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Abstract

In this paper, we propose the first multilingual
study on definition modeling. We use monolin-
gual dictionary data for four new languages
(Spanish, French, Portuguese, and German)
and perform an in-depth empirical study to
test the performance of pre-trained multilin-
gual language models on definition modeling
of monosemic words when finetuned on this
data. Furthermore, we use a zero-shot approach
to test the multilingual capabilities of two popu-
lar chat-based Large Language Models (LLMs)
in the task. Results show that multilingual lan-
guage models can perform on-pair with English
but cannot leverage potential cross-lingual syn-
ergies, with LLMs generally offering better per-
formance overall. A comprehensive human
evaluation of the LLM-generated definition
highlights the zero and few-shot capabilities
of these models in this new task, also showing
their shortcomings. Finally, we show that per-
formance on our task via BERTScore strongly
correlates to the performance on multilingual
LLM benchmarks, suggesting that our task of-
fers a viable compute-constrained, stable and
natural alternative to these.

1 Introduction

Definitions play a key role in effective communi-
cation and language understanding. However, cre-
ating high-quality and precise definitions requires
time and effort given the complexity of languages
and how they are constantly evolving.

Aiming to suffice this necessity, the definition
modeling task was first proposed by Noraset et al.
(2017). The goal is to estimate the probability of
a textual definition given a word being defined.
This task can be applied to generate definitions for
known and new words, assisting language learners,
as well as serving as a tool for language preser-
vation and description (Kabiri and Cook, 2020;
Dimas Furtado et al., 2024).

Since its conception, several approaches have
tackled this task, showing that it gives an arguably
more transparent view of how much a model cap-
tures syntax and semantics. So far, existing ap-
proaches for this task are trained on a corpus of
word-definition pairs, to be later tested on how
well they generate definitions for words not seen
during training. Current approaches (Noraset et al.,
2017; Gadetsky et al., 2018; Ni and Wang, 2017;
Ishiwatari et al., 2019) are mainly encoder-decoder
based, in which a contextual representation for a
word/phrase, encoded using a variety of features,
is used to generate the definition.

Despite the progress, previous work has predom-
inantly focused on definition modeling in English.
Concretely, we find just a handful of papers that
work on definition modeling for languages other
than English, namely Reid et al. (2020) for French,
Dimas Furtado et al. (2024) for Portuguese and
Kong et al. (2020) for Chinese. We also find that
dictionary data for French and Italian have been
released in the past few years, but that there are
no approaches that leverage them so far (Hathout
et al., 2014; Hathout and Sajous, 2016; Sajous et al.,
2020; Calderone et al., 2017). Finally, while Kabiri
and Cook (2020) has covered nine different lan-
guages in their study, they did not explore multi-
lingual capabilities of models, focusing on perfor-
mance of monolingual models on the polysemy
aspect of words. Moreover, we note that these
datasets are mostly based on crowdsourced dictio-
naries, where quality can be a concern.

In light of these issues, in this paper, we present
the first truly multilingual study on definition
modeling, introducing datasets obtained from not-
crowdsourced dictionaries in French, Spanish, Por-
tuguese, and German, with a total of approximately
460K new terms entries and 730K definitions, thus
substantially extending language coverage for the
task. We combine our collected data with existing
corpora to train models and lay out the first set
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of experiments on multilingual definition model-
ing. As our main focus is to analyze the potential
synergy between different languages, we focus our
experiments on monosemic words, hoping to ex-
plore polysemy in future work.

Furthermore, we also test a selection of Large
Language Models (LLMs) on our collected data,
probing their multilingual abilities in this task
through zero-shot and few-shot approaches (Brown
et al., 2020; Kojima et al., 2022). We evaluate
performance based on three different automatic
metrics, i.e., BLEU, BERTScore and COMET, and
through human evaluation.

Our results show that current multilingual lan-
guage models such as mBART (Liu et al., 2020;
Tang et al., 2020) and mT5 (Xue et al., 2021) can
perform on-pair with English when fine-tuned on
single-language dictionaries. They can also deliver
consistent performance when trained in multiple
languages, but are unable to leverage cross-lingual
synergies to consistently improve performance. As
for LLMs, we show that prompting techniques, ei-
ther in the zero-shot or few-shot scenarios, offer
generally better performance than multilingual lan-
guage model fine-tuning, even in the case of LLMs.
However, we also observe that the output language
can be difficult to control and that techniques such
as in-context learning do not lead to significantly
better quality output.

Finally, we show empirical evidence suggesting
that per-language performance in our task mea-
sured via BERTScore is strongly correlated with
performance on multilingual benchmarks. Op-
posite to these, which are often translations of
datasets in English, our task can offer a compute-
constrained, static and natural alternative to assess
the proficiency of LLMs on a given language. We
release our code and data on GitHub1.

2 Related Work

Our paper is primarily related to the seminal work
by Noraset et al. (2017); Hill et al. (2016), in which
a model is tasked with generating a definition for a
word given its respective embedding or with map-
ping dictionary definitions to lexical representa-
tions of words, respectively. Later work has pro-
posed improvements and extensions, introducing
techniques and datasets to address shortcomings.
For example, Gadetsky et al. (2018) address pol-
ysemy and presents a dataset from Oxford Dic-

1https://github.com/epochx/defmod

tionaries, where each definition is supplemented
with context sentences. Ni and Wang (2017) pro-
posed an approach for automatically explaining
slang English terms in a sentence and introduced
another dataset extracted from The Urban Dictio-
nary. Ishiwatari et al. (2019) proposed to further
rely on local and global contexts to help the model
disambiguate and generate better definitions. Dif-
ferent from our approach, their work focused on
unfamiliar words and phrases (many of which are
polysemous words), rarely used idioms, or emerg-
ing entities, relying on Wikipedia as a source.

More recently, Huang et al. (2021) proposed to
study the problem of definition specificity, creating
a method for tuning a model to account for hyper-
focused (over-specific) or highly general (under-
specific) definitions. Finally, Chen and Zhao (2022)
proposed to unify the seminal ideas of reverse dic-
tionary and definition modeling in a single model,
with the goal of helping better understand word
sense and embeddings. Periti et al. (2024) pro-
posed to directly finetune an LLM specifically for
definition modeling.

Previous work discussed so far has mostly fo-
cused on definitions in the English language. There
are a few exceptions, such as the work of Reid et al.
(2020), who presented the first study on definition
modeling for the French language with the release
of a dataset collected from Le Petit Robert, and the
work of Dimas Furtado et al. (2024), whose main
goal was to collect a dataset for Portuguese defini-
tion generation, leveraging several models. Their
approach is, however, still monolingual.

We also note that over the past few years, dic-
tionary datasets in several languages derived from
Wiktionary have been released, including English
(Sajous et al., 2020), French (Hathout et al., 2014;
Hathout and Sajous, 2016), Italian (Calderone et al.,
2017). Ylonen (2022) collected data for all avail-
able Wiktionaries. These datasets, were not accom-
panied by models that leverage them, and we were
unable to find other works using them to train or
evaluate models on definition modeling. We think
one critical point here is that Wiktionaries are built
on the base of crowdsourcing, where quality could
be a concern.

Finally, we find previous works aiming to gener-
ate definitions in specialized fields, e.g., scientific
and medical terms (August et al., 2022), biomedi-
cal terminology definition (Liu et al., 2021; Huang
et al., 2022), or financial terminology (Jhirad et al.,
2023).
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3 Data

We are interested in assessing the capabilities of
multilingual models to describe words in multi-
ple languages. Therefore, we aim to collect high-
quality data for “traditional” dictionary definitions,
where most common words in a given language
are contained. This approach deviates from recent
previous work in definition modeling, where the
focus has been on domains of “uncommon” words
like slang terms (Ni and Wang, 2017) or rarely
used idioms and emerging entities (Ishiwatari et al.,
2019) and specific domains such as scientific or fi-
nancial terms (August et al., 2022; Liu et al., 2021;
Huang et al., 2021; Jhirad et al., 2023), and only in
English.

To support our study, we utilize data for three
of the Indo-European languages with the largest
number of speakers, according to Wikipedia: Span-
ish (485 M native speakers), Portuguese (236 M
native speakers), and French (80 M native speak-
ers). As we are particularly interested in studying
potential performance gains when training on mul-
tiple languages, we focus on these in particular, as
they all derive from the Romance branch and thus
share many similarities. Finally, we also consider
German, another Indo-European language but from
the Germanic family with 75 M native speakers.
We deem German as the ideal candidate to experi-
ment together with existing datasets for the English
language.

Dataset (language) Terms Defs. Mono.

OXFORD - en 36,767 122,319 44.07%
Le Petit Robert - fr 33,507 - -

DRAE - es (ours) 82,386 159,863 60.85%
DICIO - pt (ours) 191,499 279,985 77.41%
LAROUSSE - fr (ours) 72,486 130,408 70.06%
DUDEN - de (ours) 110,444 164,086 73,17%

Table 1: Summary of our collected datasets, compared
to prior relevant corpora. In the table, Mono. stands
for Monosemic, i.e. terms with a single definition. We
compare against OXFORD and Le Petit Robert (data
from Reid et al. (2020)), which we regard as existing
datasets extracted from “traditional” dictionaries.

For each language, we start by collecting word
lists, which are put together from various online
sources, including but not limited to MUSE (Lam-
ple et al., 2018). We found inflections of verbs (e.g.,
tenses) and adjectives (e.g., gender) are present and

relied on spacy2 to identify word lemmas, utiliz-
ing the en_core_web_sm model for English as well
as the core_news_sm model for German, Spanish,
Portuguese and French. After obtaining the lemma-
tized version of each entry in our data, we kept the
example where the original term matches the lem-
matized word, similarly to Ishiwatari et al. (2019).

In order to obtain good quality definitions for
the terms collected, we work with traditional, well-
known and readily available dictionaries. Con-
cretely, we rely on the Dictionary of the Span-
ish language (“Diccionario de la lengua española
- DLE”) developed and maintained by the Royal
Spanish Academy (Real Academia Española -
RAE) for Spanish, Dicio for Portuguese, the
Larousse Dictionary for French, and the Duden
Dictionary for German. Collecting data from on-
line dictionaries can involve accessing copyrighted
information. In this sense, our approach follows
previous work (Gadetsky et al., 2018; Ni and Wang,
2017; Ishiwatari et al., 2019; Reid et al., 2020; Di-
mas Furtado et al., 2024) in making sure that the
data can indeed be downloaded/distributed. Based
on our analysis of the Terms of Service for the con-
sulted dictionaries, we will not directly distribute
our datasets, but instead release recipes on how
to reconstruct them based on our compiled word
lists. Please see §A for further details about the
elaboration of our datasets.

Table 1 summarizes the main characteristics of
the data we collected, compared against existing
resources in English and French, where we can see
that our collected data is substantially richer, both
in terms of the number of terms and definitions.

4 Experimental Setup

Data An important distinction between our cor-
pus and recent prior work is that our collected data
does not contain examples of word usage. While
we acknowledge the importance of such context to
disambiguate a specific meaning for a given term in
the case of polysemy, we opt to explore monosemic
words as a first step into the study of multilingual-
ity for definition modeling. We thus select the
subset of terms that exhibit only a single meaning,
which in practice we achieve by simply selecting
the terms with a single definition entry. The final
word lists are split into the 80/10/10 ratio. Table 2
below shows the exact details of our splits.

In addition to our data, we also use the previ-

2https://spacy.io/
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ously released dataset built from Oxford Dictio-
naries (Gadetsky et al., 2018) (OXFORD). Though
we were also interested in using the French data
collected by Reid et al. (2020), we found it was not
available at the time of writing this paper.

Dataset Train Valid Test

OXFORD (en) 15,770 6,884 6,834

DRAE (es) 32,834 4,104 4,105
DICIO (pt) 118,591 14,824 14,824
LAROUSSE (fr) 31,224 3,903 3,904
DUDEN (de) 55,521 6,940 6,941

Table 2: Details of the size of each split for our collected
data filtered for polysemy, compared against OXFORD.

Model Finetuning We train models based on
mT5 (Xue et al., 2021). This model is a multilin-
gual version of T5 (Raffel et al., 2020), a genera-
tive Transformer pre-trained on a Common Crawl-
based dataset covering 101 languages and includ-
ing a data for a variety of tasks which have been
converted into a text-to-text format. We begin by
training monolingual baselines for each language,
finetuning each dataset. These models give us a
set of robust baselines. We then train combining
data for several languages. We utilize the “large”
model (mT5) (approx. 1.5 B parameters) with the
prefix “Define in {language}”, where the variable
{language} indicates the language in which we
would like the model to generate (English, Span-
ish, Portuguese, French, German). During training,
we randomly sample (word, definition) pairs from
the data involved and use these examples to create
multilingual batches. In preliminary experiments,
we also tested alternative multilingual models, but
found that mT5 performed better overall.

Model Prompting Given their success in solving
several NLP tasks, we also evaluate the ability of
instruction-tuned or instruction-tuned LLMs to pro-
vide definitions for words. We consider white-box
models including Llama 2 (Touvron et al., 2023),
Llama 3.1 (Grattafiori et al., 2024), and Mistral
v1 models (Jiang et al., 2023). Specifically, we
utilize Llama-2-13b-chat-hf (LLAMA-2), Llama-
3.1-8B-Instruct (LLAMA-3), Mistral-7B-Instruct-
v0.1 (MISTRAL), respectively. Via preliminary ex-
periments using 4-bit quantization with QLoRA
(Dettmers et al., 2023) on a subset of languages
and models, we observed that the effects of quanti-
zation were bounded <1% of the full model perfor-
mance, and affected the datasets evenly, and thus

adopted this strategy for all our LLM experiments.
We test two settings: (1) zero-shot, where the

model is directly asked to generate the definition
of the word, and (2) few-shot, where we incorpo-
rate term-definition examples in the prompt before
requesting the definition for the target term. These
shots are randomly sampled from the training data
and kept constant across examples.

Prompting LLMs can lead to substantially dif-
ferent outputs depending on how instructions are
crafted. For our experiments, we kept the input
to the model as simple as possible, always using
the prompt “Define the {language} word ‘{term}’.
Use only {language} to reply.”, where {language}
and {term} are variables denoting the target lan-
guage and the term to define. We repeat each ex-
periment 3 times with different random seeds. In
the case of few-shot, we also sample a different set
of (term, definition) tuples from the train portion
of the dataset to use as context.

Evaluation Previous work in definition model-
ing has mainly utilized n-gram overall metrics
such as BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005). As the latter is
language-specific, here we report BLEU, relying on
the sacrebleu3 implementation (Post, 2018). Previ-
ous work (Reid et al., 2020; Huang et al., 2021) has
also shown that metrics based on n-gram overlap
cannot capture nuance in the definitions generated
by models. As an alternative, approaches have re-
lied on metrics based on Machine Learning, such
as BERTScore (Zhang et al., 2019). Following Jhi-
rad et al. (2023) we also experiment with COMET
(Rei et al., 2020), using the wmt22-comet-da model,
which has multilingual support as it is built on top
of XLM-R (Conneau et al., 2020).

To evaluate the ability of the LLMs to gener-
ate definitions in the target language, we rely on a
fasttext-based language classification model (Grave
et al., 2018). Here, compare the desired target lan-
guage with the highest probability language as pre-
dicted by this model. We report the percentage of
examples where the prediction matches the desired
target language (Compliance).

Finally, we also perform human evaluation on
a subset of the definitions generated by our mod-
els. We split our study into two subsets: Romance
and Germanic languages, with particular emphasis
on the former, due to their linguistic similarities
and relative higher number of first language speak-

3https://github.com/mjpost/sacrebleu
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ers. We recruit three volunteer native speakers of
Brazilian Portuguese, European French, and Span-
ish, and one native speaker of American English,
and German. To make sure the evaluations are con-
sistent across languages, we designed an evaluation
scheme based on a Likert scale with 5 values (1 to
5), which we crafted based on a detailed examina-
tion of the outputs of the models.

Please see §B for more details on models, setup,
training and inference, including the results of our
study on quantization and perfomance the model
used for language identification. For details about
our evaluation scheme, please refer to §D.

5 Results

5.1 Automatic Evaluation

Table 3 summarizes the results of our multilin-
gual experiments using mT5. We observe that this
model can perform consistently when trained in
multiple languages, as measured by COMET and
BERTScore. When it comes to BLEU scores, al-
though we observe little to no improvements over
the monolingual baselines in the validation set, we
see a more consistent behavior on the test portion.
However, we note that the definitions generated
by our models are often correct but expressed us-
ing different surface forms compared to the gold
standard, which can lead to low BLEU scores.

Overall, our results show that even for languages
from the same family, where we often find that
similar words are associated to similar or related
meanings (e.g. words sharing the same Latin root
in the case of the Romance languages), exposing
models such multilingual lexical data did not help
them generalize across languages. However, train-
ing models in this fashion does not lead to degraded
per-language performance either. A possible expla-
nation for these observations is that a significant
portion of the cross-lingual term-definition related-
ness is rooted in polysemic terms.

Table 4 summarizes the results of our experi-
ments with LLMs. Compared to our finetuning
experiments, LLMs generally offer better perfor-
mance in terms of COMET and BERTScore and
are competitive in terms of BLEU. One important
issue here is that LLMs are sometimes unable to
follow instructions, which, in our case, often leads
to the model generating outputs in English.

When it comes to differences due to in-context
learning (ICL), although our results may suggest
that this leads to improvements, these were not

Dataset Training Data BL CMT BS

DUDEN
(de)

de 0.939 0.346 0.664
de + en 0.507 0.345 0.656

OXFORD
(en)

en 1.330 0.345 0.813
en + fr 0.038 0.345 0.778
en + de 0.863 0.344 0.839
en + fr + es + pt 0.532 0.345 0.839

DRAE
(es)

es 7.700 0.384 0.743
es + fr 8.084 0.382 0.743
es + pt 9.158 0.382 0.746
es + pt + fr 9.244 0.381 0.747
en + fr + es + pt 5.503 0.384 0.727

LAROUSSE
(fr)

fr 0.490 0.300 0.685
fr + es 0.936 0.293 0.686
fr + pt 0.587 0.298 0.675
fr + en 0.104 0.294 0.644
fr + es + pt 2.660 0.292 0.705
fr + en + es + pt 0.748 0.293 0.682

DICIO
(pt)

pt 11.539 0.352 0.732
pt + es 18.626 0.352 0.748
pt + fr 4.969 0.353 0.682
pt + fr + es 18.856 0.352 0.748
en + fr + es + pt 4.542 0.351 0.685

Table 3: Results of our multilingual experiments based
on mT5, where BL is short for BLEU, CMT is short for
COMET, and BS is short for BERTScore.

always statistically significant across metrics and
languages, showing that ICL may not be as effec-
tive for this task as suggested by previous work.

Role of Prompt Language As explained in §4,
the prompt utilized in our experiments with LLMs
is provided in English. Since this may bias mod-
els toward producing output in this language, we
performed a study using a prompt in Spanish on
the DRAE dataset. In this case, we use the follow-
ing prompt template: “Define la palabra ‘{term}’.
Utiliza solo español en tu respuesta.”, a loose trans-
lation of our English prompt, where ‘{term}’ is
a placeholder for the actual word. We follow
the same methdology and test on LLAMA-2 and
LLAMA-3, on the 0-shot and 5-shot scenarios. Ta-
ble 5 summarizes our results and compares them
against our baseline prompt in English. As shown
in the table, results show that prompting models in
English leads to consistent superior performance
accross all metrics. This validates our choice to
prompt models solely in English, and supports our
observations during early experimentation. These
results also suggest that more recent models of-
fer increased abilities to follow instructions in lan-
guages other than English. However, a significant
gap still exists.
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Dataset Model S BL BS CMT Cmp.

DUDEN
(de)

LLAMA-2 0 0.180 0.612 0.439 0.685
5 0.758 0.637 0.378 0.604

MISTRAL
0 0.159 0.621 0.411 0.762
5 0.233 0.623 0.362 0.628

LLAMA-3 0 3.261 0.676 0.580 0.998
5 7.967 0.695 0.558 0.982

OXFORD
(en)

LLAMA-2 0 0.949 0.826 0.553 -
5 3.906 0.851 0.537 -

MISTRAL
0 1.183 0.837 0.557 0.999
5 1.821 0.842 0.529 -

LLAMA-3 0 1.588 0.835 0.568 -
5 3.571 0.847 0.537 -

DRAE
(es)

LLAMA-2 0 0.271 0.617 0.504 0.996
5 1.360 0.675 0.470 0.877

MISTRAL
0 0.324 0.650 0.458 0.703
5 0.559 0.663 0.440 0.852

LLAMA-3 0 1.855 0.670 0.545 0.999
5 3.067 0.683 0.530 0.974

LAROUSSE
(fr)

LLAMA-2 0 0.326 0.631 0.473 0.970
5 1.350 0.676 0.469 0.966

MISTRAL
0 0.327 0.648 0.441 0.775
5 0.626 0.664 0.425 0.951

LLAMA-3 0 3.443 0.676 0.543 0.999
5 6.635 0.685 0.513 0.950

DICIO
(pt)

LLAMA-2 0 0.143 0.682 0.513 0.969
5 1.828 0.683 0.462 0.883

MISTRAL
0 0.146 0.689 0.475 0.630
5 4.030 0.709 0.501 0.926

LLAMA-3 0 0.457 0.683 0.542 0.998
5 2.298 0.715 0.549 0.982

Table 4: Results of our experiments with LLMs, where
S indicates the number of shots, and Cmp. is short for
compliance, the % of cases where the answer is in the
correct language. BL, BS and CMT are short for BLEU,
BERTScore and COMET, respectively. Numbers in
bold indicate best results for each language-model com-
bination. Underlined results indicate differences against
zero-shot are statistically significant at level α = 0.05.

Dataset Contamination A key aspect to con-
sider when analizing our results is the the possibil-
ity that portions of our benchmark have appeared in
the training data of the LLMs that we tested (Sainz
et al., 2023; Deng et al., 2024; Li et al., 2024). An
important point here is to first clarify what “con-
tamination” should mean in the context of our task.
We think exposing LLMs to actual word-definition
pairs during training can and should be consid-
ered a kind of contamination. However, if models
are simply exposed to examples of words/terms in
context, this should not count as a case of contam-
ination. Moreover, the degree of exposure of the

Model S L BL BS CMT Cmp.

LLAMA-2
0 en 0.271 0.617 0.504 0.996

es 0.186 0.601 0.502 0.814

5 en 1.360 0.675 0.470 0.877
es 0.019 0.526 0.409 0.078

LLAMA-3
0 en 1.855 0.670 0.545 -

es 0.303 0.619 0.532 -

5 en 3.067 0.683 0.530 0.974
es 2.885 0.711 0.529 0.908

Table 5: Performance on Spanish definition modelling
when using prompts in English (en) and Spanish (es),
tested on DRAE, were S and L indicate the number of
shots and prompt language respectively. BL, BS and
CMT are short for BLEU, BERTScore and COMET,
respectively. Numbers in bold indicate best results per
model.

LLMs to these contexts is highly relevant to our
task and should be studied. One possibility is to
work only with fully open-source LLMs, which
would enable us to analyze the training data. This
is left for future work.

5.2 Human Evaluation
We further evaluate the output of the 5-shot ex-
periments on all of our languages for LLAMA-2
and MISTRAL via a human study. We use 200
randomly-sampled terms, for one random seed
across languages, totaling 400 definitions to be
evaluated per language. We additionally require
the annotators to provide us with an assessment
of the quality of the gold standard definitions we
collected via the same 1-5 Likert score defined in
§4. During the whole evaluation procedure, we al-
low the annotators to see gold-standard definitions
and consult external sources if needed. Table 6
summarizes our results.

Inter-annotation agreement We report Cohen’s
Kappa (κ) scores, which we regard as a lower
bound in our case, as it assumes label independence.
Since our Likert scores are inherently a ranking, we
also report Kendall’s Tau (τ ), which accounts for
this and offers a more realistic agreement measure.
Finally, we also report the percentage of examples
where the annotators have an exact match (EM) in
their answers. For languages where we have more
than two evaluators, we report the average value of
all posible pairwise combinations.

As shown in Table 6 we first see a clear gap in
performance between English and in the rest of
the languages, which is in agreement with our au-
tomatic evaluation. These results further confirm
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Dataset Model Score IAA

κ τ EM

DUDEN
(de)

LLAMA-2 2.050 - - -
MISTRAL 1.950 - - -
Data 3.825 - - -

OXFORD
(en)

LLAMA-2 4.830 - - -
MISTRAL 4.710 - - -
Data 4.925 - - -

DRAE
(es)

LLAMA-2 2.303 0.520 0.788 0.675
MISTRAL 1.815 0.616 0.836 0.785
Data 4.565 0.134 0.148 0.600

DICIO
(pt)

LLAMA-2 1.812 0.337 0.594 0.633
MISTRAL 1.352 0.281 0.446 0.777
Data 2.967 0.164 0.920 0.355

LAROUSSE
(fr)

LLAMA-2 2.720 0.449 0.652 0.563
MISTRAL 2.133 0.581 0.731 0.700
Data 4.972 0.083 0.125 0.965

Table 6: Results of our human evaluation on our best
results with LLMs, in terms of average Likert scores,
along with their IAA measured via average Cohen’s
Kappa (κ), Kendall’s Tau (τ ) and exact match (EM).

that all three models struggle with Portuguese and
German, at least in comparison with the other Euro-
pean languages, despite reportedly being trained on
a similar amount of text as is the case of LLAMA-
2, where the training mixture contains 0.17% de,
0.16% fr, 0.13% es (Touvron et al., 2023).

Our human evaluation also shows substantial
variation in terms of Likert scores for the qual-
ity of the gold standard definitions, suggesting
that DICIO and DUDEN may offer comparatively
lower quality data. In contrast, although results on
LAROUSSE exhibit particularly low κ and τ values,
we see an EM of 0.97. Given the high average
score of 4.9, this shows that although the annota-
tors may disagree about the exact score for a given
definition, overall they think that definitions are of
excellent quality.

Finally, we allowed the annotators to provide us
with comments, and one concrete issue that was
brought to our attention was that these dictionaries
would often offer just a synonym as a definition
for a given term. This phenomenon may respond
to historical reasons (originally, dictionaries were
printed) or be due to the editorial of each company.
Nevertheless, if we regard these scores as an upper
bound for the human evaluation, we find that in all
cases there is still a significant gap between this
and the performance of the LLMs. We performed
an additional human study to gain insight into the
effect of ICL and the effectiveness of COMET as a
metric, please see §D for details.

5.3 Multilingual benchmark comparison

We study the relationship between our proposed
task and existing datasets used to measure the multi-
lingual performance of LLMs. Concretely, we com-
pare per-language performance for each one of our
metrics against multilingual versions of HellaSwag
(Zellers et al., 2019), ARC-Challenge (Clark et al.,
2018) and MMLU (Hendrycks et al., 2021), pro-
vided by Lai et al. (2023) via the lm-evaluation-
harness4 platform (Gao et al., 2023). Together,
these datasets contain multiple choice questions
spanning a wide variety of tasks, including adver-
sarial commonsense natural language inference,
abstraction and reasoning ability acquisition via
demonstrations, and questions derived from diverse
fields of knowledge.

We found that per-language performance in our
task, measured via BERTScore, strongly correlates
with all of our selected multilingual benchmarks,
with average values of 0.94, 0.95 and 0.87 for
LLAMA-2, MISTRAL and LLAMA-3, respectively.
Please see Table 12 for the details of all the corre-
lation values we obtained, and §C.3 for the exact
benchmark performance we measured. Compared
to these, which are machine-translations of the orig-
inals in English, we think the definition modeling
task can offer a natural, stable alternative to assess
the proficiency of LLMs in a given language.

Furthermore, to understand the computational
trade-offs of using our task instead of our studied
multilingual benchmarks, we compare the correla-
tion between performance on the latter and in our
datasets, versus subsamples of different sizes (from
0.1% to 5%). For each size, we sample 10 times
and report average correlation and confidence inter-
vals via Gaussian-based asymptotic approximation.

Figure 1 summarizes our findings. The computa-
tional budget required for our dataset is roughly
equivalent to 0.5% of MMLU, 18% of ARC-
Challenge or 36.7% or HellaSwag in number of
tokens (more details available in Table 17). This
means that definition modeling can offer an ef-
ficient alternative to measuring the LLM perfor-
mance on a specific language, particularly when
compared with computationally-intensive bench-
marks like MMLU. Our datasets can also be com-
bined with modern sampling approaches for bechm-
mark score approximation such as IRT (Polo et al.,
2024), leading to further efficiency gains.

4github.com/EleutherAI/lm-evaluation-harness
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Figure 1: Pearson correlation between performance
on multilingual benchmarks and on our task via
BERTScore (solid lines), versus the correlation between
the same benchmarks and random samples of different
sizes for our three tested models LLAMA-2 (top), MIS-
TRAL (center), and LLAMA-3 (bottom) [Improve this!
–EMT].

5.4 Comparison with prior work

We compare our results against relevant prior work,
focusing on the English language via OXFORD.
When it comes to models finetuned on dictionary
data, we consider the approaches by Ishiwatari
et al. (2019), who proposed a local-and-global
context model based on word embeddings, Reid
et al. (2020), who leveraged BERT (Devlin et al.,
2019) and combined it with a variational infer-

Model BL CMT BS

Full OXFORD

LoG-CAD (Ishiwatari et al.) 25.19 - -
VCDM (Reid et al.) 27.38 0.570♢ -
T5 + RR (Huang et al.) 26.52 - -
LLama3Dict. (Periti et al.) 21.98 - 0.889

Monosemic only OXFORD

mT5 + ft (ours) 1.33 0.345 0.839
FLAN-UL2 (Jhirad et al.)♢ 2.63 0.457 -

+ examples 4.03 0.501 -
+ 2 shots 3.40 0.475 -
+ 2 shots + examples 4.40 0.505 -

LLAMA-2 (ours) 0.95 0.553 0.826
+ 5 shots 3.91 0.537 0.851

MISTRAL (ours) 1.18 0.557 0.837
+ 5 shots 1.82 0.529 0.842

LLAMA-3 (ours) 1.59 0.568 0.835
+ 5 shots 3.57 0.847 0.847
+ ft 0.57 0.511 0.806

LLama3Dict (Periti et al.)† 0.87 0.455 0.799

Table 7: Comparison of our best models against state-
of-the-art approaches on OXFORD. Note that for the
“Full OXFORD” section of the table, we compare against
models trained/tested on the entire dataset, which differs
substantially from ours. BL, BS and CMT are short
for BLEU, BERTScore and COMET, respectively; †

observed results, ♢ reported by Jhirad et al. (2023).

ence framework, Huang et al. (2021), who pro-
pose a specificity-sensitive approach with based on
T5 finetunes and re-ranking (RR), and Periti et al.
(2024), who finetuned LLMs to generate defini-
tions of words in context. We point out that all of
these approaches work with the complete OXFORD

dataset and rely heavily on example sentences for
disambiguation.

For zero-shot and few-shot approaches, we com-
pare our results against the values reported by Jhi-
rad et al. (2023). To perform an apples-to-apples
comparison against Periti et al. (2024), we replicate
their setup using our data by finetuning LLAMA-3
in the training portion of the concatenation of our
dictionary data. We utilize the same prompt intro-
duced in §4, which does not substantially differ
from what the authors use, save from the fact that
we do not provide example sentences. We follow
their training procedure, using 4-bit quantization
(Dettmers et al., 2023) via PEFT with their best
hyperparameter configuration.

Table 7 summarizes our comparison against rel-
evant prior work. We see a substantial gap of
BLEU scores exists between models tested on
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the full OXFORD dataset, and its monosemic-only
subset. These differences are not so significant
when looking at COMET or BERTScore. We
also note that LLama3Dict, a model trained on
dictionary data with example sentences, performs
significantly worse in the absence of these exam-
ples (BLEU of 21.98 decreased to 0.87). While
our similar LLAMA-3 finetune is able to outper-
form LLama3Dict in this scenario in terms of
BERTScore, we see both models perform worse
than the base LLMs even when combined with ICL
across all metrics. In fact, we observed (Table 13)
that finetuning on dictionary data, with our without
example sentences, decreased performance with re-
spect to the base model in all our studied languages
for the monosemic scenario. Finally, our finetuned
mT5, although trained only on monosemic data,
offers competitive results with the best models in
terms of BERTScore.

Overall, we think these results show that the
task of deriving the meaning of a word from exam-
ple sentences differs substantially from the task
of eliciting definitions purely by recalling con-
cepts learned during pretraining. For the latter task,
which is the focus of this paper, it is still unclear
why LLMs finetuned on dictionary data without
context sentences do not perform better than base
LLMs with ICL. Based on the characterization re-
cently introduced by Pan et al. (2023), we think it
is possible that both finetuning and ICL lead to im-
provements in terms of Task Recognition (TR) but
not in Task Learning (TL): by being exposed dictio-
nary data, models learn to mimic the style in which
definitions should be provided, but without actually
leading to a better ability to recall definitions.

Our results can also be explained in light of the
discussion by Agarwal et al. (2024), who point out
important limitations of the next-token prediction
loss as an indicator of downstream performance. It
is possible that the low performance is due to a lack
of exposure to lexically-rich data during pretrain-
ing, especially for languages other than English,
which naive SFT cannot compensate for.

6 Conclusions

In this paper, we presented the first multilingual
study on definition modeling, introducing monolin-
gual dictionary data for German, Spanish, French
and Portuguese. Results show that LLMs can pro-
vide generally better results compared to smaller
multilingual LMs trained on monosemic dictionary

data, but they can be unstable and generate outputs
outside the target language. Furthermore, tech-
niques such as ICL and finetuning did not lead
to significantly better quality output. Finally, we
show that our task can serve as a natural, stable
alternative to assess the proficiency of LLMs in a
language.

For future work, we would like to incorporate
more languages and perform further human evalua-
tion to better understand the relationship between
human assesments and automatic metrics. We
would also like to tackle the disambiguation prob-
lem by collecting usage examples to tackle poly-
semy. Our supplementary material offers prelimi-
nary evidence suggesting that using LLMs could
be a viable alternative for this (§F).
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A Data Sources

A.1 Word Lists
• For German: https://gist.
github.com/MarvinJWendt/
2f4f4154b8ae218600eb091a5706b5f4

• For Spanish: https://github.
com/keepassxreboot/keepassxc/
discussions/9854 (Real Academia
Española Corpus de Referencia del Español
Actua (RAE, CREA))

• For French: https://github.com/
kkrypt0nn/wordlists/blob/main/
wordlists/languages/french.txt

• For Portuguese: https://natura.
di.uminho.pt/download/sources/
Dictionaries/wordlists/

A.2 Dictionaries
The list below contains links to the Terms of Ser-
vice for each one of the dictionaries used in our
work, as well as relevant data sources from previ-
ous work, together with the specific sections where
access/distribution rights are stated.

• Oxford (Gadetsky et al., 2018)

– https://www.oed.com/information/
about-the-oed/legal-notice

• Urban Dictionary (Ni and Wang, 2017)

– https://about.urbandictionary.
com/tos/

• Cambridge (Ishiwatari et al., 2019)

– https://www.cambridge.org/legal/
copyright

• Le Petit Robert (Reid et al., 2020)

– https://dictionnaire.lerobert.
com/mentions-legales PROPRIÉTÉ
INTELLECTUELLE

• Dicio (ours)

– https://www.dicio.com.br/
termos-de-uso.html

• DRAE (ours)

– https://dle.rae.es/contenido/
aviso-legal Point 4

• Duden (ours)

– https://www.duden.de/service/agb
Point 11.1

• Larousse (ours)

– https://www.larousse.fr/infos/
cgu Section PROPRIÉTÉ INTEL-
LECTUELLE

In our paper, we utilize this data in a way that
does not necessarily align with the intended use
as defined by the providers. As mentioned in §3,
in order to make sure we comply with the Terms
of Services of our data sources, we will not dis-
tribute the definition data we collected, but only the
wordlists we compiled. For the same reason, we do
not run few-shot experiments with ChatGPT.

B Experimental Setup Details

Model Training We train our models with the
AdamW optimizer, with an initial learning rate of
5e-5, using a batch size of 16 for mBART-50 or 8
for mT5 and for a maximum of 20 epochs. During
inference, we sample from the output distribution
with a maximum length of 256.

Prompting Regarding the system prompt, for
LLAMA-2, we follow the approach by the orig-
inal paper but replace the original one 5 with the
phrase “You are a helpful assistant. Always answer
as helpfully and concisely as possible.”, to help
reduce false refusal rates, i.e., when the model in-
correctly refuses to answer a question that it should,
for example, due to overly broad instructions to be
cautious in how it provides responses. In our case,
we observed that this often happened whenever we
asked the model to define words that could be offen-
sive in certain contexts. In the case of MISTRAL,
we simply utilize the original system prompt set-
ting. To generate definitions, we sample from the
output distribution using top_k=40, top_p=0.95,
using a repetition penalty of 1. We generate a maxi-
mum number of 256 tokens, which falls well below
the length of our gold standard definitions.

Evaluation To compute the compliance of a lan-
guage model, i.e. its ability to consistently gen-
erate definitions in the required language, we use

5https://github.com/huggingface/transformers/
blob/ee2a3400f2a7038a23b83a39c5d0e24f7f699561/
src/transformers/models/llama/tokenization_llama.
py#L57, https://github.com/facebookresearch/
llama/blob/main/UPDATES.md
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fasttext-based language classification model (Grave
et al., 2018). This is a linear model on top of said
embeddings, which recognize 176 languages and
was trained on 400 million tokens from Wikipedia,
as well as sentences from the Tatoeba website.
In terms of performance, this model is superior
to previous work, including the readily available
“langid.py” by Lui and Baldwin (2012), in the TCL,
Wikipedia, and EuroGov benchmarks (Baldwin and
Lui, 2010), with accuracies of 94.7, 93.0 and 98.7
respectively.

C Detailed Results

C.1 Model Training Detailed Results

In addition to experimenting with mT5, we also
trained models based on mBART (Liu et al., 2020;
Tang et al., 2020). The original mBART model
was pre-trained in denoising full texts in multiple
languages. We worked with the “large” variation
(approx. 340 M parameters) pre-trained on 25 lan-
guages (mBART-CC25) (Liu et al., 2020). Since
Portuguese was not included, we also use mBART-
50 (mBART-50) (Tang et al., 2020), which was
initialized with the former and trained to cover
other 25 languages.

Table 8 summarizes the results of our mono-
lingual experiments when training models. As
we compare the performance of other languages
against English, we see that our models can at-
tain similar performance in terms of COMET, with
Spanish obtaining the best results. In terms of
BLEU scores, we observe an unusually high value
for Portuguese, which is due to the limitations of
our lemmatization-based data cleaning technique
and leads to some data leakage problems. Based
on our monolingual finetuning experiments, we uti-
lize mT5 as our base model for the multilingual
experiments. Table 9 summarized our results with
mT5 on the validation split.

C.2 Model Prompting Details

Statistical Significance Details Table 10 below
shows the details of the p-values for the experi-
ments with LLMs.

Role of Quantization Quantization has been
shown to be detrimental to performance in certain
scenarios, we also evaluate the influence of this
technique on our task. For this study, we limit our-
selves to the zero-shot scenario and to the DRAE,
LAROUSSE and DICIO, which we believe should

Dataset Model Valid Test
BL CMT BL CMT

DUDEN
(de)

mBART-CC25 4.06 0.338 1.732 0.348
mBART-50 6.47 0.338 2.477 0.347
mT5 4.64 0.343 0.939 0.346

OXFORD
(en)

mBART-CC25 2.08 0.340 0.00 0.345
mBART-50 3.19 0.340 2.61 0.341
mT5 2.71 0.341 1.33 0.345

DRAE
(es)

mBART-CC25 7.28 0.382 7.07 0.385
mBART-50 6.11 0.378 6.10 0.383
mT5 9.19 0.379 7.70 0.384

LAROUSSE
(fr)

mBART-CC25 2.59 0.295 2.05 0.300
mBART-50 3.01 0.295 1.73 0.298
mT5 3.68 0.295 0.49 0.300

DICIO
(pt)

mBART-50 34.02 0.316 18.58 0.351
mT5 44.77 0.317 11.53 0.352

Table 8: Results of our monolingual experiments, fine-
tuning multilingual language models on each of our
datasets. In the table, CMT is short for COMET and BL
is short for BLEU.

serve as a reasonable estimate for the overall per-
formance gap due to the effect of quantization. We
run each experiments three times with different ran-
dom seeds, and report average results, which we
summarize in Table 11.

Hardware Our mBART-50 and mT5 finetun-
ing experiments were performed on a large cluster,
where we usually relied on a node with 4 NVIDIA
V100 GPUs, or an instance with a single NVIDIA
A100 GPU. For inference with LLMs and LLM
finetuning, we used nodes with 1 NVIDIA H200
GPU. We spent a total of approximately 3,000 USD
in our experimental setup, most of which is due to
improving the robustness with of our study by re-
peating LLM experiments with multiple seeds and
to running the multilingual LLM benchmarks.

C.3 Correlation with Benchmarks

C.4 Finetuninig LLMs

D Human Evaluation Details

Table 14 shows the details of our Likert evaluation
scheme, which includes example generations we
used as guidance to define our score categories.
Participants were verbally instructed about the task
and informed that their answers would only be
used for the purposes of this study, and they all
agreed to participate on their on volition. They
are all members of an Engineering department of a
University, with ages ranging between 20 and 40
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Dataset Training Data BLEU COMET

DUDEN
(de)

de 4.640 0.343
de + en 0.497 0.345

OXFORD
(en)

en 2.706 0.341
en + fr 0.040 0.347
en + de 0.775 0.347
en + fr + es + pt 0.539 0.347

DRAE
(es)

es 9.19 0.379
es + fr 8.589 0.378
es + pt 9.519 0.380
es + pt + fr 9.493 0.379
en + fr + es + pt 6.365 0.380

LAROUSSE
(fr)

fr 3.675 0.295
fr + es 2.603 0.295
fr + pt 0.904 0.299
fr + en 0.040 0.298
fr + es + pt 4.353 0.294
fr + en + es + pt 1.829 0.292

DICIO
(pt)

pt 44.772 0.317
pt + es 41.538 0.317
pt + fr 7.464 0.318
pt + fr + es 43.229 0.317
en + fr + es + pt 12.050 0.316

Table 9: Results of our multilingual experiments based
on mT5 on the validation set, where BL is short for
BLEU and CMT is short for COMET.

years old.
As mentioned above, in order to further under-

stand the effect of in-context learning in our task,
and the effectiveness of COMET as a metric, we
perform an additional experiment by using this met-
ric to select the 50 best and 50 worst generations,
again resulting in a total of 400 definitions to be
evaluated per annotator. We choose the same ran-
dom seed for all models. We exclude English from
this study as this language has been studied be-
fore for our task, and because our initial evaluation
shows that performance substantially superior.

Table 15 summarizes the results of this second
experiment. We first notice that the effects of in
context learning are again not consistent across
models and languages. We often find that results for
“Worse” sets contain rare terms, which we assume
should also have relative lower frequency in the
training data. Given the nature of our task, we
think this shows that although few-shot learning
may help the model achieve a more dictionary-like
style when generating, it does not elicit better task-
solving capabilities for those cases.

We also see observe that Likert scores on the
“Best” sets are higher than on the “Worst” sets,
which suggests that COMET is indeed able to
capture the semantic quality of the generated def-

Dataset Model BL BS CMT Cmp.

DUDEN
(de)

LLAMA-2 0.003 0.000 0.002 0.382
MISTRAL 0.420 0.212 0.004 0.372

OXFORD
(en)

LLAMA-2 0.000 0.000 0.037 -
MISTRAL 0.008 0.002 0.002 -

DRAE
(es)

LLAMA-2 0.011 0.000 0.001 0.011
MISTRAL 0.096 0.037 0.003 0.021

LAROUSSE
(fr)

LLAMA-2 0.001 0.000 0.263 0.970
MISTRAL 0.003 0.000 0.040 0.775

DICIO
(pt)

LLAMA-2 0.185 0.602 0.597 0.295
MISTRAL 0.027 0.012 0.035 0.000

Table 10: P-values of t-test comparing the model’s per-
formance in zero and five shot scenarios.

Dataset Model Type BL CMT

DRAE
(es)

LLAMA-2 4bit 0.271 0.504
full 0.295 0.510

MISTRAL
4bit 0.324 0.458
full 0.333 0.469

LAROUSSE
(fr)

LLAMA-2 4bit 0.326 0.473
full 0.380 0.483

MISTRAL
4bit 0.327 0.441
full 0.432 0.463

DICIO
(pt)

LLAMA-2 4bit 0.143 0.513
full 0.120 0.515

MISTRAL
4bit 0.146 0.475
full 0.138 0.489

Table 11: Results of our study on the impact of low
precision (4 bit). In the table, BL and CMT are short for
BLEU and COMET, respectively.

initions. However, from a qualitative point of
few, feedback from our annotators suggest that
while LLAMA-2 generations were more precise
and correct, MISTRAL generations were rather
“Very good”, with rich details, or “Very Poor”,
containing wrong information; however, COMET
could not detect such differences. These findings
are in agreement with previous observations by Jhi-
rad et al. (2023), and provide additional evidence to
show that the performance of COMET when cap-
turing semantic similarity decreases substantially
with length of the inputs.

E Performance on multilingual
benchmarks

Table 16 summarizes the result we obtained
when running our chosen LLMs on the multilin-
gual benchmarks HellaSwag, MMLU and ARC-
Challenge. Following (Lai et al., 2023), experi-
ments on HellaSwag are zero-shot, and we use 25
shots for MMLU and ARC in languages other than
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Model Score BL BS CMT

LLAMA-2
HellaSwag 0.49 0.95 0.74
MMLU 0.55 0.97 0.72
ARC-Challenge 0.61 0.88 0.87

MISTRAL

HellaSwag 0.13 0.95 0.73
MMLU 0.04 0.91 0.63
ARC-Challenge 0.32 0.99 0.84

LLAMA-3
HellaSwag -0.44 0.93 -0.18
MMLU -0.24 0.97 -0.10
ARC-Challenge -0.83 0.71 -0.25

Table 12: Pearson correlation between performance in
our task and multilingual benchmarks for LLMs.

Lang. Model BL BS CMT

DUDEN
(de)

LLAMA-3 (ours) 3.261 0.676 0.580
+ ft (ours) 0.794 0.585 0.411
+ ft (Periti et al.) 0.147 0.574 0.360

DRAE
(es)

LLAMA-3 (ours) 1.855 0.670 0.545
+ ft (ours) 0.634 0.584 0.460
+ ft (Periti et al.) 0.186 0.570 0.379

OXFORD
(en)

LLAMA-3 (ours) 1.588 0.568 0.835
+ ft (ours) 0.568 0.511 0.806
+ ft (Periti et al.) 0.867 0.455 0.799

LAROUSSE
(fr)

LLAMA-3 (ours) 3.443 0.676 0.543
+ ft (ours) 0.809 0.608 0.496
+ ft (Periti et al.) 0.266 0.595 0.388

DICIO
(pt)

LLAMA-3 (ours) 0.457 0.683 0.542
+ ft (ours) 1.648 0.598 0.467
+ ft (Periti et al.) 0.219 0.592 0.393

Table 13: Summary of the performance of our LLAMA-
3 model finetuned on monosemic multilingual dictio-
nary data on our datasets, compared against LLamaDict
(Periti et al., 2024) [Highlight best values –EMT].

English.

F Tackling Polysemy

Our main results are limited to the set of terms for
which we only have one definition. Though our
results suggest that LLMs can, to some extent, gen-
erate plausible definitions for words, our empirical
study offers no insight into the more challenging
scenario of polysemy.

Given the success of our studied LLMs in gen-
erating definitions for our selected languages, we
propose to utilize LLMs to obtain example sen-
tences for polysemic terms in our data. We focus
on Portuguese given the annotators’ availability.

We run a pilot study with to generate such exam-

ple sentences. Concretely, we prompt the model as
follows: In the Portuguese Language, the word

’{term}’ can mean “{definition}”. Please give
me a sentence in that language where this word
is used., where {term} and {definition} are place-
holders for variables denoting a given pair of a term
and its corresponding definition.

For our study, we sample a subset of 59 terms
from our data, with a total of 156 different mean-
ings. We utilize the official OpenAI API to feed
this data into the model. To assess the viability
of this approach, we subject these sentences to a
thorough human evaluation. Specifically, we ask
a native Brazilian Portuguese speaker to evaluate
the generated sentences according to the follow-
ing simplified Likert scale: 1 - Poor: The sentence
uses the term with a different meaning; 2 - Accept-
able: The sentence uses the term with the specified
meaning, but in the wrong context/sounds unnatu-
ral; 3 - Good: The sentence uses the term with the
specified meaning.

Our results showed that 75.64% of the examples
we obtained were labeled as “Good” by our hu-
man evaluator, while only 7.69% and 16.67% were
labeled as “Poor” and “Acceptable”, respectively.

The results of this evaluation are in Table 18.
We can see that most of the generated examples
received the “Good” score, with an average of 2.68,
which indicates that using this specific LLM could
be an alternative to obtain such example sentences
for Brazilian Portuguese.
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Category Details Example

Very poor A completely wrong
definition, one that
contains only the
word, or its English
translation.

Waterspout (Tromba d’agua)
Definition: Phenomenon defined by the formation of a mass of vapors over rivers, lakes, seas, generally in the shape of a
funnel, a cone with the base facing the clouds.
Generated: Sure! “Waterspout” is a term used to designate a type of flooding caused by a river flood or storm surge, which
can flood coastal or plain areas.

Poor A definition of a re-
lated word.

To sharpen (Nitidificar)
Definition: To make something clear, perceptible, sharp; To clear a substance; the concept became clear with your
explanation.
Generated: To sharpen is a verb that means “to enhance” or “to beautify.” It is used to describe the action of improving or
enriching something, it can be applied to objects, situations or people. Example: “The sun on the beach sharpened the sea
with its rays”.

Acceptable It gives an idea of
the broad sense of
the word

Supralegal (Supralegal)
Definition: [Legal] Above the law; that, hierarchically, occupies a superior position in relation to legislation.
Generated: Of course! The term “supralegal” in Portuguese means “beyond the law” or “outside the law”. It is used to
describe acts or situations that are illegal or that are not subject to any type of legal regulation.

Good Gives the correct
word definition, but
it has some impreci-
sion (e.g. wrong use
cases)

To oversize (Superdimensionar)
Definition: Grant large dimensions to; give an exaggerated size, an exaggerated scope to something; to exaggerate the
achievements of a government.
Generated: Of course! The Portuguese “oversize” is a term that is not very common, but can be used to describe an
action or process that increases or exaggerates a characteristic or property of something. Most of the time, it is used to
criticize situations in which someone is exaggerating or increasing something disproportionately. For example, if someone
is exaggerating their ability in a certain subject, it could be said that they are “oversizing” their ability.

Very good Correct definition
with no imprecision.

To sanitize (Sanitizar)
Definition: To comply with hygiene requirements or recommendations; to clean: To sanitize an environment.
Generation: Of course! The Portuguese “sanitize” refers to eliminating or removing anything that could be considered
unclean or dangerous to health. For example, it may refer to disinfecting surfaces or objects, or eliminating bacteria or
viruses from an environment. In short, “sanitize” means to purify or disinfect.

Table 14: Explanation of our human evaluation system for generated definitions. Examples are taken from DICIO
and manually translated to English by the annotator.

Model Likert (b/w) COMET (b/w)

DUDEN (de)

LLAMA-2 3.060 / 1.100 0.670 / 0.241
+ 5 shots 1.400 / 1.040 0.767 / 0.194

MISTRAL 2.560 / 1.000 0.699 / 0.211
+ 5 shots 1.920 / 1.000 0.700 / 0.197

DRAE (es)

LLAMA-2 4.680 / 1.100 0.700 / 0.317
+ 5 shots 4.900 / 1.100 0.751 / 0.235

MISTRAL 4.600 / 1.080 0.727 / 0.258
+ 5 shots 4.440 / 1.140 0.710 / 0.236

LAROUSSE (fr)

LLAMA-2 4.280 / 1.122 0.697 / 0.281
+ 5 shots 4.460 / 1.260 0.736 / 0.239

MISTRAL 4.061 / 1.000 0.705 / 0.233
+ 5 shots 4.040 / 1.000 0.689 / 0.228

DICIO (pt)

LLAMA-2 3.860 / 1.240 0.639 / 0.385
+ 5 shots 4.000 / 1.460 0.623 / 0.339

MISTRAL 3.260 / 1.140 0.577 / 0.320
+ 5 shots 1.780 / 1.180 0.530 / 0.306

Table 15: Results of our second human evaluation exper-
iment in terms of average Likert scores for the best 50 /
worst 50 denoted as (b/w); and compared to COMET.
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Language Model HellaSwag MMLU ARC

English (en)
LLAMA-2 0.607 0.533 0.462
MISTRAL 0.563 0.534 0.501
LLAMA-3 0.591 0.681 0.515

French (fr)
LLAMA-2 0.460 0.439 0.418
MISTRAL 0.426 0.413 0.387
LLAMA-3 0.488 0.544 0.467

German (de)
LLAMA-2 0.431 0.431 0.408
MISTRAL 0.395 0.401 0.358
LLAMA-3 0.468 0.529 0.442

Portuguese (pt)
LLAMA-2 0.437 0.434 0.427
MISTRAL 0.415 0.396 0.402
LLAMA-3 0.487 0.541 0.487

Spanish (es)
LLAMA-2 0.474 0.441 0.441
MISTRAL 0.433 0.414 0.393
LLAMA-3 0.506 0.548 0.492

Table 16: Observed performance of LLAMA-2 and MISTRAL on our three selected multilingual benchmarks,
separated by language.

Lang. Existing Benchmark Ours

MMLU ARC HellaSwag Input Exp. Output

fr 53,431,809 1,489,775 735,614 60,629 105,753
es 54,083,040 1,460,328 707,524 62,971 64,925
pt 54,044,351 1,459,704 707,201 231,425 285,676
de 54,805,912 1,459,108 735,190 139,289 108,314

Total 216,365,112 5,868,915 2,885,529 494,314 564,668

Table 17: Length of input (and expected output, where available), in number of tokens (via the LLAMA-2 tokenizer).

Poor Acceptable Good

7.69 16.67 75.64

Table 18: Results of the human evaluation of the gen-
erated example sentences. The numbers indicate the
percentage of sentences evaluated in each category
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