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Abstract

Supervised state-of-the-art methods for gram-
matical error correction require large amounts
of parallel data for training. Due to lack of gold-
labeled data, techniques that create synthetic
training data have become popular. We show
that models trained on synthetic data tend to
correct a limited range of grammar and spelling
mistakes that involve character-level changes,
but perform poorly on (more complex) phe-
nomena that require word-level changes. We
propose to address the performance gap on such
errors by generating synthetic data through se-
lective data augmentation via round-trip ma-
chine translation. We show that the proposed
technique, SeLex-RT, is capable of generating
mistakes that are similar to those observed with
language learners. Using the approach with two
types of state-of-the-art learning frameworks
and two low-resource languages (Russian and
Ukrainian), we achieve substantial improve-
ments, compared to training on synthetic data
produced with standard techniques. Analysis of
the output reveals that models trained on data
noisified with the SeLex-RT approach are capa-
ble of making word-level changes and correct
lexical errors common with language learners. '

1 Introduction

Grammatical Error Correction (GEC) is the task of
detecting and correcting mistakes in text. Super-
vised state-of-the-art approaches to GEC require
large amounts of training data in the form of sen-
tence examples with errors and their corrected coun-
terparts. Because hand-labeled data is expensive to
obtain, it is common practice to use monolingual
data with synthetic noise for pre-training. The mod-
els are further finetuned on gold learner data. The
use of synthetic data is essential to obtaining good
performance, especially when the language is low-
resource and has a limited amount of gold-labeled
training data (Flachs et al., 2021). However, ex-
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isting methods do not generate sufficiently diverse
synthetic errors (Stahlberg and Kumar, 2024).

We show that low-resource state-of-the-art strate-
gies for generating synthetic data mainly produce
errors in spelling and inflectional morphology, and
models trained on such synthetic noise fail to ad-
dress errors related to overall fluency that are known
to pose challenges even to high-proficiency learn-
ers (Yasunaga et al., 2021; Choshen and Abend,
2018b). Fluency is used to refer to edits that make
the original text native-sounding; these edits typi-
cally go beyond grammaticality and may include a
change for a more preferred word order or a better
lexical choice (Napoles et al., 2017).

In this work, we focus on correcting lexical
errors. Many of these errors are known to arise from
first-language interference (Leacock et al., 2010;
Dahlmeier and Ng, 2011; Rozovskaya et al., 2017).
Moreover, studies in second language acquisition
reveal that learners may generate a sentence in the
second language by translating it from their native
language (Derakhshan and Karimi, 2015), thereby
incorrectly transferring structures and expressions
into the second language. A lexical error may occur
when a learner picks an incorrect but semantically-
related translation for an ambiguous word with
several related meanings in their native language.

Using this observation, we hypothesize that lexi-
cal challenges, such as choosing an incorrect word
in the second language, will also manifest them-
selves in the machine translation output, as back-
translated words that are semantically close to the
target. We propose to address such errors using se-
lect substitutions obtained from round-trip machine
translation. Indeed, we show that the approach with
select substitutions is capable of generating a wide
range of mistakes that non-native speakers make,
and is particularly good at producing confusions
similar to lexical errors common among non-native
speakers. We refer to this approach as SeLex-RT.

We start with a monolingual corpus of language
[ for which we wish to build a GEC model. The sen-
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tences are translated into another language (pivot),
and then back into /. The original sentence is
token-aligned with its round-trip translation, and
the alignments are used to create confusions re-
sulting from imperfect translations. In contrast to
other approaches that employ round-trip transla-
tion (Lichtarge et al., 2019; Kementchedjhieva and
S@gaard., 2023), we (1) do not make use of the
entire resulting back-translated sentences, but only
generate fargeted confusion sets of relevant errors
that are used to corrupt the data; and (2) generate
multiple translation hypotheses in each direction.
We demonstrate that both of these innovations are
crucial for obtaining a diverse set of high-quality
synthetic errors (see Section 6.1).

We present experiments on two low-resource
languages for GEC, Russian and Ukrainian, with
additional analyses on Russian. We show that only
5%-12% of the lexical errors observed in gold
learner data are represented in the data produced
with the standard synthetic methods. In contrast,
SeLex-RT is capable of generating synthetic data
that represents over 50% of learner lexical errors.
Experimental results demonstrate substantial perfor-
mance gains on correcting lexical errors, compared
to training with standard synthetic data.

The paper makes the following contributions:
(1) Using two Russian benchmarks, we show that
the majority of mistakes identified by state-of-the-
art supervised GEC models are in spelling and
inflectional morphology; (2) We propose SeLex-
RT, a novel method that uses select substitutions
from round-trip translations and generate synthetic
errors that involve replacements of unrelated but
semantically similar words and complements exist-
ing approaches; (3) We use SeLex-RT to generate
synthetic data for two low-resource languages, and
substantially improve over standard methods; addi-
tional analysis on Russian reveals that SeLex-RT is
particularly beneficial for correcting lexical errors.

2 Background

Supervised approaches to GEC can be broken down
into sequence-to-sequence (seq2seq) (Chollampatt
and Ng, 2018; Yuan and Briscoe, 2016; Grund-
kiewicz et al., 2019; Grundkiewicz and Junczys-
Dowmunt, 2019; Kiyono et al., 2019; Zhao et al.,
2019; i et al., 2017; Katsumata and Komachi.,
2019; Xie et al., 2018; Qorib et al., 2024), and
sequence-to-editing (Omelianchuk et al., 2020;
Awasthi et al., 2019; Tarnavskyi et al., 2022).
Both achieve state-of-the-art performance on En-

glish GEC. Recent works also achieve strong re-
sults with edit ranking (Sorokin, 2022) or ensem-
bling (Omelianchuk et al., 2024; Qorib and Ng,
2023). Other works have made additional advance-
ments on English GEC, but they rely on large
amounts of hand-labeled data that is not available
for other languages (Sun and Wang, 2022; Lai et al.,
2022; Bout et al., 2023).

The edit-based framework (Stahlberg and Ku-

mar, 2020; Omelianchuk et al., 2020) was shown
to be competitive on English, however, for other
languages proved to be less successful (Syvokon
and Romanyshyn, 2023), due to the fact that the
approach requires language-specific knowledge to
develop rules (Bryant et al., 2023). (It is important
to note that almost all non-English GEC can be
viewed as low-resource, due to scarcity of hand-
labeled training data). The seq2seq framework, on
the other hand, has shown state-of-the-art perfor-
mance in non-English GEC (Rothe et al., 2021),
and we thus adopt this approach in our work. In
the seq2seq approach, GEC is cast as a machine
translation task with the erroneous sentences treated
as the source and corrected sentences treated as
the target. Sentences with real learner errors and
their manually-corrected counterparts or sentences
from a monolingual corpus with added synthetic
noise can be used for training GEC models. Pre-
trained language models (PLMs) can be used as a
starting point (Kaneko et al., 2020; Malmi et al.,
2019; Omelianchuk et al., 2020; Katsumata and
Komachi., 2019). We follow Rothe et al. (2021) that
successfully applied the approach in multilingual
settings, making use of mTS5.
Low-resource GEC Compared to English, Russian
and Ukrainian are low-resource for GEC, due to
the limited amounts of labeled training data (see
Table 1). In terms of monolingual data, the mC4
corpus used to pre-train mT5, can be considered
as high resource for Russian (3.6 TB of data) but
low-resource for Ukrainian (196 GB of data).

3 Learner Datasets

Russian and Ukrainian gold data We use two
datasets of Russian learner data manually corrected
for errors? RULEC-GEC (Alsufievaetal.,2012; Ro-
zovskaya and Roth, 2019) (henceforth RULEC) and
RU-Lang8 (Trinh and Rozovskaya, 2021). Both
datasets were originally annotated with a single gold
reference each (a corrected version produced by
an expert), however, the annotations have been en-

ZManually corrected learner data is referred to as gold data.

25750



Partition (sents.)
Dataset Train | Dev. | Test
RULEC 4,980 | 2,500 | 5,000
RU-Lang8 | - 1,968 | 2,444
UA-GEC | 32,734 | 1,506 | 2,644

Table 1: Russian and Ukrainian gold datasets.

Error group Percentage (%)
RULEC | RU-Lang8
Grammar 39.3 40.0
Orth. 32.7 33.0
Lex./morph. 14.0 13.5
Other 14.0 13.5
Total 5283 3382

Table 2: Learner error distributions in Russian by coarse
category. Other includes word deletion/insertion, word
order, phrase replacement.

riched with two additional references, for a total of
three references per sentence (Palma Gomez and Ro-
zovskaya, 2024). We use the enriched benchmarks.
For Ukrainian, we use the UA-GEC dataset (Sy-
vokon and Romanyshyn, 2023). We report results
on the Fluency track (that includes both grammar
and fluency edits). Dataset sizes are in Table 1.
Error distributions in learner Russian To under-
stand the distribution of errors in learner data and
to perform evaluations by error type (Section 5),
we classify gold errors in the Russian data using
a tool for Russian (Rozovskaya, 2022).3 The tool
is similar in spirit to ERRANT, developed for En-
glish (Bryant et al., 2017), and classifies edits into
24 categories in spelling, punctuation, morphology,
and lexical errors. We further group all errors
into four broad categories: grammar, orthography,
lexico-morphology, and other (Table 2). Mistakes
in the grammar category involve 1-2 character mod-
ifications in inflections or a small confusion set
(errors on closed-class words). The orthography
category includes spelling, punctuation, and capital-
ization mistakes. The lexico-morphology category
includes lexical mistakes and errors in derivational
morphology, i.e. those that involve word formation
and go beyond single character misuse. This cate-
gory is the main focus of our work. Sample learner
errors are illustrated in Appendix Table B3.

4 Synthetic Data Methods
Ye et al. (2023) states the following: “the lack

3We are not aware of a similar tool for Ukrainian.

of high-quality publicly available data remains a
challenge in low resource settings.” In this section,
we first review existing approaches to generating
synthetic data, including the baseline methods used
in this work. Next, we introduce the SeLex-RT
approach, describe how the errors are generated
with each method. We then compare the synthetic
errors produced with each method with errors found
in the learner texts.

4.1 Existing Synthetic Data Methods

Overview of existing methods used as baselines
Synthetic data generation methods lie along a
continuum from knowledge-lean to knowledge-
intensive, depending on the language-specific
knowledge and resources required. As baselines,
we implement data generation techniques that are
general enough to be used across a variety of
languages and do not require extensive language-
specific knowledge.
Random character-level perturbations (Char) This
approach creates synthetic errors in monolingual
data, by probabilistically inserting, deleting, or
perturbing characters (Kiyono et al., 2019; Grund-
kiewicz et al., 2019; Flachs et al., 2021; Stahlberg
et al., 2019). We refer to it as Char.
Spell-based transformations (Spell) It combines
character-level perturbations of the Char method
and token-level perturbations generated from confu-
sions from an open-source spellchecker such as As-
pell (Grundkiewicz and Junczys-Dowmunt, 2019).
This approach showed state-of-the-art performance
in English (Bryant et al., 2019; Grundkiewicz
and Junczys-Dowmunt, 2019; Grundkiewicz et al.,
2019) and in other languages (Nédplava and Straka,
2019).
Morphology-based transformations (Morph) The
third baseline method is based on the approach
in Choe et al. (2019), and derives token-level con-
fusions from morphological transformations. Orig-
inally applied in English, the approach also showed
good results on other languages with rich morphol-
ogy (Flachs et al., 2021). The original method
of Choe et al. (2019) combined morphological
transformations with patterns mined from the de-
velopment data for English. Flachs et al. (2021)
implement a similar approach, but only use mor-
phological transformations, without the patterns,
in four languages, including Russian. We follow
Flachs et al. (2021) and only use morphological
transformations.

We use the three synthetic methods above — Char,
Spell, and Morph — as the baselines in our experi-
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ments (see Section 5).

Other synthetic methods not used in this work
Several other methods of generating synthetic data
have been proposed in the literature, however, these
approaches typically require more hand-labeled
data (or language-specific knowledge). In particu-
lar, the tagged corruption method (Stahlberg and
Kumar, 2024) mines likely confusions from gold
data that are used to corrupt monolingual data. This
approach relies on gold training data for mining
the error patterns and a tagger model that can tag
the errors. This approach performed well on En-
glish, but did not perform well in a multilingual
setting (Stahlberg and Kumar, 2024). Notably, the
results on Russian (RULEC) for a similar model to
ours are not competitive with the results we obtain
in this work (see Section 6.1).

Several works employ round-trip machine
translation where full-sentence translations are
used (Lichtarge et al., 2019; Kementchedjhieva and
S@gaard., 2023; Zhou et al., 2020). We compare
with this approach in Section 6.1.

Xie et al. (2018) and Kiyono et al. (2019)
use back-translation, where a machine translation
model is trained in reverse direction (from well-
formed to ungrammatical sentences). The approach
is applied to English GEC, where over 1M gold sen-
tence pairs are used to train the translation model
for English. In contrast, we only have 5K and 32K
gold sentence pairs for Russian and Ukrainian, re-
spectively (please also see our further discussion in
the Limitations).

4.2 Our Approach (SeLex-RT)

In the SeLex-RT approach, we generate confusion
sets by translating a native corpus 7 in language
[ (e.g. Russian) into another language (pivor) and
then back into /. We token-align the original sen-
tence with its back-translated version using the
alignment model of Sabet et al. (2020). A target
word ¢ that occurs in 7 in a diverse set of contexts,
is expected to have different back-translations de-
termined by each unique context. A confusion set
for ¢ will include all unique back-translated words
aligned to ¢, for all occurrences of # in 7. Our ex-
pectation is that because translations are imperfect,
the back-translated sentences will not be identical to
the original sentence. Furthermore, because word
sense nuances can be challenging for non-native
speakers due to the differences in contextual word
usage of ambiguous words in their native language
and in the second language, on the lexical level,
the differences in back-translation will be similar to

mistakes made by language learners. The intuition
that this approach of round-trip translation with
token-based alignments will generate errors similar
to learner mistakes is based on a recent study that
used this method for generating vocabulary exer-
cises for English language learners (Panda et al.,
2022; Palma Gomez et al., 2023). Indeed, we show
below that the method is able to replicate well real
learner mistakes.

We stress that, in contrast to the full-sentence
translation approach (Section 6.1), we only extract
aligned word pairs used to corrupt the data. Fur-
thermore, we use multiple translation hypotheses,
thereby generating multiple back-translations for
each token in a single sentence.

4.3 Generating Synthetic Errors with
SeLex-RT and the Baseline Methods

We now compare the SeLex-RT method and the
baseline methods Spell and Morph with respect
to their ability to generate errors that mimic real
learner errors.* The three methods all produce
token-level confusion sets that are used to corrupt
monolingual data. Examples of confusion sets (in
English) for the word walk are {walk,talk,wall},
{walk,walking,walked}, and {walk,go,stroll}, gener-
ated with the Spell, Morph, and SeLex-RT method,
respectively. If walk occurs in a sentence and is
selected to be corrupted, it is replaced with an-
other candidate from its corresponding confusion
set (generated with the corresponding corruption
method). Appendix Table C4 illustrates sample
confusion sets in Russian.

We use these methods to generate the erroneous
side of a sentence from a monolingual corpus, by
introducing errors into it. We iterate over the tokens
in the sentence and select tokens to be replaced with
another token from the confusion set of that token.’
An example of a sentence (in Russian) produced
with each synthetic data generation method can be
found in Appendix Table CS.

The errors are generated in a 15M monolingual
Russian corpus (Sorokin, 2017), used to train GEC
models (see next Section). SeLex-RT confusion sets
are generated, by taking a sample of 100K sentences
from the 15M corpus. The 100K sentence sample is
translated into English and then back into Russian.®
We use the translation systems of Tiedemann and

4We do not include the Char method here, as it only
performs character-level perturbations.

SThe tokens to be replaced are selected with prob. 15%.

oWe only use 100K sentences to generate confusion sets,
which are then used to corrupt the entire 15M corpus.
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Synth. RULEC RU-Lang8

method Gram. Lex. | Gram. Lex.
Spell 419 12.0 344 9.8
Morph 75.9 5.0 724 5.6
SeLex-RT 58.8 46.7 65.1 51.5

Table 3: Percentage of unique errors (represented as
source-target pairs) in Russian learner test data that have
been produced with each synthetic method. Results
broken down by error group. Best result is in bold.
Confusion set size is determined based on the average
number of corruption options for a target token.

Thottingal (2020), with English as the pivot. We
choose English as there are typically high-quality
translation systems available to and from English
for a variety of languages (but also see Limitations).
For each sentence, 10 forward translations, and 10
backward translations for each forward translation
are produced, for a total of 100 back-translations
per sentence. In 6.1, we discuss the computational
costs of the approach.

How well do synthetic errors created with each
method replicate learner errors? To answer this
question, we compute the percentage of unique
errors (represented as source-target pairs) in the
Russian learner datasets that are found in the syn-
thetic data produced with each method (farget refers
to the correct word, and source refers to the po-
tentially erroneous word in learner data or the re-
placement used to corrupt the data with a synthetic
method). Table 3 demonstrates that the SeLex-RT
method generates about half of learner errors in
the lexico-morph. category, while the baseline
methods produce only a small fraction, confirming
that the SeLex-RT-based confusion sets are able to
better mimic real learner errors, compared to the
other methods.

5 Experimental Setup

Model architecture Drawing on the methods that
showed superior performance in multilingual GEC
(Rothe et al., 2021; Palma Gomez et al., 2023),
we chose the seq2seq framework (see Section 2):
We implement two types of Transformer seq2seq
models — a smaller one trained from scratch, and a
larger model that uses mT5 as a starting point.
Model 1 Our (smaller) model is pre-trained on
synthetic data and finetuned on the gold data. It
has 275M parameters.

Model 2 We adopt the approach of Rothe et al.
(2021), making use of mT5 (Xue et al., 2021).
Rothe et al. (2021) finetune mT5 on GEC gold

data only, but Palma Gomez et al. (2023) show
the importance of a 2-step finetuning, which we
adopt here: in the first step, mT5 is finetuned
on the synthetic data, and in the second step we
finetune on the gold training data. Due to com-
putational constraints, we use mT5-Base that has
580M parameters. Larger models (large, xI, xxI)
lead to stronger results both with 1-step finetuning
on gold data only (Rothe et al., 2021) and with a
2-step finetuning on Russian (Palma Gomez and
Rozovskaya, 2024) and Ukrainian (Palma Gomez
et al., 2023). Appendix A lists the training details
and the hyperparameters.

Baseline synthetic methods We implement four
data generation techniques: (1) character-level trans-
formations (Char); (2) spell-based transformations
(Spell); and (3) morphology-based transformations
(Morph), (4) and a combination Morph+Spell.” Ap-
pendix C provides more detail on how we generate
errors for the two languages.

Synthetic data The synthetic data is created by cor-
rupting monolingual data from the Yandex corpus
for Russian (Sorokin, 2017), and from the CC-100
dataset for Ukrainian (Wenzek et al., 2020). Each
training example in the synthetic data consists of
a pair of sentences: a corrupted sentence and its
correct counterpart from the monolingual corpus.
Example is shown in Appendix Table C5.
Evaluation To compare with published work,
we adopt the MaxMatch scorer (Dahlmeier
and Ng, 2012) for Russian, and ERRANT for
Ukrainian (Bryant et al., 2017). All results are
on the test partitions. In Russian, we apply a
spellchecker (Rozovskaya, 2022) to the data as
pre-processing.

6 Key Results

Baselines We use the smaller Model 1 to compare
the baseline methods. Model 1 is trained on 15M
synthetic sentence pairs, while the mT5-models
are trained on 2M synthetic sentence pairs (due to
computational constraints). Gold training data (in
Table 1) is used to finetune the models.
Key results on Russian and Ukrainian Key results
on Russian and Ukrainian are shown in Tables 4
and 5, respectively. Detailed performance that
includes precision and recall is shown in Appendix
Tables D6 and D7.

As the tables show, the Char method is the weak-
est baseline, whereas Morph outperforms Spell

7In Morph+Spell, the Morph method is applied to each
sentence first, followed by Spell.
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Synth. Fo.s
method RULEC | RU-Lang$
Model 1 (Baselines)

Char 40.0 40.2
Spell 54.0 52.6
Morph 57.5 56.0
M+S 60.7 61.6
SeLex-RT 49.1 47.7

Model 1 (Best baselines with SeLex-RT)

M+SeLex-RT 60.7* 59.9*

M+S+SeLex-RT | 62.1* 62.6*
Model 2

M+S 62.0 59.9

M+S+SeLex-RT | 62.9* 60.9*

Table 4: Key results on Russian. Best Fj 5 for each
dataset and model are in bold. Model 1 denotes models
trained from scratch, while Model 2 refers to models
that finetune mT5-Base. M+S stands for Morph+Spell.
Results marked with a % are statistically significant at
the .03 level, compared to the respective baseline.

for Russian, while Spell outperforms Morph for
Ukrainian. The combination Morph+Spell pro-
duces a stronger model for both languages. We also
show the SeLex-RT performance on its own. The
middle part of the tables shows the results of adding
SeLex-RT to the best baselines. SeL.ex-RT errors
are added to the text after adding errors produced
with the baseline methods.® The bottom part of
the tables compares Model 2 types using the best
baseline data generation strategy.

Findings The improvements from adding SeLex-RT
are consistent across all models and both languages.
The differences between the best models with the
SeLex-RT component and their respective baselines
are all statistically significant at the .03 level on both
Russian benchmarks.® We do not perform statistical
significance testing on UA-GEC since the gold
references are not publicly available. On Russian,
improvements are larger for Model 1 than for Model
2. By contrast, improvements in Ukrainian are
slightly larger for Model 2. We believe this may
signal that using a pre-trained language model
(mT5) is more beneficial for Russian, as the mC4
dataset on which mTS5 is pre-trained contains 18
times less Ukrainian data compared to Russian,
thus the SeLex-RT component could have a larger

8Note that when combining Spell and Morph, Morph and
SeLex-RT, and Morph with Spell and SeLex-RT, the same
number of training sentences is used in all cases. SeLex-RT
errors are generated with probability 0.1, set experimentally.

9We use a two-sided approximate randomization test (Gra-
ham et al., 2014). We used the implementation of Alhafni
et al. (2023).

Synth. F
method 0.5
Model 1 (Baselines)

Char 55.2
Spell 62.8
Morph 43.8
M+S 63.3
SeLex-RT 57.6

Model 1 (Best baselines+SeLex-RT)

Spell+SeLex-RT 64.7

M+S+SeLex-RT 64.3
Model 2

Spell 64.1

Spell+SeLex-RT 66.1

Table 5: Key results on the Ukrainian benchmark UA-
GEC. Best Fy 5 for each model is in bold. Model 1
denotes models trained from scratch, while Model 2
refers to models that finetune mT5. M+S stands for
Morph+Spell.

impact on Ukrainian. This finding is promising for
low-resource GEC scenarios.

Comparing the two model types, Model 2 outper-
forms Model 1, with the exception for RU-Lang8.
We hypothesize this may be due to overfitting (we
are finetuning on RULEC data, which is really
small), and thus a model with more parameters is
more likely to overfit, resulting in a less optimal
performance on out-of-domain RU-Lang8 data.

6.1 Comparison to Previous Work

Comparison to other translation methods In
Table 6 we compare SeLex-RT with the round-
trip machine translation method (henceforth MT)
in Lichtarge et al. (2019) that uses full-sentence
translations to generate the source side of the paral-
lel data (detailed performance with precision and
recall scores is shown in Appendix Table D8). We
use English as the pivot and translate the 15M tar-
get side of the monolingual data. The round-trip
translations are generated using the MT systems
of Tiedemann and Thottingal (2020), the same sys-
tem used to generate round-trip translations for
SeLex-RT. The difference is that with SeLex-RT
we only use confusion sets obtained from the round-
trip translations, whereas for the round-trip MT
method, following Lichtarge et al. (2019), we use
full-sentence round-trip translations as synthetic
training sentence pairs.

The original round-trip MT method (Lichtarge
et al., 2019) (listed as MT only (orig) in the table)
exhibits low precision. Upon further inspection, we
conclude that this is due to the MT method introduc-
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Table 6: Comparison with full-sentence round-trip trans-
lation method in Lichtarge et al. (2019). Results marked
with a x are statistically significant at the .05 level, com-
pared to the best MT configuration above.

ing many changes (including low-quality changes).
To address the issue, we combine MT with our two
strongest baselines — Morph and Morph+Spell, as
follows: (1) for half of the training sentences, we ap-
ply the baseline methods on top of the full-sentence
round-trip MT translation, while (2) for the other
50% of the data, we apply the baseline synthetic
method only, without the round-trip MT. 1 or 2
is chosen uniformly at random for each sentence.
The resulting models are shown as Morph+MT
and M+S+MT in Table 6.' These combinations
improve precision, but hurt recall. Our conclusion
is thus that our method (SeLex-RT) introduces more
high-quality changes, which yield higher recall and
do not hurt precision. As the table shows, our
approach substantially outperforms all the models
that use full-sentence round-trip MT.!!
Computational costs of SeLex-RT: MT systems are
known to incur high computational costs. It is
important to emphasize that with SeLex-RT (in
contrast to Lichtarge et al. (2019) we do not trans-
late the entire synthetic training set, but only a small
subset — 100K sentences. To elaborate further: us-
ing 10 translations in each direction would amount
to 10M translations, which is less expensive than
translating 15M sentences used to train Model 1.
Further, as we show in 7.3, using even 5 translations
in each direction (for a total of 2.5M translations)
already results in substantial improvements that are
almost as good as using 10 translations. Finally,
with SeLex-RT confusions, we can generate an
unlimited number of synthetic sentence pairs.

10We tried several ways of combining MT with Morph and
Spell (with different probabilities) and show the best ones.

I'Wwe note that the SeLex-RT candidates also contain noise,
filtered naturally in the corruption stage: a replacement candi-
date is chosen based on the relative frequency of their alignment
(i.e. how many times a round-trip translation was observed
with the specific target token in our data). This way, noisy
candidates that typically occur less frequently compared to the
high-quality translations, are chosen less frequently.

Synth. Fos Model Fos
method RULEC \ RU-Lang8 RULEC | RU-Lang8
3 configurations of the round-trip MT method P&R’24 (Model 1) 57.6 56.0
MT only (orig) 40.1 42.9 This work (Model 1) 62.1 62.6
Morph+MT 56.1 55.7 P&R’24 64.8 62.1
M+S+MT 57.8 60.7 This work (Model 2) 62.9 60.9
This work
M+S+SeLex-RT ‘ 62.1* ‘ 62.6* Table 7: Comparison with previous work for RULEC and

RU-Lang8 using enriched references. P&R’24 is mT5-
Large trained on 10M sentence pairs in Palma Gomez
and Rozovskaya (2024). Model 1 is pre-trained on
15M sentence pairs. Model 2 denotes mT5-Base pre-
trained on 2M synthetic sentence pairs. Both models
use Morph+Spell+SeLex-RT errors.

Fos
Model RULEC | RU-
Lang8
This work (M+S+SeLex-RT)
Model 1 (15M) 49.2 51.8
Model 2 (2M) 51.2 52.3
Previous work (similar model arch. to ours)
P&R (15M) 47.4 47.7
P&R mT5-B (10M) 51.0 49.8
P&R mT5-L (10M) 53.2 54.5
S&K mT5-B (2.5M) 26.4 -
S&K mT5-XXL (2.5M) | 44.3 -

Table 8: Comparison with previous work for Russian, us-
ing original references. The top segment shows models
trained in this work. The second segment shows previ-
ous work with similar model architectures to ours. S&K
stands for Stahlberg and Kumar (2024). P&R stands
for Palma Gomez and Rozovskaya (2024). mT5-B and
mT5-L stand for mT5-Base and mT5-Large, respectively.
In the parentheses, we show the number of synthetic
training examples.

Comparison to other GEC methods We compare
to the results in Palma Gomez and Rozovskaya
(2024) with enriched Russian benchmarks (Table 7).
They implement similar architectures to our Model
1 and 2, but use Morph transformations. Their
Model 2 is mT5-Large pre-trained on 10M sentence
pairs, whereas we use mT5-Base and pre-train on
2M sentence pairs. On Model 1, we outperform
Palma Gomez and Rozovskaya (2024) by 5 points
on RULEC and 7 points on RU-Lang8. On Model
2, we are 2 points below their results, however,
since we use similar architectures, we expect that
repeating our experiments with mT5-Large will at
least match their results.

Comparison on Russian using original refer-
ences We compare with prior work using the orig-
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Model F0.5
This work (Model 1 best, 15M) | 64.7
This work (Model 2 best, 2M) 66.1
P. et al.(Model 1, 35M) 66.0
P. et al. (mT5-Large, 10M) 68.1
Bondarenko et al. (2023) 68.2

Table 9: Comparison with previous work for Ukrainian.
P. et al denotes Palma Gomez et al. (2023).

inal single-reference annotations in Table 8. The
top segment of the table shows models trained in
this work. The second segment shows models that
are directly comparable to ours due to similar archi-
tectures and/or model parameters. We outperform
all models in segment 2 (with the exception of a
much more powerful mT5-Large pre-trained on
10M sentence pairs), often by a large margin, even
when we use less synthetic data. Note that S&K
is a recent multilingual implementation of tagged
corruption models (Stahlberg and Kumar, 2024)
with the same architecture and similar amounts of
synthetic data used to ours, but only obtains a result
of 26.4 compared to our result of 51.2 on RULEC.
This suggests the importance of high-quality syn-
thetic data even when using pre-trained models in
GEC. Appendix D.3 provides an expanded version
of Table 8, where we compare a variety of models
from previous works. We show that our models are
competitive with or better than state-of-the-art.
Comparison to previous work on Ukrainian This
is shown in Table 9. SOTA on Ukrainian use
larger models and more data. Our best result of
66.1 is 2 points below the 2 systems that placed
first in the shared task. However, these models
use more knowledge and data (Bondarenko et al.,
2023; Palma Gomez et al., 2023; Syvokon and
Romanyshyn, 2023). Palma Gomez et al. (2023)
is the same architecture as our Model 2 but uses
mT5-Large and 10M synthetic sentence pairs.

7 Additional Analyses on Russian

7.1 SeLex-RT and Performance by Error Type

Since our focus is on lexical errors, we evaluate per-
formance by coarse error type for Russian. To this
end, both gold errors and errors flagged by the sys-
tems are classified using an ERRANT-style tool for
Russian (Rozovskaya, 2022) (see Table 2). Results
(Fo.5) on RU-Lang8 (for grammar and lexico-morph.
errors) are shown in Table 10.

Adding SeLex-RT improves performance on
lexico-morph. errors. The performance on gram-

Fos
Synth. Lex.,
method Gram. | morph.
Model 1 (Baselines)

Spell 56.4 13.8
Morph 60.5 6.9
M+S 69.8 15.4
SeLex-RT 51.2 20.3

Model 1 (M+S+SeLex-RT)

M+S+SeLex-RT | 711 | 29.9
Model 2

M+S 67.2 | 228

M+S+SeLex-RT | 694 | 27.0

Table 10: Results by coarse error group on RU-Lang8.

Performance (F 5)
Synth. | Ref. Lex.,
method| set | Gram. | morph. | Total
Model 1 (Baselines)
Spell RG 63.3 13.3 60.8
CG 70.5 16.1 71.6
RG 59.1 12.5 60.8
Morph | oG | 746 | 307 | 753
RG 66.7 22.3 65.0
M Tog | 781 | 337 | 783
Model 1 (M+S+SeLex-RT)
RG 66.8 32.2 64.3
CG 79.6 59.6 79.7

Table 11: Evaluation with three standard references
(RG) and closest golds (CGs) on a 500-sentence subset
(Model 1) on RULEC. Best results are in bold.

mar errors improves as well, indicating that the
SeLex-RT errors complement the baseline methods
in that category. Tables D10 and D9 in Appendix
show results on 4 coarse categories on both Russian
benchmarks, revealing similar trends on RULEC.

7.2 Evaluation with Closest Gold References

Evaluation in GEC is known to be notoriously diffi-
cult (Choshen and Abend, 2018b; Bryant and Ng,
2015; Felice and Briscoe, 2015; Napoles et al.,
2015). This is because the space of valid correc-
tions for a given sentence is large (Choshen and
Abend, 2018b,a), but the set of human references
in evaluation is limited. The prevalent use of too
few references is known to underestimate model
performance, especially on lexical errors (Choshen
and Abend, 2018b), which explains low precision
on these errors in Section 7.1.

To evaluate performance more accurately, we
generate closest gold (CGs) references, i.e. cor-
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Hypo Performance (F 5)

pool RULEC RU-Lang8

size P R Fys| P R Fys
Baseline (Morph+Spell)

NA | 68.8 412 60.7 \ 69.5 414 o612
Morph+Spell+SeLex-RT

1 69.9 409 612|693 42,6 61.6

25 69.7 4277 619 | 69.6 450 62.7

100 | 71.0 420 623|699 442 62.6

256 | 70.5 426 623 | 70.0 447 629

Table 12: Size of translation pool. Evaluation on Russian
using 3 references with smaller models (Model 1 type).
Best results are in bold.

rected versions constructed relative to the system
output instead of the source sentence, akin to post-
evaluation for machine translation (Rozovskaya and
Roth, 2021). Due to the cost of generating CGs
(a separate set of references needs to be generated
for each system output), we perform this evalu-
ation for a subset of 500 sentences for Model 1.
Appendix D.2 provides detail on the annotation.
Results Table 11 shows evaluation on RULEC. Ap-
pendix Tables D12 and D13 show detailed results on
both datasets. The key findings are: (1) Precision
on lexico-morph. errors is as high as on grammar er-
rors, confirming that, indeed, performance is more
severely underestimated on lexical errors; (2) The
SeLex-RT component improves recall on lexical
errors by more than 20 points, whereas precision
numbers remain just as high. Overall, evaluation
with CGs demonstrates that the SeLex-RT compo-
nent significantly improves performance on lexical
errors, compared to the baselines.

7.3 Varying the Number of Translations
Thus far, we have used 100 round-trip translations
per sentence, to generate confusion candidates. We
refer to the 100 translations as the hypothesis pool.
To evaluate the effect of the pool size on perfor-
mance, we vary the number of hypotheses in each
direction, and use 1, 5, 10, and 16, for a total num-
ber of translations for a sentence being 1, 25, 100,
and 256. The average confusion set size increases
from 3 to 120, as the pool increases from 1 to 256.
Table 12 shows evaluation with different pool
sizes. While every setting outperforms the baseline,
there is no significant difference in performance,
as the translation pool is expanded beyond 25 hy-
potheses, suggesting that going further down the
list of back-translations is not beneficial, perhaps
due to the degrading quality of the translations.

. 3HAYNUT? /o3HATACT means ?/signifies

. caepoBaTh? /cobomars follow?/observe
. oOyuenusi? /3nanuii learning?/knowledge
. HopM? /mipaBmut norms?/rules

. HECKOJIbKO? /HeKoTOpbIe some?/several

. ecTb? /HaxoATCs exist?/are

AN R W=

Table 13: Examples of lexical errors (in Russian, with
the English translations) missed by models trained on
the synthetic data generated methods but corrected by
models that inlcude the SeLex-RT component.

7.4 Error Analysis

We analyze model output and identify interesting
examples of errors corrected by the model with
the SeLex-RT component (these errors are missed
by the models trained on standard synthetic data).
Table 13 illustrates some of the errors. In Appendix
Table D15 we show these examples within sen-
tences. Observe that the model corrects mistakes
that do not share the root/stem (examples 2, 3, 6),
as well as those that share the root (example 1) but
have diverging derivations. Example 5 illustrates
an interesting and challenging learner error in the
use of indefinite pronouns. Acquisition of subtle
semantic nuances of indefinite pronouns pose a
challenge to English learners (Rabinovich et al.,
2019), and we also observe this in Russian data.

8 Conclusion

We present a novel approach to creating synthetic
data for correcting language learner lexical errors.
We hypothesized, drawing on evidence from sec-
ond language acquisition research, that challenges
facing language learners will also manifest in the
machine translation output, as many lexical errors
result from deviations in the second language from
the native usage. Our approach creates controlled
confusions from token-aligned sentences and their
translations. Crucially, we do not use full-sentence
back-translation and generate multiple translation
hypotheses, which allows us to create diverse and
high-quality synthetic errors. Extensive experi-
ments on two low-resource languages — Russian and
Ukrainian — and three benchmarks, and additional
analyses on Russian demonstrate the effectiveness
of our approach. Future work will focus on the
application of this method to other languages.

Limitations

Availability of MT systems for low-resource lan-
guages One limitation of our approach is that it
requires the use of machine translation systems to
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translate the target language data into a pivot lan-
guage and back. While for many languages, good
MT systems are available today (typically to and
from English), for some low-resource languages,
MT systems are not available or are extremely weak.
Our expectation is that the method will require a rel-
atively good MT system in both directions (forward
and backward). In fact, as we use 256 round-trip
translations for Russian, we do not observe the
performance improvement (see Section 7.3), sug-
gesting that the degrading quality of translations
affect the quality of generated confusion sets. It
is worth noting that we only used a single pivot —
English — due to the fact that there are typically
high-quality translation systems available to and
from English for a variety of languages.

Analyzing the impact of the translation systems
employed In this work, we have used one pivot
language (English) and a single MT system for each
target language. Using multiple pivot languages
is outside the scope of the paper, but we hope to
extend this work in the future and investigate this
interesting question. It should be noted that this
experiment might conflate the impact of a pivot
with the quality of an MT system.

Another question concerns the quality of an MT
system used when using the same pivot. While
we only used one type of MT system for each
language, our experiments with hypothesis pool
in Section 7.3 show that going down the list of
translations is not beneficial (beyond 10 top-scoring
translations) is not beneficial. We hypothesize
that this indicates that higher-quality translation
at the top of the hypothesis list are preferable for
generating confusion sets for our task.

Coverage of diverse error types We focus on
single-word lexical errors, and do not address other
multi-token replacements and less-preferred word
order. Extending the approach to multi-token re-
placements is planned for future work. We believe
that the SeLex-RT approach can be fit to address
these types of errors, as well.

It should also be pointed out that SeL.ex-RT oper-
ates on the assumption of correcting lexical errors
resulting from first language interference and the
similarities between learner and translation errors.
However, in terms of first language backgrounds,
while in RULEC, all learners are native English
speakers, in RU-Lang8 and in the UA-GEC dataset
there is a variety of first language backgrounds. We
have not explored the potential of utilizing various
pivot languages to fit the language background of

the learners, and we leave it for future work.

Approaches appropriate for low-resource GEC
There are several definitions on low-resource set-
tings in natural language processing. In this work,
we follow the definition of low-resource as lan-
guages that only have a small amount of hand-
labeled data available. However, the proposed
approach, SeLex-RT, assumes the availability of
high-quality machine translation systems, as well
as resources required to generate synthetic errors (a
spellchecker and a part-of-speech tagger). We also
acknowledge the limitations of our experiments,
specifically, the Morph baseline that we have imple-
mented only uses morphological transformations,
without the patterns, as in (Choe et al., 2019). One
reason for this is that their approach was found
effective for correcting grammar errors but not for
lexical errors (White and Rozovskaya, 2020). We
further hypothesize that the amount of hand-labeled
data available to us is not sufficient to extract high-
quality patterns, however, we leave this as future
work to investigate whether adding patterns mined
from hand-labeled (training or development) data
is effective for correcting lexical errors.

We have selected several baselines that we con-
sider to be appropriate for multilingual settings that
require several resources, but do not require large
amounts of hand-labeled data. We discuss several
other methods in Section 4.1 to be more resource- or
knowledge-intensive, such as the back-translation
approach (Xie et al., 2018). That said, recent work
on low-resource machine translation (Tan and Zhu,
2024) can train models with under 50K training
examples, which is still significantly more than
what is available for languages other than English
as hand-labeled data. Nevertheless, we believe this
is an intriguing research question that could be
explored in the context of GEC, but is orthogonal
to the solution we propose.

Use of reference-based evaluations for perfor-
mance on lexical errors Finally, we also note
that reference-based evaluation is challenging when
lexical errors are concerned, and evaluation with
closest golds (CGs) is expensive and not feasible on
a large scale. This problem arises in several recent
works that attempted to gauge the performance of
large language models (LLMs) on GEC, including
ChatGPT (Fang et al., 2023; Katinskaia and Yan-
garber, 2024). We believe this is the same issue we
encountered in this work when trying to evaluate
the performance on lexical mistakes. We leave this
as a direction for future work.
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Hyperparam. Value
Model 1
Dropout 0.3
Learning rate 5x1073
Min. learning rate 1x107°
Init. learning rate 1 x1077
Optimizer Adam (0.9, 0.98)
Max epochs 25
Label smoothing 0.1
Max. tokens 13,000
Seeds 1,2
Model 2
Dropout 0.1
Learning rate 1x1074
Optimizer Adam
Max epochs 5(20)
Input/output lengths 128
Seeds 42 (1,42)

Table Al: Hyperparameter settings for Model 1 and
Model 2. The seeds and the number of epochs are shown
separately for the pre-training and the finetuning stages
(in parentheses).

GPU Model type
A100 X 4model 1 3hrs
A100 X 4model 2 12hrs

Table A2: Training times per epoch for the pre-training
stage (on synthetic data).

A Training Details and Hyperparameters

Hyperparameters Experiments are performed
on four A100 32GB GPUs. Hyperparameters for
model 1 (we use the Transformer (Vaswani et al.,
2017), with the “Transformer (big)” settings and the
parameters in Kiyono et al. (2019) for Pretrain
setting) and for Model 2 are shown in Table Al.
Table A2 shows training times per model and per
epoch on the synthetic data (15M and 2M sentence
pairs for model 1 and model 2, respectively). Fine-
tuning on gold data is fast due to the small sizes
of the finetuning sets. We use 2 seeds with each
model, and report results averaged over two runs.

B Examples of Russian Learner Errors

Table B3 shows examples of some common Russian
learner errors. The top part of the table shows errors
on closed-class words (prepositions, conjunctions)
and mistakes in inflectional morphology. The bot-
tom part of the table shows lexical mistakes and
errors in derivational morphology.

C Synthetic Data Generation Methods

C.1 Baseline Synthetic Data Generation
Methods

Random character-level perturbations (Char)
This is a simple approach that performs in-
sert/delete/replace operations at the character level.
It was used in several GEC works (e.g., Kiyono
et al. (2019); Xie et al. (2018)).

Spell-based transformations (Spell) This ap-
proach of generating synthetic data showed state-
of-the-art performance in English (Bryant et al.,
2019; Grundkiewicz and Junczys-Dowmunt, 2019;
Grundkiewicz et al., 2019), and other languages (Na-
plava and Straka, 2019; Flachs et al., 2021). Spell-
based confusions include highly confusable words
based on edit distance obtained from a dictionary
available in a spellchecker. For example, for the
target word “there”, the confusion set would include
words such as their, there're, here. The replace-
ment for the target token is then chosen uniformly
at random from its confusion set. Because Aspell
is an open-source spellchecker, it is common to use
Aspell for this purpose. In line with Grundkiewicz
and Junczys-Dowmunt (2019), the word error rate
used (percentage of tokens perturbed) is that of
15%, and characters are perturbed in 10% of the
word tokens to account for spelling mistakes. We
follow Néplava and Straka (2019) for the param-
eter values for token replacement, deletions, and
insertions.

Morphology-based transformations (Morph)
In the Morph approach (Choe et al., 2019; Flachs
et al., 2021), confusion sets are formed by includ-
ing all variants that belong to the morphological
paradigm of the same base form. An example of
a morphological paradigm in English is {“walk”,
“walking”, walked”, “walks”} for the base form
“walk”. In a highly-inflectional language such as
Russian, inflectional paradigms exist for nouns,
verbs, adjectives, pronouns, and numerals. The
paradigms are quite complex, for example, a noun
paradigm includes up to 12 wordforms; adjectival
paradigms contain 24-26 wordforms, while verb
paradigms may include up to 200 forms.

We generate confusion sets based on the output
of a morphological analyzer for Russian (Sorokin
et al., 2016), applied to large corpus of text that we
use to generate synthetic data (see Section 5).'?

12Gimilar to the spell-based method, 15% of tokens are
modified in this approach.
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Error type Example

3P L)

Prep. (ins.,del.,repl.) B
Noun:case

Verb:aspect
Verb:voice

Mistakes in grammar on closed-class words

in” — u3 “from, out of”
Mistakes in grammar (inflectional morphology)
criermuaucT-oI “‘experts” (pl.,nom) — crnenuanauct-am (pl.,dat.)
Verb:number/gender xwus-yT “live” (3rd person pl.) — »kus-eT (3rd person sg.)
qyBcTBOBaUIa “feel” (past, imperf.) — mo-uyBcTBOBasA (past, perf.)
poaosKaJa “continue” (past, active) — mpogokasia-ch (past, reflexive)

Deriv. morph.
Lexical choice

Mistakes in lexico-morphology category
BJIOXHOB-JICHHBIM “inspired” — BJIOXHOB-eHHOH “inspiring”
npejyiaraer “proposes”’ — yTBepzkaeT “‘claims’

Table B3: Some common error types in Russian learner data. Partial changes on a word are shown with a hyphen.

For Ukrainian, we follow Flachs et al. (2021) and
use Unimorph.

Morph+Spell In this approach, we combine er-
rors generated with the Morph method and those
generated with the Spell method. Flachs et al.
(2021) apply this combination approach by combin-
ing Aspell and Unimorph, where each method is
selected with equal likelihood. Since the two meth-
ods do not perform at the same level, we found that
it is best not to use equal probabilities. Instead, we
use a 15% error rate followed by a 3% error rate for
Morph and Spell (for Russian), and for Ukrainian
this was reversed. We found these probabilities
optimal for the two languages, where the stronger
method is assigned a higher value.

D Experiments on Russian

D.1 Additional Results

Key results Tables D6 and D7 show detail Precision,
Recall, and Fj 5 of models trained with and without
the SeLex-RT method, for Russian and Ukrainian,
respectively.

Effect of SeLex-RT on performance by error
type Table D10 shows key results by coarse error
type in the Russian RULEC benchmark for the two
models.

D.2 Evaluation with Closest Golds

Reference-based evaluation and low-coverage
bias The use of too few references in GEC evalua-
tion is known to underestimate system performance
and to bias evaluation is known as low-coverage
bias (Choshen and Abend, 2018b). The standard
approach of evaluating GEC systems is to make use
of reference-based measures, where system output
is compared against a reference created by a hu-
man expert. A system is rewarded for proposing

corrections that are in the reference, and penalized
for proposing corrections not found in the refer-
ence. For this reason, reference-based evaluation
measures tend to severely underestimate system
performance (Choshen and Abend, 2018b; Mita
et al., 2019; Felice and Briscoe, 2015; Bryant and
Ng, 2015). When more than a single reference
is available, system output is compared indepen-
dently against each reference, and the best score
is selected for each sentence. As a result, scores
tend to increase with the number of references
used (Ng et al., 2014). Using multiple references
thus provides a less biased evaluation of system
performance, although does not eliminate the issue
entirely.

Bryant and Ng (2015) find that using more than
3 references tends to provide diminishing returns,
suggesting that the use of 3 references may provide
a more realistic idea of system performance (Bryant
and Ng, 2015).
Evaluation with Closest Golds Although using
multiple references provides a more realistic perfor-
mance evaluation, the coverage bias is not entirely
eliminated. Moreover, performance bias is also
error-specific, as errors that allow for a larger set of
possible corrections, specifically, lexical mistakes,
suffer more than errors such as verb agreement
where the number of correction options is limited,
as the chance of matching the gold correction for
a system is smaller. Indeed, Rozovskaya and Roth
(2021) showed that while the performance of GEC
systems is severely underestimated with standard
evaluations, performance on mistakes that have
more correction options (lexical and fluency) is
underestimated more severely than performance on
spelling and grammar errors. They introduce the
concept of evaluations with closest golds (CGs),
i.e. human references constructed relative to the
system-corrected output, akin to post-evaluation for
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Synth. Conf.
method size

Spell 10

Target token Confusion set candidates

npoayuis “(you) will extend”; mpoaiut “(he/she) will
extend”; mpostuTs “to spill”; moyymTs “to add (fluid)”
npojyiéHHoi “extended (past. partic., sg., fem., instr.)”;
apoyuT “(it/he/she) will extend; mpo M “(we) will
Morph 48 extend”; mpoxuit “(sg., masc.) extended”; mposie-
pOJIUTH “to extend” ubl “(they) were extended”; mposiyien “(it/he/she) was
extended”

21 POJIOJKUTEbHOCTD “‘duration”; mpotut “(he/she)
will extend”; yBesimauBaTh “to increase’”’; IOBBIIIATH
“to raise”’; mpojteBalor “(they) are extending”’; 3a1ep-
2KaTh “to delay”

HOTPOMHBIHN “pogromous” (sg., masc., NOM.); OrpoM-
Spell 6 uo1it “huge” (sg., masc., nom.); TOrpOMHOTO “pogro-
mous” (sg., masc., gen.)

orpoMHEIX “‘huge” (pl., gen.) ; orpomubM “huge” (sg.,
masc., instr.); orpomuoii “huge” (sg., fem., gen.); orpom-
Morph 38 Helimrelt “very huge” (sg., fem., gen.); orpomueituM
“very huge” (sg., masc., instr.); orpomusrte “huge” (pl.,
masc., nom.); orpomuast “huge” (sg., fem., nom.)
orpoMHOM ‘“huge” (sg., masc., instr.); Oorareiire-
ro “rich” ; rpomajHOro “enormous’; MHOIOYUCJIEH-
115 HBIX “nqmerous”; OOImUpHBIMU “‘extensive’’; mupo-
Koro “wide”’; kpynubiMu “large”; HeorpaHUYEHHBIX
“unlimited”; 6osb1I0#t “big”; 3HAMNTEILHBIX “signifi-
cant”; GOJILIIMHCTBO “Majority”’; cepbe3HbIX “‘serious”
JeHbre “money” (sg., fem., dat.); nrennry “money” (sg.,
Spell 5 fem., acc.) ; menbra ‘money” (sg., fem., nom.); 1eHbKI
“days” (nom.)

neHbrax ‘“money” (pl., masc., prepos.); IeHbram
Morph 10 “money” (pl., masc., dat.); meapramu “money” (pl.,
masc., instr.); geser “money” (pl., masc., gen.)
omtary “payment” (acc.); B3HOCHI “fees” (nom.); Ka-
muTanga “‘capital” (gen.); crommoctm “cost” (gen.);
cpencTs “resources’ (gen.); cocrosinum ‘‘fortune”
(gen.); cymmy “sum” (acc.); 3apaboTku “earnings’
(nom.); nosutapos “dollars” (gen.); HasmaaocTu “cash”
(gen.)

SeLex-RT

orpomHuoro “huge” (sg., masc., gen.)

SeLex-RT

nenbru “‘money” (pl., gen.)

SeLex-RT | 596

Table C4: Sample confusion sets generated with each synthetic method. The tokens in the confusion set are used to
corrupt the native data by replacing occurrences of the target word with one of the tokens in the corresponding
confusion set.

_ Kak Tosibko yxosuT 3BaHme , paboTa WU JEHBIU , YXOJUT U CUJIA .
Original sentence YHOMIT P A ) YROA
As soon as your title, job or money leaves, your strength leaves, as well .
Char Kak TobjKO yxomuT 3BaHue , paboTa W J€HBIW , YXOI UT U CUJIA .
Spell Kak xespke yxoauT 3Hanue , paboTa WU JICHBI'W , YXOJST U CUJIA .
Morph Kax Tonbko yxomuT 3Banue , paboTa WA JEHbI'aMU , YXOIAIIUM U
cuia .
SeLex-RT Kak ToJIbKO yXO/uT 3BaHUE , TPY/L UJIU CPEJICTB , YXOJUT W MOIIbH .

Table C5: An example of an original well-formed sentence (top) from a monolingual Russian corpus and artificially
generated erroneous sentences (bottom), using each synthetic data generation method. Modified or replaced tokens
are underlined; deleted tokens are crossed out.
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Synth. RULEC RU-Lang8

method P R F0_5 P R F0_5
Model 1 (Baselines)

Char 50.6 21.7 40.0 | 50.5 222 40.2

Spell 66.0 313 54.0| 63.0 31.8 526

Morph 679 357 575|653 355 56.0

M+S 68.8 41.2 60.7 | 68.9 43.1 61.6

SeLex-RT 655 245 49.1 599 262 477

Model 1 (Best baselines with SeLex-RT)
M+SeLex-RT 68.7 414 60.7 | 66.7 427 59.9
M+S+SeLex-RT | 70.6 419 62.1 | 69.9 44.2 62.6
Model 2
M+S 75.1 365 620|714 365 59.9
M+S+SeLex-RT | 75.6 37.6 629 | 71.9 379 60.9

Table D6: Key results on Russian. Best Fj 5 and recall for each dataset and model are in bold. Model I denotes
models trained from scratch, while Model 2 refers to models that finetune mTS-Base. M+S stands for Morph+Spell.

Synth. UA-GEC
method P R Fys
Model 1 (baselines)

Char 577 47.0 552
Spell 66.9 503 628
Morph 575 224 438
M+S 67.0 51.8 63.3
SeLex-RT 619 450 57.6

Model 1 (Best baselines+SeLex-RT)

Spell+SeLex-RT | 68.3 53.5 64.7

M+S+SeLex-RT | 67.8 532 64.3
Model 2

Spell 73.1 429 64.1

Spell+SeLex-RT | 74.6 454 66.1

Table D7: Key results on Ukrainian. Best Fj 5 and recall for each model are in bold. Model I denotes models trained
from scratch, while Model 2 refers to models that finetune mT5. M+S stands for Morph+Spell.

Synth. RULEC RU-Lang8
method P R F0_5 P R F0_5
3 configurations of the round-trip MT method
MT only (orig) | 374 56.0 40.1 | 40.5 56.5 429

Morph+MT 654 358 56.1 | 624 39.0 557
M+S+MT 657 39.1 578|682 421 60.7
This work

M+S+SeLex-RT | 70.6 419 62.1 | 69.9 44.2 62.6

Table D8: Comparison with full-sentence round-trip translation method in Lichtarge et al. (2019).
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Synthetic Performance by error group
method Grammar Orth. Lex., morph. Other Total

P R Fos| P R Fos5| P R Fys| P R Fos5i P R Fys

Model 1 (baselines)
Spell 74.8 28.5 56.4]169.3 504 64.5|/44.0 3.7 13.8|26.7 15.2 23.2163.0 31.8 52.6
Morph 70.2 39.0 60.5|71.6 539 67.2(275 1.7 6.9|27.3 10.1 20.3|65.3 35.5 56.0
M+S 78.8 48.0 69.8|75.9 62.0 72.6/38.9 4.5 154|279 15.1 23.9(69.5 414 61.2
Model 1 (baselines+SeLex-RT)
SeLex-RT 69.0 25.2 51.2|167.2 41.3 59.7|26.6 10.5 20.3|25.2 7.5 17.1|59.9 26.2 47.7
M+S+SeLex-RT |80.6 48.2 71.1|76.5 62.4 73.2(41.3 14.2 29.9130.3 14.5 24.9]70.3 44.3 62.9
Model 2 (best baseline+SeLex-RT)
M+S 79.6 41.5 67.2|73.9 52.1 68.2|58.3 6.6 22.8(33.3 10.9 23.7|71.3 36.5 59.9
M+S+SeLex-RT |81.4 43.6 69.4|74.7 53.0 69.0/47.7 9.9 27.0132.1 10.0 22.3|71.8 37.9 60.9
Table D9: Key results by coarse error group on Russian (RU-Langs8).
Synthetic Performance by error group
method Grammar Orth. Lex., morph. Other Total

P R Fys P R Fys P R Fy; P R Fys P R Fys

Model 1 (baselines)
Spell 79.1 31.3 60.6/70.4 499 65.1|452 24 9.9|20.8 9.1 16.6/66.0 31.3 54.0
Morph 69.2 39.7 60.3|74.3 554 69.6/29.8 2.3 89|18.7 4.3 11.1|67.9 35.7 57.5
M+S 76.3 47.4 68.0/73.9 60.8 709|404 3.4 12.6(159 6.1 12.1(68.8 41.2 60.7
Model 1 (baselines+SeLex-RT)

SeLex-RT 74.5 23.7 52.1|72.8 41.0 63.0{31.8 8.3 20.3|14.2 2.8 7.9(65.5 24.5 49.1
M+S+LexRT |78.7 47.9 69.8]76.6 60.6 72.8|36.2 10.0 23.8|19.5 6.3 13.7|71.0 42.0 62.3
Model 2 (best baseline+SeLex-RT
M+S 81.3 454 70.2]78.1 50.2 70.3149.3 5.9 19.8(28.6 6.5 16.9|75.1 36.5 62.0
M+S+LexRT |81.6 45.6 70.5[79.4 52.0 71.9|50.0 8.1 24.7(29.3 69 17.7|75.6 37.6 62.9

Table D10: Key results by coarse error group on Russian (RULEC).
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machine translation.

Similarly, for GEC, Rozovskaya and Roth (2021)
generate references relative to the system outputs
and not the original texts and show that automatic
evaluation against reference golds (RGs), that is cor-
rections generated relative to the original sentences,
severely underestimates model performance. This
is because the set of possible corrections for a given
source sentence is extremely large and possibly
infinite. We expect that evaluating against closest
golds, i.e. corrections produced relative to the sys-
tem hypothesis, would give us the most realistic
evaluation of the system quality. To provide a more
accurate evaluation of the SeLex-RT component,
we apply this method to evaluate the contribution
of the SeLex-RT approach to handle lexical mis-
takes. We generate CGs for the same subset of 500
sentences for 4 system outputs — Morph, Spell, and
Morph+Spell, and Morph+Spell+SeLex-RT, fol-
lowing the same approach outlined in Rozovskaya
and Roth (2021). The annotations are generated
by one of the raters who contributed to the orig-
inal annotation of RULEC. The annotators were
compensated $25 per hour for the work. Com-
plete results are shown in Tables D12 and D13
for RULEC and RU-Lang8, respectively. The CG
annotations will be released upon paper publication.
Example comparing evaluation using reference
golds and closest golds In Table D11 we show
an example (in English) that shows two references
(ref. 1 and ref. 2). Ref. 1 is the original reference
(created relative to the source sentence) and ref. 2
is generated relative to system hypothesis.

Note that system scores (PR, Fp5) depend on
the amount of overlap between a reference and
system hypothesis. Evaluation wit closest golds
attempts to generate a reference that is as close as
possible to the system hypothesis (by producing a
reference relative to system output, and not relative
to the original sentence). Thus, evaluation with
CGs provides a more realistic evaluation of system
performance. Note that the amount of overlap
(number of correct edits) is larger for ref. 2, and
thus the FO.5 score against ref. 2 is higher (91.0)
vs. F0.5 score against ref. 1 (50.0):

D.3 Comparison to Related Work

We compare our models with prior work using the
original single-reference annotations for RULEC
and RU-Lang8 in Table D14. The top segment of the
table shows models trained in this work. The second
segment shows models that are directly comparable
to ours due to similar architectures and/or model

parameters. We outperform all models in segment 2
(with the exception of a much more powerful mT5-
Large pre-trained on 10M sentence pairs), often by
a large margin, even when we use less synthetic
data. Interestingly, a recent implementation of
tagged corruption models (Stahlberg and Kumar,
2024) (S&K’24) present a similar model to ours
but only obtains a result of 26.4 compared to 51.2
on RULEC. This suggests the importance of high-
quality synthetic data even when using pre-trained
models as a starting point in GEC.

The remaining three segments show results of
previous work broken down by the amount of gold
data used in training and fine-tuning. The special
symbols next to each model indicate the type and
amount of gold data used (explained in the table
caption). Our mT5-base result is comparable to
gT5 xxI (13B parameters, last table section); with
mT5-large, we obtain a 2-point improvement. Our
smaller seq2seq model outperforms all models of
similar sizes (section 2 in the table) that also use
RULEC training data. Sorokin (2022) uses ruGPT-
3 and RoBERTa-large. Their model is comparable
to mT5-large, in terms of parameters, but is trained
on Russian data, whereas mT5 is multilingual.

E Analysis of the SeLex-RT Method

Table D15 shows examples of errors missed by the
baseline models but corrected by models that use
the BT component.
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Source

The settings are very reallistic and the actors had a great performance .

System hypo
System edits

reallistic — realistic; had a great — had great

The settings are very realistic and the actors had great performance .

Ref. 1 (OG)

Correct edits

Evaluation against original gold (OG)

(0G) (1) reallistic — realistic

The settings are very realistic and the actors gave a great performance .
Gold edits (OG) (1) reallistic — realistic; (2) had — gave

Performance against OG|P = 50.0; R = 50.0; Fyp.5s = 50.0
Evaluation against closest gold (CG)
Ref. 2 (CG) The settings are very realistic and the actors had great performances .
Gold edits (CG) (1) reallistic — realistic; (2) had great — had a great; (3) performance —
performances
Performance against CG|P = 100.0; R = 66.0; Fyp 5 = 91.0

Table D11: Evaluation with original reference (OG) and closest gold reference (CG).

Synth. Ref. Performance
data set Grammar Lex.,morph. Total
P R Fys P R Fys P R Fys
Model 1 (Baselines)
Spell 3RGs | 82.0 33.1 633|500 34 133|759 339 6038
CG 87.1 40.0 705|667 4.0 16.1 | 85.7 433 71.6
Morph 3RGs | 68.6 38.0 59.1 |364 34 125|710 38.6 60.8
CG 83.8 51.8 746|909 84 30.7|856 508 753
M4+S 3RGs | 75.8 45.1 66.7 | 533 6.7 223|740 439 650
CG 859 574 781|750 105 337|865 569 783
Model 1 (M+S+SeLex-RT)
3RGs | 749 46.6 66.8 | 444 153 322|723 447 643
Mi+S+SeLex-RT CG 86.6 60.2 79.6 | 804 293 59.6 | 87.6 58.7 79.7

Table D12: Evaluation on RULEC with three references (RGs) and closest golds (CGs) on a 500-sentence subset for
baselines (Model 1) and the model that includes the SeLex-RT component. Best overall recall and Fj 5, as well as

best values on

the lexico-morph. errors are in bold.

Synth. Ref. Performance
data set Grammar Lex.,morph. Total
P R Fys P R Fos P R Fos
Model 1 (Baselines)
Spell 3RGs | 879 263 599 | 571 43 164 |66.0 285 523
CG 91.1 305 652 | 667 56 208|765 352 619
Morph 3RGs | 732 352 602 | 778 40 167 | 67.8 328 559
CG 82.7 43.8 70.2 | 100.0 55 225|789 415 66.8
M4S 3RGs | 849 487 739 | 643 50 190|737 405 63.3
CG 91.0 574 815 | 846 6.7 255|824 493 72.6
Model 1 (M+S+SeLex-RT)
3RGs | 847 479 734 | 424 153 31.3|72.0 42.1 63.0
MS+SeLex-RT | o5 1 917 565 81.5| 746 283 563 | 834 524 746

Table D13: Evaluation on RU-Lang8 with three references (RGs) and closest golds (CGs) on a 500-sentence subset
for baselines (Model 1) and the model that includes the SeLex-RT component. Best overall recall and Fj 5, as well

as best values

on the lexico-morph. errors are in bold.
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Model F0.5
RULEC | RU-Lang8
This work (M+S+SeLex-RT)
Model 1 (15M synth.) % 49.2 51.8
Model 2 (2M synth.)% 51.2 52.3
Previous work (similar model arch. to ours)
P&R (15M synth,, cf. 1) % 47.4 47.7
P&R (10M, mT5-Base) % 51.0 49.8
P&R (10M, mT5-Large) % 53.2 54.5
S&K mT5-Base, 2.5M % 26.4 -
S&K mT5-XXL 2.5M % 44.3 -
Rothe et al. (2021) gT5 base * 26.2 -
Néplava and Straka (2019) % 47.2 -
Flachs et al. (2021) % 44.7 -
Katsumata and Komachi (2020) % 44 .4 -
Néplava and Straka (2019) * 50.2 -
Rothe et al. (2021) gT5 xx1 4+ 51.6 -
Sorokin (2022) ‘scorer-only’ 4 53.4 -
Sorokin (2022) ‘combined’ 4 55.0 -

Table D14: Comparison with previous work for Russian, using original references. The top segment shows models
trained in this work. The second segment shows previous work with similar model architectures to ours. The
remaining segments show results obtained in previous work, broken down by the amount of gold data used. Extra
large models are grouped in the bottom segment. % refers to models that use RULEC training data for fine-tuning.
% denotes models that use RULEC training and dev data for fine-tuning; 4 denotes extra large models in terms of
parameters and native data used that also use RULEC training data. S&K stands for Stahlberg and Kumar (2024).
P&R stands for Palma Gomez and Rozovskaya (2024).

Texnosiornyeckas I'paHUIlQ 3Ha‘{I/IT?/03Ha}Ia€T I'pPaHUIly CETrOJHAINIHEr0 pa3dBUTHA TEXHOJIOTHUHA.
“Technological boundary means?/signifies the limit of today technological development.”

MHe Takzke HaJ0 OBITH BHUMATEIBHOM U IOYTUTEIBHOI U CIe0BaTh? /COBIIONATD BayKHBIE 00bIYan

“I also need to pay attention, be respectful, and follow?/observe important traditions.”

4l mposesna /1Ba rojja B Ka4eCTBE yUUTE sl aHIVIMICKOrO gA3bIKa B Kasaxcrane , ...HO s 9yBCTBYIO
dakr , 9ro y MeHsi MaJio 00y UeHus ! /3HAHUI OBITH IPENOABATEIEM .

“I spent two years as a teacher of English in Kazakhstan but I feel that I do not have enough learn-
ing?/knowledge to be a teacher.”

Ho ceromust st mouHTepecoBaiach pasHuIeil HOpM? /TIPABIII SBAKyallul MEXKLy JBYMsl aBapUsSIMU B
Oykycume u Yepnoboute . “But today I asked about the difference in the evacuation norms?/rules for
two accidents — Fukusima and Chenobyl.”

Heckomnbko? /HekoTopble n3 ux cTain auBepCudUIpPOBATh B APYTUE TPOIYKTEL...
“Some?/Several of them started changing into a different type of products...”

B Takoil cuTyanmum MOXKHO BEPHUTH TOJBKO IIPOCTBIM HYECTHBIM JIIOJIsIM , KOTOpBIE ceifdac
ecTb? /HAXOJATCS PSJIOM , & HU B KOEM CJIydae He IPABUTEJIbCTBY...

“In such a situation, one can only trust simple honest people who exist?/are there for you, and neve the
government...”

Table D15: Examples of Russian lexical errors missed by standard models but corrected by models trained on data
that includes the SeLex-RT-based confusions.
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