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Abstract

The tendency of Large Language Models
(LLMs) to generate hallucinations raises con-
cerns regarding their reliability. Therefore,
confidence estimations indicating the extent
of trustworthiness of the generations become
essential. However, current LLM confidence
estimations in languages other than English
remain underexplored. This paper addresses
this gap by introducing a comprehensive in-
vestigation of Multilingual Confidence esti-
mation (MLINGCONF) on LLMs, focusing on
both language-agnostic (LA) and language-
specific (LS) tasks to explore the performance
and language dominance effects of multilin-
gual confidence estimations on different tasks.
The benchmark comprises four meticulously
checked and human-evaluated high-quality
multilingual datasets for LA tasks and one for
the LS task tailored to specific social, cultural,
and geographical contexts of a language. Our
experiments reveal that on LA tasks English
exhibits notable linguistic dominance in confi-
dence estimations than other languages, while
on LS tasks, using question-related language
to prompt LLMs demonstrates better linguis-
tic dominance in multilingual confidence es-
timations. The phenomena inspire a simple
yet effective native-tone prompting strategy by
employing language-specific prompts for LS
tasks, effectively improving LLMs’ reliability
and accuracy in LS scenarios.

1 Introduction

Large Language Models’ (LLMs) susceptibility to
generating hallucinated contents incurs concerns
about unreliability in real-world applications (Ji
et al., 2023; Rawte et al., 2023). Therefore, it
becomes increasingly crucial for users to directly
ascertain how much they can trust a model’s re-
sponse. Assessing the confidence or uncertainty

* Equal contributions.
† Corresponding author.

Figure 1: Examples of generations and confidence
scores of Llama-3.1 given the same inputs in three lan-
guages in LA and LS scenarios derived from SciQ and
LSQA datasets respectively.

of a model’s output can immediately indicate the
level of reliability to users, thereby playing a key
role in developing trustworthy AI systems (Geng
et al., 2023; Kadavath et al., 2022).

However, existing research on confidence or un-
certainty estimations for LLMs has been predom-
inantly limited to English (Kadavath et al., 2022;
Lin et al., 2022; Geng et al., 2023; Tian et al.,
2023b). The dearth of confidence estimations in
languages other than English hinders users from
assessing the reliability of LLMs in non-English
scenarios, restricting the LLMs’ global deployment.
Due to the variations in the quantity and domain
coverage of pre-training corpora across different
languages, the confidence estimation ability may
also presumably vary. Therefore, the performance
of confidence estimation methods primarily devel-
oped for English remains a crucial subject for ex-
plorations when applied to other languages.

Additionally, to conduct a fine-grained investiga-
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tion of multilingual confidence estimations across
various tasks, we divide the tasks into language-
agnostic (LA) (Zhao et al., 2020) and language-
specific (LS) scenarios as in Figure 1 considering
the effects of linguistic dominance. Linguistic dom-
inance refers to that one language holds a superior
status over others within a specific social or cultural
context (Blommaert, 2010; Treffers-Daller, 2019;
Heller, 2007), can also exist in confidence estima-
tion ability on different languages. In this study,
the LS refers to the tasks that hold linguistic domi-
nance caused by the knowledge domain coverage
varying in different language training corpora, such
as questions pertaining to social, cultural, or geo-
graphical contexts for a specific language, while the
LA involves linguistic dominance mainly caused by
the quantities of training corpora, such as general
knowledge, common sense, and reasoning (Basaj
et al., 2018; Sánchez et al., 2024).

To this end, we propose a benchmark called
MLINGCONF (Multilingual Confidence) to inves-
tigate the performance of several LLM confidence
estimation methods on five languages including En-
glish, Japanese, Chinese, French, and Thai. First,
we meticulously constructed a high-quality mul-
tilingual dataset called the MlingConf dataset for
the benchmark including five datasets of different
tasks in LA and LS scenarios respectively. The LA
involves four different tasks that are widely used
in confidence estimation in English (Kuhn et al.,
2023; Xiong et al., 2024) are translated into other
four languages. We also create a language-specific
QA (LSQA) dataset for the LS scenario, including
five subsets for the investigated five languages re-
spectively. Each subset comprises QA pairs about
social culture, history, geography, and celebrity
pertaining to the specific language. To ensure the
data quality, we conduct rigorous translation consis-
tency checks to filter the failed samples and finally
employ linguistic experts for human evaluations.

Experiments are conducted on three major
LLM confidence estimation methods including
probability-based (Vazhentsev et al., 2023; Varsh-
ney et al., 2023) and prompt-based confidence esti-
mations (p(True) (Kadavath et al., 2022) and self-
verbalize (Lin et al., 2022; Xiong et al., 2024)) us-
ing the curated five multilingual datasets on several
LLMs. We evaluate the confidence estimation abil-
ity and calibration using AUROC and ECE. Results
on LA tasks suggest that prompt-based confidence
estimations are preferable on LLMs with stronger
instruction-following abilities, and English exhibits

linguistic dominance. Results on the LS task reveal
a pronounced phenomenon of language dominance,
indicating that, for questions related to specific lin-
guistic contexts, utilizing the respective languages
yields the highest accuracy and confidence esti-
mation performance. This observation inspires a
native-tone prompting strategy: whereby, in the
LS task, the relevant linguistic background of the
question is first assessed, and then the correspond-
ing language is employed to generate the response.
Compared to the use of any single language, this
approach leads to significant improvements in both
accuracy and confidence estimations. Furthermore,
we employ and generalize on extended confidence
estimation methods and languages for both LS and
LA tasks. The results further complete and enhance
the above findings and analysis to the benchmark.

The contributions are summarized as follows:
• To the best of our knowledge, the MLING-

CONF first proposes to investigate multilingual con-
fidence estimations with intricately constructed and
expert-checked MlingConf datasets for both LA
and LS scenarios, serving as a valuable benchmark
for future works of reliable multilingual LLMs 1.
• Experiments conducted on MlingConf datasets

present valuable findings about confidence estima-
tion uses in multilingual scenarios, language dom-
inance effects of English on LA tasks, and query-
related languages on LS tasks respectively.
• Based on the observed linguistic dominance

on LS tasks, we propose a native-tone prompting
strategy, which significantly enhances the reliabil-
ity and accuracy compared to the use of any single
language prompts for LS tasks.

2 MlingConf Dataset

Owing to the lack of multilingual resources to com-
prehensively exhibit confidence estimation across
diverse languages, we construct a high-quality mul-
tilingual dataset called MlingConf dataset encom-
passing five languages: English (en), Japanese (ja),
Chinese (zh), French (fr), and Thai (th). Specifi-
cations of the language selection in consideration
of language family and resource level are demon-
strated in Appendix A. The MlingConf dataset in-
cludes four tasks for the language-agnostic (LA)
scenario and one task for the language-specific (LS)
scenario. We specify the data source and construc-
tion process of the MlingConf dataset in Sec. 2.1

1The codes and the MlingConf datasets have been released on
https://github.com/AmourWaltz/MlingConf.
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Figure 2: Three stages of MlingConf dataset construction.

and 2.2 respectively. Further dataset details and
statistics can be referred to Appendix B.

2.1 Data Source

Language-Agnostic (LA) Tasks For LA tasks,
we employ the following four datasets that are
widely used for confidence estimations in English
(Kuhn et al., 2023; Xiong et al., 2024). The datasets
include 1) TriviaQA (TVQA) (Joshi et al., 2017)
of closed-book trivia question-answering pairs to
gauge models’ factual knowledge; 2) GSM8K
(Cobbe et al., 2021) for arithmetic reasoning task
of math problems; 3) CommonsenseQA (CSQA)
(Talmor et al., 2019) of multiple-choice QA pairs
requiring different types of commonsense knowl-
edge; 4) SciQ (Johannes Welbl, 2017) requiring
scientific professional knowledge. All the datasets
are pre-processed in standard QA format.

Language-Specific (LS) Tasks We create
Language-Specific QA (LSQA) dataset pertain-
ing to language-dominant knowledge covering
specific social, geographical, and cultural language
contexts for the UK & US, France, China, Japan,
and Thailand respectively. We prompt GPT-4
(OpenAI, 2023) 2 to generate 200 questions
pertaining to only one specific language contexts

2https://platform.openai.com/docs/api-reference

as a language-specific subset. As demonstrated in
Figure 11, for example, all questions in Japanese
subset pertain to Japanese social culture, history,
geography, celebrities, etc.

2.2 Dataset Construction
The construction of the MlingConf dataset in this
study follows an elaborate three-stage procedure as
delineated in Figure 2.

Stage 1 The QA samples derived from the above
datasets are translated into four languages (ja, th,
zh, and fr) through GPT-4 (OpenAI, 2023).

Stage 2 We check the consistency of five trans-
lated results by comparing the semantic equiva-
lence in pairs in C2

5 = 10 times for each sample.
The samples with more than 2 times semantic in-
equivalence are treated as noisy data and then fil-
tered. The changes of samples before and after con-
sistency check and filter are in Table 2 and more
clean multilingual datasets are obtained. More-
over, we present the number of samples for each
language-specific LSQA subset as in Table 3.

Stage 3 Finally, we employ several experts ma-
joring in linguistics to examine the translation per-
formance across 50 randomly selected samples as
shown in Table 1. Given the dataset obtained af-
ter Stage 2, we randomly select 50 samples from
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each test set and send them to language experts.
Each language expert is required to evaluate the
translation results of their respective specialized
language in each sample, determining whether the
translation is correct (returning 1 for correct and 0
otherwise). We calculate the translation accuracy
for each language in each test set and present the re-
sults in Table 1. Human evaluation results suggest
the obtained multilingual datasets are high-quality
for further experiments.

For all generations of MlingConf dataset con-
struction, the temperature T is set to 0. The transla-
tion and semantic equivalence comparison prompts
are presented in Appendix C.

Lang. TVQA GSM8K CSQA SciQ LSQA
zh 96% 100% 100% 98% 100%
ja 98% 100% 98% 96% 100%
fr 100% 100% 100% 98% 100%
th 96% 100% 98% 94% 100%

Table 1: Translation accuracy evaluated by linguistic
experts on 50 randomly selected samples.

TVQA GSM8K CSQA SciQ LSQA
Before 2000 1319 1221 1000 1000
After 1238 1318 1152 640 857

Table 2: Number of samples before and after consis-
tency check and filter.

LSQA en zh ja fr th Total
185 172 167 179 154 857

Table 3: Statistics of samples for each language-specific
subset of the LSQA dataset.

3 Experimental Settings

3.1 Confidence Estimation Methods
In this part, we investigate three confidence estima-
tion methods primarily used in English for LLMs
as in Figure 15. These methods will be also con-
ducted in our multilingual settings. Specifically, we
denote Conf(x,y) as the confidence score associ-
ated with the output sequence y = [y1, y2, . . . , yN ]
given the input context x = [x1, x2, . . . , xM ].

Probability-based Confidence (Prob.): The
probability-based confidence is estimated by cal-
culating the joint token-level probabilities over y
conditioned on x. As longer sequences are sup-
posed to have lower joint likelihood probabilities

that shrink exponentially with length, we calcu-
late the geometric mean by normalizing the output
token probabilities which are represented as:

Conf(x,y) =

(
N∏

i

p(yi|y<i,x)

) 1
N

(1)

p(True)-based Confidence (p(True)): The
p(True) confidence score is implemented by
simply asking the model itself if its first proposed
answer y to the question x is true (Kadavath et al.,
2022), and then obtaining the probability p(True),
which can implicitly reflect self-reflected certainty.

Self-verbalized Confidence (Verb.): As LLMs
possess good self-reflection and instruction-
following abilities, recent works pay particular
attention to linguistic confidence via prompting
LLMs to express certainty in verbalized numbers
or words (Lin et al., 2022; Xiong et al., 2024). We
adopt verbalized numerical probability in token-
level space as LLM’s confidence estimation.

The multilingual prompts for p(True) and Verb.
are in Appendix C.

3.2 Evaluation Metrics

Accuracy (Accu.) We employ a string-matching
approach to evaluate the accuracy of generated an-
swers y and compare them with the ground truth ŷ.
Although exact matching (EM) of y ≡ ŷ is widely
used on GSM8K and CSQA, it always misjudges
some correct answers with slight differences on
closed-book QA tasks, to better assess the result
accuracy (Accu.), we replace EM with a variant
called positive-recall exact matching (PREM) of
y ∈ ŷ ∨ ŷ ∈ y. Comparisons of several EM vari-
ants we tested as well as human evaluations are
presented in Appendix D.

Area Under the Receiver Operator Character-
istic Curve (AUROC) AUROC assesses the ef-
fectiveness of confidence estimation (Filos et al.,
2019) by quantifying how likely a randomly chosen
correct answer possesses a higher confidence score
than an incorrect one, yielding a score in range of
[0, 1], implemented by sklearn toolkit 3.

Expected Calibration Error (ECE) ECE
gauges the calibration performance which indi-
cates how well a model’s predicted confidence
3https://github.com/scikit-learn/scikit-
learn/blob/main/sklearn/metrics/_ranking.py
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Conf. en zh ja fr th Avg.
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

TVQA on GPT-3.5
Prob. 76.51 24.36 78.39 32.95 76.90 28.14 72.14 27.39 74.30 40.17 75.65 30.60

p(True) 79.64 18.25 82.34 22.94 84.50 29.06 80.59 20.90 81.22 40.87 81.66 26.40
Verb. 80.32 16.52 81.76 24.32 84.61 34.49 83.47 26.53 86.72 38.19 83.38 28.01

TVQA on Llama-3.1
Prob. 80.74 10.72 80.41 40.39 88.75 26.24 79.05 20.38 89.59 36.77 83.71 26.90

p(True) 68.98 18.35 68.10 38.19 52.69 37.85 62.00 22.04 60.55 37.01 62.66 30.69
Verb. 77.18 24.73 63.50 37.64 68.91 34.27 69.90 25.44 73.22 40.19 70.54 32.45

GSM8K on GPT-3.5
Prob. 54.79 26.48 58.49 27.19 57.09 29.46 57.38 37.29 61.73 41.77 57.90 32.44

p(True) 65.25 31.88 62.74 28.65 69.75 19.03 60.14 39.08 61.45 49.88 63.87 33.70
Verb. 62.34 22.17 59.25 28.91 58.34 26.71 66.65 25.14 54.02 45.63 60.12 29.71

GSM8K on Llama-3.1
Prob. 65.69 22.33 66.37 21.92 69.73 35.69 61.07 29.56 63.22 28.51 65.22 27.60

p(True) 61.64 14.49 65.83 17.39 71.40 11.26 57.04 8.02 57.31 12.90 62.64 12.81
Verb. 57.00 50.05 63.04 42.89 58.93 45.33 54.45 35.31 55.30 34.94 57.75 41.70

CSQA on GPT-3.5
Prob. 59.06 24.45 55.92 38.30 48.01 50.60 55.33 31.12 48.21 41.71 53.31 48.18

p(True) 67.13 19.65 58.64 27.08 65.23 19.24 66.33 23.43 59.96 34.47 63.46 24.77
Verb. 69.60 16.84 54.30 21.54 68.34 19.84 61.87 21.81 68.93 21.71 64.73 24.35

CSQA on Llama-3.1
Prob. 78.06 13.64 64.91 36.33 75.65 30.11 66.12 19.72 77.65 42.18 72.47 28.40

p(True) 56.25 34.04 64.24 36.82 66.60 40.32 59.34 27.72 58.07 29.91 60.90 33.76
Verb. 62.42 28.16 54.61 28.84 61.06 37.85 57.97 23.96 71.91 37.15 61.39 31.19

SciQ on GPT-3.5
Prob. 69.50 32.23 71.29 35.63 78.28 47.06 72.66 34.85 75.13 56.17 73.37 41.19

p(True) 72.06 23.15 76.18 30.44 80.16 36.18 71.30 37.85 68.29 41.25 73.60 33.77
Verb. 70.18 20.80 75.50 37.59 77.89 30.33 69.31 32.47 74.85 41.15 73.55 32.47

SciQ on Llama-3.1
Prob. 74.14 13.40 72.09 32.26 74.48 34.21 77.45 22.76 77.61 36.10 75.15 27.75

p(True) 62.38 19.28 64.89 37.01 58.92 36.47 61.01 10.72 51.90 41.06 59.82 28.91
Verb. 62.65 24.10 52.90 32.94 69.10 39.15 59.30 24.92 65.93 40.67 61.98 38.36

Avg. (TVQA, GSM8K, CSQA, SciQ) on GPT-3.5
Prob. 64.96 26.88 66.02 33.51 65.07 38.71 64.37 32.66 64.88 44.95 65.06 35.34

p(True) 70.38 23.23 69.97 27.27 74.91 25.87 69.59 30.31 67.73 41.61 70.65 29.66
Verb. 70.61 19.01 67.70 28.09 72.29 27.84 70.32 26.48 71.13 36.67 70.45 28.64

Overall 68.68 23.04 67.90 29.65 70.75 30.84 68.10 29.82 67.90 41.08 68.66 30.89
Avg. (TVQA, GSM8K, CSQA, SciQ) on Llama-3.1

Prob. 74.88 15.02 70.94 32.72 77.15 31.56 70.92 23.10 77.01 35.89 74.14 27.66
p(True) 62.31 21.54 65.76 32.21 62.40 31.47 59.59 17.12 56.95 30.22 61.51 26.54

Verb. 64.81 31.76 58.51 35.57 64.50 39.15 60.40 27.40 66.59 38.23 62.92 35.93
Overall 67.26 22.77 65.10 33.55 67.97 34.06 63.72 22.58 66.85 34.78 66.19 29.38

Table 4: Experimental results of AUROC (ARC.) and ECE of three confidence estimation methods on four LA
datasets on GPT-3.5 and Llama-3.1.

matches its actual accuracy (Guo et al., 2017a). For
an expected well-calibrated AI system, samples
x with confidence of q should also have an
average accuracy of q on predictions y where
P (y = ŷ|Conf(x,y) = q) = q with ECE=0.
ECE is essential for reliable AI systems on
prediction tasks like weather forecasting. The
smaller the ECE value, the better. Details of the
ECE calculation are presented in Appendix D.

3.3 Implementation Details

Experiments are conducted on GPT-3.5-Turbo-
0125 (GPT-3.5) and Llama-3.1-8B-Instruct (Llama-
3.1) 4 (AI@Meta, 2024). We only present the
results of the current most commonly used com-
mercial GPT-3.5 and open-source Llama-3.1 in the
main part and leave the results on some other LLMs

4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

in Appendix E. Few-shot prompts containing Nf

examples are utilized for answer generation with
greedy decoding which outperforms temperature
decoding on knowledge tasks (Song et al., 2024).
Nf is set to 8 for GSM8K and 4 for others.

4 Experiments on LA Tasks

To comprehensively investigate LLMs’ multilin-
gual confidence estimations on LA tasks, as pre-
sented in Table 4 and Figure 3, experiments are con-
ducted to observe performances varying in different
confidence estimation methods and languages in
Sec. 4.1 and 4.2 respectively.

4.1 Results regarding Different Confidence
Estimations on LA Tasks

Findings: Applying prompt-based confidence
estimations is preferable in multilingual tasks

2539

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct


Figure 3: Experimental results of Accuracy on four LA datasets on GPT-3.5 and Llama-3.1.

for LLM with stronger instruction-following
ability. The probability method performs better
confidence estimations on relatively weak LLM.
The findings provide a direct takeaway about se-
lecting optimal confidence estimations of LLMs
in multilingual scenarios. In Table 4, we high-
light the supreme performance in bold among the
three methods for each column of each dataset. On
GPT-3.5, both p(True) and Verb. yield the supe-
rior performances than Prob. across all languages
averaged on four datasets (ARC.: 70.65, 70.45
vs. 66.02; ECE: 29.66, 28.64 vs. 35.34). p(True)
and Verb. have comparable performance in ARC.
scores, while Verb. is better calibrated. In contrast,
Prob. shows superior performance than p(True)
and Verb. and performs more stable on Llama-3.1
(ARC.: 74.14 vs. 61.51 and 62.92; ECE: 27.66
vs. 26.54 and 35.93). p(True) demonstrates better
calibration results on languages other than English.

Analysis: In Table 4, the performance differ-
ences between two LLMs can be attributed to
that GPT-3.5’s strong instruction-following abil-
ities benefit the prompt-based multilingual confi-
dence estimation methods Verb. and p(True), but
leading to over-confidence in output token probabil-
ities. In contrast, Llama-3.1 cannot stably generate
verbalized confidence scores and perform relatively
weak instruction-following abilities, but maintain
well-calibrated likelihood probabilities during the
pre-training stage for all languages.

4.2 Results regarding Different Languages on
LA Tasks

Findings: Linguistic dominance is manifested
in English with superior confidence estima-
tion performances on LA tasks for multilin-
gual LLMs. Prior works only validate the effi-
cacy of prompt-based confidence estimations in
English. Our findings indicate that the methods
are also preferable in other languages and perfor-
mances fluctuate in different languages. In Table
4, ARC. scores are less fluctuating across differ-
ent languages while ECE in English (23.04 and
22.77) performs better than in other languages on
both GPT-3.5 and Llama-3.1. We also report the
accuracy on LA datasets in Figure 3. English con-
sistently performs better across all datasets exclu-
sively GSM8K. Generally, prompting in English
outperforms others, hence responding in English on
LA tasks can be adequately credible and accurate
where linguistic dominance is leading in English.

Analysis: Despite the powerful multilingual ca-
pacity of LLMs, discrepancies exist in the quantity
of distinct linguistic training corpora available for
each language. Results in Table 4 suggest that ARC.
is a metric not significantly related to language us-
age in LLMs, while the strong performance of ECE
in English can be attributed to the extensive training
corpus or calibrations conducted during training in
English. As the only middle-resource language,
Thai exhibits a notably lower level of reliability
compared to the other high-resource languages.
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Figure 4: Experimental results of AUROC and ECE of three confidence estimation methods on five language-specific
subset of LSQA using Llama-3.1.

Considering consistency check in Table 2, the
lowest filter rate in GSM8K translation indicates
that mathematical reasoning tasks are minimally af-
fected by language bias. As a result, accuracy fluc-
tuations across different languages on GSM8K are
relatively small. For that Chinese exhibits slightly
superior mathematical capabilities compared to En-
glish on GSM8K on both GPT-3.5 and Llama-3.1
(Accu. 48.09 and 63.96), it is hypothesized that
pre-training corpora contain a substantial amount
of Chinese mathematical problems.

Figure 5: Experimental results of Accuracy on five
language-specific LSQA subsets using Llama-3.1.

5 Experiments on LS Task

For the LS task, we present the confidence esti-
mation results on five language-specific subsets

of LSQA in Figure 4 and 5 in Sec. 5.1. Based
on the findings, we then propose a Native-Tone
Prompting (NTP) strategy to better leverage lin-
guistic dominance to improve the LLMs’ reliability
and accuracy on LS task in Sec. 5.2.

5.1 Results of Different Language-specific
Subsets on LS Task

Findings: Applying prompts in query-related
language demonstrates linguistic dominance
with better multilingual confidence estimations
on LS task. In Figure 4, the diagonal values of the
ECE and ARC. heatmaps of Prob. are more pro-
nounced, indicating that when using Prob. confi-
dence, linguistic dominance is more apparent com-
pared to p(True) and Verb.. Consequently, we have
opted Prob. for subsequent experiments in Sec. 5.2.
Additionally, in Figure 5, although prompting in
English performs well and stable across different
subsets, there is a noticeable improvement in ac-
curacy when prompts are related to each subset’s
language. In comparison with the LA tasks in Sec.
4.1 where linguistic dominance is primarily mani-
fested in English, on LSQA, linguistic dominance
is determined by specific language of the subset.

Analysis: The linguistic dominance on LSQA
can be conjectured to stem from the fact that such
data pertaining to the language-specific cultural, ge-
ographical, or social contexts are already included
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in the pre-training corpora of their respective lan-
guages with higher certainty or confidence, thereby
achieving optimal performance when prompting in
their respective specific languages.

5.2 Results of Native-Tone Prompting (NTP)
Strategy on LS Task

Confidence estimation performance differences
caused by linguistic dominance phenomena on
the LS task motivate us to explore the improv-
ing method. Inspired by results in Sec. 5.1 on
each language-specific LSQA subset, we propose a
simple yet effective Native-Tone Prompting (NTP)
strategy to achieve better confidence estimation per-
formance on the LS task. NTP first prompts LLMs
to identify the language context of the question, and
then uses that query-related language to answer the
question, effectively exhibiting a “native tone” that
is more familiar in that language-related context.
We present the results of prompting by any single
language versus NTP on LSQA in Table 5. The
prompt of NTP is presented in the Appendix C.

Prompt en zh ja fr th NTP
Accu. ↑ 77.68 60.16 44.64 60.90 35.18 79.46
ARC. ↑ 73.07 72.44 76.87 71.92 74.60 77.25
ECE ↓ 12.15 30.93 32.31 20.50 40.69 10.28

Table 5: Experimental results of overall Accu., ARC.,
and ECE on the LSQA dataset by prompting using dif-
ferent languages and our proposed NTP method.

Findings: Prompting LLMs using the query-
related language can enhance the reliability
of confidence estimations and accuracy on LS
tasks, which provides an insight to improve LLMs’
reliability regarding the prompt language usage.
In Table 5, the experiments demonstrate that NTP
better leverages the inherent linguistic dominance,
thereby yielding more reliable and accurate results
than any single language prompt, validating the
effectiveness of NTP on the LS task.

Analysis: Results in Table 5 indicate that the mul-
tilingual capabilities and reliability of LLMs are
still constrained by the imbalanced training corpus
among diverse languages. The reliability and ac-
curacy on English, serving as the primary training
corpora, have not been adequately generalized to
other languages. Even for semantically equivalent
queries in different languages, the reliability of re-
sponses cannot be consistently maintained.

6 Discussion

Extended Confidence Estimations In Appendix
E.2, we further investigate three other confidence
estimation methods including 1) paraphrasing the
questions; 2) sampling multiple responses (Xiong
et al., 2024); and 3) introducing Chain-of-Thought
(CoT) (Wei et al., 2022) on both LS and LA tasks.
As presented in Table 10 and Figure 13 in the Ap-
pendix, all findings on extended three confidence
estimations are consistent with previous analy-
sis across all languages. The questions after para-
phrasing still maintain semantic equivalence with-
out obvious perturbations for all languages, and
LLMs are robust in multilingual confidence estima-
tions to different questions with similar meanings.
p(True) and Verb. methods outperform sampling-
based methods as the high temperature may incur
variability in output spaces which undermines the
reliability of QA tasks for all languages. LLMs’
CoT ability can be generalized to multilingual do-
mains, thus benefiting multilingual confidence esti-
mations.

Extended Languages In Appendix E.3, we also
extend the investigations on other five languages
derived and translated from TriviaQA into Korean,
Arabic, German, Indonesian, and Italian as in Sec.
2. As in Table 11 in the Appendix, linguistic domi-
nance is still performed in English than other lan-
guages on the LA task. Low-resource languages
demonstrate poor performance in ECE. For the LS
task, we also develop a small-size LSQA subset
for the above five languages in Table 8 to conduct
the NTP method. Experiments suggest that NTP
can also generalize and improve the reliability
and accuracy in such middle- or low-resource
languages.

7 Related Works

Confidence Estimation for LLMs Previous con-
fidence estimation methods can be categorized into
five classes, as illustrated in Figure 15 and Ap-
pendix F. ➀ Probability-based: Vazhentsev et al.
(2023) intermediately quantifies sentence uncer-
tainty over token probabilities; ➁ p(True)-based:
Kadavath et al. (2022) instructs the LLM to self-
evaluate the correctness of the generated answer by
directly accessing p(True); Both ➀ and ➁ require
access to token probabilities and thus are limited
to white-box LLMs. ➂ Self-verbalized: LLMs’
remarkable instruction-following ability provides a
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view of expressing confidence in words (Lin et al.,
2022; Zhou et al., 2023; Tian et al., 2023a; Xiong
et al., 2024); ➃ Sampling-based: By sampling
multiple responses to a given question, Xiong et al.
(2024) aggregates all the confidence scores as the
indicator. ➄ Training-based: Lin et al. (2022);
Kadavath et al. (2022) propose to train an external
module to improve confidence estimations.

Multlingual LLMs Most recent LLMs primarily
pre-trained on English corpora have showcased
remarkable capabilities (Pires et al., 2019; Shi
et al., 2023; OpenAI, 2023). However, their ef-
ficacy in other low-resource languages remains lim-
ited. Many research works have extended various
tasks in multilingual domains such as claim fact-
checking (Pikuliak et al., 2023) and jailbreak prob-
lem (Deng et al., 2024). Prior studies have also
explored diverse cross-lingual applications (Wang
et al., 2023a,b; Qin et al., 2022).

8 Conclusion

This study underscores the necessity of advanc-
ing multilingual confidence estimation methods
for LLMs to ensure their reliability across diverse
linguistic contexts. The proposed MLINGCONF

serves as a valuable and noteworthy benchmark
to address the gap in multilingual confidence es-
timation research. Our findings demonstrate the
variability of multilingual confidence estimations
on both LA and LS scenarios, revealing the in-
fluence of linguistic dominance on different tasks.
This leads to the NTP strategy, improving accuracy
and reliability by aligning the response language
with the linguistic context of the query for LS tasks.
These insights and the introduction of MlingConf
datasets pave the way for future research, enhanc-
ing the global applicability and reliability of LLMs.

Limitations

The limitations and prospects for future research
are outlined as follows:

Expensive Costs to Obtain High-Quality Low-
Resource Languages The present study is con-
strained by the substantial cost associated with the
API cost using GPT-4 for translation as well as
linguistic verification. This multilingual research
is restricted to five languages in the first version.
This initial phase aims to delve into confidence es-
timation within multilingual domains. Our future

endeavors will involve the expansion of the bench-
mark dataset, encompassing additional languages
and datasets to enrich our investigations.

Native-Tone Prompting is a Primary Version
Although the proposed Native-Tone Prompting
method can enhance the accuracy and reliability of
LS tasks, it still relies on external prompts to de-
termine which language domain the query pertains
to. Moving forward, it is promising to broaden the
scope of developing a cross-lingual method that can
directly transfer the specific language dominance
to other language contexts, thereby facilitating mul-
tilingual confidence estimation abilities for LLMs.

Ethics Statement

In this paper, we introduce several self-constructed
multilingual datasets derived from the publicly
available dataset. The selection of investigated lan-
guages in this work depends on whether we can em-
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in linguistics and others are from crowd-sourcing
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tives, data collection methodologies, and associated
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widely spoken to lesser-known ones in this work
are selected following three principles.

1) Following (Lai et al., 2023; Deng et al., 2024)
which determines the resource levels for each lan-
guage by utilizing the data ratio from the Common-
Crawl corpus 5, we select three languages (Chinese,
Japanese, and French) in high-resource category
whose data ratio exceeds 1%, and one language
(Thai) from medium-resource class that falls be-
tween 0.1% and 1%. To ensure the confidence es-
timation ability can be observed, the low-resource
languages less than 0.1% are omitted and left for
future works.

2) This selection ensures coverage of a wide
range of linguistic characteristics from different
language families as in Table 6. A language family
represents a collective of cognate languages stem-
ming from a common ancestral source, serving as
a focal point within the domain of linguistics 6.

3) For each selected language, we can employ
one linguistic expert for the human check to ensure
the data quality;

ISO 639-1 Family
English en Indo-European
French fr Indo-European
Chinese zh Sino-Tibetan
Japenese ja Japanese-Ryukyuan

Thai th Kra–Dai
Indonesian id Indo-European

German de Indo-European
Arabic ar Afro-Asiatic
Korean ko Koreanic
Italian it Indo-European

Table 6: List of International Standard Organization
(ISO) 639-1 codes and language family information.

B Dataset Details

TriviaQA The TriviaQA dataset (Joshi et al.,
2017) is a realistic text-based reading comprehen-
sion question-answering dataset containing 650K
question-answer-evidence triples from 95K docu-
ments collected from Wikipedia and the websites,
served as a benchmark for evaluating machine com-
prehension and question-answering systems, which
is more challenging than standard QA benchmark
datasets where the answer spans can be directly
retrieved and copied.

GSM8K GSM8K (Grade School Math 8K)
(Cobbe et al., 2021) is a dataset of 8.5K high qual-
5http://commoncrawl.org/
6https://en.wikipedia.org/wiki/Language_family

ity linguistically diverse grade school math word
problems. The dataset was created to support the
task of question answering on basic mathematical
problems that require multi-step reasoning to solve.

CommonsenseQA CommonsenseQA (Talmor
et al., 2019) is a new multiple-choice question an-
swering dataset that requires different types of com-
monsense knowledge to predict the correct answers.
The dataset consists of 12,247 questions with 5
choices each.

SciQ The SciQ dataset (Johannes Welbl, 2017)
contains 13,679 crowdsourced science exam ques-
tions about Physics, Chemistry and Biology, among
others. The questions are in multiple-choice format
with 4 answer options each. For the majority of the
questions, an additional paragraph with supporting
evidence for the correct answer is provided.

LSQA We present two examples of the LSQA
dataset in English- and Japanese- specific subsets
in Figure 11.

C Prompt Details

The translation prompt for multilingual dataset
construction and semantic equivalence compari-
son prompt for consistency check in Sec, 2 are
presented in 6 and 7 respectively. Standard multi-
lingual Question-Answering prompts are in 8. Mul-
tilingual confidence estimations of P(True) and
Verb. are presented in Fig. 9 and 10. Notably,
the prompts for self-reflected true probability con-
fidence estimation are followed by previous work
(Kadavath et al., 2022; Kuhn et al., 2023).

D Metric Details

Expected Calibration Error (ECE) We par-
tition the inference results into M disjoint
bins {Bm}Mm=1 based on the confidence scores
{qi}, compute the average confidence score in(
m−1
M , m

M

]
for the m-th bin Bm, and compare it

with the average true accuracy acc(Bm) of the an-
swers within Bm. The ECE is calculated by:

ECE =
M∑

m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (2)

The average accuracy acc(Bm) and confidence
conf(Bm) of the answers in Bm is obtained by:
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Translation Prompt

You are an excellent translator. Please translate the input texts into {language}.

### Input ###: {input_sentence}
### Output ###:

Figure 6: Translation prompt.

Semantic Equivalence Comparison Prompt
You are an excellent natural language inference model. You MUST determine whether the provided two Sentences are 
semantically equivalent. The response you provided MUST be "Yes" or "No". 

### Sentence 1 ###: {input_sentence_1}
### Sentence 2 ###: {input_sentence_2}
### Your Response ###: ("Yes" or "No"):

Figure 7: Semantic equivalence comparison prompt.

acc(Bm) =
1

|Bm|
∑

ai∈m

I(b̂i = bi) (3)

conf(Bm) =
1

|Bm|
∑

ai∈m

qi (4)

where ai, bi, b̂i, and qi indicate the input data, label,
prediction result, and confidence score respectively
for the i-th sample.

Accuracy For closed-book QA evaluation, we
observe that simply applying EM may misjudge
the correct answers. We compare several variants
of EM as in Table 7 and report their successful
judgments on responses of 20 selected samples
that are misjudged using EM, where PEM, RRM,
and PREM indicate Positive-EM, Recall-EM, and
Positive-Recall-EM and the mathematical explana-
tions are presented in Table 7. Upon human dis-
crimination, EMPR exhibits the lowest failure rate
and is therefore selected as the evaluation metric
for this work.

Variant Explanation # Fail
EM y ≡ ŷ 20

PEM y ∈ ŷ 16
REM ŷ ∈ y. 6

PREM y ∈ ŷ ∨ ŷ ∈ y. 2

Table 7: Number of failed judgments by human check
for different EM variants.

E Appendix Experiments

E.1 Experiments on Llama-2 and Vicuna

We present the experimental results on Llama-
2-13B-Chat (Llama-2) 7 (Touvron et al., 2023),
and Vicuna-7B-v1.5 (Vicuna-v1.5) 8 (Zheng et al.,
2023) in Table 9. Results suggest that confidence
estimation abilities are relatively weak in both
Llama-2 and Vicuna-1.5 across three methods.

E.2 Experiments of Extended Confidence
Estimations

E.2.1 Experiments of Multilingual Confidence
Estimations with Paraphrasing

Following Xiong et al. (2024), we investigate the
prompt sensitivity for multilingual confidence es-
timation by introducing perturbations in the ques-
tions. We utilize GPT-3.5 to paraphrase the ques-
tions in different ways to generate different re-
sponses. We sample 200 questions from SciQ and
prompt GPT-3.5 to paraphrase these questions. We
also employ GPT-3.5 to check the semantic equiv-
alence before and after paraphrasing to ensure the
meaning is not changed. The AUROC and ECE re-
sults are presented in Table 10 and Figure 13. The
findings and analysis are in Sec. 4.1.

E.2.2 Experiments of Multilingual Confidence
Estimations of Sampling

To make comparisons, we also present the AUROC
and ECE results of sampling-based confidence esti-

7https://huggingface.co/meta-llama/Llama-2-13b-chat
8https://huggingface.co/lmsys/vicuna-7b-v1.5
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Multilingual Question-Answering Prompts
You are an excellent question responder. Please correctly answer the following questions.
{few-shot-examples}
*** Question ***: {question}
*** Answer ***: 

English

你是⼀个出⾊的问题回答者。请正确回答下列问题。
{few-shot examples}
*** 问题 ***: {question}
*** 答案 ***:

Chinese

あなたは優れた質問回答者です。次の質問に正しく答えてください。
{few-shot examples}
*** 質問 ***: {ques3on}
*** 答え ***:

Japanese

Vous êtes un excellent répondeur aux questions. Veuillez répondre correctement aux questions suivantes.
{few-shot examples}
*** Question ***: {question}
*** Réponse ***: 

French

คณุเป็นคนตอบคําถามได้ดีเยี4ยม,กรุณาตอบคําถามตอ่ไปนี 9ให้ถกูต้อง.
{few-shot examples}
*** คําถาม ***: {question}
*** คําตอบ ***:

Thai

Figure 8: Multilingual Question-Answering prompts.

mation methods on 200 samples from our multilin-
gual SciQ datasets by setting Temperature T=0.8
on GPT-3.5. We cluster the sampled responses
in semantic spaces and calculate the consistency
score as Xiong et al. (2024) to represent the confi-
dence. As presented in Table 10 and 13, the results
demonstrate that our employed p(True) and Verb.
methods outperform sampling-based methods as
the high temperature may incur variability in out-
put spaces which undermines the reliability of QA
tasks.

E.2.3 Experiments of Multilingual Confidence
Estimations using CoT

We supply the Chain-of-Thought (CoT) (Wei et al.,
2022) for prompt-based confidence estimations of
p(True) and Verbalized methods as in Table 10 and
Figure 10. We present the AUROC and ECE results
of p(True) and Verb. using CoT on 400 samples
from SciQ and LSQA on GPT-3.5. Results suggest
that CoT can marginally enhance the reliability
of prompt-based confidence estimations in various
languages.

E.3 Experiments on Extended Languages

To further validate the observed linguistic domi-
nance in multilingual confidence estimations, we
employ five subsets derived and translated from

Lang. ko id it ar de
Prompt in English

Accu. ↑ 24.39 40.60 34.58 22.64 54.78
ARC. ↑ 72.40 70.12 75.45 68.22 76.18
ECE ↓ 33.55 36.78 33.16 46.78 27.14

NTP Method
Accu. ↑ 28.60 46.54 39.20 27.44 59.65
ARC. ↑ 74.66 78.52 77.23 70.17 79.60
ECE ↓ 28.10 32.44 30.50 42.76 23.18

Table 8: Experimental results of overall Accu., ARC.,
and ECE on the LSQA dataset by prompting using En-
glish and NTP method on other five investigated lan-
guages.

TriviaQA into Korean (ko), Arabic (ar), German
(de), Indonesian (id), and Italian (it) as in Sec.
2. The LA experiments are conducted on dataset
translated from TriviaQA in all investigated lan-
guages in Table 11. We also develop small-size
LSQA subsets for such languages and conduct LS
experiments in 8.

E.4 Formatting P(True) Method

The output format issue of the two prompt-based
confidence estimation methods is not the primary
focus of this study, nor have we observed previous
works addressing this problem. However, these is-
sues posed significant challenges during our exper-
iments. With strong instruction-following ability,
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Multilingual p(True)-based Confidence Estimation Prompt

You are an excellent referee to judge the answer correct or not.
*** Question ***: {question}
*** Proposed Answer ***: {first_proposed_answer}
Is the proposed answer:
True
False
The possible answer is:

English

你是⼀个出⾊的判断者来评判问题的回答正确还是错误。
*** 问题 ***: {question}
*** 模型回答 ***: {first_proposed_answer}
请判断这个问题的回答是正确的吗:
正确
错误
你的判断是:

Chinese

あなたは、答えが正しいかどうかを判断する優れた審判です。
*** 質問 ***: {question}
*** 提案された回答 ***: {first_proposed_answer}
提案された答えは
真
誤り
可能な答えは:

Japanese

Vous êtes un excellent arbitre pour juger la réponse correcte ou non.
*** Question ***: {question}
*** Réponse proposée ***: {first_proposed_answer}
Est la réponse proposée :
Vrai
Faux
La réponse possible est :

French

คณุเป็นผู้ตดัสนิที2ยอดเยี2ยมในการตดัสนิวา่คําตอบถกูหรือไม่.

*** คําถาม ***: {question}
*** คําตอบที2เสนอ ***: {first_proposed_answer}
คําตอบที2เสนอคือ:

จริง

เทจ็
คําตอบที2เป็นไปได้คือ: 

Thai

Figure 9: Multilingual p(True)-based Confidence Estimation Prompt.

GPT-3.5 typically generates outputs in the correct
format. In cases of occasional formatting errors in
the outputs, we employed temperature sampling to
re-generate the outputs until the correct format was
achieved.

The other three LLMs—Llama-3.1-Instruct,
Llama-2-Chat, and Vicuna-v1.5—also demon-
strated relatively good adherence to instructions
for verbalized confidence estimation. If the correct
format was not generated on the first attempt, we
also employ temperature sampling multiple times
to obtain the expected output.

For the P(True) method, however, output format
discrepancies were more pronounced. We explored
two approaches: rule-based post-processing and

few-shot formatting. Initially, we attempted rule-
based post-processing, where the ideal output for-
mat would directly consist of “true” or “false” fol-
lowing the input. However, in practice, the models
often included their own analysis, and in many
cases, the generated sequence did not begin with
the desired result. To address this, we detected mul-
tilingual keywords within the generated sequence
as in Fig. 9.

Since some keywords span more than one token
in some languages, we first stored the tokenized se-
quence before decoding, along with the correspond-
ing logits. We then extracted the logits associated
with the tokenized keywords with the normalized
or the first-token probability. Despite these efforts,
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Self-verbalized Confidence Estimation Prompt

You are an excellent estimator. Provide your best estimated probability that the proposed answer is correct (0.0 to 1.0) for the 
following question. Give ONLY the probability, no other words or explanation.

*** Question ***: {question}
*** Proposed Answer ***: {first_proposed_answer}
*** Your estimated probability ***:

Figure 10: Self-verbalized confidence estimation prompt.

Conf. en zh ja fr th
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

TVQA on Llama-2
Prob. 51.92 20.56 51.24 34.12 51.92 32.04 49.51 29.33 49.63 48.72

p(True) 55.89 17.09 82.65 46.11 81.76 43.47 65.79 29.59 70.62 55.99
Verb. 59.78 21.10 53.20 45.71 51.95 39.33 61.66 38.98 54.23 59.80

GSM8K on Llama-2
Prob. 42.72 32.18 50.46 33.59 50.35 51.67 43.60 36.25 55.11 52.87

p(True) 60.82 49.30 59.86 58.87 62.89 67.39 59.51 62.36 47.91 75.22
Verb. 59.39 43.65 53.29 54.59 53.40 49.27 53.26 37.61 54.53 56.96

CSQA on Llama-2
Prob. 49.30 30.40 49.95 31.72 50.28 43.28 49.72 27.40 50.23 40.84

p(True) 56.53 26.05 55.34 45.65 53.46 46.01 59.76 25.49 50.21 63.09
Verb. 53.64 19.54 51.74 24.06 50.36 34.03 52.93 15.08 50.73 62.01

SciQ on Llama-2
Prob. 55.40 24.65 76.39 44.42 74.97 45.56 62.32 39.76 51.93 59.05

p(True) 48.60 32.18 52.02 40.44 51.60 30.19 49.53 32.50 45.26 43.75
Verb. 56.34 19.89 55.17 41.36 55.58 37.20 60.27 39.14 71.17 54.95

TVQA on Vicuna-1.5
Prob. 45.45 35.34 48.43 47.07 51.75 36.63 46.13 35.19 53.17 40.73

p(True) 47.45 23.58 78.96 42.86 79.71 42.40 60.38 28.89 76.58 53.43
Verb. 55.74 21.41 52.98 57.36 50.94 54.89 55.46 42.76 45.86 71.83

GSM8K on Vicuna-1.5
Prob. 50.90 53.91 51.07 49.00 50.51 53.73 50.42 49.08 50.19 55.40

p(True) 65.40 68.30 67.28 59.33 51.09 60.70 66.78 55.69 52.86 60.83
Verb. 55.66 46.26 53.90 48.75 54.60 48.03 53.70 45.62 61.81 51.87

CSQA on Vicuna-1.5
Prob. 48.88 26.04 50.01 43.65 49.67 45.64 45.94 31.53 49.78 51.78

p(True) 65.00 27.06 57.39 35.80 57.62 38.54 48.21 25.95 50.53 55.54
Verb. 52.32 29.80 52.29 38.59 51.08 44.49 58.68 35.15 51.90 61.77

SciQ on Vicuna-1.5
Prob. 38.10 50.94 48.69 44.44 50.07 42.19 38.65 37.26 49.75 49.70

p(True) 45.78 31.29 73.55 40.17 66.85 45.15 59.20 42.18 74.16 58.34
Verb. 55.13 36.47 51.66 55.27 51.92 56.98 56.33 57.93 52.89 57.74

TVQA on GPT-4o
Prob. 74.22 11.38 72.00 22.34 73.45 20.17 76.18 12.43 78.33 27.48

p(True) 78.15 8.34 77.44 18.24 82.73 16.76 77.24 11.82 83.44 25.15
Verb. 79.33 8.63 78.16 16.33 81.56 17.18 79.68 10.37 86.08 26.44

GSM8K on GPT-4o
Prob. 61.50 21.37 67.34 24.31 63.55 26.47 62.45 28.15 60.44 31.25

p(True) 71.49 18.13 75.19 22.97 73.50 22.77 73.11 21.45 70.60 28.11
Verb. 75.28 16.55 74.30 21.48 75.16 21.64 71.65 23.79 67.54 27.43

CSQA on GPT-4o
Prob. 62.76 21.34 59.46 33.62 58.47 31.78 66.14 28.40 59.19 38.66

p(True) 67.40 17.56 64.75 28.97 63.89 21.40 72.18 19.70 68.56 31.65
Verb. 69.14 16.20 66.13 27.33 66.60 23.65 71.79 19.44 64.33 33.98

SciQ on GPT-4o
Prob. 73.20 27.24 76.44 33.37 79.23 39.16 74.81 31.70 78.20 44.60

p(True) 77.54 16.78 78.62 28.07 83.45 28.07 79.13 21.34 81.39 31.40
Verb. 78.18 17.90 79.13 25.16 84.52 25.44 78.63 20.56 79.27 33.22

Table 9: Experimental results of AUROC (ARC.) and ECE of three confidence estimation methods on four LA
datasets on Llama-2 and Vicuna-1.5 .

this approach still failed to consistently produce
the expected outputs.

We subsequently turned to a few-shot approach.

To avoid biases from the order or quantity of “true”
and “false” examples in the few-shot samples, we
set the number of examples to 10, evenly split be-
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Examples of LSQADataset in English and Japanese Specific Subsets

English

Japanese

{
"question": {

"en": "Which city in Japan is known for its deer population?", 
"zh": "哪个⽇本城市以其鹿群闻名︖",
"th": "เมืองใดในญี+ปุ่ นที+มีชื+อเสยีงจากประชากรกวาง?", 

ja": "⽇本のどの都市が鹿の数で知られていますか︖",
"fr": "Quelle ville au Japon est connue pour sa population de cerfs?" 

},
"answer": { 

"en": "The city known for its deer population in Japan is Nara.", 
"zh": "以鹿群闻名的⽇本城市是奈良。",
"th": "เมืองที+มีชื+อเสยีงจากประชากรกวางในญี+ปุ่ นคือนารา", 

“ja": "鹿の数で知られる⽇本の都市は奈良です。",
"fr": "La ville connue pour sa population de cerfs au Japon est Nara." 

}
}

{
"question": { 

"en": "What is the highest mountain in the United Kingdom?", 
"zh": "英国最⾼的山是哪座︖", 
"th": "ภเูขาที+สงูที+สดุในสหราชอาณาจกัรคืออะไร?", 

“ja": "イギリスで最も⾼い山は何ですか︖",
"fr": "Quelle est la plus haute montagne du Royaume-Uni ?”

}, 
"answer": {

"en": "The highest mountain in the United Kingdom is Ben Nevis.", 
"zh": "英国最⾼的山是本尼维斯山。", 
"th": "ภเูขาที+สงูที+สดุในสหราชอาณาจกัรคือเบนเนวิส", 

“ja": "イギリスで最も⾼い山はベンネビスです。", 
"fr": "La plus haute montagne du Royaume-Uni est le Ben Nevis." 

}
}

Figure 11: Examples of the LSQA ataset in English and Japanese specific subsets.

Conf. en zh ja fr th
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

SciQ on GPT-3.5
Prob. 69.58 30.04 67.14 36.77 81.44 45.40 74.35 36.98 72.55 51.34

p(True) 72.80 23.86 77.56 31.99 82.44 38.27 72.00 40.13 63.45 40.80
Verb. 71.43 22.18 72.50 36.47 72.95 31.43 74.16 31.97 73.40 42.34

Re-Prob. 67.47 28.16 72.86 33.43 75.69 41.05 71.40 34.88 80.37 48.96
Re-p(True) 74.14 25.14 82.66 32.04 76.96 36.70 71.48 42.13 64.44 42.05

Re-Verb. 73.80 21.96 73.40 35.13 79.49 30.60 66.16 32.65 73.19 40.44
Sampling 67.55 27.40 71.69 37.97 74.07 42.09 67.94 40.04 66.50 48.65

CoT-p(True) 73.65 22.95 80.05 29.90 82.16 37.10 71.92 30.86 65.90 40.19
CoT-Verb. 73.64 20.60 75.73 32.79 74.61 27.50 72.62 31.26 74.96 40.33

Table 10: Experimental results of AUROC and ECE of several confidence estimation variants of paraphrasing the
questions, sampling multiple responses, and adding CoT on SciQ for LA task on GPT-3.5.

tween “true” and “false” (five each), and random-
ized their order in every instance. Ultimately, we
found that the few-shot approach not only produced
more stable output formats but also yielded more
reliable AUROC and ECE results. Therefore, we
adopted the few-shot method as our final approach.

Additionally, we considered a training-based
method, where negative samples would be con-

structed to train a classifier head specifically de-
signed to output “true” or “false”. However, this
approach was prohibitively costly, as it would re-
quire training a separate head for each model in
every language. Consequently, we decided against
pursuing this method.
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Native-Tone Prompting (NTP) Strategy
You are an excellent natural language inference model. You are required to identify the language spoken in the country related
to the question. 
{few_shot_examples}

*** Question ***: {question}
*** Your Identified Language Category ***: [Output Language]

Answer the following question in {Output Language}.
{few_shot_examples}

*** Question ***: {question}
*** Answer ***: 

Figure 12: Native-tone prompting (NTP).

Figure 13: Experimental results of AUROC and ECE of three confidence estimation variants of paraphrasing,
sampling, and CoT on LSQA for LS task on GPT-3.5.

Figure 14: Experimental results of AUROC and ECE of verbalized confidence estimation on LSQA for LS task on
GPT-4o.

F Uncertainty Estimations

Both confidence and uncertainty estimations indi-
cate the level of assurance of a response generated

by LLMs given a query and are occasionally re-
garded interchangeably (Geng et al., 2023). Un-
certainty detection is essential for hallucination
mitigation on knowledge-based tasks (Xiong et al.,
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Conf. en ko it ar de id
ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓ ARC. ↑ ECE ↓

TriviaQA on GPT-3.5
Prob. 69.58 30.04 73.21 46.37 73.08 28.60 71.51 46.78 72.48 33.74 77.37 50.12

p(True) 72.80 23.86 63.19 40.66 70.67 35.47 63.24 50.55 78.49 26.16 66.08 49.81
Verb. 71.43 22.18 72.41 34.80 72.19 41.54 76.65 28.68 68.75 47.14 69.65 47.14

Table 11: Experimental results of AUROC and ECE of confidence estimations on other languages on TriviaQA for
LA task on GPT-3.5.

2024; Varshney et al., 2023; Wang et al., 2024b;
Vazhentsev et al., 2023; Wang et al., 2024a; Man-
akul et al., 2023). To alleviate over-confidence and
enhance the reliability of LLMs, reliable uncer-
tainty estimation is essential to determine whether
a question is known or not to the LLM (Geng
et al., 2023). Both Uncertainty and Confidence
estimations can indicate the reliability degree of
the responses generated by LLMs, and are gener-
ally used interchangeably (Xiao et al., 2022; Chen
and Mueller, 2023; Geng et al., 2023). In this part,
we investigate several commonly used confidence
& uncertainty estimation methods for generative
LLMs as mentioned in Sec. 7. Specifically, we
denote Conf(x,y) as the confidence score associ-
ated with the output sequence y = [y1, y2, . . . , yN ]
given the input context x = [x1, x2, . . . , xM ]. We
also illustrate the summarized estimation methods
as well as their disadvantages in Fig. 15.

Likelihood-based Methods: Following model
calibration on classification tasks (Guo et al.,
2017b), Vazhentsev et al. (2023); Varshney et al.
(2023); Wang et al. (2025) intermediately quan-
tify sentence uncertainty over token probabili-
ties. In traditional discriminative models, except
likelihood-based methods, confidence estimations
also include ensemble-based and Bayesian methods
(Lakshminarayanan et al., 2017; Gal and Ghahra-
mani, 2016; Xue et al., 2022; Wang and Yeung,
2020; Gal et al., 2016; Abdar et al., 2021; Xue
et al., 2021), and density-based methods (Lee et al.,
2018). However, this likelihood-based method re-
quires access to token probabilities and thus being
limited to white-box LLMs. The likelihood-based
confidence is estimated by calculating the joint
token-level probabilities over y conditioned on x.
As longer sequences are supposed to have lower
joint likelihood probabilities that shrink exponen-
tially with length, the product of conditional token
probabilities of the output should be normalized
by calculating the geometric mean by the sequence
length (Murray and Chiang, 2018; Malinin and
Gales, 2021), and the confidence score can be rep-

resented as:

Conf(x,y) =

(
N∏

i

p(yi|y<i,x)

) 1
N

(5)

Similarly, the arithmetical average of the token
probabilities is adopted in Varshney et al. (2023):

Conf(x,y) =
1

N

N∑

i

p(yi|y<i,x) (6)

Furthermore, a low probability associated with
even one generated token may provide more in-
formative evidence of uncertainty (Varshney et al.,
2023). Hence, the minimum of token probabilities
is also employed.

Conf(x,y) = min {p(y1|x), . . . , p(yN |y<N ,x)}
(7)

Prompting-based Methods: Recently, LLMs’
remarkable instruction-following ability (Brown
et al., 2020) provides a view of instructing LLMs
to self-estimate their confidence level to previous
inputs and outputs including expressing uncertainty
in words (Lin et al., 2022; Zhou et al., 2023; Tian
et al., 2023a; Xiong et al., 2024), or instructing the
LLM to self-evaluate its correctness on p(True)
(Kadavath et al., 2022). The P (True) confidence
score is implemented by simply asking the model
itself if its first proposed answer y to the question
x is true (Kadavath et al., 2022), and then obtain-
ing the probability p(True) assigned by the model,
which can implicitly reflect self-reflected certainty
as follows.

Conf(x,y) = p(True) = p(y is True?|x) (8)

Another method is to prompt LLMs to linguis-
tically express tokens of confidence scores in ver-
balized numbers or words (Lin et al., 2022; Mielke
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et al., 2022; Zhou et al., 2023; Tian et al., 2023b;
Xiong et al., 2024).

The sampling-based method refers to randomly
sampling multiple responses given a fixed input x
using beam search or temperature sampling strate-
gies (Manakul et al., 2023; Xiong et al., 2024;
Lyu et al., 2024). Various aggregation methods
are adopted on sampled responses to calculate the
consistency level as the confidence score. Kuhn
et al. (2023) proposes semantic entropy to quantify
uncertainty for sequences with shared meanings
at the semantic level. Moreover, some uncertainty
quantification methods are used to calculate the
entropy indicating the dispersion level of multiple
outputs (Kuhn et al., 2023; Lin et al., 2023).

Training-based Methods: For training methods,
an external evaluator trained on specific datasets
is introduced to output a confidence score given
an input and an output. The evaluator can be a
pre-trained NLI model (Mielke et al., 2022), or a
value head connected to the LLM output layer (Lin
et al., 2022; Kadavath et al., 2022), or the LLM
itself (Han et al., 2024; Xue et al., 2024).
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① Probability-based method (Prob.)

② 𝑝(True)-based method (p(True))

⑤ Training-based method

④ Sampling-based method

Input: What's the
capital of France?

It is Paris

0.8 0.9 0.6

Output

Prob.
Norm(·) Conf.

0.75

Evaluator

Output: It is Paris

Output: It is Paris

Output: It is Berlin

Output: Paris.

❌

✅

✅

Agg(·)

Conf.
0.72

Conf.
0.66

Output: It is Paris

a. Requires normalization due to variable
sequence length;

b. Requires access to token-level probabilities,
inapplicable to black-box LLMs;

c. Fails to capture semantic meaning over
token-level probabilities.

a. Requires training an additional evaluator;
b. Difficult to learn LLM’s intrinsic confidence
estimation on unseen domains.

a. Relies on prompting strategies to elicit
confidence estimation, varying in different
prompts;

b. Cannot improve LLM’s intrinsic confidence
estimation ability.

c. Requires access to token-level probabilities,
inapplicable to black-box LLMs;

d. Prone to be over-confident.

a. Requires additional inference time cost;
b. Varying in different aggregation methods;
c. Cannot improve LLM’s intrinsic confidence
estimation ability.

Confidence & Uncertainty Estimation Methods on LLMs Disadvantages

Input: What's the
capital of France?

Input: What's the
capital of France?

Input: What's the
capital of France?

Training

LLM

LLM

LLM

Prompt: Is your answer True?

③ Self-verbalized method (Verb.)

Output: It is Paris

0.85 0.85

Input: What's the
capital of France?

LLM

LLM

Prompt: Is your answer True?
Conf.
0.85

True

0.9

Conf.
0.9

LLM

LLM

a. Relies on prompting strategies to elicit
confidence estimation, varying in different
prompts;

b. Cannot improve LLM’s intrinsic confidence
estimation ability.

c. Prone to be over-confident.

Figure 15: An illustration of several confidence estimation methods as well as their drawbacks. Note that sampling-
and training-based methods are omitted in this work as they are cost-expensive and time-consuming for multilingual
confidence estimations. All complete multilingual prompts used in this work are presented in Appendix C. In
addition, although confidence and uncertainty are always used interchangeably, the former confidence pertains to the
model’s certainty regarding a specific generation, while the latter uncertainty denotes the "dispersion" of potential
predictions for a given context. In this work, the semantically equivalent inputs in various languages are thoroughly
distinct in the token space. Therefore, we utilize confidence estimation in this work, albeit specific uncertainty
quantification methodologies are still applicable.
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