval-2014 Task 10: Multilingual
Semantic Textual Similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval), pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
Task 1: Semantic Textual Similarity, Monolingual
and Cross-Lingual Evaluation. In Proceedings of the
10th International Workshop on Semantic Evaluation
(SemEval), pages 497–511.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A
Pilot on Semantic Textual Similarity. In *SEM 2012:
The First Joint Conference on Lexical and Computa-
tional Semantics – Semantic Evaluation (SemEval),
pages 385–393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic Textual Similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), pages 32–43.

Mira Ait-Saada and Mohamed Nadif. 2023. Is
Anisotropy Truly Harmful? A Case Study on Text
Clustering. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1194–1203.

Alessio Ansuini, Alessandro Laio, Jakob H. Macke, and
Davide Zoccolan. 2019. Intrinsic dimension of data
representations in deep neural networks. In Neural
Information Processing Systems (NeurIPS).

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017. A
Simple but Tough-to-Beat Baseline for Sentence Em-
beddings. In International Conference on Learning
Representations (ICLR).

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2023. Task-aware Re-
trieval with Instructions. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
3650–3675.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados, and
Siva Reddy. 2024. LLM2Vec: Large Language Mod-
els Are Secretly Powerful Text Encoders. In First
Conference on Language Modeling (COLM).

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.

25923

https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.18653/v1/S15-2045
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.3115/v1/S14-2010
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://doi.org/10.18653/v1/S16-1081
https://www.aclweb.org/anthology/S12-1051
https://www.aclweb.org/anthology/S12-1051
https://www.aclweb.org/anthology/S13-1004
https://www.aclweb.org/anthology/S13-1004
https://doi.org/10.18653/v1/2023.acl-short.103
https://doi.org/10.18653/v1/2023.acl-short.103
https://doi.org/10.18653/v1/2023.acl-short.103
https://arxiv.org/abs/1905.12784
https://arxiv.org/abs/1905.12784
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://doi.org/10.18653/v1/2023.findings-acl.225
https://doi.org/10.18653/v1/2023.findings-acl.225
https://openreview.net/forum?id=IW1PR7vEBf
https://openreview.net/forum?id=IW1PR7vEBf
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075


In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 632–642.

Jörg Bruske and Gerald Sommer. 1998. Intrinsic dimen-
sionality estimation with optimally topology preserv-
ing maps. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(5):572–575.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval), pages 1–14.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
8440–8451.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
Learning of Universal Sentence Representations from
Natural Language Inference Data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 670–680.

Gabriel de Souza P. Moreira, Radek Osmulski, Mengyao
Xu, Ronay Ak, Benedikt Schifferer, and Even
Oldridge. 2024. NV-Retriever: Improving text em-
bedding models with effective hard-negative mining.
arXiv:2407.15831.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL), pages 4171–4186.

Georgiana Dinu, Corey Barrett, Yi Xiang,
Miguel Romero Calvo, Anna Currey, and Xing
Niu. 2025. Effective post-training embedding
compression via temperature control in contrastive
training. In International Conference on Learning
Representations (ICLR).

Kawin Ethayarajh. 2018. Unsupervised Random Walk
Sentence Embeddings: A Strong but Simple Baseline.
In Proceedings of the Third Workshop on Representa-
tion Learning for NLP (RepL4NLP), pages 91–100.

Elena Facco, Maria d’Errico, Alex Rodriguez, and
Alessandro Laio. 2017. Estimating the intrinsic di-
mension of datasets by a minimal neighborhood in-
formation. Scientific Reports, 7.

Keinosuke Fukunaga and David R. Olsen. 1971. An Al-
gorithm for Finding Intrinsic Dimensionality of Data.
IEEE Transactions on Computers, C-20(2):176–183.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple Contrastive Learning of Sentence
Embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6894–6910.

Gregor Geigle, Nils Reimers, Andreas Rücklé, and Iryna
Gurevych. 2021. TWEAC: Transformer with Ex-
tendable QA Agent Classifiers. arxiv:2104.07081,
arXiv:2104.07081.

Faegheh Hasibi, Fedor Nikolaev, Chenyan Xiong, Krisz-
tian Balog, Svein Erik Bratsberg, Alexander Kotov,
and Jamie Callan. 2017. DBpedia-Entity V2: A Test
Collection for Entity Search. In Proceedings of the
40th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
SIGIR ’17, pages 1265–1268. ACM.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-Rank Adaptation
of Large Language Models. In International Confer-
ence on Learning Representations (ICLR).

Junjie Huang, Duyu Tang, Wanjun Zhong, Shuai Lu,
Linjun Shou, Ming Gong, Daxin Jiang, and Nan
Duan. 2021. WhiteningBERT: An Easy Unsuper-
vised Sentence Embedding Approach. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 238–244.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7B. arxiv:2310.06825.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2024. Scaling Sentence
Embeddings with Large Language Models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 3784–
3803.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.
Smith. 2020. The Multilingual Amazon Reviews
Corpus. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4563–4568.

Jaeyoung Kim, Dohyeon Lee, and Seung-won Hwang.
2024. HIL: Hybrid Isotropy Learning for Zero-shot
Performance in Dense retrieval. In Proceedings of
the 2024 Conference of the North American Chapter

25924

https://doi.org/10.1109/34.682189
https://doi.org/10.1109/34.682189
https://doi.org/10.1109/34.682189
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://arxiv.org/abs/2407.15831
https://arxiv.org/abs/2407.15831
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=szRmEM8Kx5
https://openreview.net/forum?id=szRmEM8Kx5
https://openreview.net/forum?id=szRmEM8Kx5
https://doi.org/10.18653/v1/W18-3012
https://doi.org/10.18653/v1/W18-3012
https://arxiv.org/abs/1803.06992
https://arxiv.org/abs/1803.06992
https://arxiv.org/abs/1803.06992
https://doi.org/10.1109/T-C.1971.223208
https://doi.org/10.1109/T-C.1971.223208
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://arxiv.org/abs/2104.07081
https://arxiv.org/abs/2104.07081
https://doi.org/10.1145/3077136.3080751
https://doi.org/10.1145/3077136.3080751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.findings-emnlp.23
https://doi.org/10.18653/v1/2021.findings-emnlp.23
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/2024.findings-emnlp.181
https://aclanthology.org/2024.findings-emnlp.181
https://aclanthology.org/2020.emnlp-main.550
https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2020.emnlp-main.369
https://doi.org/10.18653/v1/2024.naacl-long.437
https://doi.org/10.18653/v1/2024.naacl-long.437


of the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
7892–7903.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,
Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen,
Sham M. Kakade, Prateek Jain, and Ali Farhadi.
2022. Matryoshka Representation Learning. In Pro-
ceedings of the 36th Conference on Neural Informa-
tion Processing Systems (NeurIPS).

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural
Questions: A Benchmark for Question Answering
Research. Transactions of the Association for Com-
putational Linguistics (TACL), 7:452–466.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024a. NV-Embed: Improved Techniques
for Training LLMs as Generalist Embedding Models.
arXiv:2405.17428.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen,
Daniel Cer, Jeremy R. Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai
Meher Karthik Duddu, Gustavo Hernandez Abrego,
Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Pra-
teek Jain, Siddhartha Reddy Jonnalagadda, Ming-
Wei Chang, and Iftekhar Naim. 2024b. Gecko: Versa-
tile Text Embeddings Distilled from Large Language
Models. arXiv:2403.20327.

Yibin Lei, Di Wu, Tianyi Zhou, Tao Shen, Yu Cao,
Chongyang Tao, and Andrew Yates. 2024. Meta-
Task Prompting Elicits Embeddings from Large Lan-
guage Models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 10141–10157.

Elizaveta Levina and Peter Bickel. 2004. Maximum
Likelihood Estimation of Intrinsic Dimension. In
Advances in Neural Information Processing Systems
(NIPS), volume 17.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the Sentence
Embeddings from Pre-trained Language Models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130.

Xianming LI, Zongxi Li, Jing Li, Haoran Xie, and Qing
Li. 2025. ESE: Espresso Sentence Embeddings. In
The Thirteenth International Conference on Learning
Representations (ICLR).

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
General Text Embeddings with Multi-stage Con-
trastive Learning. arXiv:2308.03281.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies (ACL-HLT), pages 142–150.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of com-
positional distributional semantic models. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC), pages
216–223.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text.

Leland McInnes, John Healy, and James Melville. 2020.
UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction. arXiv:1802.03426.

Timothee Mickus, Stig-Arne Grönroos, and Joseph At-
tieh. 2024. Isotropy, Clusters, and Classifiers. In
Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
75–84.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-Top:
Simple and Effective Postprocessing for Word Repre-
sentations. In International Conference on Learning
Representations (ICLR).

Niklas Muennighoff. 2022. SGPT: GPT Sentence Em-
beddings for Semantic Search. arXiv:2202.08904.

Niklas Muennighoff, Hongjin Su, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative Representational
Instruction Tuning. arXiv:2402.09906.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive Text Embed-
ding Benchmark. In Proceedings of the 17th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), pages 2014–
2037.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A Human Generated MA-
chine Reading COmprehension Dataset. CoRR,
abs/1611.09268.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Con-
stant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang.
2022a. Sentence-T5: Scalable Sentence Encoders
from Pre-trained Text-to-Text Models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1864–1874.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Her-
nandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith
Hall, Ming-Wei Chang, and Yinfei Yang. 2022b.
Large Dual Encoders Are Generalizable Retrievers.

25925

https://arxiv.org/abs/2205.13147
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://arxiv.org/abs/2403.20327
https://doi.org/10.18653/v1/2024.acl-long.546
https://doi.org/10.18653/v1/2024.acl-long.546
https://doi.org/10.18653/v1/2024.acl-long.546
https://proceedings.neurips.cc/paper_files/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/74934548253bcab8490ebd74afed7031-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://openreview.net/forum?id=plgLA2YBLH
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://aclanthology.org/P11-1015/
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://dl.acm.org/doi/10.1145/2507157.2507163
https://dl.acm.org/doi/10.1145/2507157.2507163
https://dl.acm.org/doi/10.1145/2507157.2507163
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.18653/v1/2024.acl-short.7
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://doi.org/10.48550/ARXIV.2202.08904
https://doi.org/10.48550/ARXIV.2202.08904
https://arxiv.org/abs/2402.09906
https://arxiv.org/abs/2402.09906
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.emnlp-main.669


In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9844–9855.

Zach Nussbaum, John X. Morris, Brandon Duderstadt,
and Andriy Mulyar. 2024. Nomic Embed: Train-
ing a Reproducible Long Context Text Embedder.
arXiv:2402.01613.

James O’Neill, Polina Rozenshtein, Ryuichi Kiryo, Mo-
toko Kubota, and Danushka Bollegala. 2021. I Wish
I Would Have Loved This One, But I Didn‘t – A
Multilingual Dataset for Counterfactual Detection in
Product Review. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7092–7108.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu,
Haiming Bao, Mohammad Bavarian, Jeff Belgum,
and 262 others. 2024. GPT-4 Technical Report.
arXiv:2303.08774.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
Measure: A Conditional Entropy-Based External
Cluster Evaluation Measure. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
410–420.

Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid
to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20:53–65.

William Rudman and Carsten Eickhoff. 2024. Stable
Anisotropic Regularization. In The Twelfth Inter-
national Conference on Learning Representations
(ICLR).

William Rudman, Nate Gillman, Taylor Rayne, and
Carsten Eickhoff. 2022. IsoScore: Measuring the
Uniformity of Embedding Space Utilization. In Find-
ings of the Association for Computational Linguistics:
ACL 2022, pages 3325–3339.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin. 2018.
Baseline Needs More Love: On Simple Word-
Embedding-Based Models and Associated Pooling
Mechanisms. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 440–450.

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,
Graham Neubig, and Aditi Raghunathan. 2024.
Repetition Improves Language Model Embeddings.
arXiv:2402.15449.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang,
Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2023. One
Embedder, Any Task: Instruction-Finetuned Text Em-
beddings. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 1102–1121.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou.
2021. Whitening Sentence Representations for Better
Semantics and Faster Retrieval. arXiv:2103.15316.

Joshua B. Tenenbaum, Vin de Silva, and John C.
Langford. 2000. A Global Geometric Framework
for Nonlinear Dimensionality Reduction. Science,
290(5500):2319–2323.

Hayato Tsukagoshi, Ryohei Sasano, and Koichi Takeda.
2021. DefSent: Sentence Embeddings using Defini-
tion Sentences. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (ACL-IJCNLP),
pages 411–418.

Eduard Tulchinskii, Kristian Kuznetsov, Kushnareva
Laida, Daniil Cherniavskii, Sergey Nikolenko,
Evgeny Burnaev, Serguei Barannikov, and Irina Pi-
ontkovskaya. 2023. Intrinsic Dimension Estimation
for Robust Detection of AI-Generated Texts. In
Thirty-seventh Conference on Neural Information
Processing Systems (NeurIPS).

Laurens van der Maaten and Geoffrey E. Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Feng Wang and Huaping Liu. 2021. Understanding the
Behaviour of Contrastive Loss. pages 2495–2504.

Hongwei Wang, Hongming Zhang, and Dong Yu. 2023.
On the Dimensionality of Sentence Embeddings. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 10344–10354.

Liang Wang, Nan Yang, Xiaolong Huang, Binx-
ing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. 2022. Text Embed-
dings by Weakly-Supervised Contrastive Pre-training.
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024a. Improving
Text Embeddings with Large Language Models. In
Proceedings of the 62nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
11897–11916.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024b. Mul-
tilingual e5 text embeddings: A technical report.
arXiv:2402.05672.

25926

https://arxiv.org/abs/2402.01613
https://arxiv.org/abs/2402.01613
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://doi.org/10.18653/v1/2021.emnlp-main.568
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://aclanthology.org/D07-1043
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://openreview.net/forum?id=dbQH9AOVd5
https://openreview.net/forum?id=dbQH9AOVd5
https://doi.org/10.18653/v1/2022.findings-acl.262
https://doi.org/10.18653/v1/2022.findings-acl.262
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://arxiv.org/abs/2402.15449
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://doi.org/10.18653/v1/2023.findings-acl.71
https://arxiv.org/abs/2103.15316
https://arxiv.org/abs/2103.15316
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.18653/v1/2021.acl-short.52
https://doi.org/10.18653/v1/2021.acl-short.52
https://openreview.net/forum?id=8uOZ0kNji6
https://openreview.net/forum?id=8uOZ0kNji6
https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Understanding_the_Behaviour_of_Contrastive_Loss_CVPR_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Understanding_the_Behaviour_of_Contrastive_Loss_CVPR_2021_paper.pdf
https://doi.org/10.18653/v1/2023.findings-emnlp.694
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://doi.org/10.18653/v1/2024.acl-long.642
https://doi.org/10.18653/v1/2024.acl-long.642
https://arxiv.org/abs/2402.05672
https://arxiv.org/abs/2402.05672


Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL),
pages 1112–1122.

Chenghao Xiao, Yang Long, and Noura Al Moubayed.
2023. On Isotropy, Contextualization and Learning
Dynamics of Contrastive-based Sentence Represen-
tation Learning. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 12266–
12283.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2024. C-Pack: Packaged Resources To
Advance General Chinese Embedding. In The 47th
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR),
pages 641–649.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma,
and 43 others. 2024. Qwen2 Technical Report.
arxiv:2407.10671.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2369–2380.

Chihiro Yano, Akihiko Fukuchi, Shoko Fukasawa,
Hideyuki Tachibana, and Yotaro Watanabe. 2024.
Multilingual Sentence-T5: Scalable Sentence En-
coders for Multilingual Applications. In Proceed-
ings of the 2024 Joint International Conference on
Computational Linguistics, Language Resources and
Evaluation (LREC-COLING), pages 11849–11858.

Sho Yokoi, Han Bao, Hiroto Kurita, and Hidetoshi Shi-
modaira. 2024. Zipfian whitening. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 37, pages 122259–122291.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo,
Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and
Jimmy Lin. 2022. Making a MIRACL: Multilingual
Information Retrieval Across a Continuum of Lan-
guages. arXiv:2210.09984.

Wenjie Zhuo, Yifan Sun, Xiaohan Wang, Linchao Zhu,
and Yi Yang. 2023. WhitenedCSE: Whitening-based
Contrastive Learning of Sentence Embeddings. In
Proceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
12135–12148.

A Details of Evaluation Tasks and
Prompts

Table 3 presents the tasks from MTEB used in our
experiments, along with the instructions employed
for each task when using instruction-based text
embedding models.

B Model Details Used in Our
Experiments

Table 4 lists the models used in the evaluation ex-
periments. We provide detailed descriptions of
each model below.

Instruction-Based Text Embedding Models
We evaluate several models that have demonstrated
high performance on the MTEB. In particular, we
consider the following four models, three of which
are LLM-based, while the other based on XLM-
RoBERTa (Conneau et al., 2020):

• gte-Qwen29: A fine-tuned version of Qwen2
7B (Yang et al., 2024) fine-tuned for text embed-
dings. This model replaces its original causal
attention with bidirectional attention and is fur-
ther trained on diverse multilingual datasets. The
model comprises 7.6B parameters and produces
embeddings with 3,584 dimensions.

• E5-mistral (Wang et al., 2024a): A fine-tuned
variant of Mistral 7B (Jiang et al., 2023) that
leverages synthetic data generated by high-
performant LLMs, such as GPT-4 (OpenAI et al.,
2024). It is a pioneering model in LLM and
instruction-based text embeddings, demonstrat-
ing that the model more accurately captures the
objectives of the embedding task and yields bet-
ter embeddings. The model comprises 7.1B pa-
rameters and produces embeddings with 4,096
dimensions.

• SFR-Embedding-2_R (SFR-2)10: An enhanced
version of E5-mistral which is further fine-tuned
using LoRA (Hu et al., 2022). The model com-
prises 7.1B parameters and produces embed-
dings with 4,096 dimensions.

• mE5-large-inst (Wang et al., 2024b): A multilin-
gual and instruction-based version of E5 (Wang
et al., 2022) fine-tuned on the same datasets as
9https://huggingface.co/Alibaba-NLP/

gte-Qwen2-7B-instruct
10https://huggingface.co/Salesforce/

SFR-Embedding-2_R
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Task Instruction
AmazonCounterfactualClassification Classify a given Amazon customer review text as either counterfactual or not-

counterfactual
AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment
AmazonReviewsClassification Classify the given Amazon review into its appropriate rating category
ImdbClassification Classify the sentiment expressed in the given movie review text from the IMDB dataset
ToxicConversationsClassification Classify the given comments as either toxic or not toxic
ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based on the titles
RedditClustering Identify the topic or theme of Reddit posts based on the titles
StackExchangeClustering Identify the topic or theme of StackExchange posts based on the titles
MIRACLRetrievalHardNegatives Given a question, retrieve Wikipedia passages that answer the question
QuoraRetrievalHardNegatives Given a question, retrieve questions that are semantically equivalent to the given question
HotpotQAHardNegatives Given a multi-hop question, retrieve documents that can help answer the question
DBPediaHardNegatives Given a query, retrieve relevant entity descriptions from DBPedia
NQHardNegatives Given a question, retrieve Wikipedia passages that answer the question
MSMARCOHardNegatives Given a web search query, retrieve relevant passages that answer the query
STS-12 Retrieve semantically similar text
STS-13 Retrieve semantically similar text
STS-14 Retrieve semantically similar text
STS-15 Retrieve semantically similar text
STS-16 Retrieve semantically similar text
STS-Benchmark Retrieve semantically similar text
SICK-R Retrieve semantically similar text

Table 3: Evaluation tasks and their corresponding instructions.

Model HuggingFace Prompt Dim. #Params
gte-Qwen2 Alibaba-NLP/gte-Qwen2-7B-instruct Instruction 3584 7.61B
E5-mistral intfloat/E5-mistral-7b-instruct Instruction 4096 7.11B
SFR-2 Salesforce/SFR-Embedding-2_R Instruction 4096 7.11B
mE5-large-inst intfloat/multilingual-e5-large-instruct Instruction 1024 560M
nomic nomic-ai/nomic-embed-text-v1.5 Prefix (five types) 768 137M
E5-small intfloat/e5-small-v2 Prefix (two types) 384 33M
E5-large intfloat/e5-large-v2 Prefix (two types) 1024 335M
Unsup-SimCSE princeton-nlp/unsup-simcse-bert-large-uncased N/A 1024 335M

Table 4: Details of each model.

E5-mistral. Unlike the aforementioned models,
mE5-large-inst is derived from XLM-RoBERTa-
large (Conneau et al., 2020). The model com-
prises 560M parameters and produces embed-
dings with 1,024 dimensions.

Each model generates task-specific embeddings by
incorporating tailored instructions into the input
text. Specifically, task instructions are prepended
to the input texts prior, thereby enabling effective
adaptation to a wide range of downstream tasks.
The instructions used are identical to those used
in previous studies (Wang et al., 2024a; Lee et al.,
2024a), and the ones for each task are provided in
Appendix A.

Other Text Embedding Models Small-scale
prefix-based models are highly valuable in practice,
and understanding how they differ from instruction-
based models is crucial; therefore, in addition to the
instruction-based embedding model, we considered
the following four models:

• Unsup-SimCSE: SimCSE (Gao et al., 2021)
is a method for fine-tuning language models
into text embedding models using contrastive
learning. In our experiments, we employ the
BERT-large model fine-tuned on one million En-
glish Wikipedia sentences.11 This model con-
sists of 335M parameters and outputs embed-
dings with 1,024 dimensions. Notably, Unsup-
SimCSE does not rely on prompts.

• E5 (E5-large and E5-small): E5 (Wang et al.,
2022) is a prefix-based text embedding model
fine-tuned with large-scale contrastive learning
on diverse datasets. During contrastive learn-
ing, E5 appends prefixes such as query: and
passage: to the input text, thereby enabling
the effective computation of asymmetric simi-
larities between retrieval queries and documents.
Although several model sizes are available, in
11https://huggingface.co/princeton-nlp/

unsup-simcse-bert-large-uncased

25928

https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct
https://huggingface.co/intfloat/E5-mistral-7b-instruct
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/intfloat/multilingual-e5-large-instruct
https://huggingface.co/nomic-ai/nomic-embed-text-v1.5
https://huggingface.co/intfloat/e5-small-v2
https://huggingface.co/intfloat/e5-large-v2
https://huggingface.co/princeton-nlp/unsup-simcse-bert-large-uncased
https://huggingface.co/princeton-nlp/unsup-simcse-bert-large-uncased
https://huggingface.co/princeton-nlp/unsup-simcse-bert-large-uncased


Dim. 2 4 8 16 32 64 128 256 384 512 768 896 1024 3584
Classification

First 76.34 83.39 85.73 86.91 87.16 87.11 86.85 87.12 87.10 87.14 87.11 87.18 87.26 87.15
Random 72.87 81.64 85.42 86.21 86.79 86.84 86.79 87.25 86.98 87.00 87.15 87.14 87.16 -
PCA 84.86 85.05 85.22 85.25 85.31 85.36 85.40 85.42 85.43 85.43 85.44 85.44 85.44 -
UMAP 82.99 84.59 84.97 84.50 84.16 83.58 83.33 83.19 83.12 83.28 83.18 83.17 83.29 -
Isomap 83.61 85.19 85.25 85.30 85.36 85.45 85.55 85.66 85.69 85.72 85.74 85.75 85.76 -

Clustering
First 22.88 41.55 56.13 62.44 66.08 67.43 67.52 67.93 68.06 68.06 68.32 68.33 68.15 68.40
Random 24.70 41.41 55.33 62.71 65.89 67.13 67.44 67.89 68.12 68.15 68.25 68.29 68.26 -
PCA 38.64 55.63 62.93 66.00 67.81 68.49 68.40 68.38 68.43 68.33 68.37 68.44 68.48 -
UMAP 53.16 64.16 65.25 65.45 65.49 65.56 65.49 65.50 65.46 65.37 65.45 65.37 65.32 -
Isomap 42.50 58.68 63.72 65.51 66.24 66.11 66.09 66.00 66.00 65.82 65.61 65.82 65.83 -

Retrieval
First 0.39 0.57 4.78 20.34 41.43 56.08 62.17 65.72 66.81 67.64 67.98 68.15 68.33 69.22
Random 0.34 0.88 5.02 20.02 40.41 54.98 61.80 65.52 66.88 67.43 68.10 68.31 68.31 -
PCA 1.45 5.00 15.34 31.11 45.49 56.23 62.95 66.30 67.32 68.00 68.61 68.89 68.95 -
UMAP 2.70 5.81 5.46 5.21 5.01 4.60 3.96 3.60 3.39 3.13 3.04 2.83 2.53 -
Isomap 1.45 9.53 20.89 24.99 27.03 27.92 28.54 28.78 28.91 29.08 29.32 29.31 29.58 -

STS
First 38.43 54.29 66.49 73.65 78.19 80.15 81.52 83.04 82.82 83.44 84.00 84.18 84.18 84.76
Random 35.18 51.33 63.48 71.83 76.79 80.02 82.42 83.21 83.80 84.03 84.38 84.43 84.56 -
PCA 33.44 50.71 61.85 69.08 75.22 80.17 83.45 84.95 85.23 85.31 85.28 85.24 85.19 -
UMAP 53.20 63.40 65.64 65.38 65.15 65.54 65.48 65.71 65.90 65.47 65.37 65.38 65.95 -
Isomap 45.40 62.08 69.60 73.85 75.35 76.28 76.71 76.88 76.83 76.73 76.50 76.46 76.45 -

Table 5: Performance of gte-Qwen2 under various dimensionality reduction methods.

this study we use the small model (E5-small)12

comprises 33M parameters and its embedding di-
mension is 384 and the large model (E5-large)13

comprises 335M parameters and its embedding
dimension is 1,024.

• nomic: Nomic further develops the prefix ap-
proach used in E5 by employing five distinct
prefixes tailored for different tasks. Specifically,
the prefix search_query: is used for queries of
retrieval, search_document: for documents of
retrieval, classification: for classification,
clustering: for clustering, and, for tasks such
as STS, where the semantic content of the text is
to be embedded, it will be an empty string (i.e.,
no prefix). The model comprises 137M parame-
ters and its embedding dimension is 768.14

C Experimental Results of Other
Dimensionality Reduction Methods

Taking the first d dimensions (First) aside, we evalu-
ate four alternative dimensionality reduction meth-
ods: (1) Random, which selects random embed-
ding coordinates; (2) PCA (Abdi and Williams,

12https://huggingface.co/intfloat/e5-small-v2
13https://huggingface.co/intfloat/e5-large-v2
14https://huggingface.co/nomic-ai/

nomic-embed-text-v1.5

2010); (3) UMAP (McInnes et al., 2020); and (4)
Isomap (Tenenbaum et al., 2000). First, the Ran-
dom and PCA methods perform only linear trans-
formations, whereas UMAP and Isomap implement
nonlinear transformations. The performance of
each method are shown in Table 5. For the Ran-
dom method, we fix the indices of selected dimen-
sions prior to each task evaluation to ensure that
the same subset of embedding coordinates is used
consistently across runs. Although t-SNE (van der
Maaten and Hinton, 2008) is a well-known dimen-
sionality reduction method, we did not employ it
because it becomes computationally infeasible for
projections into high-dimensional spaces: t-SNE
incurs a per-iteration time complexity of O(N2d),
where N denotes the number of data points. We
use gte-Qwen2 for the embedding model. All re-
maining settings are identical to those specified in
Section 2.

The results indicate that, despite its simplicity,
the First method achieves performance comparable
to or better than the other methods when using 8
dimensions for classification, 16 for STS, 32 for
clustering, and 64 for retrieval. Moreover, more
computationally intensive methods do not necessar-
ily yield improved results and may even degrade
performance in higher-dimensional settings.
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Classification Tasks Across all dimensionality
reduction methods, performance decreases gradu-
ally as the number of dimensions is reduced. At
very low dimensions (2 and 4), PCA, UMAP, and
Isomap outperform the other approaches; however,
for dimensions ≥ 8, the First and Random meth-
ods consistently surpass them. We hypothesize that
PCA, UMAP, and Isomap transformations can dis-
tort the geometric structures that are critical for
classification, whereas retaining the leading dimen-
sions better preserves these intrinsic structures.

Clustering Tasks Similarly, clustering perfor-
mance declines gradually for all methods. UMAP
achieves strong performance at extremely low di-
mensions. PCA matches the First method across
all evaluated dimensions. The performance of the
other methods deteriorates at higher dimensions.

Retrieval and STS Tasks Consistent with the
observations in Section 2, all dimensionality reduc-
tion methods exhibit a rapid decline in retrieval per-
formance as the number of dimensions decreases.
PCA slightly outperforms the First method in re-
trieval tasks; however, the improvement is marginal.
UMAP and Isomap fail to achieve competitive per-
formance at relatively higher dimensions, likely
due to distortions introduced by their nonlinear
transformations.
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