
Findings of the Association for Computational Linguistics: ACL 2025, pages 2557–2576
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

COMPKE: Complex Question Answering under Knowledge Editing

Keyuan Cheng*,1,3,4, Zijian Kan*,1,4, Zhixian He1,5, Zhuoran Zhang1,3,
Muhammad Asif Ali2, Ke Xu4, Lijie Hu†,1,2, Di Wang†,1,2

1Provable Responsible AI and Data Analytics (PRADA) Lab
2King Abdullah University of Science and Technology

3Peking University 4South China University of Technology
5Sun Yat-sen University

Abstract

Knowledge Editing—Efficiently modifying
the knowledge in large language models has
gathered great attention. Current bench-
marks primarily use multi-hop question an-
swering to assess and analyze newly in-
jected or updated knowledge. However, we
argue that these benchmarks fail to effec-
tively evaluate how well the updated mod-
els apply this knowledge in real-life scenar-
ios, particularly when questions require com-
plex reasoning, involving one-to-many rela-
tionships or multi-step logical intersections.
To fill in this gap, we introduce a new bench-
mark, COMPKE: Complex Question An-
swering under Knowledge Editing, which in-
cludes 11,924 complex questions that reflect
real-life situations. We conduct an extensive
evaluation of four knowledge editing meth-
ods on COMPKE, revealing that their effec-
tiveness varies notably across different mod-
els. For instance, MeLLo attains an ac-
curacy of 39.47 on GPT-4O-MINI, but this
drops sharply to 3.83 on QWEN2.5-3B. We
further investigate the underlying causes of
these disparities from both methodological
and model-specific perspectives. The datasets
are available at https://github.com/
kzjkzj666/CompKE.

1 Introduction

Large language models (LLMs) have demon-
strated impressive capabilities across a variety of
real-world tasks. However, they are still prone to
producing outdated, fraudulent, or incorrect infor-
mation (Wang et al., 2023b; Zhang et al., 2024b;
Fang et al., 2023; Yao et al., 2025b,a; Yang et al.,
2025; Su et al., 2023b,a). To address this, the
field of Knowledge Editing (KE)—which focuses
on updating a model’s knowledge without costly
full-model fine-tuning—has emerged as an active
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Figure 1: (a) An example of a multi-hop question in-
volving only one-to-one sequential step-by-step rea-
soning. (b) An example of a complex problem involv-
ing one-to-many knowledge mapping, logical opera-
tions, and conditional confirmation.

area of research (Wang et al., 2023b; Zhang et al.,
2024b).

A widely adopted strategy for evaluating the ef-
fectiveness of KE methods is to test whether the
model can reproduce newly injected knowledge,
as seen in benchmarks like ZsRE (Levy et al.,
2017) and COUNTERFACT (Meng et al., 2022a).
We observe, these benchmarks focus mainly on
rote memorization and fail to assess whether the
model can effectively utilize the updated knowl-
edge in more complex, contextual scenarios. To
address this limitation, MQuAKE (Zhong et al.,
2023) introduces multi-hop question answering
(MQA) as a more rigorous evaluation, requir-
ing models to integrate and reason over multiple
pieces of information. An example in this regard
is illustrated in Figure 1, which shows a question:
“Who is the spouse of the president of U.S.?” This
question requires multiple reasoning steps: (a)
identifying who is the current president of U.S.;
and, (b) determining the president’s spouse.

Nevertheless, multi-hop question evaluation re-
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mains limited in scope and does not fully cap-
ture a model’s ability to flexibly apply newly inte-
grated knowledge. These limitations are evident in
three main aspects: (i) Linear question structure:
The questions typically follow a rigid, sequential
pattern, resulting in overly simplistic reasoning
chains that can be solved via step by step process.
(ii) One-to-one relations: Sub-questions are gen-
erally based on fact triples with strict one-to-one
relationships, which do not reflect the complexity
of real-world knowledge. In reality, many facts
involve one-to-many relations, such as “Who are
the major shareholders of a company?”, where a
single subject is associated with multiple entities.
(iii) Limited edit operations: Knowledge edits are
mostly restricted to substitutions, neglecting more
complex modifications such as additions and dele-
tions that are common in real-world scenarios.

To bridge this gap, we introduce COMPKE:
Complex Question Answering under Knowledge
Editing, a new benchmark specifically designed
for complex question answering in the con-
text of knowledge editing. Built from Wiki-
data, COMPKE contains 11,924 complex ques-
tions. As illustrated in Figure 1(b), COMPKE ad-
vances beyond existing multi-hop knowledge edit-
ing benchmarks in several key ways:
(i) Diverse question structures: Sub-questions in
COMPKE are flexibly composed to form complex
questions, incorporating logical operations, condi-
tional checks, and knowledge mapping.
(ii) One-to-many relations: The underlying fact
triples support both one-to-one and one-to-many
relationships, better reflecting the complexity of
real-world knowledge (e.g., questions involving
multiple correct answers).
(iii) Expanded capabilities: COMPKE includes a
broader range of knowledge edits, systematically
covering not only substitutions but also additions
and deletions, to more closely mirror real-world
knowledge updates.

In order to evaluate the effectiveness of KE
methods on COMPKE, we conduct an extensive
evaluation of leading KE methods on five LLMs
spanning diverse model families, encompassing
both open-source and closed-source architectures
with a range of parameter sizes. Our results re-
veal that most methods achieve only modest per-
formance on complex question answering tasks.
Further analysis across different model scales in-
dicates that parameter-based approaches tend to be

more effective for smaller models, while memory-
based methods yield better outcomes on larger
models with stronger reasoning abilities. We sum-
marize the key contributions of our work as fol-
lows:

• We introduce COMPKE, a novel KE bench-
mark that overcomes existing limitations
by incorporating diverse question structures,
one-to-many relations, and expanded edit
types.

• We comprehensively evaluate major KE
methods across five LLMs, uncovering sig-
nificant differences in their ability to handle
complex logical problems in diverse KE sce-
narios and providing an in-depth analysis of
the underlying factors.

2 Related Work

Knowledge Editing Benchmarks. KE is an es-
sential area of research for LLMs, allowing them
to update their knowledge and remain responsive
to new or changing information. To evaluate the
effectiveness of KE methods, a range of bench-
marks have been developed.

Early benchmarks such as COUNTER-
FACT (Meng et al., 2022a) focus on counter-
factual knowledge updates, while ZsRE (Levy
et al., 2017) and MzsRE (Wang et al., 2023c)
expand evaluation to zero-shot and multilingual
scenarios. ECBD (Onoe et al., 2023) investi-
gates whether newly injected facts can support
reasoning over related entities. EasyEdit (Wang
et al., 2023a) provides a unified framework for
implementing and comparing various state-of-
the-art KE approaches. More recent efforts,
including MQuAKE (Zhong et al., 2023) and
MQA-AEVAL (Ali et al., 2024), extend KE
evaluation to multi-hop reasoning tasks. TEM-
PLAMA (Zheng et al., 2023a) and ATOKE (Yin
et al., 2023) address temporal knowledge editing,
aiming to update time-sensitive information
without interfering with knowledge from other
periods.

Despite these advances, existing benchmarks
often fail to capture the full complexity of real-
world scenarios. In particular, they typically lack
support for reasoning over one-to-many relations
and for combining entities using logical operations
such as intersection and union.
Knowledge Editing Methods. Existing research
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on KE can be broadly categorized into parameter-
based and memory-based approaches.
Parameter-based methods update a model’s inter-
nal parameters to encode new or corrected knowl-
edge. Notable examples include ROME (Meng
et al., 2022a) and MEMIT (Meng et al., 2022b),
which target and modify parameters linked to
specific facts, and Transformer-Patcher (Huang
et al., 2023), which introduces new neurons to
encode edits. To address issues such as high
computational cost and catastrophic forgetting,
lightweight adaptation techniques like LoRA (Hu
et al., 2021), Prompt Tuning (Shi and Lipani,
2024), and QLoRA (Dettmers et al., 2023) have
been proposed. Despite their effectiveness for
single-fact edits, parameter-based methods often
struggle with multi-hop and complex reasoning
tasks. Additionally, they are not applicable to
closed-source models (e.g., OpenAI GPTs) that
are only accessible via APIs, and they generally
require more computational resources compared
to memory-based approaches.
Memory-based methods maintain an external
memory to store knowledge edits, retrieving
relevant information at inference time (Cheng
et al., 2024b). For example, SERAC (Mitchell
et al., 2022) combines semi-parametric edit-
ing with retrieval-augmented models, while
GRACE (Hartvigsen et al., 2022) leverages
adapters and vector matching for knowledge
modification. IKE (Zheng et al., 2023b) uses
in-context learning with stored demonstrations,
and MeLLo (Zhong et al., 2023) stores edited
facts externally, incorporating them via prompts.
PokeMQA (Gu et al., 2023) introduces a two-stage
process for question decomposition and conflict
detection, and GLAME (Zhang et al., 2024a) in-
tegrates a knowledge graph module to improve re-
trieval.

In our analysis, we find that MeLLo and
PokeMQA are particularly effective for multi-hop
reasoning. Consequently, we adopt them as base-
lines in our experiments to evaluate the generaliza-
tion of memory-based methods to complex ques-
tion answering. Additional discussion of related
work is provided in Appendix A.

3 Preliminaries
Notations. We represent the knowledge base as a
set of triples D = {(s, r, o)} ⊆ E ×R×E , where
E is the set of entities and R is the set of rela-
tions. Each triple (s, r, o) encodes a factual state-

∧
Christine

Pacific 
Heights

{San Francisco, 
Los Angeles}

Los Angeles →
{San Francisco, 
Los Angeles}

Where were the movies Christine and 
Pacific Heights filmed? 

Answer:Los Angeles→San Francisco, Los Angeles

S1 S3
Filming
Location

S5
S2 S4

Los Angeles → 
{San Francisco,
Los Angeles,
New York}

Filming
Location

Complex question

Figure 2: An example of a complex question under
knowledge editing. Knowledge editing occurs in the
first sub-question, where the filming location of Chris-
time is modified from { Los Angeles} to {San Fran-
cisco, Los Angeles, New York}.

ment indicating that the subject entity s is con-
nected to the object entity o via relation r. To ac-
commodate one-to-many relationships, we gener-
alize the knowledge instance to the form (s, r,O),
where O = {o1, o2, . . .} is a set of object entities.
For example, (Avatar, actors_are, {Worthington,
Saldana, . . .}) captures that the movie Avatar has
multiple actors.

3.1 Complex Questions
Building on the example introduced earlier, we
now formally define the notion of complex ques-
tions considered in this work. For a brief overview
of multi-hop question answering (MQA) and
MQA in the context of knowledge editing (KE),
please refer to Appendix B.1.

We represent a complex question Q as a graph-
structured reasoning problem, that is, Q = (S,L),
where S = {S1, S2, . . .} is a collection of inter-
mediate entity sets, and L = {L1, L2, . . .} is a
collection of reasoning links. Each Si ∈ S is it-
self a set of entities, i.e., Si = {s1, s2, . . .}, which
allows us to naturally capture both one-to-one and
one-to-many knowledge relations. Each Li ∈ L
denotes a reasoning link. Unlike standard rela-
tions in knowledge graphs—which simply connect
one entity si to another sj via a relation r—our
reasoning links generalize this notion to support
richer operations, including conditional confirma-
tion and logical operations, as detailed below.

Reasoning Links. We categorize the reasoning
links into two distinct categories:

(a) Knowledge-related Links: These links en-
able traversal between sets of entities, allowing the
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reasoning process to progress from one set Si ∈ S
to another set Sj ∈ S based on the underlying
knowledge base. We further distinguish the fol-
lowing types:
(i) Knowledge Mapping. Given a set Si, a knowl-
edge mapping link connects Si to the set of adja-
cent entities Sj =

⋃
s∈Si

Ar(s), where Ar(s) =
{s′ | (s, r, s′) ∈ D} denotes all entities s′ related
to s via relation r.
(ii) Condition Confirmation. Given a relation r
and a target entity s′, this link selects the subset
of entities from Si that satisfy the condition of be-
ing connected to s′ via r. Formally, Sj = {s ∈
Si | (s, r, s′) ∈ D}, i.e., all s in Si for which the
triple (s, r, s′) exists in the knowledge base. This
operation checks whether each s in Si is related to
s′ through r.

(b) Logical Links: Logical links enable the
application of set-based logical operations
over collections of intermediate entity sets
{S1, S2, . . . , Sn} ⊆ S. These operations facilitate
more expressive reasoning by combining or
filtering entities across multiple sets. The primary
logical operations considered are:
(i) Intersection. The intersection operation returns
the set of entities that are present in all input sets,
formally defined as Sj =

⋂n
k=1 Sk.

(ii) Union. The union operation aggregates all en-
tities that appear in any of the input sets, given by
Sj =

⋃n
k=1 Sk.

Example 1. Figure 2 provides an illustrative ex-
ample of a complex question involving multiple
reasoning links: “Where were the movies Chris-
tine and Pacific Heights filmed?”. The intermedi-
ate entity sets are as follows: S1 = {Christine},
S2 = {Pacific Heights}, S3 = {Los Angeles},
S4 = {San Francisco,Los Angeles}, and S5 =
{Los Angeles}. The reasoning proceeds in three
steps: (1) L1: map S1 to S3 via the filming_at
relation; (2) L2: map S2 to S4 via the same rela-
tion; (3) L3: apply a logical intersection between
S3 and S4 (S3 ∩ S4) to yield the final answer,
S5 = {Los Angeles}.

Complex Question Answering under Knowl-
edge Editing. We formalize a knowledge edit as
e = (s, r,O → O′), where the object set O asso-
ciated with subject s and relation r is updated to
a new set O′, supporting one-to-many modifica-
tions. The model is assumed to have access to the
original knowledge base D. Given a set of edits

E = {e1, e2, . . .}, we define the set of knowledge
to be removed as DE

del = {(si, ri,Oi) | ei ∈ E}
and the set of knowledge to be added as DE

add =
{(si, ri,O′

i) | ei ∈ E}. The updated knowledge
base is then given by: D′ = (D − DE

del) ∪ DE
add.

The objective is that, following the application of
edits and the resulting update of the knowledge
base to D′, the LLM is able to correctly answer
the complex question Q by utilizing the modified
knowledge.
4 COMPKE
While complex questions frequently arise in real-
world scenarios, they are insufficiently addressed
in LLM-based question answering within the
context of knowledge editing. Existing bench-
marks mainly emphasize linear multi-hop ques-
tions, which constrains their ability to assess more
intricate queries. To address this limitation, we in-
troduce COMPKE: Complex Question Answering
under Knowledge Editing. Below, we present an
overview of COMPKE and outline the key steps of
its construction process.

4.1 Dataset Construction

Overview. The workflow of data construction
process, illustrated in Figure 3, consists of six
main steps. We begin by extracting factual triples
from Wikidata. In the second step, we select rel-
evant relations and sample corresponding triples.
Third, we assemble these triples into complex
questions featuring diverse reasoning structures,
introducing edits at suitable points within the
questions. Step four involves applying counterfac-
tual modifications, followed by step five, where
we filter out conflicting instances to ensure con-
sistency. In the final step, the structured questions
are transformed into natural language. Each step
is described in more detail below.

Step 1: Collecting Relation Templates. We
begin by selecting 37 relations from Wikidata’s
List of Properties using a two-stage approach.
First, we focus on one-to-many relations (such
as family-child, book-authors, and movie-actors),
which are crucial for mapping knowledge that
connects a single entity to multiple others. Sec-
ond, we add one-to-one relations (such as country-
capital and person-hometown) that represent core
attributes of entities, supporting both direct map-
ping and conditional reasoning. To ensure the
dataset’s real-world relevance, we give preference
to relations that are frequently encountered in ev-
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Figure 3: The construction process of COMPKE.

eryday contexts. The complete set of relation tem-
plates used in COMPKE is listed in Appendix Ta-
ble 9.

Step 2: Sampling Facts. After selecting the re-
lation templates, we construct the knowledge base
D, prioritizing widely recognized facts over ob-
scure ones. We sample single-hop knowledge
triples from Wikidata based on the chosen relation
templates and rank them according to their fre-
quency of access, giving precedence to the most
commonly referenced triples. To further ensure
the relevance and recallability of the knowledge,
we utilize GPT-3.5-TURBO-INSTRUCT to filter
out facts that the model cannot recall. The result-
ing knowledge base D forms the foundation for
generating complex questions.

Step 3: Constructing Complex Questions.
Complex questions typically exhibit structured
reasoning patterns, as illustrated in Figure 2,
where knowledge mapping is often combined with
logical operations such as intersection. To sys-
tematically capture these reasoning structures, we
begin by manually curating a set of high-quality
complex questions to serve as seed examples.
From these, we abstract their underlying reason-
ing structures by removing intermediate entities,
resulting in reusable templates. These templates
are then instantiated with real-world facts from
D to generate concrete complex questions. The
instantiation process starts by randomly selecting
the leaf nodes, and then iteratively determining the
intermediate entities through logical operations or
by referencing knowledge in D, repeating this pro-
cess until all entities in the reasoning structure are
specified.

To maintain the quality and relevance of the
generated questions, we apply several filtering cri-
teria during instantiation: (i) questions that lack

a valid answer, (ii) questions where the set of in-
termediate entities is empty, and (iii) questions
in which entities participating in logical opera-
tions are of incompatible types. Representative
examples of relational structures and their instanti-
ated complex questions are shown in the Appendix
(Figure 10).

Step 4: Introducing Counterfactual Edits. To
simulate real-world knowledge updates, we intro-
duce counterfactual edits into the knowledge base.
For each complex question, we randomly select a
knowledge mapping of the form (s, r,O) and ap-
ply an edit e = (s, r,O′). In contrast to prior
benchmarks that focus solely on one-to-one rela-
tions and simple entity substitutions, our approach
supports edits on one-to-many relations, resulting
in more intricate modifications. To systematically
capture the nature of these changes, we define
three fundamental operations—addition, deletion,
and retention—which can be combined to repre-
sent any edit:
(i) Addition: Oadd = O′ \ O, where Oadd repre-
sents the set of newly added entities;
(ii) Deletion: Odel = O\O′, where Odel represents
the set of removed entities;
(iii) Retention: Oret = O ∩ O′, where Oret repre-
sents the set of retained entities.

Example 2. We provide an example of a coun-
terfactual edit involving the management of “Mi-
crosoft”: (Microsoft, managers_are, {John, Smith,
Dave} → {Smith, Eden, Keyes}). In this case,
the edit deletes {John}, retains {Smith}, and adds
{Eden, Keyes}.

Step 5: Filtering Conflicting Edits. Since the
counterfactual edits in Step 4 are introduced ran-
domly, for a batch of edits E = {e1, e2, . . . }
there may be edits corresponding to different
cases where ei = (si, ri,Oi → O∗

i ) and ej =
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E (Christine, filming location, { Los Angeles}→
{San Francisco, Los Angeles, New York})

Q i)Where were the movies Christine and Pacific Heights filmed?
ii)In which locations were both the movie Christine and
Pacific Heights filmed?
iii)What were the filming locations for both the movie Christine
and Pacific Heights?

A {Los Angeles}
A∗ {San Francisco, Los Angeles}

T (Christine, filming location,{Los Angeles})
(Pacific Heights, filming location,{San Francisco, Los Angeles})

T ∗ (Christine, filming location,{San Francisco, Los Angeles, New York})
(Pacific Heights, filming location,{San Francisco, Los Angeles})

L {Los Angeles} ∩ {San Francisco,Los Angeles} = {Los Angeles}
L∗ {San Francisco,Los Angeles,New York} ∩ {San Francisco,Los Angeles}

={San Francisco,Los Angeles}

Table 1: A case from COMPKE, illustrating the com-
ponents involved in question editing. Here, E repre-
sents the edit, Q is the natural language question, A and
A∗ denote the answers before and after editing respec-
tively. T and T ∗ are the sets of fact triples before and
after editing, which form the complex question. Addi-
tionally, L and L∗ indicate the logic operations applied
to the question before and after editing.

(sj , rj ,Oj → O∗
j ), with si = sj and ri = rj ,

but O∗
i ̸= O∗

j . This implies that conflicting facts
may exist within the same batch, which can un-
dermine the validity of the evaluation if introduced
together. To address this, we detect and group all
conflicting cases, and then randomly retain only
one instance from each group.

Step 6: Phrasing in Natural Language. Build-
ing on steps 1–5, we generate complex ques-
tions involving edits, where each question con-
sists of multiple fact triples. To enable evalua-
tion by LLMs, these structured questions are con-
verted into natural language. Specifically, for each
reasoning structure defined in Step 3, we man-
ually curate eight high-quality examples. Using
GPT-4o-mini, we then generate three natural lan-
guage variants for each structured question. Addi-
tional details on construction can be found in Ap-
pendix C.

4.2 Dataset Summary
Table 2 summarizes the distribution of our dataset
along two key axes: Edit_num and Step_num.
Here, Edit_num indicates how many triples are
edited within each complex question. The major-
ity of questions in COMPKE involve a single edit,
while a smaller proportion feature two or more ed-

#Edits 1 2 3 4 5 Total

Edit_num 9,697 1,118 998 103 8 11,924
Step_num 200 424 5,770 2,949 2,581 11,924

Table 2: Statistical Results of COMPKE.

its. Step_num captures the number of reason-
ing steps required to solve each question. Most
questions require three reasoning steps, with four-
step and five-step questions appearing less fre-
quently. This distribution highlights the predom-
inance of moderately complex questions in our
dataset, while still providing a range of multi-step
and multi-edit scenarios for comprehensive evalu-
ation.

Example 3. Table 1 provides a representative
example from COMPKE, showcasing a complex
question formed by merging two sub-questions us-
ing an intersection operation. In this example, the
edit occurs in the first sub-question, where Chris-
tine’s filming locations are modified from {Los
Angeles} to {San Francisco, Los Angeles, New
York}. As a result, San Francisco is included in
the final answer.
5 Experiments
In this section, we present a thorough evaluation
of state-of-the-art knowledge editing methods on
COMPKE. Our analysis focuses on three key as-
pects: the ability to recall newly added knowledge,
the retention of existing knowledge, and overall
accuracy. We further investigate how the perfor-
mance of these methods varies with increasing edit
batch sizes (i.e., the number of edits applied si-
multaneously). Through detailed case studies, we
identify several noteworthy phenomena, such as
overfitting in parameter-based approaches, model
collapse as batch size grows, and the omission
phenomenon observed in memory-based methods.

5.1 Experimental Settings

Language Models. We conduct experiments
using five different target LLMs corresponding
to three model families. For open source models,
we select LLAMA-3.1-8B-INSTRUCT (Ab-
himanyu Dubey et al., 2024), QWEN2.5-
3B-INSTRUCT (Team, 2024), QWEN2.5-7B-
INSTRUCT (Team, 2024). For closed source
models, we select GPT-3.5-TURBO and GPT-
4O-MINI (Achiam et al., 2023).
Baselines. For performance comparison, we
use the best performing methods for MQA un-
der KE as baselines. These include parameter-
based variants: ROME (Meng et al., 2022a),
and MEMIT (Meng et al., 2022b); and memory-
based variants: MeLLo (Zhong et al., 2023), and
PokeMQA (Gu et al., 2023). Since GPT-3.5-
TURBO and GPT-4O-MINI can only be accessed
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Model Method 1-edited 100-edited 3000-edited

Aug Ret Acc Aug Ret Acc Aug Ret Acc

QWEN2.5-3B

ROME 12.61 17.91 15.26 4.80 4.40 4.60 0.82 1.59 1.21
MEMIT 20.99 23.86 22.43 7.80 6.73 7.27 1.52 3.75 2.64
MeLLo 5.40 2.25 3.83 3.06 3.39 3.23 0.69 2.00 1.35

PoKeMQA 4.26 1.85 3.06 2.85 1.38 2.12 0.71 0.62 0.67

QWEN2.5-7B

ROME 22.82 25.09 23.96 7.50 7.98 7.74 0.73 0.98 0.86
MEMIT 29.40 27.72 28.56 24.11 24.80 24.46 1.88 2.05 1.97
MeLLo 17.78 13.38 15.58 10.35 17.32 13.84 8.98 12.59 10.79

PoKeMQA 15.59 11.41 13.50 8.17 13.67 10.92 5.04 9.15 7.10

LLAMA-3.1-8B

ROME 7.44 24.84 16.14 1.50 1.14 1.32 0.56 0.61 0.59
MEMIT 4.90 33.22 19.06 5.00 29.27 17.14 5.03 29.20 17.12
MeLLo 14.06 17.95 16.00 9.17 17.84 13.51 8.98 14.17 11.58

PoKeMQA 11.40 15.10 13.25 8.87 16.85 12.86 7.45 12.73 10.09

GPT-3.5-TURBO
MeLLo 49.21 44.88 47.05 37.10 44.09 40.60 32.61 38.58 35.60

PoKeMQA 23.20 25.15 24.18 21.47 23.28 22.38 20.20 22.20 21.20

GPT-4O-MINI
MeLLo 22.07 25.19 23.63 20.31 23.62 21.96 18.75 22.14 20.45

PoKeMQA 36.60 42.33 39.47 35.42 41.35 38.39 28.36 35.02 31.69

Table 3: Experimental results for COMPKE. We boldface the best results.
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Figure 4: Variation of Accuracy (Acc) across QWEN2.5-3B, QWEN2.5-7B, and LLAMA-3.1-8B models with
varying edit numbers. Results for GPT-3.5-TURBO and GPT-4O-MINI are provided in Appendix E.2.

through APIs, parameter-based knowledge editing
methods cannot be applied to them.

Evaluation Metrics. We use the following met-
rics for evaluation:
(i) Augment Accuracy (Aug): Measures the num-
ber of newly introduced entities that are correctly
added to the answer list after the knowledge edit,
relative to the original list.

(ii) Retain Accuracy (Ret): Quantifies the number
of entities that remain present in both the original
and edited answer lists, reflecting the model’s abil-
ity to retain unaltered knowledge.

(iii) Accuracy (Acc): Calculated as the average of
Aug and Ret, this metric provides an overall as-
sessment of the model’s capability to answer com-
plex questions following knowledge editing. De-
tailed description and mathematical formulations
of these evaluation metrics are provided in Ap-
pendix D.3.

Example 4. As illustrated in Figure 2, suppose
the original answer is {Los Angeles}, and after
editing, it becomes {San Francisco, Los Angeles}.
The Aug metric checks if the model successfully
adds the new entity ({San Francisco}) to its an-
swer, while the Ret metric evaluates whether the
model preserves the existing entity ({Los Ange-
les}) across both versions. The overall Acc score,
computed as the average of Aug and Ret, reflects
how well the model incorporates new knowledge
without losing previously acquired information.

Experiment Setup. We conduct experiments
on varying scales of knowledge edits, i.e., us-
ing a batch of k-edits at a time with k =
{1, 100, 1000, 3000}. To ensure a fair comparison
with existing memory-based methods, we use the
decomposition examples of complex questions for
MeLLo and PokeMQA, as prompts. Additional
details on the experimental setting are provided in
Appendix D.
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5.2 Experimental Results

Table 3 presents the main experimental results.
Overall, MeLLo attains the best performance in
the 1-edit scenario on GPT-3.5-Turbo, achiev-
ing an Aug score of 49.21. Comparing the dif-
ferent approaches, we find that memory-based
methods underperform on smaller models (e.g.,
QWEN2.5-3B), likely due to their dependence on
strong instruction-following and reasoning abili-
ties. Conversely, parameter-based methods are
more suitable for smaller models, but their perfor-
mance drops sharply as the number of edits in a
batch increases. Below, we analyze these trends in
greater detail.
Batch Editing (#k-edits). Figure 4 shows how
the accuracy of the four methods changes on
QWEN2.5-3B, QWEN2.5-7B, and LLAMA-3.1-
8B as the number of edits increases. Additional
results for GPT-3.5-TURBO and GPT-4O-MINI

are provided in Appendix E.2.
Our findings indicate that memory-based meth-

ods exhibit a gradual decrease in performance
as the edit batch size (k) grows. In con-
trast, parameter-based methods experience a much
steeper decline, particularly when the number of
edits surpasses a certain threshold. Notably, for
k ≥ 100, these models often lose coherence, re-
sulting in inconsistent answers and irrelevant out-
puts, as further illustrated in Appendix Figure 9.
Performance on Smaller Models. We ob-
serve that for smaller language models, such as
QWEN2.5-3B, memory-based knowledge editing
methods underperform compared to parameter-
based approaches. This performance gap can be
explained by two main reasons:
(i) Limited Instruction-Following Ability. Smaller
models often lack the advanced instruction-
following and reasoning skills required to interpret
and execute complex prompts, especially those in-
volving multi-step response planning or decompo-
sition. As a result, when memory-based methods
rely on the model to follow detailed instructions
or structured plans, these models frequently fail
to generate answers in the expected format or to
complete all necessary reasoning steps.
(ii) Difficulty Integrating Edited Knowledge. In the
process of answering complex questions, smaller
models struggle to effectively combine their in-
ternal knowledge with newly injected information
from external edits. This makes it challenging for
them to address sub-questions that require synthe-

sizing both original and updated knowledge, lead-
ing to incomplete or incorrect answers.

A concrete example of this limitation is seen
with the PokeMQA baseline, which depends heav-
ily on the model’s instruction-following capabil-
ities. PokeMQA exhibits poor performance not
only on QWEN2.5-3B but also on larger mod-
els like LLAMA-3.1-8B when those models’
instruction-following is insufficient. This under-
scores the need for decomposition mechanisms
that are robust to weaker instruction-following, es-
pecially in smaller models, as such mechanisms
are critical for achieving strong performance in
knowledge editing tasks.
Overfitting in Parameter-Based Methods. In-
terestingly, our experiments show that parameter-
based methods can achieve surprisingly high ac-
curacy on smaller models. For instance, in the
Qwen2.5-3B (1-edit) scenario, MEMIT attains an
accuracy of 22.43, far surpassing MeLLo’s 3.83.
This result is counterintuitive, as previous studies
generally find that memory-based methods gener-
alize better than parameter-based ones.

To better understand this phenomenon, we con-
ducted a detailed case analysis and discovered that
the high accuracy of parameter-based methods like
MEMIT is largely due to overfitting. After the
model’s parameters are updated with new knowl-
edge, the model tends to overproduce the newly in-
jected information, outputting it in response to any
related question—even when it is not contextually
appropriate. This behavior artificially inflates the
augmentation metric, as the model appears to re-
call the new knowledge very well, but in reality, it
is simply repeating the edited content indiscrim-
inately. Figure 8 illustrates how this overfitting
leads to a higher augmentation score, highlight-
ing a key limitation of parameter-based editing ap-
proaches on smaller models.
Omission Phenomenon. We further investigate
the performance of MeLLo by evaluating it with
the original prompt templates provided in its offi-
cial implementation. Our analysis reveals a no-
table issue: when decomposing complex ques-
tions, MeLLo’s generated plans sometimes omit
critical reasoning steps—most notably, the logical
intersection step that is essential for correctly an-
swering multi-hop questions.

This omission occurs because the original
prompt examples used to guide MeLLo’s decom-
position do not include cases that require condi-
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Figure 5: Performance comparison of MeLLo and
PoKeMQA on the MQuAKE-T, MQuAKE-CF-3k, and
COMPKE datasets on GPT-4O-MINI, with COMPKE
presenting more challenging than previous datasets.

tional confirmation operations, such as logical in-
tersections. As a result, MeLLo fails to generalize
to questions that demand these reasoning patterns,
and its decomposition plan skips necessary steps.

This finding highlights a key limitation: the ef-
fectiveness of decomposition-based methods like
MeLLo heavily depends on the diversity and rep-
resentativeness of the prompt examples. If the
prompt examples do not cover the full range of
reasoning operations needed for complex ques-
tions, the model is likely to miss important steps
during decomposition. Therefore, it is crucial to
include prompt examples that closely resemble the
structure and logic of the target questions to ensure
robust generalization.

A concrete example illustrating this omission
phenomenon is provided in Appendix Table 8.

Comparision with other Datasets. To assess the
relative difficulty of our benchmark, we compare it
with two widely used knowledge editing datasets:
MQuAKE-T and MQuAKE-CF-3k. We evalu-
ate the performance of MeLLo and PoKeMQA
on all three datasets using GPT-4o-mini as the
test model. Details about the MQuAKE datasets
and their evaluation metrics are provided in Ap-
pendix D.1 and D.3. As shown in Figure 5,
both methods achieve noticeably lower accuracy
on COMPKE compared to the MQuAKE datasets.
This result suggests that COMPKE is more chal-
lenging and better suited for evaluating the robust-
ness of knowledge editing methods on complex
questions.

6 Conclusion
In this paper, we formalize complex questions
in knowledge editing—those requiring multi-step
reasoning, logical composition, or integrating new
and existing knowledge. To rigorously evaluate
this challenging setting, we introduce COMPKE,
a benchmark designed to test current knowledge
editing methods on such questions.

Our experiments show that both parameter-
based and memory-based approaches struggle
with complex questions, often losing answer ac-
curacy due to overfitting or difficulty with multi-
step reasoning, especially in smaller models. We
analyze these failure modes, highlighting issues
like limited instruction-following, challenges in
integrating edits, and missing reasoning steps in
decomposition-based methods.

By releasing COMPKE and our evaluation
framework, we aim to spur the development of
more robust knowledge editing techniques. We
hope future work will build on our findings to
create methods that better handle the demands of
complex question answering, improving the relia-
bility of knowledge editing in large language mod-
els.
Limitations
This work poses following limitations:

• In COMPKE, edits are randomly introduced
through counterfactual modifications, which
may result in discrepancies from actual/real-
world modifications.

• The fact triples in COMPKE are restricted
to one-to-one and one-to-many relations, ex-
cluding many-to-many and many-to-one re-
lationships.
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This work directly deals with updating the capabil-
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that this work must not be used under critical set-
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A Related Work

A.1 Additional Related Work
In addition to the development of benchmarks,
recent years have seen a surge of research into
knowledge editing from multiple angles. One ma-
jor research direction seeks to uncover the un-
derlying mechanisms of knowledge editing meth-
ods via mechanistic interpretability (Zhang et al.,
2025a; Hong et al., 2024; Yang et al., 2024a;
Zhang et al., 2025b; Hu et al., 2024; Su et al.,
2025). For example, several works investigate
how knowledge is localized within model param-
eters and how edits propagate through the net-
work (Wang et al., 2024; Niu et al., 2024; Hase
et al., 2024a,b; Ferrando et al., 2024; Gupta et al.,
2024; Yao et al., 2024; Zhang et al., 2024c; Cheng
et al., 2024a). Notably, Hase et al. (2024a) demon-
strate that causal tracing—a technique often used
to identify where to intervene in a model—does
not always reliably pinpoint the optimal location
for editing. Other studies leverage computation
graphs to analyze how knowledge edits affect the
internal computations and representations of mod-
els (Yao et al., 2024).

A second line of research aims to improve the
effectiveness of knowledge editing in specific con-
texts or applications (Rozner et al., 2024; Ma et al.,
2024; De La Torre et al., 2024; Huang et al.,
2024; Deng et al., 2024; Peng et al., 2024; Cai
et al., 2024). For instance, bidirectional relation-
ship modeling has been introduced to address con-
sistency issues that arise when editing knowledge
in models that must reason about relationships in
both directions (Ma et al., 2024). Additionally,
real-time knowledge editing techniques have been
proposed to enable models to adapt quickly in dy-
namic environments where facts may change fre-
quently (De La Torre et al., 2024).

This paper specifically investigates knowledge
editing in the context of complex logical reason-
ing, an area that remains underexplored. Fur-
thermore, another important research focus is on
understanding and mitigating the side effects of
knowledge editing. Editing a model’s knowledge
can inadvertently impact unrelated facts or reason-
ing abilities, a phenomenon documented in sev-
eral recent works (Hsueh et al., 2024; Gu et al.,
2024; He et al., 2023; Hua et al., 2024; Yang et al.,
2024b; Cohen et al., 2023; Nishi et al., 2024).
These studies highlight the need for careful eval-
uation of both the intended and unintended conse-

quences of knowledge edits.

A.2 Knowledge Graph Question Answering.

Several complex question answering datasets have
been developed in the Knowledge Graph (KG)
domain, inspired by KGs’ ability to store entity-
specific information (Ali et al., 2020, 2021).
For example, ComplexQuestions (Bao et al.,
2016) assesses the ability of KG-based systems
to answer queries involving multiple constraints.
MetaQA (Zhang et al., 2018) is a multi-hop
dataset in the movie domain that includes both
textual and audio modalities, requiring reason-
ing over up to three hops. ComplexWebQues-
tions (Talmor and Berant, 2018), constructed on
the Freebase knowledge base, features complex
questions that require aggregating information
from multiple web sources. CR-LT-KGQA (Guo
et al., 2024) targets commonsense reasoning and
long-tail knowledge.

While complex question answering has been
widely explored in the knowledge graph (KG)
community, existing KGQA datasets are not di-
rectly suitable for evaluating knowledge editing
(KE) methods. This is primarily due to two fun-
damental limitations:
(i) Lack of explicit sub-question decomposition.
Most KGQA datasets do not provide the inter-
mediate sub-questions that compose a complex
question. For instance, the ComplexQuestions
dataset (Bao et al., 2016) contains only the overall
question and its final answer, omitting any break-
down into simpler reasoning steps. Similarly,
ComplexWebQuestions (Talmor and Berant,
2018) offers only a SPARQL query for each ques-
tion, which encodes the reasoning path but does
not explicitly enumerate the sub-questions. In the
context of knowledge editing, it is often necessary
to target and modify specific sub-components
of a reasoning chain. Without clearly defined
sub-questions, it becomes infeasible to perform
or evaluate fine-grained edits, as there is no direct
mapping between edits and the reasoning steps
they affect.
(ii) Insufficient reliance on model-internal knowledge.
Another key issue is that KGQA datasets typically
assume access to an external knowledge base (the
KG itself) for answering questions. As a result,
models can answer questions by retrieving facts
from the KG, rather than relying on their own
parametric (internal) knowledge. In contrast,
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knowledge editing research focuses on modifying
and evaluating the information stored within the
model itself. If a dataset requires knowledge that
the model has not already learned, or that is not
present in its parameters, then editing operations
and their evaluation become unreliable: the
model may fail to answer correctly regardless
of whether the edit was successful. To address
this, when constructing COMPKE, we carefully
filter out any knowledge instances that the model
cannot already recall, ensuring that all evaluated
edits pertain to knowledge the model actually
possesses.

In summary, the absence of explicit sub-
question structure and the lack of dependence on
model-internal knowledge make standard KGQA
datasets ill-suited for knowledge editing research.
Our dataset construction process is designed to
overcome these challenges.

B Additional Preliminaries

B.1 Multi-hop Question Answering

A multi-hop question can be represented as s1
r1−→

s2 · · ·
rn−1−−−→ sn, continuously mapping one en-

tity to another. For example. consider the
question "Who is the spouse of president of

U.S.", it an be represented as U.S.
president is−−−−−−→

Donald Trump
spouse is−−−−−→ Melania Trump.

B.2 Multi-hop Question Answering under
KE.

We use e = (s, r, o → o′) to represent a knowl-
edge edit indicating that the object entity of sub-
ject s with relation r is updated from o to o′. This
task is to solve multi-hop questions under a batch
of knowledge edits E = {e1, e2, · · · }.

B.3 MQA with Complex Question
Answering.

We consider the previously studied linear multi-
hop questions as a special case of complex ques-
tions involving continuous mapping of entity
through a series of relational links, forming a one-

way graph chain: S1
L1→ S2

L2→ · · · Ln−1→ Sn, where
n represents the number of reasoning hops. Note
that compared to complex questions, here the in-
termediate set Si only encompasses a single entity,
and Li only covers one-to-one relation mapping.

C COMPKE (Additional Details)

Figure 3 shows the process by which we con-
struct complex question. Figure 10 gives some
examples of the structures in COMPKE and the
corresponding decomposition methods. Table 7
gives the SPARQL which we used to sample facts
from WikiData. Table 6 presents the prompt used
for converting structured triples into natural lan-
guage. Figure 6 displays the distribution of rela-
tion counts across triplets in COMPKE.

D Additional Experimental Settings

D.1 MQuAKE

The existing data MQUAKE includes two
datasets: MQUAKE-CF-3K, which is based on
counterfactual editing, and MQUAKE-T, which
is based on real-world changes. These datasets
cover k-hop questions (k ∈ {2, 3, 4}), each asso-
ciated with one or more edits. Statistics are pre-
sented in Table 4.

Datasets #Edits 2-hop 3-hop 4-hop Total

MQUAKE-CF-3K

1 513 356 224 1,093
2 487 334 246 1,067
3 - 310 262 572
4 - - 268 268
All 1,000 1,000 1,000 3,000

MQUAKE-T 1 1,421 445 2 1,868

Table 4: Statistics of the MQUAKE dataset.

D.2 Baselines

ROME. ROME by Meng et al. (2022a) uses a
locate-then-edit paradigm. For a specific knowl-
edge editing, ROME employs causal tracing to
pin-point the exact layer of the MLP module
within the Transformer model architecture that en-
codes the paticular factual association. Then it will
perform a rank-one modification on the identified
layer.
MEMIT. MEMIT by Meng et al. (2022b) is an
evolution of ROME to transcend the inherent lim-
itation that ROME can only edit a single fact at a
time. At a time, MEMIT can identify and modify
multiple layers in a single pass, allowing for the
simultaneous editing of numerous facts.
MeLLo. MeLLo by Zhong et al. (2023) adopts a
strategy that alternates between planning and solv-
ing stage to solve multi-hop question. It employ
a semantic-based retrieval to retrieve relevant ed-
its, and a self-checking mechanism to enable the
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Figure 6: Relations and their frequencies in COMPKE

model to assess the relevance of edits and modifi-
cations.
PokeMQA. PokeMQA by Gu et al. (2023) is a
memory-based method that extends MeLLo and
proposes a two-stage retrieval process to enhance
the success rate of retrieving relevant edits.

D.3 Evaluation Metrics

Detailed metrics and mathematical definitions are
given below:
(i) Augment Accuracy (Aug) is used to mea-
sure whether the edited model can response added
knowledge on complex questions. The formula for
calculating Aug-Acc is as follows:

Eq∈Q(
∣∣M ′(q) ∩ Aaug

∣∣ / |Aaug|) (1)

Where M ′(·) represents the edited model, and Q
denote the datasets for complex questions, Aaug =
A′ \ A, A′ is edited answer set and A is original
answer set.
(ii) Retention Accuracy (Ret) is used to measure
whether the edited model can retain the original
knowledge on complex questions. The formula for
calculating Ret-Acc is as follows:

Eq∈Q(
∣∣M ′(q) ∩ Aret

∣∣ / |Aret|) (2)

Where Aret = A′ ∩ A.
(iii) Multi-hop Accuracy (M-Acc) is used to
measure the accuracy for multi-hop question un-
der knowledge editing(i.e.,MQuAKE). The for-
mula for calculating M-Acc is as follows:

1


∨

q∈Q
[M ′(q) = a′]


 . (3)

Where M ′(·) represents the edited model, and
Q and a′ denote the multi-hop questions and the
final-hop answers for each data, respectively.

D.4 Experiment Setup
Table 5 shows the hyperparameter settings for the
parameter-based methods. For the experiments
involving ROME and MEMIT, we utilized four
NVIDIA Tesla L20 GPUs, with 48GB of memory.
A single RTX 4090 GPU was used for MeLLo and
PokeMQA.

E Additional Experimental results

E.1 An example for overfitting phenomenon
of parameter-based methods.

Figure 8 shows an example of overfitting phe-
nomenon when MEMIT is applied to Qwen2.5-
3B.

E.2 Results for Batch Editing(#k-edits)
The results of GPT-3.5-Turbo and GPT-4o-mini
for the batch editing, i.e., varying the number of
edits (k) are presented in Figure 7.
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Figure 7: Variation of Accuracy (Acc) across GPT-3.5-Turbo and GPT-4o-mini models with varying edit numbers.

educated at

educated at
∧

Ted  Schroeder

Laurene Powell Jobs

{Stanford University, 
Glendale High School}

{University of Pennsylvania, 
Stanford University, 
The Wharton School}

{The Wharton School, 
University of Cambridge} Question: Which educational institutions did both

 Ted  Schroeder and Laurene Powell Jobs attend?
Correct Answer Before Editing: Stanford University
Correct Answer After Editing: The Wharton School
Model's Actual Output: 
The Wharton School, University of Cambridge

Figure 8: An example of MEMIT applied to Qwen2.5-3B. The correct solution should be for the model to
take the intersection of the new knowledge about Ted Schroeder’s schools {The Wharton School, University of
Cambridge} and Laurene Powell Jobs’ schools {University of Pennsylvania, Stanford University, The Wharton
School}, yielding the final answer: The Wharton School. However, the model’s output is {The Wharton School,
University of Cambridge} (i.e., the newly injected knowledge). While the correct entity The Wharton School is
correctly included in the final answer(i.e., metric Aug is judged as correct), the model after editing merely reiter-
ated the injected knowledge without performing the intersection operation. This example illustrates why the Aug
metric is overestimated.

Question: What nominations for awards do both "In America" and Christian Bale
share?
Edit Num=1:
Model Output: Both In America and Christian Bale share Golden Globe nominations.
Edit Num=100:
Model Output: Bailmailboxerials靥earable standards, and it is clear that this is a difficult
task. Can you give meCloseOperationunded(bind)care(I Lothra 1000... Crimes of the Heart
is a crime novel about the heart. The book is a satire of____ I'myncync
Edit Num=1000：
Model Output: 澍澍 greedy澍旄澍blasnown镳ley澍nown" 澍澍澍澍澍nown Cov澍 nick澍
�真爱igeltotalCount Usa澍放过澍澍放过nown镳bservable finishṇ澍澍澍不出enkoiment澍放
过ocopDAQocop放过澍放` zczeenko Usa澍enko澍放过镳澍onom

Figure 9: When the edit batch size increases, the MEMIT method outputs a large amount of gibberish after models
like Qwen-2.5-3B and other smaller models.
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ROME:
layers: [5],
fact_token: subject_last,
v_num_grad_steps: 25(for Llama-3.1-8B)||15(for Qwen2.5),
v_lr: 5e-1,
v_loss_layer: 31(for Llama-3.1-8B)||27(for Qwen2.5-7B)||35(for Qwen2.5-3B),
v_weight_decay: 1e-3,
clamp_norm_factor: 4,
kl_factor: 0.0625,
mom2_adjustment: false,
context_template_length_params: [[5, 10], [10, 10]]

MEMIT:
layers: [3,4,5,6,7,8],
clamp_norm_factor: 4,
layer_selection: all,
fact_token: subject_last,
v_num_grad_steps: 25(for Llama-3.1-8B)||15(for Qwen2.5),
v_lr: 5e-1,
v_loss_layer: 31(for Llama-3.1-8B)||27(for Qwen2.5-7B)||35(for Qwen2.5-3B),
v_weight_decay: 1e-3,
kl_factor: 0.0625,
mom2_adjustment: true,
mom2_update_weight: 15000,
mom2_dataset: wikipedia,
mom2_n_samples: 100000,
mom2_dtype: float32

Table 5: Several key hyperparameters for parameter-based KE methods

User Input: s1="Electric Dreams",r1="the crew members are",s2="Michael
Madsen",r2="siblings are"
System Output:
Who is someone that is both a member of the cast of the movie Electric Dreams and
a sibling of Michael Madsen?
Of all the cast members of the film Electric Dreams, who are also Michael
Madsen’s siblings?
Which members of the cast of the film Electric Dreams are also siblings of
Michael Madsen?

User Input: s1="Felix Sanchez",r1="educated at",s2="Maria Sanchez",r2="educated
at"
System Output:
Which schools have Maria Sanchez and Felix Sanchez both attended?
In the places where Maria Sanchez and Felix Sanchez received their education,
which schools do they have in common?
Which educational institutions did Maria Sanchez and Felix Sanchez both go to?

User Input: s1="Benoit Jacquot",r1="awards that subject was nominated
for",s2="The Public Woman",r2="awards that subject was nominated for"
System Output:
What awards have Benoit Jacquot and "The Public Woman" both been nominated for?
What nominations do Benoit Jacquot and "The Public Woman" share for awards?
What award nominations are shared by Benoit Jacquot and "The Public Woman"?

User Input: s1="Clara Agnelli",r1="siblings are",s2="Giovanni Agnelli",r2="The
founders of the company are"
System Output:
Who are both siblings of Clara Agnelli and founders of the company Giovanni
Agnelli started?
Among Clara Agnelli’s siblings, who are also recognized as the founders of the
company by Giovanni Agnelli?
Which individuals are both siblings of Clara Agnelli and acknowledged as the
founders of the company by Giovanni Agnelli?

Table 6: A prompt used for converting structured triples into natural language.
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SQL Query Description
SELECT ?object WHERE {
wd:{qid} wdt:pid ?object.
FILTER(LANG(?object) = "en").

}

This SPARQL query retrieves the object asso-
ciated with the <pid> of entity.

SELECT (COUNT(?statement) AS
?referencesCount) WHERE {
wd:{entity_id} ?p ?statement.
?statement
prov:wasDerivedFrom ?source.

}

This SPARQL query retrieves the count of ref-
erences (i.e., the number of statements that re-
fer to a source) for a specific entity. This query
is used to filters out triples with low references
counts(i.e.,unpopular entity).

SELECT ?alias WHERE {
wd:{qid} skos:altLabel ?alias.
FILTER(LANG(?alias) = "en").

}

This SPARQL query retrieves the aliases asso-
ciated with the entity,

Table 7: SPARQL Queries and Descriptions

Question: If a person is the director of both Thief and Ali, which country does
this person belong to?
Subquestion: Who is the director of Thief?
Generated answer: The director of Thief is Michael Mann.
Retrieval:The country to which Michael Mann belongs is Italy
Retrieved fact does not contradict to generated answer, so the intermediate
answer is: Italy.
Subquestion: Who is the director of Ali?
Generated answer: The director of Ali is Michael Mann.
Retrieval:The country to which Michael Mann belongs is Italy
Retrieved fact does not contradict to generated answer, so the intermediate
answer is: Italy.
Final answer: Italy

Table 8: The decomposition of a complex question by Mello did not take into account logical operations.
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educated at

Q: Which educational institutions did both Ted  
Schroeder and Laurene Powell Jobs attend?

educated at
∧

T1: Which educational institution did Ted Schroeder
attend? 
T2: Which educational institution did Laurene Powell
Jobs attend?   
T3: Logic Operation: Intersection T1 and T2.

nominated for

Q: What awards has either the film Gladiator 
or Branko Lustig been nominated for?

nominated for
∨

T1: What awards has the film Gladiator been
nominated for?
T2: What awards has Branko Lustig been nominated
for? 
T3: Logic Operation: Union T1 and T2.

crew members

Q: Who among the crew members of Mortal Kombat: 
Annihilation holds American citizenship?

T1:Who are the crew members of the movie Mortal
Kombat: Annihilation? 
T2:What is the nationality of each person in T1? 
T3:Logic Operation: Select persons from T2 whose
nationality is American. 

PhD students

Q: Which of Nikolaus Joseph von Jacquin's 
PhD students did not major in computer science?

T1: Who are the PhD students of Nikolaus Joseph von
Jacquin?
T2: What are the majors of each person in T1?
T3: Logic Operation: Select persons from T2 whose
major is not Computer Science.

language

Q: Which language spoken in Palau is the 
same as the official language of the country where 
Ball State University is located?

language
∧

located at

T1: What is the official language of Palau? 
T2: What is the location of Ball State University? 
T3: What is the official language of T2? 
T4: Logic Operation: Intersection T1 and T3. 

siblings

Q: If someone is both a sibling of Mona Simpson
and one of the founders of Apple, what is this 
person's nationality?

founders
∧

educated at

T1: Who are the siblings of Mona Simpson? 
T2: Who are the founders of Apple? 
T3: Logic Operation: Intersection T1 and T2. 
T4: What is the nationality of T3? 

sports teams

Q: Which sports teams are associated with both 
Papin and Christophe Dugarry are located in Italy?

sports teams
∧

T1: Which team has Papin been associated with?  
T2: Which team has Christophe Dugarry been
associated with?  
T3: Logic Operation: Intersection T1 and T2. 
T4: Where did each team of T3 located? 
T5: Logic Operation: Select team from T4 that are
located in Italy.

Figure 10: Some typical reasoning structure in COMPKE
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Relation Question template Cloze-style statement template

P40 Who are [S]’s children? [S]’s children are
P69 Where did [S] receive education? The university where [S] was educated is
P3373 Who are the siblings of [S]? [S]’s siblings are
P50 Who are the author(s) of [S]? (list all) The author(s) of [S] is(are)
P161 Who are the cast members of movie [S]? The cast members of movie [S] are
P112 Who are the people who founded company [S]? The people who founded Company [S] are
P54 Which organizations is [S] a member of? [S] is a member of the following organizations
P915 Where were movie [S] filmed? The movie [S] was filmed at
P37 What are the official languages of country [S]? The official languages of country [S] are
P1830 Which companies does S own? [S] owns the following companies
P6 Who are the heads of government for [S]? The heads of government for [S] are
P803 What are the professorship ranks for [S]? The professorship ranks for [S] are
P185 Who are the doctoral students of [S]? The doctoral students of [S] are
P57 Who is the director of the film [S]? The film [S] is directed by
P1411 What awards was the film [S] nominated for? The film [S] is nominated for
P1346 Who are the winners for [S] prize? The winners for [S] prize are
P286 Who are the head coaches for team [S]? The head coaches for team [S] are
P166 What awards did [S] receive? The award received by [S] are
P800 What are the notable works of [S]? The notable works of [S] are
P725 Who are the voice actors in the movie [S]? The voice actor in the movie [S] are
P655 Who are the translators of the book [S]? The translators of the book [S] are
P27 Which country is [S] a citizen of? The country to which [S] belongs is
P21 What’s [S]’s gender? [S]’s gender is
P169 Who is the CEO of company [S]? The CEO of company [S] is
P35 Who is the head of state of country [S]? The head of state of country [S] is
P26 Who is the spouse of [S]? The spouse of [S] is
P1037 Who is the director of [S]? The director of [S] is
P20 In which city did [S] die? [S] died in the city of
P551 Where does [S] live? [S] lives in the place of
P159 Where is the headquarters of company [S]? The headquarters of company [S] is located in
P17 In which country is [S] located? [S] is located in the country of
P108 Who is the employer of [S]? [S] is an employee in the organization of
P102 Which political party is [S] affiliated with? [S] is affiliated with the political party of
P937 Where does [S] work? [S] works in the place of
P140 What is the religion of [S]? [S] is affiliated with the religion of
P106 What is [S]’s occupation? [S]’s occupation is
P30 On which continent is country [S] located? Country [S] is located in the continent of
P38 What is the currency of country [S]? The currency of country [S] is
P641 Which sport is [S] associated with? [S] is associated with the sport of
P36 What is the capital of country [S]? The capital of country [S] is

Table 9: Relations we use to construct COMPKE
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