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Abstract

Existing pruning methods for large language
models (LLMs) focus on achieving high com-
pression rates while maintaining model perfor-
mance. Although these methods have demon-
strated satisfactory performance in handling a
single user’s compression request, their pro-
cessing time increases linearly with the number
of requests, making them inefficient for real-
world scenarios with multiple simultaneous re-
quests. To address this limitation, we propose a
Univeral Model for Customized Compression
(UniCuCo) for LLMs, which introduces a Strat-
Net that learns to map arbitrary requests to
their optimal pruning strategy. The challenge
in training StratNet lies in the high computa-
tional cost of evaluating pruning strategies and
the non-differentiable nature of the pruning pro-
cess, which hinders gradient backpropagation
for StratNet updates. To overcome these chal-
lenges, we leverage a Gaussian process to ap-
proximate the evaluation process. Since the
gradient of the Gaussian process is computable,
we can use it to approximate the gradient of
the non-differentiable pruning process, thereby
enabling StratNet updates. Experimental re-
sults show that UniCuCo is 28 times faster than
baselines in processing 64 requests, while main-
taining comparable accuracy to baselines.

1 Introduction

Large language model (LLM) compression (Ma
et al., 2023; Zhu et al., 2024; Yu et al., 2024) aims
to reduce the size and computational demands of
pre-trained models while preserving their perfor-
mance. Among commonly used techniques, prun-
ing (Frantar and Alistarh, 2023; Yin et al., 2023)
reduces the size and complexity of pre-trained mod-
els by removing less critical weights or layers while
retaining their core functionality. By employing
these techniques, LLMs can be deployed efficiently
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Figure 1: A comparison of various approaches in terms
of effectiveness and efficiency when providing pruning
strategies for compression requests.

in resource-constrained environments, such as edge
devices (Tseng et al., 2024).

In practical applications, users have diverse com-
pression requests (defined by their goals of model
size reduction while preserving performance) due
to the varying capabilities of their devices. Nu-
merous LLM pruning methods have been devel-
oped to address specific compression requests (Yin
et al., 2023; Kim et al., 2024). These methods
can be categorized into optimization-based ap-
proaches (Sieberling et al., 2024) and score-based
approaches (Men et al., 2024; Frantar and Alis-
tarh, 2023). Optimization-based approaches frame
LLM pruning as an optimization problem, utilizing
heuristic algorithms (Yu and Gen, 2010) (e.g., evo-
lutionary algorithms) to preserve the performance
of the pruned LLM under a specific compression
request. In Fig. 1, optimization-based approaches
are highly effective in maintaining performance
through iterative refinement of pruning strategies
during the search process. However, their run-
time efficiency in handling multiple compression
requests is significantly limited, as each request ne-
cessitates an independent heuristic search, leading
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to substantial time overhead. In contrast, score-
based approaches calculate importance or sensi-
tivity scores for each LLM layer, which are then
used to determine the layers to prune to meet com-
pression requests. By reusing the computed scores,
the efficiency of handling multiple compression
requests is enhanced. However, score-based ap-
proaches exhibit limited effectiveness in preserving
performance, since the pruning strategies generated
from importance scores fail to satisfy the mono-
tonicity property (Sieberling et al., 2024). Mo-
tivated by these findings, we pose the following
research question: How can we effectively and ef-
ficiently handle multiple compression requests?

To address this problem, we propose Request-
Conditional Pruning (UniCuCo) for handling mul-
tiple compression requests simultaneously. Specifi-
cally, we introduce a StratNet that maps an arbitrary
compression request to its corresponding optimal
pruning strategy, enabling the handling of diverse
requests. It is applicable for StratNet to a wide
range of pruning approaches, such as depth prun-
ing and non-uniform pruning. The challenges in
training the StratNet are twofold: First, it is diffi-
cult to balance the reduction in model size with the
preservation of performance when optimizing Strat-
Net to optimally match the user’s request. Second,
evaluating pruning strategies is computationally ex-
pensive. Third, applying pruning strategies (such
as binary masks) to the LLM is a non-differentiable
operation, which disrupts the backpropagation pro-
cess and prevents StratNet from being updated us-
ing gradient-based methods. To address these chal-
lenges, we introduce the weighted Tchebycheff
function in the optimization of StratNet, enabling
it to effectively derive a pruning strategy that opti-
mally aligns with the given request. Furthermore,
we introduce a Gaussian process estimator to eval-
uate pruning strategies, significantly reducing eval-
uation time. Since the gradient of the Gaussian
process is computable, we leverage it to restore the
parts of StratNet that are disrupted in the backprop-
agation process. Notably, we propose an alternat-
ing update scheme where the Gaussian process and
StratNet are updated in an interleaved manner. The
main contributions of this paper are as follows:

• We introduce the problem of multiple request
pruning for LLMs, which requires algorithms
to efficiently and effectively generate pruning
strategies tailored to diverse requests.

• We propose UniCuCo, a framework that maps

arbitrary compression requests to tailored
pruning strategies. UniCuCo includes a Gaus-
sian process estimator, which significantly re-
duces evaluation time of pruning strategies
and subtly solves the non-differentiable issue
in UniCuCo. Additionally, we introduce an
alternating scheme for updating the Gaussian
process and StratNet.

• Experimental results show that UniCuCo pro-
cesses 64 compression requests on the Mistral-
7B model with a speed at least 28 times faster
than optimization-based approaches, while
maintaining comparable accuracy. Mean-
while, UniCuCo achieves an average accuracy
improvement of 3% across five benchmark
datasets in a non-uniform pruning scenario
with 70% sparsity when compared with score-
based approaches on the Mistral-7B model.

2 Related Works

2.1 Depth Pruning
Depth pruning treats each transformer block as a
unit and removes entire blocks for pruning. The
most common approaches are score-based meth-
ods, which compute block importance scores and
remove those with lower scores based on a com-
pression request. For example, Weight Subcloning
(Samragh et al., 2023) is a simple yet effective
technique that transfers pre-trained model knowl-
edge to smaller variants by evaluating block im-
portance using the ratio of ℓ2 norms between out-
put embeddings with and without residual connec-
tions. Shortened LLaMA (Kim et al., 2024) mea-
sures block contribution by removing each block
from a pre-trained model and assessing its impact
on perplexity. ShortGPT (Men et al., 2024) de-
termines importance through cosine similarity be-
tween block inputs and outputs, where lower sim-
ilarity indicates higher importance. Gromov et al.
(Gromov et al., 2024) groups consecutive blocks
and evaluates their importance using cosine simi-
larity. However, according to EvoPress (Sieberling
et al., 2024), score-based approaches in depth prun-
ing are not monotonic. That is, a pruned LLM with
a higher cumulative importance score does not nec-
essarily lead to higher effectiveness in preserving
performance. To address this limitation, several
optimization-based approaches have been proposed
for depth pruning. For example, Sheared-LLaMA
(Xia et al.) introduces a mask learning phase to
identify prunable components across blocks.
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Figure 2: Flowchart of UniCuCo.

2.2 Non-Uniform Pruning

Non-uniform pruning is a more fine-grained prun-
ing scenario, where each transformer block is as-
signed a sparsity value between 0 and 1, rather
than being simply set to 0 or 1. Score-based ap-
proaches in non-uniform pruning include Wanda
(Sun et al.) and SparseGPT (Frantar and Alistarh,
2023). Wandb evaluates weight importance by
assessing their impact on the calibration dataset.
Specifically, it computes the dot product between
the absolute value of the parameter matrix and the
ℓ2 norm of the input to calculate the weight im-
portance score. SparseGPT computes the Hessian
matrix for the weights within each block and gen-
erates the corresponding mask matrix based on the
compression request. For optimization-based ap-
proaches, He et al. (He et al., 2018) and Ashok et
al. (Ashok et al., 2018) employed reinforcement
learning to guide the LLM compression process.
However, these approaches are hindered by high
computational complexity, leading to significant
time overhead when processing a single compres-
sion request. To mitigate this issue, the recent
OWL method (Yin et al., 2023) improves com-
pression efficiency by pruning LLMs using layer-
wise sparsity ratios proportional to their activation
outlier ratios. EvoPress (Sieberling et al., 2024)
formulates compression requests as constraints and
employs heuristic search to determine the sparsity
of each transformer block. Once the sparsity for
each block is determined by EvoPress, SparseGPT
(Frantar and Alistarh, 2023) is applied to perform
the sparsification of the LLM. Despite these ad-
vancements, such methods still incur significant
time costs, which are proportional to the number
of compression requests. Our work aims to effi-
ciently handle multiple requests while preserving
the effectiveness of the pruned LLM.

3 Methodology

In this section, we introduce UniCuCo for cus-
tomized compression of LLMs. Fig. 2 illustrates

the flowchart of UniCuCo. First, the core idea is
to introduce a StratNet that learns to map arbitrary
requests to corresponding pruning strategies (Sec-
tion 3.1). However, updating the StratNet requires
evaluating a large number of pruning strategies on
a calibration dataset, which is a time-consuming
process. Thus, we propose the use of a Gaussian
process to estimate the evaluation process, thereby
reducing the computational overhead of evaluat-
ing pruning strategies (Section 3.2). Finally, we
introduce methods for updating StratNet and the
Gaussian process (Section 3.3).

3.1 UniCuCo Framework
We consider a cloud server that provides pruning
strategies x ∈ Rd for diverse compression requests,
where d is the number of LLM blocks. Each ele-
ment xi ∈ [0, 1] represents the sparsity ratio of the
i-th block. If xi is binary, it corresponds to depth
pruning, whereas if xi takes a value in the contin-
uous range [0, 1], it corresponds to non-uniform
pruning. Subsequently, we define the compression
request and incorporate it into the pruning opti-
mization task. Then, we introduce StratNet and
discuss its optimization method.

3.1.1 Request Formulation
Each compression request is associated with model
size reduction and performance preservation. To
learn the pruning strategy for any given request
(i.e., the Pareto front corresponding to all requests),
we propose representing compression requests us-
ing λ ∈ R2

+, where λ1 + λ2 = 1. Each λi is used
to balance the trade-off between model size reduc-
tion and performance preservation. The set of all
requests over these objectives defines the request
space Λ = {λ ∈ R2

+ |
∑2

i=1 λi = 1}.
Given pruning strategy x, we quantify the model

size reduction objective as:

min
x

f1(x) = 1−
∑d

i=1 xi
d

, (1)

where
∑d

i=1 xi

d represents the average sparsity of
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the pruned LLM. A smaller value of f1(x) leads to
a smaller model size, as it reflects a higher sparsity.

Following (Sieberling et al., 2024), we adopt the
KL-divergence between the outputs of the pruned
and unpruned LLM to characterize performance
preservation:

min
x

f2(x) = DKL(PMx ∥PM), (2)

where PM denotes the output distribution of the
unpruned LLM, while PMx is the output distribu-
tion of the pruned LLM determined by the pruning
strategy x. f2 quantifies the discrepancy in model
outputs on the calibration dataset D, with smaller
values indicating better performance preservation.

3.1.2 StratNet
We propose a StratNet ϕθ, parameterized by θ, that
maps the request λ to the corresponding pruning
strategy x, as follows:

x = ϕθ(λ). (3)

We consider optimizing StratNet with respect to
two objectives, f1 and f2. Thus, the optimization
of StratNet is formulated as a bi-objective optimiza-
tion problem: minθ[f1(x), f2(x)]. A straightfor-
ward approach to solving this problem is to com-
pute a weighted sum of f1 and f2:

min
θ

gws(x | λ) = min
θ

2∑

i=1

λifi(x). (4)

As shown in Fig. 3, gws(·) is applicable only to
convex Pareto fronts, and not to concave ones. To
overcome this limitation, we propose the following
weighted Tchebycheff function (Miettinen, 1999):

min
θ

gtch(x | λ)=min
θ

max
i∈[2]
{λi(fi(x)− z∗i )} , (5)

where z∗i is ideal value for objective fi (i.e., the
lower bound of fi). The function gtch(·) can be
used to identify the optimal pruned strategy in dif-
ferent kinds of Pareto front.

To enable the StratNet to learn pruning strategies
for all possible requests, we optimize StratNet over
the entire request space Λ as follows:

min
θ

Eλ∼Λ [gtch(x = ϕθ(λ) | λ)] . (6)

For each sampled request λ in Eq. (6), f1(x =
ϕθ(λ)) in gtch can be directly computed by Eq.
(1). In contrast, f2(x = ϕθ(λ)) cannot be directly

Figure 3: The optimal pruning strategy x obtained using
(a) the weighted sum function and (b) the weighted
Tchebycheff function under a concave Pareto front.

computed solely from x. Its computation requires
generating the compressed model based on x and
performing inference on a calibration dataset to de-
rive its value. This introduces two key challenges.
(I) Significant computational overhead. For
each sampled compression request λ, evaluating f2
with gtch(·) is time-consuming, as it requires the
pruned LLM to perform inferences on the calibra-
tion dataset.
(II) The feasibility of updating the StratNet. The
computation of the gradient ∇θgtch is necessary
for updating the StratNet. However, computing
∇θgtch is challenging because ∇θf2 in ∇θgtch in-
volves the following chain rule:

∇θf2(x) = ∇θϕθ(λ) ·∇xMx ·∇Mxf2(x), (7)

where∇xMx cannot be computed, as the mapping
from pruning strategy x to a pruned model Mx

is a non-differentiable operation. It disrupts the
computational chain for Eq. (7).

3.2 Gaussian Process for Efficient Estimation
We introduce a Gaussian process denoted by G,
to compute f2(x) when solving problem (6). The
key idea is to use G as an estimator to approximate
f2(x) without requiring expensive inference on the
calibration dataset for new pruning strategies. This
Gaussian process can address challenges (I)–(II).
We begin by presenting the Gaussian process and
integrating it into our framework.

The Gaussian process G is defined by a mean
function µ(·) and a covariance function k(·, ·):

f̂2 ∼ G(µ(x), k(x,x)). (8)

Initially, we construct a set of C observed sam-
ples {x(c), f2(x

(c))}Cc=1. These samples are used
to train the Gaussian process, i.e., to estimate the
mean function and covariance function.

Once G is trained, it can be used for inference on
new pruning strategies. When a new pruning strat-
egy xnew = ϕθ(λ

new) is generated by StratNet
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ϕθ in problem (6), G computes the posterior mean
µ̂(xnew) and variance σ̂2(xnew) for xnew. The
posterior mean µ̂(xnew) serves as an estimate of
f2(x

new), while the variance σ̂2(xnew) quantifies
the uncertainty of this estimate. To balance explo-
ration (trying uncertain strategies) and exploitation
(focusing on good predicted performance), we in-
corporate uncertainty into the estimation of f2 for
xnew by employing criteria such as the Lower Con-
fidence Bound (LCB) or Upper Confidence Bound
(UCB). Specifically, when applying LCB, the esti-
mate of f2 for xnew is given by

f̂2(x
new) = µ̂(xnew) + κσ̂(xnew), (9)

where κ ≥ 0 is a constant used to balance posterior
mean and uncertainty. Using Gaussian process to
estimate f2 significantly reduces the computation
time from tens of seconds on the calibration dataset
to just tens of milliseconds, achieving a thousand-
fold improvement in computational efficiency and
addressing challenge (I).

Meanwhile, the Gaussian process can effectively
tackles challenge (II). The existence of Gaussian
process ensures that∇θf2(x) can be estimated:

∇θf̂2(x) ≈ ∇θϕθ(λ) · ∇xG, (10)

where ∇xG estimates ∇xf2(x) = ∇xMx ·
∇Mxf2(x). Then, when StratNet is updated, its
gradient∇θgtch can be estimated by

∇θ ĝtch(x | λ) =
{
λ1∇θf1(x) if λ1f1(x) ≥ λ2f̂2(x),

λ2∇θ f̂2(x) if λ1f1(x) < λ2f̂2(x).

In the above equation, when λ1f1(x) = λ2f̂2(x),
a subgradient is employed, given by λ1∇θf1(x).

3.3 Updating Gaussian Process and StratNet
The accuracy of the Gaussian process in estimating
f2 is crucial for optimizing StratNet. We present
StratNet’s update method and a dynamic update
approach for the Gaussian process. The Gaussian
process is updated once per epoch while StratNet
undergoes I updates per epoch. Their updates are
divided into steps (A) and (B).

(A) Initializing Gaussian process and optimiz-
ing StratNet. We randomly initialize a set of N
pruning strategies X0 = {xj}Nj=1. Next, we prune
the LLM based on X0 and compute the correspond-
ing f1 and f2 values for each pruned LLM. Here, f2
is evaluated on a calibration dataset, while f1 mea-
sures the model size reduction. Together, these val-
ues form the set F 0 = {(f1(xj), f2(x

j))}Nj=1. Fi-
nally, we train the Gaussian process G0 on the pairs

{(xj , f2(x
j))}Nj=1 by maximizing the marginal

likelihood (Rasmussen, 2003).
To optimize StratNet at the first epoch, we apply

Monte Carlo sampling to estimate the expectation
of requests in Eq. (11) and then use gradient de-
scent with I steps for optimization:

θ ← θ − η
K∑

k=1

∇θĝtch(x = ϕθ(λ
k) | λk), (11)

where K is the number of sampled requests and η
is the learning rate.

(B) Incremental Gaussian process update and
continuous StratNet update. During the t-th
epoch, stage (B) selects new samples to expand the
training dataset {Xt−1,F t−1} in epoch t − 1 of
the Gaussian process, thereby enhancing its predic-
tion accuracy. Then, the Gaussian process updates
on the increased training dataset, while StratNet is
updated according to Eq. (11).

To increase the training dataset, we first generate
a strategy candidate pool Xt

p based on StratNet. To
do this, we sample a set of C requests {λc}Cc=1

from the request space Λ. The StratNet then maps
these vectors {λc}Cc=1 into the candidate pool, i.e.,
Xt

p = {xc = ϕθ(λ
c)}Cc=1. Next, we compute

the f1 of Xt
p and use the Gaussian process to pre-

dict the f2 of Xt
p, resulting in the objective values

F̂
t
p = (f1(X

t
p), f̂2(X

t
p)).

To select a subset from candidate set {Xt
p, F̂

t
p}

that provides the maximum benefit to Gaussian pro-
cess training, we use hypervolume (HV) (Guerreiro
et al., 2021) to assess the quality of the objective set
F . HV is calculated by the area enclosed between
each point in F and a predefined reference point r:

Hr(F ) = {a ∈ R2 | ∃f ∈ F ,f ≤ a ≤ r}, (12)

where a larger value of Hr(F ) reflects a higher
quality of the set F . The key in improving the Gaus-
sian process lies in measuring the improvement
brought by adding the selected subset to the (t−1)-
th epoch training dataset {Xt−1,F t−1}. Thus, we
identify a subset {Xt

s, F̂
t
s} from {Xt

p, F̂
t
p} with

the largest hypervolume improvement (HI) for
Hr(F

t−1), as follows:

HI(F̂ t
s) = Hr(F

t−1 ∪ F̂
t
s)−Hr(F

t−1). (13)

Based on Eq. (13), Xt
s = argmaxXt

s
HI(F̂ t

s).
To add the selected Xt

s to the (t − 1)-th epoch
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Sparsity Method
Mistral-7B Llama-3-8B

Wiki2 (↓) C4 (↓) FW (↓) Avg. (↓) Latency (↓) Wiki2 (↓) C4 (↓) FW (↓) Avg. (↓) Latency (↓)
0% Dense 4.82 7.72 6.41 6.32 – 5.54 8.80 7.62 7.32 –

12.5%

Cosine (Window) 7.19 10.18 8.39 8.59 8s 13.21 19.56 14.27 15.68 9s
EvoPress 5.74 9.07 7.43 7.41 26.7m 7.68 12.33 10.20 10.07 15.4m
ShortGPT 7.19 10.18 8.39 8.59 <1s 13.21 19.56 14.27 15.68 <1s

Weight Subcloning 7.19 10.18 8.39 8.59 <1s 13.21 19.56 14.27 15.68 <1s
UniCuCo 5.93 9.39 7.67 7.66 <1s 7.42 12.03 9.80 9.75 <1s

25%

Cosine (Window) 34.94 33.7 15.08 27.91 15s 5527.47 11588.16 2388.11 6501.25 14s
EvoPress 10.35 13.44 10.63 11.47 26.2m 14.77 21.30 16.74 17.60 19.6m
ShortGPT 43.26 40.16 29.29 37.57 <1s 5527.47 11588.16 2388.11 6501.25 <1s

Weight Subcloning 43.26 40.16 29.29 37.57 <1s 5527.47 11588.16 2388.11 6501.25 <1s
UniCuCo 13.73 17.2 13.53 14.82 <1s 15.05 20.78 16.18 17.34 <1s

37.5%

Cosine (Window) 1038.98 2362 1013.9 1471.62 15s 64402.73 13833.98 3908.76 27381.82 17s
EvoPress 31.91 30.86 22.47 28.41 25.7m 66.21 80.48 53.82 66.84 15.4m
ShortGPT 2899.74 2327.1 1023.7 2083.50 <1s 64402.73 13833.98 3908.76 27381.82 <1s

Weight Subcloning 2899.74 2327.1 1023.7 2083.50 <1s 64402.73 13833.98 3908.76 27381.82 <1s
UniCuCo 42.48 36.8 25.34 34.87 <1s 76.89 98.54 55.86 77.10 <1s

50%

Cosine (Window) 3410.85 1950.6 1695.4 2352.29 10s 2054.46 1116.51 692.89 1287.95 12s
EvoPress 4148.65 2943.6 2937.8 3343.32 26.3m 496.86 396.78 261.37 385.00 13.0m
ShortGPT 2423.38 2135.4 1104.9 1887.89 <1s 1664.06 1739.99 1622.69 1675.58 <1s

Weight Subcloning 2423.38 2135.4 1104.9 1887.89 <1s 1664.06 1739.99 1622.69 1675.58 <1s
UniCuCo 235.08 148.85 120.33 168.09 <1s 983.97 632.06 447.28 687.77 <1s

62.5%

Cosine (Window) 8663.29 7568.5 8644.3 8292.01 8s 6552.93 2756.67 2839.64 4049.75 9s
EvoPress 3629.51 3039.1 2597.9 3088.83 28.1m 4711.99 4041.00 4036.07 4263.02 15.2m
ShortGPT 12539.6 10536 4755.3 9276.92 <1s 56522.08 23863.46 12350.08 30911.87 <1s

Weight Subcloning 12539.6 10536 4755.3 9276.92 <1s 56522.08 23863.46 12350.08 30911.87 <1s
UniCuCo 1846.28 1170.4 971.79 1329.49 <1s 8405.46 2173.26 1845.45 4141.39 <1s

Table 1: Depth pruning results of various methods across five sparsity levels, evaluated by perplexity (PPL) and
averaged PPL. Latency refers to the time required to handle a single compression request. The best results are
highlighted in bold, while the second-best results are underlined.

training dataset {Xt−1,F t−1} of the Gaussian pro-
cess, we need to evaluate Xt

s on the calibration
dataset, as f2 of Xt

s is still estimated by the Gaus-
sian process. To do this, we obtain the pruned
LLMs based on Xt

s, and compute their correspond-
ing f1 and f2 values, forming F t

s. The training
dataset at t-epoch is represented as {Xt,F t} =
{Xt−1 ∪Xt

s,F
t−1 ∪ F t

s}. The Gaussian process
is then updated on {Xt,F t}.

Afterwards, StratNet performs I steps of Eq.
(11) in t-epoch. The pseudocode of UniCuCo is
given in Algorithm 1 of Appendix.

4 Experiments

In this section, we validate the effectiveness and
efficiency of our proposed ReCoP against state-of-
the-art baselines in both depth pruning and non-
uniform pruning scenarios. We further analyze the
impact of different scalarization functions (i.e. Eqs.
(4), (5) and others) in Appendix B.3.

4.1 Experimental Setups
Baselines. For the depth pruning scenario, where
the pruning strategy for each layer is represented
by binary values (0 and 1), we compare our ap-
proach with several baselines. These include the
optimization-based method EvoPress (Sieberling

et al., 2024), as well as score-based methods such
as ShortGPT (Men et al., 2024), Weight Subcloning
(Samragh et al., 2023), and Sliding Window Cosine
Similarity (referred toabbreviated as Cosine (Win-
dow)) (Gromov et al., 2024). Evaluation. All com-
petitive methods use Fineweb-Edu (FW) (Penedo
et al., 2024) as the calibration data. We evaluate
perplexity on the WikiText-2 (Wiki2) (Merity et al.,
2016) and C4 (Raffel et al., 2020) datasets to mea-
sure the performance of pruned LLMs. Addition-
ally, we assess accuracy on zero-shot tasks across
a range of datasets, including WinoGrande (Sak-
aguchi et al., 2021), PiQA (Tata and Patel, 2003),
HellaSwag (Zellers et al., 2019), and both ARC-
easy and ARC-challenge (Clark et al., 2018), using
the LM Eval Harness (Gao et al., 2021).

4.2 Depth Pruning Results

From the depth pruning results in Table 1, two
key conclusions can be drawn: (I) Our pro-
posed UniCuCo outperforms the three score-based
methods by delivering pruning strategies in less
than one second, similar to the speed of the
two fastest score-based methods. Additionally,
UniCuCo significantly improves average perplex-
ity, especially as model sparsity increases. (II)
UniCuCo achieves competitive results compared
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Sparsity Method Wiki2 (↓) C4 (↓) ArcC (↑) ArcE (↑) HS (↑) PiQA (↑) WG (↑) Avg. (↑) Latency (↓)
0% Dense 4.82 7.72 48.90 79.60 60.9 80.30 73.90 68.72 –

50%

OWL 5.69 8.94 43.90 76.90 55.4 78.50 70.30 65.00 40m
EvoPress 5.48 8.69 44.88 76.85 56.46 79.16 71.35 65.74 122m
Uniform 5.68 8.93 43.70 76.70 55.70 78.40 71.00 65.10 <1s
UniCuCo 5.65 8.95 44.11 76.73 55.66 78.40 71.27 65.23 <1s

60%

OWL 7.50 11.34 38.50 71.90 46.90 75.10 70.20 60.52 40m
EvoPress 7.12 10.91 38.05 72.56 49.91 76.01 68.98 61.10 121m
Uniform 7.78 11.86 38.00 72.40 49.40 75.00 69.30 60.82 <1s
UniCuCo 7.44 11.46 39.33 72.90 49.91 75.79 69.93 61.57 <1s

70%

OWL 17.22 21.66 27.90 62.60 38.60 67.00 63.50 51.92 40m
EvoPress 9.73 14.63 33.45 67.13 43.91 72.63 65.27 56.48 120m
Uniform 23.08 30.03 27.10 60.90 36.10 65.90 59.40 49.88 <1s
UniCuCo 15.88 22.08 29.10 64.27 39.05 69.04 62.90 52.87 <1s

Table 2: Non-uniform pruning results on the Mistral-7B, evaluated at three sparsity levels, with perplexity for Wiki2
and C4 datasets, and the average zero-shot accuracy (Avg.) across the ArcC, ArcE, HS, PiQA, and WG datasets.
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Figure 4: The comparison of total time for generating
pruning strategies between UniCuCo and EvoPress as
the number of requests increases.

to optimization-based EvoPress, while maintaining
significantly shorter latency. Although EvoPress
achieves the best perplexity in six out of ten cases
across different sparsities and models, it requires
approximately 13 to 26 minutes to compute the
pruning strategy for each request. In contrast, our
proposed UniCuCo takes less than one second in
handing each request, while achieving the best re-
sults in four out of ten cases. This demonstrates
that UniCuCo not only offers fast inference but also
remains highly competitive in effectiveness.

We further compare the total time overhead (in-
cluding both model training time and latency) of
UniCuCo and EvoPress in Fig. 4. The results show
that as the number of users increases, UniCuCo out-
performs EvoPress in total time overhead. Specifi-
cally, on Mistral-7B, UniCuCo achieves 56 times
more efficiently than EvoPress when scaling to 64
requests. This is because, once the StratNet in
UniCuCo is trained, it can generate pruning strate-
gies for any request, whereas EvoPress requires
re-searching for each request.

4.3 Non-Uniform Pruning Results
In Table 2, due to the finer granularity of pruning in
Non-Uniform Pruning, the distinction between al-
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Figure 5: The impact of Gaussian process updates
on depth pruning, evaluated using adjusted perplexity
(higher values indicate better effectiveness).

gorithms is less noticeable at low sparsity, while it
becomes more significant at 70% sparsity. In addi-
tion, Table 2 shows that our proposed UniCuCo not
only achieves lower latency but also outperforms
Uniform by 0.1%, 0.7%, and 3% in average accu-
racy across three sparsities. Furthermore, while
EvoPress achieves the best average accuracy in two
out of three sparsities, it comes at a prohibitively
high time cost for handing single request. Although
OWL is more time-efficient than EvoPress, its ac-
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Figure 6: The impact of uncertainty on non-uniform
pruning across three large models, evaluated by aver-
aged perplexity and averaged zero-shot accuracy.

curacy is lower by 0.74%, 0.68%, and 4.56% at
the three sparsity levels, respectively. In contrast,
our proposed UniCuCo achieves a favorable bal-
ance, being approximately 2400 times faster than
OWL and 7000 times faster than EvoPress per re-
quest in terms of efficiency, while outperforming
OWL by an average of 0.6% in accuracy. We pro-
vide additional results for non-uniform pruning on
Llama-3-8B and Llama-2-13B in Appendix B.2.

4.4 Effects of Gaussian Process Updates

Fig. 5 presents the pruning effectiveness based
on normalized perplexity, comparing results with
and without Gaussian Process updates. Results
show that when the Gaussian Process is not dy-
namically updated, pruning effectiveness signifi-
cantly declines compared to when updates are ap-
plied. Notably, on Llama-2-13, the absence of
Gaussian Process updates leads to effectiveness
that is lower than that of the score-based method,
ShortGPT. This outcome is intuitive, as StratNet’s
performance relies on the Gaussian Process’s esti-
mation of f2. Insufficient training samples hinder
this estimation, thereby degrading the quality of
the pruning strategies generated by the StratNet.
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Figure 7: Effect of κ on Mistral-7B across two datasets.

4.5 Effects of Uncertainty Estimates

Recall that in Eq. (9), the prediction of pruning
strategies is guided the uncertainty provided by the
Gaussian process. Fig. 6 compares UniCuCo with
LCB, UCB, and no uncertainty (None) against Uni-
form and EvoPress. An interesting observation is
that ignoring uncertainty generally leads to worse
effectiveness, but it still outperforms Uniform. In
contrast, UniCuCo incorporating uncertainty, such
as LCB and UCB, delivers superior effectiveness
compared to UniCuCo (None). This is intuitively
reasonable, as LCB and UCB balance exploiting
well-understood regions with exploring areas of
higher uncertainty, thereby improving overall ef-
fectiveness. Additionally, we show the results on
the impact of the uncertainty weight κ in Fig. 7.
The results indicate that variations in κ within the
range of 0.1 to 1 have a marginal effect. However,
when κ = 2, the pruning perplexity deteriorates
as sparsity increases. This is because a larger κ
causes the Gaussian process to overly emphasize
uncertainty, neglecting the predictive mean.

5 Conclusion

In this paper, we proposed UniCuCo, an efficient
method for handling multiple compression requests
while preserving effectiveness. UniCuCo contains
a StratNet that learns to map any given request to
an optimal compression strategy. To overcome the
challenges of high computational cost and gradi-
ent incomputability in updating the StratNet, we
employ a Gaussian process to approximate updat-
ing process, thereby enabling effective learning
of the StratNet. Experimental findings indicate
that UniCuCo is at least 28 times more efficient
than optimization-based methods for processing 64
compression requests. Additionally, it achieves 3%
higher averaged accuracy in a non-uniform pruning
scenario with 70% sparsity when compared with
score-based methods.
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Limitations

Our work currently applies UniCuCo to LLMs with
54 to 80 transformer blocks, ranging from 7B to
13B parameters. The effectiveness of UniCuCo
relies on the training of the Gaussian process. As
the size of LLMs increases, with hundreds of trans-
former blocks, the fitting space for Gaussian pro-
cess training expands, and the pruning strategy di-
mension in the request space also increases. In
this context, the effectiveness of UniCuCo requires
further analysis and validation. Additionally, while
our work addresses multiple compression requests
for a single LLM, a more complex and realistic
scenario involves handling multiple compression
requests for multiple LLMs. These aspects will be
explored in future research.
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A Experimental Details

Baselines. We provide detailed descriptions of the
four baseline methods used for comparison in depth
pruning as follows:

• ShortGPT (Men et al., 2024): Blocks are
scored based on the average cosine similarity
between their input and output embeddings,
including the residual stream.

• Weight Subcloning (Samragh et al., 2023):
Blocks are scored using the ratio ||M(E)||

||M(E)+E|| ,
where E is the input embedding and M(E)
is the output of block, excluding the residual
stream.

• Sliding Window Cosine Similarity (Gromov
et al., 2024): Sets of consecutive blocks are
scored based on the cosine similarity between
the embeddings before and after the blocks,
including the residual stream.

• EvoPress (Sieberling et al., 2024): Deter-
mines whether to discard blocks under given
compression constraints using an evolutionary
algorithm.

For non-uniform pruning, all baselines and our pro-
posed UniCuCo adopt SparseGPT (Frantar and Al-
istarh, 2023) as a fast and efficient one-shot layer
pruning framework. SparseGPT generates spar-
sified blocks with varying sparsity levels across
layers. The following baselines focus on searching
for the optimal sparsity level for each layer:

• Uniform: Directly set a uniform sparsity level
for all layers and extract the corresponding
sparse model generated by SparseGPT.

• OWL (Yin et al., 2023): OWL uses Layer
Outlier Distribution (LOD) metric as a mea-
sure of layer saliency, and computes a sparsity
profile that is weighted by LOD.

For OWL, we used the same hyperparameter grid
as the original work and took the configuration
yielding the best perplexity for each model. No-
tably, EvoPress can also be applied to non-uniform
pruning.
Hyperparameters. Following the setup in (Sieber-
ling et al., 2024), the Calibration tokens and Eval-
uation tokens for the benchmark datasets are set
to 524288. The maximum number of tokens that
Mistral 7B and Llama-3-8B can process at once is

Algorithm 1 UniCuCo algorithm

1: Input: StratNet ϕθ

2: // Initialize the parameters θ and the training
dataset {X0, F 0} for the Gaussian process G

3: for t = 0 to T do
4: Training G on {Xt, F t};
5: Sampled requests {λk}Kk=1 ∼ Λ;
6: for i = 0 to I do
7: // StratNet updating
8: Update ϕθ by Eq. (11);
9: end for

10: // Gaussian process updating
11: Generating a pruning strategy pool Xt

p =

{xc = ϕθ(λ
c)}Cc=1;

12: Select a subset {Xt
s, F

t
s} based on Eq. (13);

13: {Xt, F t} ← {Xt−1 ∪Xt
s, F

t−1 ∪ F t
s};

14: end for
15: Return: ϕθ

8192, while Llama-2-13B can process up to 4096
tokens. StratNet employs a multi-layer perceptron
(MLP) architecture for training. In the process of
increasing the training set in Gaussian model train-
ing based on hypervolume contribution, the candi-
date pool size is set to C = 2240. In each epoch,
10 new samples are selected and incorporated into
the training set. To ensure a fair comparison, we set
both EvoPress and UniCuCo to run for 50 epochs
(corresponding to T = 50 in line 3 of the algorithm
1). For the StratNet in UniCuCo, the number of
iterations in each epoch is set to 1000 (correspond-
ing to I = 1000 in line 6 of the algorithm 1) with
a learning rate of 1e-3. The Matérn 5/2 kernel is
used in the Gaussian process.
Hardware Details. All experiments are conducted
on a server running Ubuntu 22.04.5 LTS, equipped
with an Intel® Xeon® Platinum 8383C CPU @
2.70GHz and two NVIDIA L40 GPUs (46GB
RAM each). All the implementations are per-
formed using the PyTorch framework.

B Additional Experiments

B.1 Results of UniCuCo on Depth Pruning for
LlaMA-2-13B

Table 3 shows that our proposed UniCuCo responds
to compression requests in less than one second
and outperforms both ShortGPT and Cosine (Win-
dow) methods in terms of perplexity, which also
respond within one second. Moreover, as sparsity
increases, UniCuCo not only achieves competitive
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Sparsity Method Wiki2 (↓) C4 (↓) FW (↓) Avg. (↓) Latency (↓)
0% Dense 4.57 6.45 5.84 5.62 –

12.5%

Cosine (Window) 5.67 8.09 6.97 6.91 16s
EvoPress 5.42 7.65 6.62 6.56 29m
ShortGPT 5.88 8.36 7.19 7.14 <1s

Weight Subcloning 5.97 8.46 7.26 7.23 <1s
UniCuCo 5.94 8.07 6.94 6.98 <1s

25%

Cosine (Window) 8.99 12.57 10.34 10.63 24s
EvoPress 7.20 9.93 8.32 8.48 28.6m
ShortGPT 17.91 19.89 15.73 17.84 <1s

Weight Subcloning 17.91 19.89 15.73 17.84 <1s
UniCuCo 10.39 13.40 10.14 11.31 <1s

37.5%

Cosine (Window) 95.98 72.35 50.46 72.93 24s
EvoPress 13.26 16.69 13.00 14.32 26.8m
ShortGPT 52.28 46.61 35.24 44.71 <1s

Weight Subcloning 52.28 46.61 35.24 44.71 <1s
UniCuCo 20.49 23.66 17.74 20.63 <1s

50%

Cosine (Window) 1124.49 649.33 316.09 696.64 17s
EvoPress 52.06 35.75 28.48 38.76 28.5m
ShortGPT 187.99 165.59 132.47 162.02 <1s

Weight Subcloning 187.99 165.59 132.47 162.02 <1s
UniCuCo 170.34 97.43 76.79 114.85 <1s

62.5%

Cosine (Window) 160231.22 5219.97 4944.90 56798.70 13s
EvoPress 4437.52 3945.83 3930.84 4104.73 23.5m
ShortGPT 1204.75 864.48 622.41 897.23 <1s

Weight Subcloning 1204.75 864.48 622.41 897.23 <1s
UniCuCo 588.07 451.34 383.87 474.43 <1s

Table 3: Depth pruning results of Llama-2-13B across five sparsity levels, evaluated by validation perplexity (PPL).
Avg. represents the averaged perplexity of three datasets.

Sparsity Method Wiki2 (↓) C4 (↓) ArcC (↑) ArcE (↑) HS (↑) PiQA (↑) WG (↑) Avg. (↑) Latency (↓)
0% Dense 5.54 7.10 50.40 80.10 60.20 79.70 72.60 68.60 –

50%

OWL 8.13 13.12 43.80 75.80 54.00 75.70 72.20 64.30 30m
EvoPress 7.64 12.53 43.94 76.18 54.92 76.17 72.14 64.67 139m
Uniform 8.05 13.07 43.60 75.70 54.20 76.10 71.70 64.26 <1s
UniCuCo 7.97 12.96 43.90 75.84 54.30 76.28 71.27 64.32 <1s

60%

OWL 12.37 18.53 38.00 70.30 47.70 72.10 68.50 59.22 30m
EvoPress 12.37 18.92 36.01 67.34 46.45 72.91 69.14 58.37 138m
Uniform 13.86 21.43 35.20 69.70 45.60 72.20 68.00 58.14 <1s
UniCuCo 13.29 20.63 36.18 69.91 46.03 72.03 68.51 58.53 <1s

70%

OWL 48.07 52.32 27.00 54.90 36.60 65.10 58.60 48.44 30m
EvoPress 24.18 31.38 30.20 61.95 40.03 68.72 62.51 52.68 138m
Uniform 85.84 98.35 22.70 49.90 31.40 62.10 54.40 44.10 <1s
UniCuCo 75.12 96.82 23.46 53.66 32.36 63.11 56.20 45.76 <1s

Table 4: Non-uniform pruning results of various methods on the Llama-3-8B model, evaluated at three sparsity
levels with validation perplexity (PPL) and zero-shot accuracy. Avg. represents the averaged accuracy of five
datasets.

results compared to the state-of-the-art method Evo-
Press but also demonstrates a significant advantage

in terms of the time overhead required to handle
compression requests over EvoPress.
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Sparsity Method Wiki2 (↓) C4 (↓) ArcC (↑) ArcE (↑) HS (↑) PiQA (↑) WG (↑) Avg. (↑) Latency (↓)
0% Dense 4.57 6.45 49.23 77.48 79.37 80.47 72.22 71.75 –

50%

OWL 5.61 8.02 45.22 77.23 56.20 77.26 72.85 65.75 114m
EvoPress 5.45 7.75 42.75 76.85 56.49 77.69 71.90 65.14 139m
Uniform 5.54 7.90 43.17 76.98 55.98 77.86 73.09 65.42 <1s
UniCuCo 5.53 7.89 43.26 76.94 56.02 77.91 73.40 65.51 <1s

60%

OWL 7.33 10.08 39.85 72.69 51.08 75.35 69.85 61.76 98m
EvoPress 7.15 9.98 39.25 73.11 50.43 75.52 70.74 61.81 138m
Uniform 8.14 11.29 38.14 72.05 48.83 74.59 69.85 60.69 <1s
UniCuCo 7.60 10.61 39.33 73.11 49.92 74.70 70.56 61.52 <1s

70%

OWL 14.57 17.95 31.31 65.28 41.53 70.57 67.09 55.16 121m
EvoPress 10.24 13.52 33.87 69.19 44.31 71.76 67.25 57.28 138m
Uniform 40.33 47.5 24.06 52.19 32.17 62.13 57.14 45.54 <1s
UniCuCo 15.85 21.13 31.23 65.66 39.71 69.31 64.64 54.11 <1s

Table 5: non-uniform pruning results of various methods on the Llama-2-13B model, evaluated at three sparsity
levels with validation perplexity (PPL) and zero-shot accuracy.

Figure 8: Contour lines of each scalarization function for a two-objective minimization problem. The while arrow
represents the request. The green curve and green points represent the Pareto front and the models obtained with
different scalarization functions, respectively.

B.2 Results of UniCuCo on Non-Uniform
Pruning for Different LLMs

Tables 4 and 5 present additional results for non-
uniform pruning. We observe that UniCuCo
achieves the same time efficiency in handling com-
pression requests as Uniform, while outperforming
Uniform in terms of average accuracy. For instance,
UniCuCo outperforms Uniform by approximately
1.6% on Llama-3-8 and by 9% on Llama-2-13B at
a sparsity of 70%. Furthermore, although UniCuCo
slightly lags behind high-demand time algorithms
like OWL and EvoPress in terms of effectiveness,
it offers an advantage in terms of time efficiency.

B.3 Impact of Scalarization Function
As mentioned in Section 3.1, our approach opti-
mizes the StratNet using a weighted Tchebycheff
scalarization function (Eq. (5)). In this subsec-
tion, we compare it with other scalarization func-
tions, such as the weight sum function (Eq. (4))
and the Penalty-based Boundary Intersection (PBI)
method. The PBI scalarization function is defined
as follows:

min
x

gpbi(x | λ) = d1 + ξd2, (14)

where d1 = ||(z∗−f(x))Tλ||
||λ|| and d2 = ||f − (z∗ −

d1λ)||. ξ > 0 represents a penalty parameter. d1
geometrically represents the distance between f(x)
and λ, indicating the degree of alignment with the
request. d2 geometrically represents the distance
between f(x) and the origin when z∗ is set to the
origin.

To facilitate the analysis of the properties of the
above scalarization functions, we present their con-
tour plots for a given white request λ in Fig. 8.
In these plots, the bluer the color, the smaller the
value of the scalarization function, indicating bet-
ter performance, while the redder the color, the
larger the value, indicating poorer performance.
Theoretically, the weighted Tchebycheff function
can find an optimal solution for any given request,
regardless of the shape of the Pareto front. How-
ever, the model obtained by weighted sum and PBI
(ξ = 0.1) cannot accurately align request under
concave Pareto fronts. For PBI (ξ = 5), the empha-
sis on aligning requests (due to the large value of ξ)
leads to neglecting the scalarization function value,
i.e., the distance from the origin. Fig. 9 illustrates
the adjusted perplexity (higher values indicate bet-
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Figure 9: Effects of different scalarization functions on
compression performance at five levels of sparsity.

ter performance), where the weighted Tchebycheff
function achieves the best results, followed by the
Weighted Sum and PBI (ξ = 0.1), with PBI (ξ = 5)
yielding the poorest performance.
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