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Abstract Q: Utilize only the four fundamental
arithmetic operations (+, —,%,+) along with
Self-reflection helps de-hallucinate Large Lan- the numbers 3, 3,7, and 7 to arrive at a result

of 24. Each number must be used exactly
once and cannot be repeated.

guage Models (LLMs). However, the effective-
ness of self-reflection remains insufficiently val-
idated in the context of Small Language Models

. e ” Respond: (7 - (7 /7)) *3 =24 x
(SLMs), which exhibit limited semantic capac- |
ities. In particular, we demonstrate that the

conventional self-reflection paradigm, such as Retleck
Self-Refine, fails to deliver robust response re- LiConstmetanieabressionthiat
A . Reflect: adheres to the problem’s rules.
finement for models with parameter sizes of :
. Construct an expression that 2. Avoid reusing numbers more
10 billion or smaller, even when compared to adheres to the problem's rules, than once in calculations.
generations elicited through Chain-of-Thought SO EATE TSI BTG ——
. . s than once in calculations, and 3. Consider using imaginary
(CoT) prompting. To improve SLMs’ self- consider using imaginary numbers to simplify the solution.
reflection, we redesign Self-Refine and intro- numbers tlo simplify the
. solution. . R
duce Entrospect (Entropy-aware Introspection), Select=h Avoid reusms; mllmbers
. . . —_— more than once in calculations.
an information-theoretic framework based on
rompt engineering. Refine: (7 - 7i) * (3+3i) =
prompteng g ® Refine: 3+ (3 /7)) *7 = o)
We evaluated Entrospect using accuracy and
Self-Refine Entrospect (Ours)

average time consumption metrics to com-
prehensively assess its precision and compu-
tational efficiency. Experiments conducted
across four distinct SLMs and four baseline
methods demonstrate that Entrospect achieves
the highest performance on validation tasks.
Notably, under identical model and data set-
tings, Entrospect delivers a remarkable im-
provement of up to 36.2% in reasoning accu-
racy while enhancing computational efficiency
by as much as 10 times compared to its prede-
cessor, Self-Refine.

Figure 1: The single-round refinement of an initial re-
sponse for the same query, comparing Self-Refine and
our proposed Entrospect. Self-Refine fully relies on
the model’s self-reflected feedback, where any biases
introduced during reflect are directly carried over into re-
fine, hindering constructive improvements. On the other
hand, our Entrospect identifies the optimal revision sug-
gestion from an itemized ouput of the self-reflection,
enabling Entrospect to achieve more robust and reliable
response refinement.
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1 Introduction

Large Language Models have advanced rapidly,
impacting many fields with improved natural lan-
guage generation (Brown et al., 2020; Chang et al.,
2024). However, their tendency to produce halluci-
nations—especially counterfactual ones—poses a
critical challenge to reliability (Zhang et al., 2023;
Huang et al., 2023). Hallucinations occur when
models generate factually incorrect or nonsensical
outputs, undermining their trustworthiness and hin-
dering real-world adoption. Addressing this issue
is essential for improving their practical utility and
acceptance (Weidinger et al., 2021, 2022).

To address these challenges, self-reflection has
been proposed as a solution to counterfactual hal-
lucinations, particularly for black-box models with
inaccessible parameters (Madaan et al., 2024).
However, its effectiveness is limited in Small Lan-
guage Models (SLMs), which often lack suffi-
cient semantic capabilities, inducing frequent oc-
curences of imperfect feedback, encompassing
the self-reflected revision suggestions. Given the
widespread use of SLMs in resource-constrained
environments (Li et al., 2024; Wang et al., 2024),
this limitation is particularly significant. In such
cases, self-reflection may fail to consistently assist
in the corrections of outputs, highlighting the need
for more robust and scalable approaches.

Given the challenges of applying self-reflection
to SLMs, a key question arises: how might we con-
struct a framework that effectively integrates self-
reflection to improve the precision of SLM outputs,
all while preserving the computational efficiency?
In response to this challenge, we propose Entro-
spect', an information-theoretic framework predi-
cated on Self-Refine that lessens the dependency on
explicit semantic outputs from the model. Contrary
to Self-Refine’s equal consideration of all revision
suggestions, Entrospect employs an unsupervised
mechanism to identify the most effective revision
candidate, minimizing the impact of inferior ones,
as illustrated in Figure 1.

Specifically, Entrospect is implemented with an
Optimal Revision Suggestion Selector (ORSS) In-
spired by (Wu et al., 2024) and (Yang et al., 2024b),
the ORSS intervenes between the “reflect” and the
“refine” stages that are tightly connected in the Self-
Refine’s pipeline. It evaluates revision suggestions
generated through self-reflection and identifies the
one that minimizes the semantic uncertainty in the

lhttps ://github.com/henryyantq/Entrospect
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Figure 2: Entrospect contributes furtherance to the re-
sponse refinement of SLMs particulary over its prede-
cessor, Self-Refine, across three major aspects.

model’s refinement of the prior response, where
low-quality suggestions conceivably ruining the
successive procedures are ruled out. This selective
approach distinguishes Entrospect from its prede-
cessors, enhancing both the quality and reliability
of the refined responses.

Architecturally, Entrospect retains the simplic-
ity and efficiency of Self-Refine, operating as
a parameter-free, recurrent finite-state machine
(FSM) where modules are interconnected through
purpose-specific prompts. This design ensures
computational efficiency while maintaining the
flexibility to adapt to diverse conversational Al
tasks. Figure 2 summarizes the multifaceted con-
tributions of Entrospect, the central focus of this
study.

We evaluated Entrospect on natural lan-
guage reasoning tasks, including the MATH
dataset (Hendrycks et al., 2021) for math reason-
ing and HaluEval (Li et al., 2023) for hallucina-
tion detection. The results show Entrospect outper-
forms baselines like zero-shot, few-shot, Chain-of-
Thought (CoT), and Self-Refine. These findings
underscore two critical advances:

1. Selective Use of Self-Reflection: We high-
light that the outcomes of a model’s self-
reflection should not be directly or entirely
relied upon as guidance for the response re-
finement.

2. ORSS-Driven Optimization: Our proposed
Entrospect improves Self-Refine by introduc-
ing ORSS, an information-theoretic mecha-
nism that unsupervisedly identifies the opti-
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mal revision from multiple candidates. Com-
bined with our semantic similarity-based stop-
ping condition, Entrospect allows a more ro-
bust and systematic approach to self-reflection
for response refinement. Compared to its pre-
cursor, Self-Refine, Entrospect accomplishes
a remarkable performance boost, delivering
up to 36.2% improvement in accuracy under
identical dataset and model conditions, while
elevating computational efficiency by as much
as 10 times.

2 Related Work
2.1 Self-Reflection of Language Models

The empirical foundation of self-reflection is that
given some queries, language models may not be
able to provide proper answers every time (Yan
and Xu, 2023). Self-reflection assists in alleviating
such problems by explicitly instructing a language
model to review its generated response, providing
a feedback on potential deficiencies within the cur-
rent response and how they could be eliminated.
The feedback is subsequently used for guiding the
refinement of the previous answer. This procedure
can be fully automated through a prompt-driven
framework, by which a language model iteratively
reflects and refines the answer to a query on its
own (Lee et al., 2024).

Techniques like Self-Refine introducing mech-
anisms for models to improve their own re-
sponses (Madaan et al., 2024), especially in
question-answering (QA) scenarios, to enhance
generation quality. This approach has been fur-
ther advanced in research such as Reflexion and
Agent-Pro (Shinn et al., 2024; Zhang et al., 2024b),
which extend self-reflection to agentic scenarios,
increasing the efficiency and success rate of task
execution during scenario exploration and trajec-
tory execution. However, there remains significant
room for improvement in its performance, particu-
larly when it comes to SLMs.

Through extensive review, we found lack of re-
port on the effectiveness of self-reflection applied
to models which possess fewer than 10 billion pa-
rameters. Its success relies heavily on the context
generated during the self-reflection process (Cheng
et al., 2024) and is prone to overconfidence in its
generated content (Zhang et al., 2024a), including
biases.

We assessed the self-reflective capabilities of
several SLMs across a variety of tasks, with Self-

Refine chosen as a baseline approach. Our find-
ings reveal that reflective thinking of these models
fails to produce meaningful improvements in their
generative performance. Entrospect is specifically
designed to enhance the performance of SLMs by
leveraging information theory to assist in the self-
reflection process.

2.2 Enhancing the Reasoning Capabilities of
Small Language Models

Recent studies have made significant strides in en-
hancing the reasoning capabilities of SLMs. Bi et
al. introduced Solution-Guidance Fine-Tuning (Bi
et al., 2024), focusing on problem understanding
and decomposition to improve SLMs’ generaliza-
tion and reasoning abilities. Wang and Lu explored
continual pre-training on a synthetic dataset to in-
ject multi-step reasoning abilities into moderate-
sized models (Wang and Lu, 2023). Fu et al. spe-
cialized small models towards multi-step reason-
ing through knowledge distillation from large mod-
els (Fu et al., 2023). Yu et al. developed TRIPOST,
an algorithm enabling small models to self-improve
via interaction with large ones (Yu et al., 2023).

However, these methods often necessitate a sub-
stantial amount of additional data, whether it is
synthetically created or derived from larger models,
which may not be readily accessible or easy to pro-
duce. They entail a certain degree of computational
overhead, be it in data generation, pre-training, or
iterative training processes. Differently, Entrospect
does not require any additional data or specialized
training, thus drastically reducing both overhead
and resource demands, allowing broader applica-
bility across diverse domains and use cases.

3 Methodology

3.1 Problem Definition

While frameworks like Self-Refine aim to automate
response refinement in language models through
self-reflection, they do not inherently ensure that
such refinements are beneficial. This limitation
is particularly pronounced in SLMs, where con-
strained semantic capabilities lead to unreliable
self-reflections, resulting in reflective contamina-
tion. Reflective contamination occurs when the
model’s self-generated feedback contains biases,
which can degrade rather than improve the refined
response.

To formalize this problem, consider the ¢-th
refinement round, where the model M, gener-
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generalizable to various language models and reasoning tasks.

ates feedback F} based on the query @, reflection
prompt Piefiect, and current response A;. This feed-
back, represented as My (Q|| A¢|| Prefiect ), cONSsists
of two components: 1) A valid portion S; = p; F},
which supports effective refinement. 2) Reflective
contamination Ny = (1 — p;) F}, which introduces
biases. Here, p; € (0, 1) represents the proportion
of valid feedback in F}. The refined response Ay41
is then generated using F}, (), and the refinement
prompt Pefine, expressed as:

Apv1 = Mo (Q|| At]| Fy|| Prefine)
:At+afSt —ozith
= A+ o — o (1—pi) Fy
= A+ [(Ozf+oéiv),0t*04iv] Fi,

ey

where af and ¥ are partial attention factors
(v € (0,1)) applied to the valid and contaminated
portions of Fj, respectively.

The Core Problem:

1. A successful refinement requires A; 11 > Ay,
but this is not guaranteed. When p; is low
(i.e., the feedback contains more contamina-
tion), the refined response may degrade, as
described by the condition:

N
Qi

af+a{v

pt < 2

2. SLMs, with their limited semantic compe-
tence, often exhibit low p; and high o]¥ (or
low ats ), making them prone to degradation
during the refinement phase of the response.

Objective: Within the realm of black-box mod-
els, af, )Y and p; are inaccessible. This presents

a significant obstacle in accurately differentiating
between S; and V. An alternative perspective in-
volves concentrating exclusively on the optimal
component of F;. Entrospect proposes an unsu-
pervised mechanism driven by information theory,
providing a systematic solution to this complica-
tion.

3.2 Optimal Revision Suggestion Selector

By employing a formatting prompt, we can steer
the model’s self-reflective output towards a system-
atic arrangement of multiple revision suggestions.
In this way, F; is characterized as an ensemble
of strings {f,?, fi ... ,fﬁ}, framing our goal as
“discerning an optimal revision suggestion from
this set”. However, in the absence of supervision,
defining what constitutes optimal becomes a funda-
mental issue.

To address this, we propose a solution called
the Optimal Revision Suggestion Selector (ORSS),
which uses heuristic information-theoretic ap-
proaches for prompt selection (Wu et al., 2024;
Yang et al., 2024b). These studies suggest that
an optimal prompt should minimize the semantic
uncertainty of a language model when processing
a query, which is equivalent to maximizing the
conditional mutual information (CMI) between the
input and the output. Unlike recent work which
assumes a manually constructed prompt pool, F;
as the candidate set in our case is constructed in an
automatic fashion, where revision suggestions be-
come prompt candidates, and the one to be selected
renders the maximum CMI following Equation 3:
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ft =argmax I (Ay1; fi | Q[ Ad),
Jt€F

where I = H (441 | Q|| A7) €)
- H(At-i-l ‘ ft7QHAt) .

In Equation 3, Q|| A; stands for the prompt
“Please provide a refined solution of <Q>
given <A_t>”, and (f;, Q|| A¢) signifies a slightly
different prompt “Please provide a refined
solution of <Q> given <A_t>. <f_t>". The
two H's characterize the marginal entropy and the
conditional entropy in classical information theory,
respectively. The value of CMI [ stands for the ex-
tent to which a revision suggestion f; enhances
the model’s confidence in the refinement applied
to the current answer A;.

3.3 Eliciting the Convergence of Entrospect

We established a universal mechanism to enable
Entrospect to automatically terminate its iterations.
The core principle is that, at the semantic level, A;
and Ay, are essentially equivalent. Consequently,
when a language model employs greedy search
(temperature = 0) for output sampling, subse-
quent outputs naturally converge toward consis-
tency, rendering the increments from reflection and
refinement negligible. Given these circumstances,
the framework no longer introduces meaningful
improvements to the response, a state we defined
as “convergence”. More precisely, we leverage the
cosine similarity S (-, -) to quantify the degree of
semantic resemblance between two answers, mod-
eled as

Vi1 V2
S(A),Ag) = —————
[valll[va]l
i (v vai) 4)
\/Z:il U%i : \/Z:il Ugi
T . ..
where v = [vl ) vm] indicates

the A’s tokenized vector in a continuous, m-
dimensional semantic space. The range of S is
[—1, 1], with a higher value referring to a stronger
semantic similarity between the two entities com-
pared. Leveraging semantic similarity as a stop-
ping condition for the iterative refinement proce-
dure guarantees an appropriate termination junc-
ture, thus optimizing performance results.

3.4 Framework of Entrospect

Slightly different from the three-step process of
respond — reflect — refine adopted by Self-Refine,
Entrospect follows an extended four-step strategy:
respond — reflect — select — refine. In the follow-
ing, we detail each step sequentially; see Figure 3
for an intuitive illustration of the pipeline and Al-
gorithm 1 for implementation guidance.

Respond: The iterations begin with the language
model generating an initial answer A for the input
query Q.

Reflect and Select: During iteration ¢, the model
My, guided by the prompt Pjefiect, the original
query ), and the current answer A;, generates
a set of candidate revision suggestions denoted
as F; = { f? , ftl, e ft”}. The prompt Prefiect
serves as a directive that instructs the model on
how to evaluate potential deficiencies in the current
answer and construct appropriate F; accordingly.
Thereafter, the ORSS selects the optimal f;* that
maximizes the CMI between the input and the out-
put of the model. In practical implementation, the
Cross-Entropy Loss Lcg output by the model for a
given input can be used to calculate the marginal
entropy and the conditional entropy, allowing for
the straightforward computation of the CML.

Refine: Leveraging the f;" as the key instruction to
the refinement, the model My utilizes the prompt
Prefine, 1n conjunction with the original query
and the current answer A;, to generate an updated
answer Az 1.

Stop Condition: Subsequent to the generation of
the A;11, we exert the semantic textual similar-
ity measure to check whether the iterative process
should be terminated. When A; and A;;1 exhibit
a high degree of semantic resemblance, this sug-
gests that Entrospect has entered a state of conver-
gence from the current iteration onward. Following
that, A,y is designated as the final output. To
meet the requirements of long-text encoding with
high representational fidelity, we opted for the Jina
Embeddings V3 (Sturua et al., 2024) with a ded-
icated LoRA adapter for text-matching tasks, an
encoder-based model which natively supports an
input sequence length of up to 8192 tokens. In our
experiments, S > 0.9 is adopted as the threshold
for considering A; and A;11 semantically equiva-
lent.

We detailed the instructions involved in the op-
eration process of Entrospect in Figure 6.
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Algorithm 1 The algorithm pipeline of Entrospect

Require: query ), model My, prompt Preect
(:= Pr), prompt Pefine (:= P;), semantic sim-
ilarity threshold Siy

1: Ag < My (Q) > Respond
2: At — A[)

3: while True do

4: Fy < My (FP||Q|lAr) > Reflect
s: {2 )« list(Fy) > Itemize
6: Tax <+ 0

7: for f; in list(F}) do > Select (ORSS)
8: H™® « Log (Mo (B[ QAr))

0 HE™ o Log (Mg (BIQ[I A f2)
10: I « H"™® — Hgond

11: if I; > I,,.x then

12: fi e 1

13: end if

14: end for

15: App1 < Mo (P]|QII A ff) > Refine
16: if S (At, At+1) > Sy, then

17: break

18: end if

19: A At—l—l

20: end while

21: return Ay

4 Experiments and Results

4.1 Experimental Settings

We evaluated Entrospect equipped by four of
the latest SLMs, including DeepSeek-R1-distilled
Qwen 2.5 1.5B (Yang et al., 2024a; Guo et al.,
2025), Qwen 2.5 7B (Yang et al., 2024a), Llama 3.1
8B (Al 2024), and GLM-4 9B (GLM et al., 2024),
as compared to the baselines (see Section 4.4) on
a math reasoning dataset and a hallucination de-
tection dataset, namely MATH (Hendrycks et al.,
2021) and HaluEval (Li et al., 2023). Each SLM
was quantized to INT4 precision with either Auto-
GPTQ or BitsAndBytes (Pan, 2023; Dettmers et al.,
2022).

4.2 Datasets

To comprehensively assess whether Entrospect
heightens the ubiquitous reasoning performance
of SLMs, we sourced our validation data from two
representative datasets, MATH and HaluEval, with
illustrative examples provided in Table 4.

MATH (Hendrycks et al., 2021): a dataset de-
signed to measure the mathematical reasoning ca-
pabilities of language models, consisting of prob-

Table 1: Accuracies (%) of various methods equipped by
four of the latest SLMs on reasoning tasks MATH (The
average accuracies of level 1 to level 5) and HaluEval.
We highlight the best results in bold.

Model Method MATH | HaluEval
Name
Zero-Shot 94.2 80.5
ot | 5Shot 9.2 | 295
o 1512;: Zero-Shot CoT | 91.3 91.0
Imtvrvu‘jil'SB Self-Refine 88.5 80.0
) ' Entrospect 98.4 95.5
Zero-Shot 78.2 94.5
5-Shot 72.8 91.0
IgvtvrentZ&; Zero-Shot CoT | 83.8 98.0
strue Self-Refine 73.0 97.5
Entrospect 86.0 100.0
Zero-Shot 61.7 94.5
5-Shot 56.5 94.0
IU?mafs'llg Zero-Shot CoT | 73.7 94.5
nstrue Self-Refine 443 95.0
Entrospect 80.5 99.5
Zero-Shot 55.0 98.5
5-Shot 57.9 97.5
IclLMt‘;B Zero-Shot CoT 65.8 97.5
nstrue Self-Refine 56.8 97.5
Entrospect 69.7 100.0

lems sourced from high school math competitions,
tagged with difficulty levels from 1 to 5 and cov-
ering a wide range of topics including algebra, ge-
ometry, number theory, and combinatorics. MATH
is notable for its complexity compared to the other
datasets of the same category (Frieder et al., 2024),
e.g. GSMS8K (Cobbe et al., 2021). Besides, the
latest findings have unveiled that MATH suffers
less leakage than GSMS8K does from the worsen-
ing cheating on model training (Xu et al., 2024),
underlining its fairness. We randomly chose 120
samples from each difficulty level to serve as our
experimental dataset.

HaluEval (Li et al., 2023): a dataset that gauges
the performance of language models in recognizing
hallucinations, featuring general user queries and
task-specific examples across question answering,
dialogue, and text summarization. We randomly
sampled 200 pairs from this dataset, providing a ro-
bust evaluation platform for analyzing the effective-
ness of our framework in detecting and reducing
hallucinations.

4.3 Evaluation Metrics

We selected two evaluation metrics, i.e. Accuracy
and Average Time Consumption (Han et al., 2023;
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Xu et al., 2023; Xiao et al., 2024), to provide both
qualitative and quantitative insights into the effec-
tiveness of Entrospect.

Accuracy: a pivotal evaluation metric, is de-
lineated as the proportion of problems cor-
rectly resolved relative to the total number of
problems the model attempts, computed via
Acorrect/ (Acorrect + Awrong) X 100% A hlgher
accuracy signifies that a prompting scheme is more
effective in lifting the model’s reasoning outcomes.

Average Time Consumption: We measured the
Average Time Consumption (ATC) of the selected
prompting schemes, spanning from the moment
the input is supplied to the generation of the final
output. Given the sample size NV of the valida-
tion set, ATC is calculated by + SV (e — try)»
where t;,, —t, denotes the duration, counted in sec-
onds, from the moment the k-th input is supplied
to the time the k-th output is generated. A smaller
ATC embodies better computational efficiency of a
prompting method, which is vital for industrial im-
plementation, notably on edge computing devices
running local SLMs. In our assessments, both of
the above metrics are considered for more compre-
hensive analysis.

4.4 Baseline Selection

We compared Entrospect against the following
well-established prompting methods as well as its
ablated version, functioning as robust benchmarks
for appraising the performance uplift in SLMs
achieved with Entrospect.

Zero-Shot and Few-Shot Prompting (Brown
et al., 2020): Zero-shot prompting directs a lan-
guage model to perform tasks with only high-level
instructions, often sacrificing accuracy for complex
inputs. Conversely, few-shot prompting supplies
demonstrations to improve context awareness and
performance, yet its success hinges on the qual-
ity of examples, which may not fully capture task
complexity and may be labor-intensive to gather in
practice.

Chain-of-Thought Prompting (Wei et al., 2022):
An approach that guides language models to gen-
erate a structured reasoning path before arriving at
the final answer, encouraging more systematic and
transparent problem solving. A key downside is
the increased potential for longer outputs, as irrele-
vant, inaccurate, and repetitive steps may appear in
the generated thought chain, especially concerning
SLMs, impairing the overall outcome.

120
The closer to this

direction, the better.

(9]

3
80 @ (81.66,73.00) (343.7,88.5)
3

@

(220.7,56.8)
(149.0, 44.3)
40

Accuracy (Level-wise ave.) in %

@ Entrospect
8 Self-Refine

0 50 100 150 200 250 300 350
Average Time Consumption (Level-wise ave.) in secs
MATH (Entrospect is better)

SO oo 722,97.5) (643.2,80.0)
5 %

80

NI
< *----|(289,975)

Accuracy (Level-wise Ave.) in %

@ Entrospect
#8  Self-Refine

S~ ——- 1 (228,95.0)
70
0 100 200 300 400 500 600 700
Average Time Consumption in secs
HaluEval (Entrospect is better)

Figure 4: The Accuracy-ATC results derived from evalu-
ating Entrospect and Self-Refine across four models and
two tasks. The dividing lines in the chart correspond
to the decision boundaries determined by linear SVMs
fit on the data points of Entrospect and Self-Refine.
Data points positioned closer to the top-left corner sig-
nify a more favorable trade-off between computational
efficiency and reasoning accuracy, indicating superior
overall performance.

Self-Refine (Madaan et al., 2024): The framework
allows a model to iteratively revise its own out-
puts with identified errors from the self-reflection’s
feedback. Despite its potential, such a strategy
may introduce unnecessary or incorrect changes
during the refinement cycles, especially for SLMs,
as mentioned in Section 1.

Ablated Entrospect: The variant of Entrospect
without the semantic similarity-based stopping con-
dition. Instead, a manual setting of 5 fixed itera-
tions is assigned. This baseline serves as the abla-
tion study that verifies the efficacy of our nominated
convergence policy.

4.5 Results

We report the Entrospect’s competitive compe-
tences versus the baseline prompting approaches,
especially Self-Refine, in augmenting the SLMs’
semantic reasoning across two validation tasks.

Entrospect improves reasoning accuracies: Dis-
played in Table 1 and 3, SLMs armed with En-
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Figure 5: (A higher Number of Correct Outputs is bet-
ter) Constrained on a fixed 5 rounds of refinement rather
than the stopping condition, the ablated Entrospect falls
into suboptimal performance in contrast to the complete
version across both tasks and all involved models. This
highlights the significance and efficacy of importing se-
mantic similarity comparison as the stopping condition
for our framework.

trospect outshines all other baselines pertaining
to the reasoning accuracies across both MATH
and HaluEval validation sets. In contrast specif-
ically to Self-Refine, Entrospect yields a maximum
improvement of 36.2% with Llama 3.1 Instruct
8B (44.3% — 80.5%) on the MATH dataset and
15.5% with DeepSeek-R1-Distilled Qwen 2.5 In-
struct 1.5B (80.0% — 95.5%) on the HaluEval
dataset. Moreover, Figure 7 highlights Entrospect’s
robustness beyond handling math problems with
a fixed complexity. When set against Self-Refine,
Entrospect consistently offers more substantial mit-
igation against the overall degradation of reasoning
accuracy as the problem difficulty rises, securing a
reduced decay rate as much as 52.8%.

The exceptional computational efficiency: As
depicted in Figure 4, Entrospect reaches conver-
gence faster than Self-Refine across most instances.
on the MATH dataset, Entrospect reduces runtime
by an average factor of up to 2.8 (e.g., Llama 3.1
8B + Entrospect), meanwhile demonstrating even
more pronounced efficiency gains on the HaluEval

dataset, with runtime reductions reaching up to 10-
fold (e.g., DeepSeek RI-Distill Qwen 2.5 1.5B +
Entrospect). Beyond its efficiency advantages, Fig-
ure 4 highlights Entrospect’s ability to strike a supe-
rior balance between computational efficiency and
accuracy, driving substantial overall performance
enhancements in SLMs.

To investigate potential correlations between

model parameter sizes and the ATC outcomes
achieved by Entrospect, we employed Spearman’s
rank correlation coefficient alongside correspond-
ing p-values (Spearman, 2010). However, no statis-
tically significant relationship was observed within
the scope of our experiments (MATH: corr =
—0.600, p = 0.400; HaluEval: corr = —0.200,
p = 0.800).
Ablation study: To validate whether the seman-
tic similarity-based stopping condition is crucial
for propelling a higher reasoning accuracy of En-
trospect, we conducted an ablation study by re-
moving this mechanism and fixing the number of
refinement cycles to 5. Figure 5 illustrates that the
ablated Entrospect constantly underperforms com-
pared to the complete implementation, witnessing
performance deficits of 1.8 — 8.9% on the MATH
dataset and 1.5% — 3.5% on the HaluEval dataset
across all tested SLMs. The results solidify the role
of the semantic similarity-guided stopping condi-
tion as a cornerstone for enhancing Entrospect’s
overall performance.

5 Conclusion

This paper introduces Entrospect, an opti-
mized Self-Refine framework that leverages an
information-theoretic Optimal Revision Sugges-
tion Selector to provide optimal revision sugges-
tions during the self-reflection stage while elimi-
nating ineffective ones for efficient refinement of
initial responses from SLMs. Besides, the con-
vergence of Entrospect is made possible with a
dedicated semantic similarity-determined stopping
condition. Through our holistic evaluations, Entro-
spect claimed superior performance relative to the
baseline methods on both of our reasoning tasks
across four SLMs of diverse parameter sizes, ob-
taining a maximum 36.2% reasoning accuracy up-
lift and at most 10 times the computational effi-
ciency exclusively over its antecedent, Self-Refine.

We aspire for this study to inspire further ad-
vancements in small language models research
and furnishes new perspectives for information-
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theoretic prompt engineering.

Limitations

There remains much room for promoting Entro-
spect, and our future studies shall prioritize the
following key limitations:

More solid definition of an optimal revision sug-
gestion: The ORSS of Entrospect, grounded in
maximizing the conditional mutual information,
operates as an approximate selection technique in
unsupervised settings. This approach gauges the
quality of a revision suggestion by leveraging the
model’s intrinsic output uncertainty as a pivotal de-
terminant. However, its reliability is compromised
when the model demonstrates undue confidence in
erroneous outputs. As a result, it is imperative to
pursue a more precise and theoretically grounded
definition of what constitutes an optimal revision
suggestion in our future studies.

Beyond semantic similarity comparison as the
stopping condition: A high semantic similarity
between consecutive refinement iterations as a sign
of convergence is logically aligned with language
models adopting greedy search sampling. In con-
versational situations, however, sampling methods
such as Top-K and nucleus sampling are more reg-
ularly used to ensure generative variability. Our
future work will seek to modify the current con-
vergence mechanism tailored to these sampling
configurations.
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Respond - 4,

v v

Reflect (for Hallucination Detection) — F: Reflect (for Math Reasoning) — F:
[Task] Q [Problem] Q
[Assessment] A, [Solution] 4,
Analyze the assessment result of whether the provided answer Please analyze the above solution to the given math problem.
correctly addresses the query based on the given passage. Your task is to identify any deficiencies or errors in the solution.
Identify any potential inaccuracies, logical gaps, or areas where Please follow these steps:
the reasoning could be improved. Provide some optimization 1. **Understand the Problem**: Carefully read and comprehend
—>{ suggestions to enhance your judgment, ensuring that your the math problem to grasp what is being asked. €
evaluation is thorough and accurate. 2. **Review the Solution**; Examine the provided solution step
by step.
3. **|dentify Deficiencies**: Look for errors in calculations,
logical reasoning, or assumptions. Note any steps that are
missing, incorrect, or insufficiently justified.
4. **Assess Clarity and Completeness**: Evaluate the explanation
for clarity and whether it fully addresses the problem.

I I
v

Itemize - {f7, £, f1'}:
Format all independent revision suggestions that can be extracted
from F, in a **Python List of Strings**.

| Select f; from {f?, 2, -+, 1} |

v v

Refine (for Hallucination Detection) = A;44: Refine (for Math Reasoning) - A, :

[Task] Q [Problem] Q

[Assessment] A, [Previous Solution] A;

Please re-check your previous assessment referring to the Please provide a refined solution for the problem given the
suggestion f; and provide your final decision. previous solution referring to the suggestion: f;

True

Check if (A, Ar+1) Meets Stopping Condition or Not Return A;44

False

Apy1 = Ay

Figure 6: (Referred in Section 3.4) The detailed instructions used for all prompting nodes (modules) within the
Entrospect framework during the evaluation phases. These instructions guide the SLMs through the process of
generating an initial response, reflecting on its deficiencies, selecting the optimal revision, and refining the response
based on the selected suggestion.
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Table 2: (Referred in Section 4.2) Representative data samples from the MATH and HaluEval datasets, demonstrating
a mathematical reasoning problem and a reading comprehension task.

Dataset

Query

Label

MATH

What is the simplified numerical value of
a+11b if 4a+3b __ 59
a—b a—2b T °°

Let’s play with the given condition a lit-
tle. Clearing out the denominator gives
4a 4+ 3b = 5(a — 2b) = 5a — 10b. Selec-
tively combine like terms by adding 9b —
4a to both sides to get 12b = a — b. This

gives = 1. Now, we want to find
a—b+12b
a—b

:1+1:,andweare

a/ _
116
at . Rewrite this as

a4 —
a—b+ 12b
a—b a-—0»
done.

HaluEval

The following is a reading comprehension
task, which provides a passage, a question
related to the passage, and an answer to
the question: [Passage] The ValleyCats
play at Joseph L. Bruno Stadium which
opened in 2002 on the campus of Hud-
son Valley Community College located in
Troy. Joseph Bruno Stadium is a stadium
located on the campus of Hudson Valley
Community College in Troy, New York.
[Question] The Tri-City ValleyCats play
at which stadium located on the campus
of Hudson Valley Community College in
Troy, New York? [Answer] Troy Commu-
nity Stadium, located on Hudson Valley
Community College campus. Please deter-
mine whether the given answer is correct.
If it is correct, output ‘PASS’; if it is in-
correct, output ‘FAIL .

FAIL
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Table 3: (Referred in Section 4.5) The extended table of accuracies(%) on the MATH dataset, providing a detailed
breakdown of all results across Level 1 to Level 5, where Entrospect performs the best with all SLMs relative to the
baseline prompting methods across all difficulty levels. We highlight the best results in bold.

Model Name Method MATH-L1 | MATH-L2 | MATH-L3 | MATH-L4 | MATH-L5
Zero-Shot 97.5 95.0 96.7 91.7 90.0
DeepSeek-R1- 5-Shot 96.7 92.5 94.2 91.7 75.8
Distilled Qwen 2.5 | Zero-Shot CoT 75.0 98.3 98.3 93.3 91.7
Instruct 1.5B Self-Refine 90.0 89.2 90.8 88.3 84.2
Entrospect 99.2 99.2 99.2 96.7 97.5
Zero-Shot 91.7 92.5 85.8 73.3 47.5
Qwen 2.5 Instruct 5-Shot 90.8 92.5 81.7 62.5 36.7
7B Zero-Shot CoT 95.0 93.3 91.7 79.2 60.0
Self-Refine 85.0 89.2 82.5 65.8 42.5
Entrospect 95.0 95.8 91.7 84.2 63.3
Zero-Shot 87.5 74.2 60.8 48.3 37.5
Llama 3.1 Instruct 5-Shot 88.3 70.0 62.5 41.7 20.0
3B Zero-Shot CoT 91.7 83.3 717.5 65.8 50.0
Self-Refine 72.5 54.2 433 28.3 23.3
Entrospect 95.0 88.3 84.2 74.2 60.8
Zero-Shot 82.5 66.7 55.0 46.7 24.2
5-Shot 86.7 66.7 66.7 44.2 25.0
GLM 4 Instruct 9B | Zero-Shot CoT 90.0 81.7 75.8 51.7 30.0
Self-Refine 85.0 69.2 63.3 45.0 21.7
Entrospect 92.5 85.8 79.2 56.7 34.2

Table 4: To further demonstrate the effectiveness of Entrospect, an additional evaluation was conducted using the
GPQA dataset, which is challenging. A random sample of 100 GPQA pairs was selected for this purpose. The
table below presents the number of correct answers obtained by each method, providing a clear comparison of their
performance.

Model Entrospect Zero-Shot CoT Self-Refine
DeepSeek-R1-Distilled-
Qwen2.5-1.5B 17 15 0
Qwen2.5-7B 24 11 7
Llama3.1-8B 22 12 10
GLM4-9B 14 5 7
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Figure 7: (Referred in Section 4.5) We employed linear regression to model the decline in reasoning accuracy, as
measured by Entrospect and Self-Refine on the MATH validation set with increasing difficulty levels. The four
charts correspond to the four distinct SLMs we evaluated, where the decay rate equals the slope of each fitted
decay line. A decay rate with a larger absolute value indicates a more rapid deterioration in reasoning accuracy as
the difficulty level rises. Across all tested models, observations indicate that as the difficulty level of the test data
increases, the performance degradation exhibited by Entrospect is, overall, less pronounced than that of Self-Refine.
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