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Abstract

Self-supervised learning (SSL) has reduced the
reliance on expensive labeling in speech tech-
nologies by learning meaningful representa-
tions from unannotated data. Since most SSL-
based downstream tasks prioritize content infor-
mation in speech, ideal representations should
disentangle content from unwanted variations
like speaker characteristics in the SSL represen-
tations. However, removing speaker informa-
tion often degrades other speech components,
and existing methods either fail to fully dis-
entangle speaker identity or require resource-
intensive models. In this paper, we propose
a novel disentanglement method that linearly
decomposes SSL representations into speaker-
specific and speaker-independent components,
effectively generating speaker disentangled rep-
resentations. Comprehensive experiments show
that our approach achieves speaker indepen-
dence and as such, when applied to content-
driven tasks such as voice conversion, our repre-
sentations yield significant improvements over
state-of-the-art methods.1

1 Introduction

In recent years, speech-related tasks such as au-
tomatic speech recognition (ASR), text-to-speech
(TTS), voice conversion (VC), and speech-to-
speech translation (S2S) have made significant ad-
vancements, achieving near-human performance in
several domains. However, these high-performing
systems often rely on large quantities of high-
quality labeled data, which is both resource-
intensive and time-consuming to obtain, limiting
speech technologies scalability across languages,
domains, and applications.

To address this challenge, researchers have in-
creasingly focused on techniques that leverage
vast amounts of unlabeled data for model training.

1Audio samples for the voice conversion system are
available at: https://giuseppe-ruggiero.github.io/
eta-wavlm-vc-demo/

Among these, self-supervised learning (SSL) has
emerged as a transformative paradigm, enabling
models to learn latent representations from raw in-
put data without the need for explicit labels. In
the speech domain, the core concept of SSL is to
pretrain a speech representation network on large-
scale unannotated corpora, with the objective of
capturing and encoding meaningful speech struc-
tures and information (Qian et al., 2022). SSL
models such as Wav2Vec2 (Baevski et al., 2020),
HuBERT (Hsu et al., 2021a), and WavLM (Chen
et al., 2021) have shown great success in extracting
robust and versatile features directly from speech
waveforms. These SSL representations can then be
exploited for downstream tasks using only a limited
amount of labeled data (Choi et al., 2021).

SSL representations encode diverse speech at-
tributes, including linguistic content, speaker iden-
tity, emotions, and background conditions, making
them versatile but often task-agnostic. For exam-
ple, a good representation for tasks like VC or TTS
should be rich in content but contain minimal to
no speaker identity (Huang et al., 2022; Qian et al.,
2022), while speaker classification or verification
prioritizes speaker information. Consequently, dis-
entangling speaker and non-speaker information in
SSL representations is a critical aspect to improve
task-specific performance (van Niekerk et al., 2022;
Hussain et al., 2023; Huang et al., 2024; Lajszczak
et al., 2024; Ruggiero et al., 2024), though it re-
mains highly challenging (Qian et al., 2022; Martín-
Cortinas et al., 2024). To this end, SSL represen-
tations are often quantized to derive pseudo-text
from speech utterances, with k-means clustering
being a widely used technique due to its simplicity
and unsupervised nature (Hsu et al., 2021a; Polyak
et al., 2021; van Niekerk et al., 2021). However,
this often also compromises linguistic content and
prosody (Martín-Cortinas et al., 2024; Ruggiero
et al., 2024).

To address this issue, alternative disentangle-
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ment strategies have been proposed. These include
strategies based on simple perturbation techniques
applied to the input waveform (Choi et al., 2021;
Hussain et al., 2023), utterance-level standardiza-
tion of representations (van Niekerk et al., 2021;
Zhu et al., 2023), neural models and training condi-
tions designed to extract content-related-only fea-
tures from SSL representations (Qian et al., 2022;
van Niekerk et al., 2022; Huang et al., 2024), and
the incorporation of specific model components,
training strategies, or loss functions to achieve dis-
entanglement online during the training phase in
tasks like VC or TTS (Martín-Cortinas et al., 2024;
Lajszczak et al., 2024). Although these methods
preserve content better than k-means, many still
struggle to achieve a high level of disentanglement
(Ruggiero et al., 2024) or require the implementa-
tion of complex and resource-intensive strategies.

In this paper, we propose a novel and general
approach for disentangling the speaker identity
from SSL representations without requiring com-
plex training strategies, loss functions, fine-tuning,
or even quantization. We show that SSL represen-
tations can be linearly decomposed into speaker-
dependent d and speaker-independent η compo-
nents, which we will refer to as eta representa-
tions. This means that, if d is known, the speaker-
independent eta representation can be easily ob-
tained by solving a linear inverse problem.

Our main contributions are as follows: 1) We
introduce an efficient disentanglement strategy
for generating speaker-independent SSL represen-
tations by solving a simple linear equation; 2)
We demonstrate that our method actually gener-
ates speaker-independent representations, reducing
speaker accuracy in a speaker-related classification
task by nearly 30% compared to standard SSL rep-
resentations; 3) We show that the features derived
from our approach enhance the performance of a
task-specific VC model. Specifically, our approach
improves target speaker identity, linguistic content
preservation, and overall system quality. These
findings align with the hypotheses of prior work
(Qian et al., 2022; Martín-Cortinas et al., 2024),
indicating that effectively addressing speaker dis-
entanglement can yield significant performance im-
provements in content-related speech tasks.

2 Method

The proposed approach can be considered an ex-
tension of an SSL model, implemented as an of-

Figure 1: High-level overview of the proposed ap-
proach.

fline module designed to extract disentangled eta
representations. As illustrated in Figure 1, our
method consists of three key components: an SSL
model that extracts an SSL representation from a
raw waveform, a speaker encoder that generates a
speaker embedding from the same waveform, and
a disentanglement module which derives a speaker-
independent eta representation from the input SSL
representation, conditioned on the speaker embed-
ding. In this work, both the SSL and the speaker
encoder modules are off-the-shelf pre-trained mod-
els that are not further trained or fine-tuned. Our
main contribution lies in the implementation of the
disentanglement module.

2.1 Problem Definition

The primary concept underlying the disentangle-
ment module is to decompose an SSL represen-
tation s, into speaker-dependent d and speaker-
independent η components. For a given data point,
s and d can be easily obtained using a pre-trained
SSL model and a pre-trained speaker encoder, re-
spectively. Thus, s can be expressed as a function
of the known d along with an additional unknown
term η, which encapsulates all the information not
inferable from d. For simplicity, we assume an
additive relationship which can be described as:

s = f(d) + η (1)

Ideally, η should include linguistic, prosodic, and
information from the environment (e.g. recording
conditions), provided that d effectively represents
speaker characteristics. The importance of select-
ing an appropriate speaker encoder for extracting
d in this context will be discussed in Section 3.3.
Consequently, the speaker-independent component
η can be computed as:

η = s− f(d) (2)

In the next section, we will discuss how to model
the function f().
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2.2 Computation of Latent Basis and Bias
Based on the hypothesis that large embedding
spaces tend to linearize complex non-linear rela-
tionships (Ethayarajh et al., 2018; Mohamed et al.,
2024), we approximate f() using a linear model.
Consider a multi-speaker dataset composed of U
utterances of raw speech. Let us denote a generic
utterance as ui, its speaker embedding extracted by
a pre-trained speaker encoder E as ei ∈ RV with
i ∈ [1, U ], and its SSL representation extracted by
a pre-trained SSL model S as Si = [s1, · · · , sM ]T ,
where sm ∈ RQ represents the m-th frame, and M
is the sequence length. Since M can be large, we
randomly subsample L frames from each utterance,
creating a fixed-length representation Si ∈ RL×Q.
Consequently, the entire dataset’s SSL representa-
tion, obtained by stacking all the Si, is given by
S ∈ RN×Q, where N = U × L for simplicity.

To align e with the sequence length of S, we
leverage the fact that the speaker embedding cap-
tures speaker-level information, which is assumed
to remain constant across all frames of an utter-
ance. Based on this, we expand e by replicat-
ing it L times along the frame axis, resulting in
Ei ∈ RV×L. Consequently, the entire dataset’s
embedding representation, obtained by stacking all
the Ei, is given by E ∈ RV×N . In addition, since
V can be large, we apply Principal Component
Analysis (PCA) to reduce its dimension to P < V ,
thus obtaining D ∈ RP×N . This reduction helps
remove redundancy and retains only the most infor-
mative components. We will show the importance
of this step in Section 3.3.

Given S ∈ RN×Q and D ∈ RP×N , we can
model their relationship as:

S = DTA+ 1NbT (3)

where A ∈ RP×Q and b ∈ RQ×1 are learnable
parameters. For simplicity, we can rewrite it as:

S = D̃T Ã (4)

where D̃T =
[
DT 1

]
and ÃT =

[
AT b

]
.

Then, the optimization problem we want to solve
is given by:

Ã∗ = argmin
Ã

||S− D̃T Ã||F (5)

which can be solved through the pseudo-inverse as:

Ã∗ = (D̃T D̃)−1D̃TS (6)

where Ã∗T =
[
A∗T b∗]. From now on, A∗ and

b∗ will be referred to as latent basis and bias.
At this stage, the function f() has been learned,

marking the completion of the first step. With A∗

and b∗ known, the disentanglement module is now
able to generate eta representations.

2.3 Creation of Eta Representations

During the inference phase, the proposed system
(Figure 1) generates speaker-independent eta rep-
resentations directly from raw waveforms. Given
an utterance u′, first the pre-trained SSL model S
extracts an SSL representation S ∈ RK×Q:

S = S(u′;WS) (7)

where WS represents the frozen parameters of
the SSL model, and K is the sequence length.
Next, the pre-trained speaker encoder E generates
a speaker embedding e ∈ RV×1:

e = E(u′;WE) (8)

where WE represents the frozen parameters of the
speaker encoder. To reduce the dimensionality of
e, PCA is applied, producing d ∈ RP×1:

d = PCA(e;CPCA) (9)

where CPCA denotes the matrix of principal com-
ponents obtained during the PCA process executed
in the first step (Section 2.2). Finally, the disentan-
glement module H extracts a speaker-independent
eta representation η ∈ RK×Q:

η = H(S;d,A∗,b∗) (10)

where A∗ and b∗ are the latent basis and bias ob-
tained at the end of the first step (Section 2.2), and
H() is implemented as:

H(S) = S− 1K(dTA∗ + b∗) (11)

In this work, we specifically chose WavLM as the
SSL model S for our experiments. Therefore, we
will refer to the SSL representations S as WavLM
representations and the output of our system η as
Eta-WavLM representations.

3 Experiments

To evaluate the effectiveness of our proposed ap-
proach, we selected a speaker-related and a content-
related task. The primary objective of the first
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experiment is to determine whether the eta repre-
sentations extracted by our method exhibit mini-
mal or no speaker-specific characteristics, thereby
confirming the achievement of the desired disen-
tanglement. The goal of the second experiment is
to assess whether the disentangled representations
provides benefits in real-world tasks such as VC,
where maintaining linguistic content and achieving
high similarity to the target speaker’s voice are es-
sential. For all of our experiments, we employed
the following setup: 1) Framework and hard-
ware: We ran all experiments on a Linux machine
with a single NVIDIA GeForce RTX 3090 GPU
with 24 GB of RAM; 2) Dataset: We used the
full training set of the multi-speaker LibriSpeech
(Panayotov et al., 2015) dataset for computing A∗

and b∗, as described in Section 2.2. LibriSpeech
consists of nearly 1,000 hours of English speech
and is openly available under the CC BY 4.0 li-
cense; 3) SSL model: As mentioned in Section
2.3, we adopted the state-of-the-art WavLM (Chen
et al., 2021) as the pre-trained SSL model S. We
used the official WavLM-Large2 model released
under the CC BY-SA 3.0 license and, following
(Hsu et al., 2021b; Baevski et al., 2021; Ruggiero
et al., 2024), we employed the output of the 15th
transformer layer as the representation S. Accord-
ingly, we set Q = 1024 in Sections 2.2 and 2.3,
corresponding to the dimensionality of the WavLM-
Large output vectors. In addition, we set L = 100
in Section 2.2; 4) Speaker encoder: We chose
the state-of-the-art ECAPA-TDNN (Desplanques
et al., 2020) as the pre-trained speaker encoder
model E . ECAPA-TDNN extracts speaker embed-
dings from input speech by leveraging channel at-
tention, propagation, and aggregation mechanisms
to produce robust and discriminative speaker repre-
sentations d. We used a publicly available ECAPA-
TDNN model3 pre-trained by SpeechBrain (Ra-
vanelli et al., 2021) and released under the Apache-
2.0 license. Accordingly, we set V = 192 in Sec-
tions 2.2 and 2.3, corresponding to the dimension-
ality of the embeddings extracted by the model.
The choice of ECAPA-TDNN as the speaker en-
coder is justified in Section 3.3; 5) Dimensionality
reduction: We used PCA4 to reduce V to P , as
described in Sections 2.2 and 2.3. We set P = 128,

2https://huggingface.co/microsoft/wavlm-large
3https://huggingface.co/speechbrain/

spkrec-ecapa-voxceleb
4https://scikit-learn.org/1.6/modules/

generated/sklearn.decomposition.PCA.html

and the motivation is discussed in Section 3.3.

3.1 Speaker-Related Classification Task

To evaluate whether the proposed approach ef-
fectively reduces speaker information in the
WavLM representations, thereby creating speaker-
independent Eta-WavLMs, we designed a speaker
classification task. Intuitively, since this is a
speaker-related task, a model can only perform
well if the input representations retain a signifi-
cant amount of speaker-specific information. Con-
versely, if the input representations are speaker-
independent, the model will struggle to achieve
high classification accuracy. Thus, our hypothe-
sis is that our representations will perform worse
on the speaker classification task than the origi-
nal WavLMs, which are known to encode speaker-
specific characteristics. To test this hypothesis,
we randomly selected 10 speakers from the Lib-
riSpeech test-clean set, resulting in a total of 1285
utterances. Then, for each utterance, we computed
the corresponding WavLM representation S as de-
scribed in Equation 7 and the Eta-WavLM represen-
tation η as described in Equation 11. We trained
and evaluated a multi-class support vector machine
(SVM) classifier on both representation sets us-
ing a 5-fold cross-validation setup, recording the
classification accuracy for each fold. In addition,
we reported the mean and the standard deviation
across the 5 folds. We chose SVM for its simplic-
ity and well-known robustness in handling high-
dimensional feature spaces and small datasets. The
results are shown in Table 1.

FOLD1 FOLD2 FOLD3 FOLD4 FOLD5 MEAN ± STD

WavLM 83.46 82.33 80.85 83.30 81.55 82.30 ± 0.01
Eta-WavLM 53.82 55.14 58.77 53.94 56.96 55.73 ± 0.01

Table 1: Classification accuracy results (%) for WavLM
and Eta-WavLM across the 5 folds of cross-validation
(ACC ↓). Lower accuracy indicates better performance,
as it reflects reduced speaker-related information.

As expected, the Eta-WavLM representations
achieve significantly lower classification accuracy
compared to the original WavLM ones (paired t-
test yielded a T-Statistic of 18.41 and a p-value of
5.12 × 10−5, rejecting the null hypothesis p <
0.05). This accuracy reduction provides clear
evidence that our approach is effective in reduc-
ing speaker-specific information from the standard
WavLM representations.

To further validate our approach, we visual-
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Figure 2: UMAP projections of the WavLM (a) and Eta-WavLM (b) representations extracted from 10 utterances of
5 speakers (with ids 1995, 2830, 4992, 61, 6829) from the LibriSpeech test-clean set.

ized the WavLM and Eta-WavLM representations.
We randomly selected 5 speakers from the Lib-
riSpeech test-clean set and extracted 10 utterances
per speaker. For each utterance, we computed the
WavLM and Eta-WavLM representations and pro-
jected them onto a two-dimensional space using
UMAP (McInnes et al., 2018) (see Appendix A for
a complementary visualization using PaCMAP).
As shown in Figure 2 (a), the UMAP projection of
the WavLM representations cluster to regions cor-
responding to the individual speakers, suggesting
the presence of strong speaker-specific informa-
tion. In contrast, the projection of the Eta-WavLM
representations in Figure 2 (b) does not show
a discernible cluster of speakers, indicating that
our transformation effectively minimizes speaker-
specific information. These visualizations reinforce
the quantitative results from the speaker classifi-
cation task by providing an intuitive and qualita-
tive demonstration of the speaker-independence of
the Eta-WavLM representations. The absence of
speaker-specific clusters in the Eta-WavLM pro-
jection aligns with the significantly lower speaker
classification accuracy observed in Table 1, further
reinforcing the conclusion that our approach suc-
cessfully disentangles speaker-related information.

3.2 Voice Conversion Task

Despite providing good insights into the reduction
of speaker-related information in our representa-
tions, the speaker classification task does not assess
whether this reduction affects other critical com-
ponents, such as linguistic content. To evaluate
this, we designed a content-related VC task, where
the preservation of linguistic content and the accu-
rate representation of the target speaker’s identity
are both essential for creating a high-quality con-

version system. This dual requirement makes VC
an ideal framework for evaluating whether our ap-
proach removes speaker-specific components while
preserving other essential features. Our hypothesis
is that the proposed Eta-WavLM representations
will improve VC performance compared to both
the original WavLM representations and other state-
of-the-art disentanglement methods.

3.2.1 Model Architecture

For this experiment, we selected the state-of-the-art
Any-to-One VC system proposed in (van Niekerk
et al., 2022; Ruggiero et al., 2024), as it achieves
impressive levels of linguistic content preservation,
target speaker identity similarity, and high-quality
speech generation. The architecture consists of a
content encoder, an acoustic model, and a vocoder.
The content encoder extracts speech representa-
tions from a raw waveform of any speaker, the
acoustic model converts these representations into
a mel spectrogram of the target speaker, and the
vocoder synthesizes the resulting mel spectrogram
into a speech waveform of the target speaker.

In this system, we focus on the content encoder,
as its role is to extract SSL representations from
speech. This makes it the ideal component for in-
corporating our Eta-WavLM representations and
comparing them with other baseline approaches.
In contrast, we left the acoustic model unchanged
from the implementation in (van Niekerk et al.,
2022; Ruggiero et al., 2024) and we trained it from
scratch following the original configurations. Fur-
ther details on its architecture can be found in Ap-
pendix B. For the vocoder, we opted for the multi-
speaker Vocos (Siuzdak, 2024), known for its abil-
ity to produce high-quality speech outputs. We
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used the official pre-trained model5 released under
the MIT license.

3.2.2 Baseline Approaches
We evaluated our Eta-WavLM approach against
several baselines, including the direct use of the
WavLM model as in (Ruggiero et al., 2024), as
well as four prominent disentanglement strategies
from the literature: perturbation, per-utterance stan-
dardization, soft unit creation, and Vector Quanti-
zation (VQ). Specifically, for perturbation, we im-
plemented the disentanglement strategy outlined in
(Choi et al., 2021), which is based on information
perturbation applied to the input speech before the
WavLM model. For per-utterance standardization,
we employed the utterance-level standardization
method described in (van Niekerk et al., 2021) on
the WavLM representations. For soft unit creation,
we followed the training procedure outlined in (van
Niekerk et al., 2022) to derive soft speech units
from the WavLM representations. For the VQ strat-
egy, we trained the RepCodec model (Huang et al.,
2024) following the official instructions6, substi-
tuting HuBERT with WavLM. This comparison
yielded 6 distinct content encoders: one based on
the unmodified WavLM representations and five
derived from the application of the different dis-
entanglement strategies (including our approach).
Each content encoder produces either continuous
or discrete representations, depending on the spe-
cific disentanglement method applied or whether
the output of the WavLM model is used directly
without further refinement.

3.2.3 Experimental Setup
To ensure a robust evaluation of the VC system,
we selected two English target speakers with dis-
tinct background characteristics, genders, and noise
levels to train the acoustic model: LJSpeech (Ito
and Johnson, 2017) (F): A single-speaker dataset
containing approximately 24 hours of read English
speech by a female speaker; Elliot Miller (M): A
single-speaker dataset consisting of 38 hours of
read English speech by a male speaker. We ex-
tracted this speaker from the multi-speaker and
multi-lingual M-AILABS Speech Dataset7. In addi-
tion, to ensure a fair comparison with LJSpeech, we
randomly selected 24 hours from the dataset. Both

5https://huggingface.co/charactr/
vocos-mel-24khz

6https://github.com/mct10/RepCodec
7https://github.com/imdatceleste/

m-ailabs-dataset

target speakers are in the public domain. While
LJSpeech is a clean and high-quality dataset, Elliot
Miller presents more challenging conditions. This
diversity in target speaker profiles was intention-
ally selected to evaluate the effectiveness of the VC
under varied conditions.

For each audio sample of each target speaker, we
first downsample it to 16 kHz and separately ex-
tract the corresponding SSL representations using
all 6 distinct content encoders. Then, we create the
mel-scaled spectrogram of the audio sample fol-
lowing (Siuzdak, 2024), by resampling it to 24 kHz
and using the following parameters: nfft = 1024,
hop_length = 256 and number of Mel bins (n-
MELs) 100. Finally, for each pair (representa-
tion, mel spectrogram), we trained a target-specific
acoustic model, using the selected representation
as input and the corresponding mel spectrogram as
the target. In total, we trained 12 distinct acoustic
models (6 types of representations × 2 speakers).

3.2.4 Evaluation Metrics
We conducted both objective and subjective evalu-
ations to measure intelligibility, speaker similarity,
and overall quality of the converted speech. Intel-
ligibility assesses the system’s ability to preserve
the linguistic and semantic integrity of the input
speech, ensuring that the content is comprehensi-
ble after conversion. Speaker similarity evaluates
how well the converted speech captures the target
speaker’s voice characteristics, ensuring the output
convincingly mimics the desired speaker. Lastly,
overall speech quality examines the naturalness and
quality of the converted speech.

To perform these evaluations, we created a test
set of 60 utterances obtained by randomly select-
ing 3 utterances from 20 speakers (10 male and
10 female) extracted from the test-clean set of Lib-
riSpeech. We converted all these utterances into
LJSpeech and Elliot Miller using our proposed
method and the five baselines, resulting in a to-
tal of 420 samples per speaker (60 ground truth
+ 360 generated). We evaluated intelligibility by
measuring the word error rate (WER) and phoneme
error rate (PER) between the source and converted
speech. Orthographic transcriptions were obtained
using the Whisper Medium ASR model8 (Radford
et al., 2023), while phonetic transcriptions were
generated using phonemizer9 (Bernard and Titeux,
2021). Speaker similarity (SSIM) was measured us-

8https://huggingface.co/openai/whisper-medium
9https://github.com/bootphon/phonemizer
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Table 2: Objective and subjective evaluation of the VC task. Results (%) in terms of intelligibility (W/PER ↓),
target speaker similarity (T-SSIM ↑), source speaker similarity (S-SSIM ↓), and overall quality (MOS ↑) with 95%
confidence intervals for the proposed Eta-WavLM and the baseline methods. WavLM was used as the SSL model
across all approaches.

LJSpeech Elliot Miller

WER PER T-SSIM S-SSIM MOS WER PER T-SSIM S-SSIM MOS

Ground truth 3.22 5.47 - - 3.85 ± 0.04 3.22 5.47 - - 3.85 ± 0.04

Perturbation (Choi et al., 2021) 6.29 7.32 91.69 50.64 3.45 ± 0.06 10.76 8.43 87.41 52.67 3.13 ± 0.07
Utterance std (van Niekerk et al., 2021) 4.13 7.32 90.34 51.58 3.80 ± 0.04 5.16 6.68 85.91 55.87 3.41 ± 0.06
Soft (van Niekerk et al., 2022) 4.82 5.94 91.81 50.11 3.84 ± 0.05 5.50 6.75 86.69 53.36 3.32 ± 0.06
Vector quantization (Huang et al., 2024) 4.79 6.08 90.05 51.98 3.90 ± 0.05 7.72 7.56 86.30 53.81 3.50 ± 0.06

WavLM (Ruggiero et al., 2024) 4.56 5.84 89.52 52.77 3.84 ± 0.05 5.14 6.38 86.18 54.30 3.66 ± 0.06
Proposed (Eta-WavLM) 3.81 5.63 92.46 47.60 4.00 ± 0.05 4.64 6.09 89.32 48.25 3.79 ± 0.05

ing a trained speaker verification model10. Specifi-
cally, we computed the cosine similarity between
the d-vectors (Ruggiero et al., 2021) of each con-
verted sample and those of the source (S-SSIM) and
the target (T-SSIM) speakers. Finally, for overall
speech quality, we conducted a subjective evalua-
tion based on mean opinion scores (MOS). Twenty
native-language participants were asked to listen
to the randomly mixed samples and rate them on a
5-point scale, where 1 corresponds to “very poor”
and 5 to “excellent”.

3.2.5 Results
We report the objective and subjective results for
the VC experiment. Table 2 shows WER/PER,
SSIM, and MOS for the two target speakers:
LJSpeech (first column) and Elliot Miller (sec-
ond column). Compared to other methods, Eta-
WavLM significantly enhances conversion intelligi-
bility, achieving the lowest error rates for both tar-
get speakers. For LJSpeech, it closely approaches
the ground truth WER and PER values, demonstrat-
ing a high level of linguistic content preservation
compared to all baselines. A similar pattern is ob-
served for Elliot Miller, where Eta-WavLM outper-
forms the baselines, confirming its robustness even
under more challenging acoustic conditions. No-
tably, the perturbation approach exhibits the highest
error rates, particularly for Elliot Miller, suggest-
ing that this approach excessively distorts linguistic
and semantic information in the input speech. In
terms of speaker similarity, the proposed method
achieves the best SSIM scores for both target speak-
ers, outperforming both the original WavLM repre-
sentations and all other disentanglement strategies.
While the soft approach yields comparable results

10https://github.com/resemble-ai/Resemblyzer

for LJSpeech, it struggles with the noisier Elliot
Miller speaker, highlighting that some disentangle-
ment methods are more sensitive to challenging
acoustic conditions. In contrast, using WavLM di-
rectly results in lower speaker similarity, reinforc-
ing the notion that speaker-dependent information
remains embedded in the original representations
and thus affects the overall performance of the VC
system. Finally, regarding overall speech quality,
Eta-WavLM achieves the highest MOS scores, sur-
passing all baselines. Interestingly, the vector quan-
tization approach demonstrates relatively strong
MOS ratings but fails to maintain the same level
of linguistic and semantic integrity, as evidenced
by its higher WER and PER values, especially for
Elliot Miller. Conversely, as with intelligibility,
the perturbation yields the lowest MOS values, fur-
ther indicating that speech modification negatively
impacts also naturalness.

These results confirm our hypothesis that Eta-
WavLM effectively disentangles speaker informa-
tion while preserving linguistic content, achieving
the best balance between intelligibility, speaker
similarity, and speech quality. Moreover, the con-
sistent improvements across both target speakers
underline its robustness, demonstrating that the pro-
posed approach not only reduces speaker-related
information more effectively than existing methods
but also avoids degradation of other features.

3.3 Ablation: Speaker Encoder and PCA

In this section, we analyze the impact of the speaker
encoder for the creation of effective speaker em-
beddings d. Since our approach aims to decom-
pose SSL representations into speaker-dependent
and speaker-independent components, it is cru-
cial that d captures speaker-specific characteris-
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WER PER T-SSIM SPK ACC

Resemblyzer w/o PCA 4.94 6.01 89.02 74.01 ± 0.01
Resemblyzer w PCA-64 4.86 5.92 89.86 73.54 ± 0.02
Resemblyzer w PCA-128 4.48 5.84 90.59 65.87 ± 0.01

WavLM-SV w/o PCA 4.27 5.81 89.29 69.74 ± 0.02
WavLM-SV w PCA-64 4.15 5.75 89.35 68.31 ± 0.02
WavLM-SV w PCA-128 3.91 5.70 89.76 65.83 ± 0.01

ECAPA-TDNN w/o PCA 4.18 5.80 89.90 60.87 ± 0.01
ECAPA-TDNN w PCA-64 3.95 5.63 90.91 58.14 ± 0.02
ECAPA-TDNN w PCA-128 3.81 5.63 92.46 55.73 ± 0.01

Table 3: Results (%) measuring VC intelligibility
(W/PER ↓), target speaker similarity (T-SSIM ↑), and
the speaker classification accuracy (SPK ACC ↓) using
different speaker encoders and PCA reductions. The
VC target speaker is LJSpeech.

tics without encoding other critical components
such as linguistic content, prosody, or phonetic
details. If the extracted embeddings contain too
much non-speaker-related information, the decom-
position process of our method risks degrading es-
sential speech content in the SSL representations,
resulting in a non optimal eta representation η.
Furthermore, since embeddings can generally be
large and contain redundant information, we also
want to investigate whether a technique like PCA
to reduce and make more compact d can further
improve the overall performance of our approach.
To this end, we evaluated three different speaker
encoders: Resemblyzer11, a publicly available im-
plementation of (Wan et al., 2017), released under
the MIT license; WavLM-SV12, a WavLM-Large
version designed for speaker verification (SV) and
released under the Attribution-ShareAlike 3.0 Un-
ported license; and ECAPA-TDNN (Desplanques
et al., 2020), which we briefly introduced in Sec-
tion 3. For each speaker encoder, we considered
the raw output and two levels of dimensionality
reduction: PCA-64 and PCA-128. Following the
same configurations as in Section 3.1 and Section
3.2, we setup a Speaker Classification task and a
Voice Conversion task (considering only LJSpeech
as target speaker), evaluating the eta representa-
tions created using the different d generated by
each speaker encoder. Table 3 reports WER/PER
and T-SSIM of VC and the mean and standard de-
viation across the 5 folds of the cross-validation
of the speaker accuracy for each model. ECAPA-
TDNN consistently achieves the best performance

11https://github.com/CorentinJ/
Real-Time-Voice-Cloning

12https://github.com/microsoft/UniSpeech/tree/
main/downstreams/speaker_verification

across all metrics, demonstrating its superiority
in preserving linguistic content, achieving a high
level of target speaker similarity in the VC task,
and reaching the lowest speaker classification ac-
curacy. While WavLM-SV also shows strong in-
telligibility performance, its VC speaker similarity
remains lower than that of ECAPA-TDNN. This
highlights the fact that the eta representations cre-
ated with d extracted using WavLM-SV are less
speaker-independent than those of ECAPA-TDNN.
This is further confirmed by the higher speaker ac-
curacy in the classification task. On the other hand,
the performance obtained with Resemblyzer is not
comparable to that of the other two approaches,
suggesting that the eta representations created with
its d are too entangled. Interestingly, reducing
the dimensionality of the speaker embeddings us-
ing PCA actually enhances overall performance in
both the VC and speaker classification tasks for
all methods. In this case as well, ECAPA-TDNN
achieves the best values across all metrics, particu-
larly with the PCA-128 configuration. This aligns
with our hypothesis that reducing redundant in-
formation from d further improves performance.
However, excessively reducing the dimensionality
of d does not appear to provide additional benefits.
This is evident from the performance obtained us-
ing PCA-64, which is lower than that of PCA-128.
This suggests that while PCA can enhance perfor-
mance, its effectiveness depends on the extent of
the dimensionality reduction applied. In conclu-
sion, our results demonstrate that ECAPA-TDNN
is the most effective speaker encoder for our ap-
proach, and applying PCA to d further enhances
the decomposition process, improving intelligibil-
ity and preserving essential speech content.

4 Conclusion

In this work, we introduced Eta-WavLM, a novel
approach for disentangling speaker-related and
speaker-independent components in WavLM rep-
resentations. By leveraging an innovative decom-
position strategy based on a simple linear equation,
our method effectively minimizes speaker infor-
mation while preserving other critical components,
such as linguistic content, making it highly suitable
for speaker-independent speech processing tasks.
We validated its effectiveness through a speaker-
related task, confirming its ability to significantly
reduce speaker information, and further assessed
it on a content-related VC task, demonstrating that
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Eta-WavLM achieves a superior balance between
intelligibility, speaker similarity, and speech qual-
ity compared to other existing disentanglement
methods. Future work will focus on extending
our approach to multilingual settings (including
low-resource languages) and integrating our rep-
resentations into other downstream tasks such as
ASR and expressive speech synthesis. Additionally,
we plan to explore more sophisticated strategies for
disentanglement, including non-linear modeling
approaches, to further investigate the potential ben-
efits over our current linear formulation.

Limitations

To obtain effective speaker-independent speech rep-
resentations, we focused on the explicit decom-
position of speaker and content components us-
ing speaker embeddings. This approach signif-
icantly reduces speaker identity leakage, as evi-
denced by our results showing that eta represen-
tations created using ECAPA-TDNN yield strong
performance. However, our method does not fully
eliminate speaker-specific information. In partic-
ular, performance in the 10-way speaker classifi-
cation task remains above chance, suggesting that
traces of speaker identity still persist in the result-
ing features. This residual information may be a
consequence of the method’s reliance on the quality
of the speaker encoder. Future work could explore
alternative speaker representations that further im-
prove the trade-off between content preservation
and the removal of speaker-related cues.

Our experiments were conducted using the
WavLM model, which has demonstrated state-of-
the-art performance in various speech tasks. How-
ever, our evaluation primarily focused on English
datasets, and the ability to generalize to multilin-
gual speech scenarios remains an open question.
We leave to future research the investigation on
how well our approach disentangles speaker in-
formation while preserving speech content across
multiple languages.

We used the LibriSpeech dataset for creating the
latent basis A∗ and bias b∗. While LibriSpeech is
a large and diverse dataset, we believe that incor-
porating larger, more diverse datasets, or even mul-
tilingual data, could further strengthen the model’s
ability to generalize across different linguistic and
acoustic environments, ultimately enhancing the
robustness and flexibility of our method. This is a
direction we plan to pursue in future research.
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Figure 3: PaCMAP projections of the WavLM (a) and Eta-WavLM (b) representations extracted from 10 utterances
of 5 speakers (with ids 1995, 2830, 4992, 61, 6829) from the LibriSpeech test-clean set.

A PaCMAP Visualization

In this section, we replicate the analysis from Sec-
tion 3.1 using PaCMAP (Wang et al., 2021), an
alternative dimensionality reduction technique to
UMAP that is known for preserving both global
and local data structures. Figure 3 shows a two-
dimensional PaCMAP projection of the same 50
WavLM and Eta-WavLM representations previ-
ously visualized using UMAP. In Figure 3 (a), the
WavLM representations exhibit clustering patterns
corresponding to individual speakers, once again
indicating the presence of speaker-specific informa-
tion. In contrast, the Eta-WavLM representations
in Figure 3 (b) display no discernible speaker clus-
ters, with utterances more evenly distributed across
the space. This additional visualization further sup-
ports our findings from the UMAP analysis and pro-
vides additional evidence that our transformation
significantly reduces speaker-specific information.

B Architecture of the Voice Conversion
Acoustic Model

In this section, we provide details about the archi-
tecture of the acoustic model used for the VC task
described in Section 3.2, based on (van Niekerk
et al., 2022) and (Ruggiero et al., 2024). The acous-
tic model takes SSL representations as input rather
than graphemes or phonemes as in a typical TTS
task and outputs mel spectrograms of the target
speaker. The model is composed by an encoder
and an autoregressive decoder. Both the encoder
and decoder are preceded by a feed-forward pre-net,
and a final linear layer with n-MELs units follows
the decoder. The encoder pre-net is a feed-forward
neural network consisting of a stack of two linear
layers with 256 units each, ReLU activations, and

dropout. The encoder includes a stack of three 1D
convolutional layers, each with 512 units, a kernel
size of 5, a stride of 1, padding of 2, and ReLU
activations. The decoder predicts each spectrogram
frame based on the output of the encoder and the
previously generated frames. It starts with a de-
coder pre-net, which is similar in structure to the
encoder pre-net, followed by three LSTM layers
with 768 units each. Finally, a linear layer with
n-MELs units generates the output. Furthermore,
since there is no attention mechanism between the
encoder and decoder, a length regulator module is
employed. This module optionally implements a
duration adjustment strategy to address potential
mismatches between the lengths of the SSL input
features and the target spectrogram sequence.
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