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Abstract
Citation context analysis (CCA) is a field of
research studying the role and purpose of cita-
tion in scientific discourse. While most of the
efforts in CCA have been focused on elaborate
characterization schemata to assign function or
intent labels to individual citations, the citation
context as the basis for such a classification has
received rather limited attention. This relative
neglect, however, has led to the prevalence of
vague definitions and restrictive assumptions,
limiting the citation context in its expressive-
ness. It is a common practice, for example, to
restrict the context to the citing sentence. While
this simple context conceptualization might be
sufficient to assign intent or function classes, it
fails to cover the rich information of scientific
discourse. To address this concern, we ana-
lyze the context conceptualizations of previous
works and, to our knowledge, construct the first
comprehensive context definition based on the
semantic properties of the citing text. To evalu-
ate this definition, we construct and publish the
FINECITE corpus containing 1,056 manually
annotated citation contexts. Our experiments
on established CCA benchmarks demonstrate
the effectiveness of our fine-grained context
definition, showing improvements of up to 25%
compared to state-of-the-art approaches. We
make our code and data publicly available.1

1 Introduction

Scientific research is inherently collaborative, with
each discovery building upon a foundation of prior
studies. To acknowledge previous work and pro-
vide credit, it is standard practice to include cita-
tions that connect past findings to new contribu-
tions. By embedding scientific progress and argu-
mentation, citations serve a critical function that
has been extensively examined—a research field
known as citation context analysis (CCA) (Kunnath
et al., 2022; Swales, 1986).

*Corresponding author
1https://github.com/lab-paper-code/FineCite

Figure 1: A visual comparison of different citation
context conceptualizations in the CCA literature

In computational linguistics, CCA is mainly con-
cerned with the automatic classification of citations
along various dimensions, such as citation func-
tion (Lauscher et al., 2022; Cohan et al., 2019;
Jurgens et al., 2018; Teufel et al., 2006), sentiment
(Lauscher et al., 2017; Abu-Jbara et al., 2013; Athar
and Teufel, 2012), or influence (Pride and Knoth,
2020; Cohan et al., 2019). Given a passage of text
surrounding a citation marker—referred to as the
citation context—one or more classes from a pre-
defined citation classification scheme are assigned.

Although a considerable amount of research has
explored different classification schemes and meth-
ods, the citation context has received relatively little
attention. This lack of focus has led to an absence
of a comprehensive definition and datasets with
overly simplistic and coarse-grained citation con-
texts (Pride and Knoth, 2020; Cohan et al., 2019).

To address this concern, we analyze different
context conceptualizations in previous work and
provide a new comprehensive definition based on
the semantic information of the citing text. A visual
comparison is provided in Figure 1.
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With our research and artifacts, we hope to spark
new interest in the exploration of citation context in-
formation. Given the drastic capabilities of LLMs
in zero-shot text understanding (Brown et al., 2020;
Lewis et al., 2020; Vaswani et al., 2017), and the
emergence of advanced language processing sys-
tems (Lewis et al., 2020; Edge et al., 2024), we
argue that an improved understanding of contex-
tual citation information is essential for improving
interactive exploration of scientific argumentation.

Our contributions are the following:

• We analyze and formalize citation context con-
ceptualizations in previous work.

• We propose, to our knowledge, the first fine-
grained citation context definition based on
the semantic structure of the citing text.

• We construct and publish the FINECITE cor-
pus comprising 1,056 manually annotated
fine-grained citation contexts.

• We evaluate our context definition in two ex-
periments and demonstrate its effectiveness
on established benchmarks.

The rest of the paper is organized as follows.
The subsequent section reviews relevant literature
in the field of CCA and provides a formalization of
task and context conceptualization. Section 3 intro-
duces our citation context definition. In Section 4,
we describe the curation process of the FINECITE

corpus and provide core statistics. In Section 5, we
assess the effectiveness of our context definition
in both context extraction and citation classifica-
tion. Section 6 summarizes our contributions and
outlines directions for future research.

2 Related Work

CCA is the subject of a substantial body of research
with (Garfield, 1972) often mentioned as one of the
pioneering works. Reaching back to (Teufel et al.,
2006), CCA research in computational linguistics
is commonly conceptualized as learning a function
FC representing the relationship of a citation con-
text spanning s ∈ S to a set of classes c ∈ C. The
task can thus be formalized as

FC(s) = argmax
c∈C

PFC
(c | s), (1)

where PFC
are the class probabilities emitted by

FC . The classes C can represent various cita-
tion attributes, such as function (Lauscher et al.,
2022; Jurgens et al., 2018; Teufel et al., 2006),

purpose (Pride and Knoth, 2020; Abu-Jbara et al.,
2013), sentiment (Athar and Teufel, 2012), or in-
tent (Cohan et al., 2019). For a comprehensive
survey on CCA, refer to (Kunnath et al., 2022).

Despite the continued research in CCA, the
introduction of new and larger datasets (Cohan
et al., 2019; Jurgens et al., 2018), and updated
methodology (Shui et al., 2024; Lauscher et al.,
2022; Cohan et al., 2019), the simple modeling
paradigm as described in Equation 1 prevailed.
The popular SCICITE benchmark (Cohan et al.,
2019) even further simplifies the task by reducing
the commonly used six-class framework of
(Jurgens et al., 2018) to a three-class schema.
This simplicity leads to a low task complexity;
however, it often fails to adequately represent
the rich information present in the scientific
texts (Lauscher et al., 2022). To capture a wider
range of information, it is necessary to move
beyond prevalent context span constraints and
conceptualization on mutually exclusive classes.
Table 1 compares the relevant research.

Context Span Constraints. The optimal context
spans S∗ can be defined such that

S∗ =
{
arg max

si∈Si

PF (ci | si) | i ∈ I
}

(2)

where Si is the set of all possible context spans for
one citation instance i ∈ I , and PF is the probabil-
ities assigned by a function F representing some
relationship between S and C.

As it is infeasible to solve Equation 2, previ-
ous work uses various assumptions to extract an
approximate optimal context Ŝ∗. The first com-
mon assumption is that S∗ can be approximated
by a fixed-sized window surrounding the citation
marker. The size of the context window varies be-
tween one (Pride and Knoth, 2020; Cohan et al.,
2019), or multiple sentences (Abu-Jbara et al.,
2013; Athar and Teufel, 2012), a specific number of
characters (Jurgens et al., 2018), or the whole para-
graph (Teufel et al., 2006). Some approaches (Abu-
Jbara et al., 2013; Athar and Teufel, 2012) allow
for a non-context classification of context-window
subsets, introducing a simple form of dynamic
context spans. Only recent publications stress the
importance of a fully dynamic approximation of
S∗ (Lauscher et al., 2022; Nambanoor Kunnath
et al., 2022) to conform to the situated structure of
scientific argumentation.
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AUTHOR (YEAR) ASPECT NO. CLS. EXCL SEM DYN NON-C SUB-S

Lauscher et al. (2022) function 7 ✔ ✘ ✔ ✔ ✘

Kunnath et al. (2022) function 6 ✘ ✘ ✔ ✔ ✘

Ferrod et al. (2021) intent 5 ✘ ✔ (✔) (✔) ✔

Pride and Knoth (2020) purpose 6 ✘ ✘ ✘ ✘ ✘

Cohan et al. (2019) intent 3 ✘ ✘ ✘ ✘ ✘

Jurgens et al. (2018) function 6 ✘ ✘ ✘ ✘ ✘

Abu-Jbara et al. (2013) purpose 6 ✘ ✘ (✔) ✔ ✘

Athar and Teufel (2012) sentiment 3 ✘ ✘ (✔) ✔ ✘

Abu-Jbara and Radev (2012) - - - ✔ (✔) (✔) ✔

Teufel et al. (2006) function 11 ✘ ✘ ✘ ✘ ✘

FINECITE (this work) - - - ✔ ✔ ✔ ✔

‚

Table 1: Structural comparison of previous work in computational linguistics on CCA (NO. CLS. = Number of
classes, EXCL = Mutually exclusive labels, SEM = Semantic-based conceptualization, DYN = Dynamic context,
NON-C = Non-contiguous context, SUB-S = Sub-sentence context)

The second common assumption is that S∗

stretches continuously from the citation marker.
Even though a notable number of publica-
tions technically allow for the extraction of
non-contiguous contexts (Lauscher et al., 2022;
Abu-Jbara et al., 2013; Athar and Teufel, 2012),
only one study (Nambanoor Kunnath et al., 2022)
particularly investigated the phenomenon. They di-
rectly compared a non-contiguous context window
with a smaller contiguous version and found that
the former slightly outperforms the latter.

Thirdly, S∗ is often conceptualized with the
sentence assumed to be the atomic unit of infor-
mation (Cohan et al., 2019; Nambanoor Kunnath
et al., 2022; Lauscher et al., 2022). In certain cases,
however, this is not necessarily the case. Abu-Jbara
and Radev (2012), for instance, shows evidently
that sub-sentence segmentation is necessary to ap-
proximate S∗ for sentences with multiple citations.
While their focus lies on the multi-citation setting,
we also observe sub-sentence context granularity
in other settings.

Conceptual Restraints. Next to the restrictive
assumptions imposed on the context span, there are
conceptual restraints limiting the expressiveness of
citation contexts. In nearly all previous work, the
context is conceptualized as

Ŝ∗
C ≈

{
arg max

si∈S′
i

PFC
(ci | si) | i ∈ I

}
, (3)

where

S′
i = {si ∈ Si | ∃c ∈ C : FC(si) = c} . (4)

This formulation captures that the context ap-
proximation Ŝ∗

C only contains spans S′ that have a
clear association with a class in C. In other words,
the citation context is conceptualized based on the
classification schema represented through FC and
not based on the semantic information of the text.

Most previous works additionally restrain their
conceptualization by defining the relationship be-
tween S and C as mutually exclusive (Pride and
Knoth, 2020; Cohan et al., 2019; Jurgens et al.,
2018). This restricts the citation context further, as
scientific discourse is faceted and can have multiple
explanations (Lauscher et al., 2022). Lauscher et al.
addressed this by creating the MULTICITE dataset,
designed for multi-sentence, multi-function classi-
fication. They find that nearly one in five citations
have at least two classes, with some reaching up
to four. While this represents a step forward, it
does not resolve the underlying limitation of defin-
ing citation context solely through the lens of the
classification schema.

The only previous publication that defines a
context based on semantic information from the
vicinity of the citation marker is from Ferrod et al.
(2021). They distinguish between the citation ob-
ject and the context, where the former is the cited
concept and the latter background information, or
constraints on the citation object. While this goes
in a similar direction to this work, their definition
lags in completeness and only works on a subset of
instances. To our knowledge, we are the first to pro-
pose a comprehensive citation context definition
that is disjoint from the classification task.
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3 Fine-Grained Citation Context

In this section, we propose and formalize our
fine-grained context definition.

Semantic Dimensions. We base our context defi-
nition on previous research on argumentative struc-
tures in scientific texts. Teufel (2014) categorizes
scientific argumentation along four principal di-
mensions: (i) statements about the author’s own
work (citing paper), (ii) properties of existing solu-
tions (cited papers), (iii) the relationships between
existing solutions and the author’s contribution, and
(iv) general properties of the research space. We ap-
ply this framework to the field of CCA and define
the following three context dimensions.

The first dimension of the citation context is the
information the citing author references from the
cited paper. In the example

“Our paper extends the citation labeling scheme of
<CITATION> and then reports similarities...”

the phrase, “the citation labeling scheme of
<CITATION>,” describes here what information
from the cited paper the author is referring to. This
dimension highly correlates with (ii)—the proper-
ties of existing solutions, and is somewhat related
to the citation object of Ferrod et al. (2021). In
the following, we refer to this dimension as the
Information Dimension (INF).

The second dimension describes the relationship
between the citing and the cited work and corre-
sponds to (iii) in Teufel (2014). In the excerpt

“
::
Our

:::::
paper

:::::::
extends the citation labeling scheme of

<CITATION> and then reports similarities...”

the passage “our paper extends” describes how
the author uses the cited information in their work.
While use constitutes a substantial fraction of oc-
curring relations, this dimension also includes other
forms of perception, such as comparison, evalua-
tion, and judgment. In the following, we refer to it
as the Perception Dimension (PERC).

While these two dimensions cover the most criti-
cal aspects of a citation context,—what is cited and
how is it perceived or used—they do not necessar-
ily include the information of why the author chose
to include a citation.

“Unlike recent language representation models
<CITATION>, . . . . . . .BERT. . . .is . . . . . . . . . . . .designed . . . .to . . . . . . . . . . .pretrain . . . . . . .deep
. . . . . . . . . . . . . . .bidirectional . . . . . . . . . . . . . . . . . .representations. . . . . . . . .from...”

Here, the reason the author included this citation is
to emphasize a novel property of the citing paper’s
contribution. In Teufel’s (2014) framework, this
falls under the semantic class (i)—properties
of the citing work—and is neither considered
in the INF nor the PERC dimension. In other
instances, such a motivating factor could be related
to a property of the research space (iv) or other
direct citations (ii, iii). We categorize these pas-
sages, which explain why a citation was included,
as the Background Dimension (BACK) of a citation.

Formal Definition. To formalize our fine-
grained citation context, we expand upon Equa-
tion 2 by removing the task dependency and in-
corporating semantic dimensions outlined above.
Specifically, we define the task-independent, ap-
proximately optimal citation context Ŝ∗ as:

Ŝ∗ := {s∗i | i ∈ I} , (5)

where

s∗i = {si ∈ Si | ∃d ∈ D : FD(si) = d} , (6)

D = {INF, PERC, BACK} (7)

is the set of semantic dimensions defined in this
Section, and FD represents the semantic relation-
ship of the surrounding text to the citation.

We further formalize three structural properties
of citation context spans ŝ∗ ∈ Ŝ∗:

• Dynamicity: The length |ŝ∗| is dynamic
and adapts to the situated structure of the
enclosing argumentation.

• Non-Contiguity: ŝ∗ may consist of multiple
disjoint spans allowing for skip-structured se-
lection of relevant information.

• Sub-Sentence Granularity: ŝ∗ is constructed
on sub-sentence granularity, enabling a fine-
grained representation of the argumentative
structure.

These properties collectively define a flexible and
semantically motivated citation context that di-
verges from the constrained approximations of pre-
vious works. We provide a detailed empirical dis-
cussion of their relevance in Section 4.2 and 5.

4 FINECITE Corpus

Using the definition in Section 3, we create the
FINECITE corpus. With the dataset creation, we
aim to (i) assess whether the theoretical framework
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practically applies to scientific texts, (ii) investi-
gate the assumption on the semantic dimensions
and structure of citation contexts, and (iii) create
a resource for the evaluation of the framework on
established CCA Benchmarks.

4.1 Dataset Construction
We construct the corpus in the following steps.

Step 1: Procurement. The FINECITE dataset
was built from a subset of ACL Anthology
Network Corpus (Radev et al., 2009). The
ACL Anthology Network contains over 80K
papers from several ACL conferences and other
venues in computational linguistics. We extracted
the full paper text, including citations, using
GROBID (GROBID, 2024). Documents con-
taining faulty meta-information, languages other
than English, and miscellaneous documents with
<3 sections and <5 references were excluded.
From the remaining documents, we sampled 1,056
paragraphs, each containing one citation marker
highlighted for annotation.

Step 2: Guideline creation. The annotation
guidelines comprise best practices and rules for the
context annotation. The instructions were created
based on the definition presented in Section 3
and further iteratively refined to better handle
ambiguous cases. For each iteration, several anno-
tators completed five to ten tasks separately and
subsequently discussed differences. Afterwards,
the guidelines were updated to reduce ambiguity
for the next iteration. In total, five iterations were
performed. The complete Annotation Guidelines
can be found in Appendix E.

Step 3: Annotation. The annotation was per-
formed for each paragraph separately. The an-
notator was asked to read the paragraph carefully
and annotate the context of the highlighted citation
based on the guidelines. To provide further infor-
mation in case of ambiguity, additional information,
like the surrounding paragraphs and metadata about
citing and cited papers, was provided in the annota-
tion tool. A detailed description of the annotation
platform is provided in Appendix A.

All annotators had previous experience with
scientific literature and were carefully trained on
the Annotation Guidelines. The compensation fol-
lowed locally typical rates for research assistants.

Step 4: Validation. To ensure the annotation qual-
ity, we monitored several inter-annotator agreement
(IAA) metrics on 10% of the annotations. We mea-
sured both F-measure commonly used for span an-
notations with open bounds (Hripcsak and Roth-
schild, 2005), and Cohens κ (Cohen, 1960) for the
agreement on label assignment above that expected
by chance. To capture different aspects of the anno-
tation process separately, we provide IAA for the
whole context (F1total), and for each scope sep-
arately (F1inf , F1perc, F1back). The F1macro is
the mean over F1inf , F1perc, and F1back. While
the metrics follow the standard definition, we pro-
vide a formal definition in Appendix B.

The F1total after the annotation process was
0.75, indicating an overall good agreement. The
separate IAA on the context dimensions, however,
is considerably lower. While the F1inf is with a
score of 0.65 the highest, the F1perc is at 0.42 and
the F1back at 0.34. The F1macro lies at 0.48 and
the κ on the validation samples was 0.55.

While these values are in the typical range for
annotation of scientific literature (Lauscher et al.,
2022; Ferrod et al., 2021; Lauscher et al., 2018),
they highlight the task complexity. The moder-
ate F1macro, despite a rather high F1total, indi-
cates that while annotators often struggle to clearly
distinguish between the dimensions, they have a
good sense of what constitutes relevant information.
PERC and BACK seem especially ambiguous.

4.2 Corpus Statistics
The FINECITE corpus contains 1,056 fine-grained
citation contexts for paragraphs from 72 scientific
papers. Overall, INF accounts for 27%, PERC for
35%, and BACK for 38% of the annotated words.
The average context length is ∼45 words and is
approximately normally distributed with a long tail
toward the upper end. The main contribution to
the longer contexts is the BACK dimension. While
BACK comprises about 8 words (30%) in contexts
shorter than 40 words, it expands to an average of
54 words (43%) in contexts exceeding 100 words.
Combined with the low agreement score on BACK,
this might indicate that a clearer delimitation of the
dimension might be helpful. Figure 2 provides an
expanded visualization of the corpus statistics.

To evaluate the context span properties pre-
sented in Section 3, we apply context restrictions
commonly used in prior work to the contexts in
FINECITE and compare them to the fine-grained
gold labels. We report F1-score and %-Match met-
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(a) Distribution of context length (words). (b) Label distribution per context length (words).

Figure 2: Results of statistical analysis of the FINECITE dataset, showing the variation of context length and its
interrelation with label distribution.

RESTRICTION F1-Score %-Match

One Sentence 0.679 30.4
Two Sentences 0.716 23.6
Four Sentences 0.704 18.6

Contiguous 0.863 64.6
Sentence Segments 0.951 70.7

Table 2: Experiments on context restrictions compared
to the gold context from FINECITE

rics for fixed-size windows of one, two, and four
sentences, as well as for the longest contiguous
sub-context and contexts extended to the next sen-
tence boundary. We ignore dimension classes to
highlight the structural properties and allow a two-
word tolerance in the %-Match metric. Results are
shown in Table 2.

Restricting the context to a fixed number of
sentences results in a considerable error in both
the F1-score and %-Match. The %-Match scores
suggest that single-sentence contexts offer the best
performance among fixed-size context windows;
however, they fall short of capturing a majority
of instances. Contiguity exhibits a minor error
compared to fixed context windows, indicating that
non-contiguity occurs less, and non-contiguous seg-
ments are rather small in size. Surprisingly, the
total F1-score error induced through sentence seg-
mentation is relatively small. For the assignment
of fine-grained dimension labels, sub-sentence seg-
mentation is, however, a necessary property.

Overall, the results affirm the significance of
the three structural assumptions—sub-sentence
segmentation, non-contiguity, and dynamic con-
text—for a fine-grained citation context extraction.

5 Experiments

In this section, we evaluate the FINECITE dataset
on two tasks: (i) extraction of fine-grained citation
contexts, and (ii) citation classification on standard
CCA benchmarks using fine-grained context infor-
mation extracted in (i).

5.1 Citation Context Extraction
Ensuring that common extraction models can
reliably learn to identify citation contexts is crucial
for the effective application of the presented
fine-grained context definition.

Data preparation. We utilized the same samples
used in the evaluation of the annotation process as
the test set, with the remaining samples reserved
for training and validation. We evaluate extraction
on (i) uniform token labels and (ii) commonly used
IOB (Inside–Outside–Beginning) labels.

Extraction model. For all extraction approaches,
we use a SCIBERT (Beltagy et al., 2019) encoder
model. SCIBERT is a BERT-like encoder-only
transformer, pre-trained on scientific literature.
To cover several common sequence extraction
approaches, we evaluate three different classifica-
tion heads: a linear, a Bi-LSTM (Hochreiter and
Schmidhuber, 1997), and a conditional random
field (CRF) (Lafferty et al., 2001) classifier.

Experiment setup. We used the pre-trained
weights of SCIBERT from huggingface trans-
formers (Wolf et al., 2020) and finetuned
the whole model (encoder + cls-head) using
AdamW (Loshchilov and Hutter, 2019) with a
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APPROACH F1total F1macro

Inter Annotator Agreement

Human (Annotation) 0.75 0.48

Extraction Task

SCIBERT w. Linear 0.77 0.557
SCIBERT w. BiLSTM 0.759 0.56
SCIBERT w. CRF 0.787 0.521

Table 3: Extraction results on the FINECITE dataset

linear warm-up ratio of 5% and a peak learning rate
of 5e-5. All models were fine-tuned using early
stopping with a patience of three epochs, a batch
size of 4, and a dropout rate of 0.1. To address
class imbalance, we additionally applied weighted
cross-entropy loss. The training was conducted
on an NVIDIA A100 GPU. We evaluated the F1
scores described in Section 4.1.

Result. Table 3 shows the results of F1total and
F1macro. See Appendix D for extended results.
We observe that all three extraction approaches
reach higher F1 scores than those measured dur-
ing the annotation process. The variance between
the different classifiers is rather small. The CRF
classifier exhibits the highest F1total score of
0.787, while the Bi-LSTM classifier dominates the
F1macro metric with 0.56. The linear classifier
achieves an F1macro of 0.557 and an F1total of
0.77, only slightly lower than the other approaches.
The best results were achieved using IOB labels for
linear and Bi-LSTM classifiers, whereas the CRF
classifier worked better with uniform labels.

5.2 Citation Context Classification

To showcase the benefits of fine-grained contexts
in a competitive setting, we provide a broad
comparison with previous work using the citation
classification task.

Data. We evaluate fine-grained contexts on four
commonly used CCA benchmarks.

• ACL-ARC (Jurgens et al., 2018) comprises
1,933 labeled citations following a six-label
classification schema introduced in the paper.
All samples originate exclusively from the
computational linguistics domain.

• ACT2 (N. Kunnath et al., 2021) is a larger,
mixed-domain collection with 4,000 anno-

tated citations labeled with the schema used
for the ACL-ARC dataset.

• SCICITE (Cohan et al., 2019), also multi-
domains, contains 11,000 samples, annotated
with a simple three-class annotation schema.

• MULTICITE (Lauscher et al., 2022) is a
multi-sentence, multi-label dataset annotated
with seven citation function classes based on
the scheme used in ACL-ARC. With 12,653
annotated citations, it is the biggest dataset.

Although ACL-ARC and ACT2 are primarily
modeled using the citing sentence alone, we per-
form extraction on an extended window containing
multiple sentences before and after the citation.
SCICITE does not provide text exceeding the citing
sentence, which drastically restricts the extraction
of our fine-grained context.

To reduce the model’s tendency to memorize
author names, we conceal the targeted and other
citations behind <TARGET_CITATION/> and
<CITATION/> tags, respectively. Each dataset
is divided into approximately 85% training and
15% testing. For the FINECITE approaches, we
extract the fine-grained context using the extraction
approach presented in Section 5.1.

Classification model. We considered four
baselines for the classification task: (i) the
scaffolding approach presented in Cohan et al.
(2019), (ii) the best-performing citation classi-
fication model from the 3C classification task
2021 (N. Kunnath et al., 2021)—a SCIBERT
model with a linear classification head (Mahesh-
wari et al., 2021), (iii) GPT-4o (Achiam et al.,
2023), and (iv) SCITULU 70B (Wadden et al.,
2024)—an instruction-tuned LLM for scientific
literature. (i) and (ii) were fine-tuned on the
training split, and (iii) and (iv) were evaluated in a
zero-shot setting. The FINECITE approaches use
SCIBERT(Beltagy et al., 2019) embeddings and
a linear classification head similar to (ii). Instead
of using CLS pooling, we use mean pooling over
tokens belonging to the same dimension. The re-
sulting dimension embeddings were concatenated
and passed to the classification head.

Experiment setup. We utilized the pre-trained
SCIBERT weights as mentioned above. The
best performance was achieved using AdamW
(Loshchilov and Hutter, 2019), early stopping,
and a linear warm-up of 5%. The training was
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APPROACH
ACL-ARC ACT2 SCICITE MULTICITE

MEAN
macro st. dev. macro st. dev. macro st. dev. macro st. dev.

Baseline Approaches

SCAFFOLDS 0.377 0.067 0.205 0.026 0.821 0.010 0.409 0.036 0.453
SCIBERT 0.517 0.018 0.242 0.012 0.841 0.005 0.584 0.006 0.546
GPT 4O 0.401 - 0.117 - 0.766 - 0.434 - 0.43
SCITULU 70B 0.37 - 0.114 - 0.783 - 0.353 - 0.405

FINECITE Approaches

SCIBERT (Linear) 0.572 0.018 0.302 0.02 0.84 0.002 0.603 0.021 0.579
SCIBERT (BiLSTM) 0.584 0.014 0.282 0.014 0.845 0.003 0.601 0.005 0.578
SCIBERT (CRF) 0.563 0.007 0.274 0.024 0.841 0.002 0.606 0.010 0.571

Table 4: Results of the citation classification task on the four benchmarks ACL-ARC, ACT2, SCICITE, and
MULTICITE. The standard deviation (st. dev.) is calculated over five consecutive seeds.

conducted on an NVIDIA A100 GPU. The optimal
learning rate, batch size, and dropout for each
dataset are provided in Appendix C. For all
fine-tuned models, the performance was evaluated
over five consecutive seeds.

Result. Table 4 exhibits the macro-F1 and stan-
dard deviation for each dataset. Detailed results
including class scores are shown in Appendix D.

Among the baselines, SCIBERT achieves the
highest average macro-F1 (0.546), followed by
the SCAFFOLDS approach (0.453). Both GPT-4o
(0.43) and SCITULU 70B (0.405) perform lower.
These results show that finetuned encoder models
have a considerably better conceptualization of the
citation task than LLMs in a zero-shot setting. We
further observe that the SCAFFOLDS approach ex-
hibits a high standard deviation on the ACL-ARC
tasks, as it struggles to predict minority labels cor-
rectly on the smaller dataset.

The FINECITE models introduced in this work
outperform the baselines across all datasets.
Among them, the context extracted with the Lin-
ear classification head achieves the best overall
performance, with an average macro-F1 of 0.579.
The context from the BiLST and CRF classifier
only perform slightly lower with an average macro-
F1 of 0.574 and 0.571, respectively. Comparing
the performance on a per-dataset basis reveals a
more nuanced pattern. The largest increase can
be observed on the ACT2 dataset with a 25% in-
crease over the strongest baseline, followed by a
13% increase on the ACL-ARC dataset. We ex-
plain the relatively low performance increases on
MULTICITE by considering that the dataset already
provides a dynamic context, leaving limited advan-
tage for fine-grained contexts. The performance

APPROACH
ACL-ARC ACT2

macro st. dev. macro st. dev.

Context Dimensions

w/o INF 0.556 0.017 0.277 0.013
w/o PERC 0.563 0.019 0.259 0.036
w/o BACK 0.56 0.019 0.253 0.024

Mean Pooling

Dimensions 0.584 0.014 0.302 0.02
Weightedtok 0.542 0.013 0.281 0.019
Weighteddim 0.573 0.015 0.28 0.015

Table 5: Ablation on context dimensions and pooling

on the SCICITE benchmark further stresses that
for the extraction of comprehensive fine-grained
context, the citing sentence is not sufficient.

Overall, the results demonstrate that the
fine-grained citation context proposed in this
work captures a more comprehensive citation
representation than other conceptualizations in
previous work.

Ablation. We provide ablation on the context di-
mensions, pooling method, and domain shift for a
further analysis of the proposed fine-grained cita-
tion contexts. The dimension and pooling ablation
were done on the ACL-ARC and ACT2 datasets.
We create two new datasets (ACT2, ACT2′D) for
the evaluation on domain shift.

With the ablation on the citation dimensions
(Table 5) we investigate the significance of the INF,
PERC, and BACK dimensions for classification per-
formance. Our analysis shows that removing any
of the three citation dimensions leads to a perfor-
mance drop for both datasets. While the decrease
in performance on the ACL dataset is similar for all
three dimensions, for the ACT2 benchmark PERC
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APPROACH ACT2′ ACT2′
D ∆ %

SCIBERT 0.345 0.228 -0.117 -33.9%
FINECITE 0.404 0.263 -0.141 -34.9%

DIFFERENCE IN DIFFERENCE -0.024 -1.0% 2

Table 6: Ablation on Domain shift.

and BACK exert greater influence. This highlights
that despite the low extraction performance, PERC

and BACK contain essential information for the
citation classification task.

The ablation on pooling strategies (Table 5) eval-
uates whether pooling citation dimensions sepa-
rately improves performance over simpler alterna-
tives. We compare this approach to token-weighted
pooling, which ignores citation dimensions, and
a dimension-weighted method. On both datasets,
separate dimension pooling yields better results.
Although the performance gap is modest, it indi-
cates that modeling citation dimensions individu-
ally enhances representation quality, reinforcing
the value of our context definition.

As the FINECITE dataset only consists of sam-
ples from the computational linguistics domain,
there might be a domain bias in the context extrac-
tion. To evaluate whether this compromises domain
adaptation performance on the classification task,
we provide an ablation on two new datasets (ACT2′,
ACT2′D) constructed from the multi-domain ACT2
benchmark (Table 6). The ACT2′D contains sam-
ples from computational linguistics and STEM
domains in its training split, and samples from
medicine and social sciences in its test split, thus
evaluating domain adaptation. The ACT2′, on the
other hand, contains samples from all domains in
both splits while following the same split sizes. We
provide the macro-F1 results on the test set for the
strongest baseline and our approach, and analyze
the difference-in-difference estimator between the
two approaches.

For both models, we observe a substantial drop
in performance when evaluated out-of-domain.
Our approach retains a slightly larger margin,
leading to a negative difference-in-difference es-
timate of -0.024. Despite this indicating that our
model approach performs slightly worse on do-
main adaptation, the performance gains of using
fine-grained contexts outweigh this drawback in
overall effectiveness.

2Percentage Points

6 Conclusion

In this paper, we introduced a novel approach to
defining citation contexts, aiming to foster new re-
search in citation context analysis. We proposed
a conceptual framework that characterizes citation
context based on semantic dimensions and struc-
tural properties. Subsequently, we described the
curation of the FINECITE corpus—a first resource
for fine-grained citation contexts—and analyzed
core statistics. Our experiments demonstrated that
our context definition is practically applicable and
leads to improved performance on established CCA
benchmarks compared to state-of-the-art methods.

In future work, we will focus on expanding
the dataset to a wider range of scientific texts
and domains and further refining our context def-
inition. Additionally, we plan to explore appli-
cations, such as retrieval-augmented generation
(RAG) (Lewis et al., 2020; Edge et al., 2024) and
question-answering (Q&A) frameworks (Lauscher
et al., 2022; Dasigi et al., 2021), to support interac-
tive exploration of scientific argumentation.

Limitations

This work presents the first dataset of its kind,
albeit with limitations in both size and domain cov-
erage. The accompanying evaluation and analysis
should be understood within this restricted scope
and may not generalize to broader contexts. The
objective is to establish a comprehensive defini-
tion of citation contexts and provide a resource
and baseline for further analysis. Additionally, al-
though our context definition is intended to be task-
independent, our evaluation is limited to a subset
of tasks due to constraints in space and resources.
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A Annotation Interface

Figure 3 shows the annotation tool with an anno-
tated example and different features, facilitating an
efficient context annotation.

B Inter Annotator Agreement

The F-measure for IAA is calculated by

F1 =
2× precision× recall

precision+ recall
,

where precision refers to the proportion of agree-
ment on the annotation of annotator 1 and recall
refers to the proportion of agreement on the anno-
tation of annotator 2.

The three specific F-scores measure agreement
on one distinct scope. More specifically, F1inf
relates to the information, F1perc to the perception,
and F1back to the background scopes. respectively.

The aggregate metric, F1macro, is a macro F-
score of the three context scopes:

F1macro =
F1inf + F1perc + F1back

3
.

The F1macro measures the average class-specific
agreement at one annotation task.

The second aggregate IAA is F1total, for which
we ignore the scope classifications and only com-
pare the agreement on the whole annotated area of
the two annotators, represented by precisiontotal

and recalltotal.

F1total =
2× precisiontotal × recalltotal
precisiontotal + recalltotal

.

The F1total metric evaluates the class-unspecific
agreement at one particular annotation task.

With Cohen’s Kappa (κ), we measure agreement
on the label assignment for mutually annotated
areas. We follow the common definition of

κ =
po − pe
1− pe

,

where po is the proportion of agreement and pe is
the expected proportion of agreement expected by
chance.

C Hyperparamethers for the
classification task

We explored the following hyperparameters for
both baseline tasks, respectively.

Table 7 shows the hyperparameters (batch size,
learning rate, dropout) that resulted in the opti-
mal classification results for the ACL-ARC, ACT2,
SCICITE, and MULTICITE datasets, respectively.

DATASET batch size learning rate dropout

ACL-ARC 4 5e-05 0.1
ACT2 16 3e-05 0.1
SCICITE 16 3e-05 0.1
MULTICITE 8 5e-05 0.1

Table 7: Hyperparameters of each dataset

D Extended Results

The following tables show extended evaluation re-
sults. Table 8 shows the extended extraction re-
sults on the FINECITE dataset. Tables 9, 10, 11,
and 12 show the extended classification results for
ACL-ARC, ACT2, SCICITE, and MULTICITE re-
spectively.

E Annotation Guidelines

E.1 Introduction
We want to annotate the citation context of refer-
ences in scientific literature to build a database for
the training of an automatic citation context extrac-
tion model.

The scope of the annotation is to mark the con-
text of a citation in a given paragraph. As the cita-
tion context, we understand the citation surround-
ing sentence segments that semantically relate to
the target reference.

We use an online platform that supports the an-
notation process in its structure and functionality.
In the following paragraphs, we describe the an-
notation task and briefly introduce the annotation
platform.

E.2 The Task
E.2.1 What does the annotation task look

like?
The task is to classify words of several sentences
in the same paragraph and determine whether they
relate to the citation marked as the target reference.
An example of the annotation task might look like
this:

Attention mechanisms have become an
integral part of compelling sequence
modeling and transduction models in var-
ious tasks, allowing the modeling of de-
pendencies without regard to their dis-
tance in the input or output sequences
[GREF]. In all but a few cases [TREF],
however, such attention mechanisms are
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Figure 3: The Annotation Interface: Located on the left is the annotation toolbar, with the color-coded marker for
each context scope, an ERASE tool, and the RESET button. The center is the working area where the annotation task
is displayed and annotated. On the right side, meta-information regarding the citing and cited papers is provided,
and alternatively, a comment section can be accessed to leave questions or notes. The navigation bar on the bottom
gives (from left to right) access to the annotation guidelines, the comment section, and three buttons for returning to
the previous task, skipping, or submitting the current task.

APPROACH F1macro F1total F1inf F1perc F1back

Inter Annotator Agreement

HUMAN (annotation) 0.483 0.758 0.654 0.416 0.338

Extraction Task

SCIBERT w. Linear 0.557 0.771 0.755 0.495 0.422
SCIBERT w. BiLSTM 0.56 0.759 0.768 0.496 0.415
SCIBERT w. CRF 0.521 0.787 0.738 0.434 0.391

Table 8: Extended extraction results on the FINECITE Dataset.

used in conjunction with a recurrent
network.

E.2.2 What is the meaning of the tags?

Four different types of tags can occur in the annota-
tion task ([REF],[GREF],[TREF],[GTREF]). The
‘REF’ part of the tag generally refers to ‘Reference,’
meaning that each tag is some kind of placeholder
for one or multiple references. More particularly,
the ‘[REF]’ tag replaces one single reference (e.g.
(Goodfellow 2012) → [REF]), and the [GREF] tag
replaces a Group of References (e.g. (Cohan et al.
2018, Jha et al. 2016) → [GREF]). Further, there
are two different versions of the [REF] and the
[GREF] tag, which indicate that they are the Target
of the annotation task. The ‘T’ in the [TREF] and
the [GTREF] tag means Target. Each annotation
task will have only one target reference, but multi-
ple other single or group references might exist.

E.3 What is the citation context?

The citation context is the text span in the citing
document that describes the information used from
the cited document, the way it is used, and how the
author of the citing document perceives it. For the
annotation process, we distinguish between three
scopes:

• Citation information scope: describes the in-
formation of the cited document. It answers
the question of what is cited. [GREEN]

• Citation perception scope: describes in what
way the author perceived, used, or further an-
alyzed the document. It answers the question
of how something is cited. [YELLOW]

• Citation background scope: describes addi-
tional information required for putting the two
previous scopes into the context they are used.
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APPROACH
BACKGR. COMPARE EXTENSION FUTURE MOTIVATION USE MACRO

P R F P R F P R F P R F P R F P R F P R F

Baseline Approaches

SCAFFOLDS .682 .764 .720 .551 .311 .393 .285 .138 .177 .095 .160 .180 .147 .240 .180 .615 .745 .673 .396 .393 .377

SCIBERT .754 .849 .798 .613 .368 .460 .755 .807 .780 .475 0.237 .317 .196 .440 .272 .395 .600 .476 .534 .550 .517

GPT 4O .750 .677 .712 .393 .667 .494 .000 .000 .000 .400 .667 .500 .000 .000 .000 .776 634 .698 .387 .441 .401

SCITULU .464 .684 .553 .661 .529 .587 .000 .000 .000 .400 .667 .500 .000 .000 .000 .862 .476 .613 .398 .393 .376

FINECITE Approaches

SCIBERT (Linear) .775 .804 .789 .727 .489 .582 .415 .213 .265 .566 .760 .633 .190 .440 .263 .714 .852 .775 .565 .593 .551

SCIBERT (BiLSTM) .799 .800 .798 .692 .579 .625 .432 .225 .281 .524 .880 .638 .360 .480 .341 .795 .848 .819 .600 .635 .584

SCIBERT (CRF) .811 .787 .797 .740 .496 .591 .341 .250 .264 .516 .880 .649 .206 .520 .282 .726 .876 .792 .557 .635 .563

Table 9: Extended results of the citation classification task on ACL-ARC.

APPROACH
BACKGR. COMPARE EXTENSION FUTURE MOTIVATION USE MACRO

P R F P R F P R F P R F P R F P R F P R F

Baseline Approaches

SCAFFOLDS .513 .722 .600 .122 .071 .089 .102 .062 .076 .288 .300 .293 .281 .090 .136 .069 .026 .035 .229 .212 .205

SCIBERT .527 .684 .595 .135 .108 .120 .340 .389 .363 .273 .092 .138 .326 .142 .198 .052 .021 .029 .298 .239 .240

GPT 4O .773 .511 .615 .017 .020 .018 .000 .000 .000 .000 .000 .000 .038 .308 .068 .000 .000 .000 .138 .139 .117

SCITULU .753 .507 .605 .068 .053 .060 .000 .000 .000 .000 .000 .000 .000 .000 .000 .026 .014 .018 .141 .096 .114

FINECITE Approaches

SCIBERT (Linear) .535 .474 .495 .103 .186 .131 .475 .385 .414 .382 .554 .450 .296 .173 .208 .170 .087 .112 .327 .310 .302

SCIBERT (BiLSTM) .532 .428 .471 .100 .186 .125 .393 .385 .381 .374 .495 .422 .219 .154 .176 .120 .123 .119 .290 .295 .282

SCIBERT (CRF) .512 .320 .387 .087 .139 .104 .355 .354 .342 .324 .589 .417 .299 .250 .265 .113 .164 .128 .282 .303 .274

Table 10: Extended results of the citation classification task on ACT2.

It answers the question of why something is
cited. [VIOLET]

E.3.1 General Notes
To make the annotation process possible, we have
to assume some facts as given:

1. All reference Markers have been set at the
correct position, and none are missing.

2. Group references have the same (or at least
sufficiently similar) information.

3. All the information mentioned in connection
with the reference is from the cited document.

E.4 General Rules
1. Articles (a, this, and the) must be included in

the scope of the following noun.

✘ The architecture of the system is very
similar to a large system built for the NIST
Arabic/English task [TREF]

✔ The architecture of the system is very
similar to a large system built for the NIST
Arabic/English task [TREF]

2. The reference marker ([REF], [TREF], etc.)
must be marked as well (adjacent scope).

✘ BERT is a large language model (LLM)
[TREF]

✔ BERT is a large language model (LLM)
[TREF]

✘ Following [TREF], the loss is a sum of
binary cross-entropy losses over all entity
types T over all training examples D.

✔ Following [TREF], the loss is a sum of
binary cross-entropy losses over all entity
types T over all training examples D.

3. Only marks what is relevant to the targeted
reference marker in case one reference is men-
tioned multiple times.

4. If the text is ambiguous, it should be marked
in the following hierarchy: Information scope,
Perception scope, and Background scope.

5. In cases where it is unclear whether the infor-
mation is a contribution of the cited paper or
the author, it should be marked as the author’s
contribution.
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APPROACH
BACKGR. METHOD RESULT MACRO

P R F P R F P R F P R F

Baseline Approaches

SCAFFOLDS .863 .873 .868 .792 .792 .792 .827 .784 .804 .827 .816 .821

SCIBERT .894 .862 .805 .805 .834 .819 .805 .855 .829 .835 .850 .842

GPT 4O .860 .810 .834 .725 .821 .770 .671 .719 .694 .785 .784 .766

SCITULU .803 .857 .829 .832 .726 .775 .720 .768 .743 .782 .784 .782

FINECITE Approaches

SCIBERT (Linear) .886 .867 .876 .819 .812 .815 .796 .870 .831 .834 .850 .841

SCIBERT (BiLSTM) .898 .862 .880 .823 .836 .829 .782 .875 .826 .834 .858 .845

SCIBERT (CRF) .890 .863 .876 .827 .820 .822 .780 .874 .823 .832 .852 .841

Table 11: Extended results of the citation classification task on SCICITE.

APPROACH
BACKGR. MOTIVATION USES EXTENDS SIMILARITY DIFFEREN. FUTUR MACRO

P R F P R F P R F P R F P R F P R F P R F

Baseline Approaches

SCAFFOLDS .732 .762 .746 .140 .093 .106 .598 .670 .631 .303 .279 .285 .415 .356 .382 .573 .485 .523 .186 .200 .189 .421 .406 .409

SCIBERT .821 .799 .810 .241 .334 .280 .740 .758 .749 .482 .552 .515 .607 .529 .565 .695 .644 .669 .437 .564 .492 .584 .597 .584

GPT 4O .514 .715 .598 .053 .227 .086 .702 .554 .619 .436 .473 .454 .195 .556 .289 .667 .574 .617 .273 .600 .375 .406 .528 .434

SCITULU .489 .712 .580 .011 .100 .019 .728 .557 .632 .257 .743 .382 .054 .440 .096 .699 .438 .539 .182 .286 .222 .346 .468 .353

FINECITE Approaches

SCIBERT (Linear) .840 .788 .812 .404 .294 .338 .789 .706 .744 .536 .507 .518 .652 .464 .539 .737 .576 .643 .652 .582 .641 .659 .560 .602

SCIBERT (BiLSTM) .830 .777 .802 .428 .323 .366 .753 .727 .739 .524 .525 .522 .622 .460 .526 .720 .601 .655 .600 .545 .571 .640 .564 .597

SCIBERT (CRF) .827 .776 .799 .388 .415 .395 .784 .685 .729 .545 .515 .529 .647 .443 .526 .722 .598 .654 .690 .545 .606 .658 .568 .606

Table 12: Extended results of the citation classification task on MULTICITE.

6. Conjunctions like “however,” “in fact,” “fur-
thermore,” “hence,” “therefore,” “in that,” “on
the other hand,” etc., should not be included.

✘ However, BERT is a large language
model (LLM) [TREF]

✔ However, BERT is a large language
model (LLM) [TREF]

E.5 What is the citation information scope?
The citation Information scope of the target citation
is the part of the paragraph that describes objective
facts directly from the cited paper. This informa-
tion is objectively true and does not involve any
judgment from the author. They can be attributed
as a finding of the cited paper or describe a process
or judgment in the cited paper.

E.5.1 INCLUDE
Information about the contribution of the cited
paper:

CONTRIBUTION
This can also be seen in BERT [TREF].

CONTRIBUTION + FACT
BERT is a large language model (LLM)
[TREF].

CONTRIBUTION + PURPOSE
The architecture of the system is very sim-
ilar to a large system built for the NIST
Arabic/English task [TREF].

CONTRIBUTION + OUTCOME
[TREF] trains a new model called BERT,
and they can show it outperforms the cur-
rent state-of-the-art model.

NOTE If slightly judgmental verbs (emphasizes,
stresses-out, underlines) are in an otherwise non-
judgmental sentence, they should be marked as
information scope.
Keywords that are referenced by they, this, etc.,
and belong to the information scope.

SLIGHT JUDGEMENT
[TREF] does not discuss LSP costs for in-
ternal MT development. He emphasizes on
margin shrinking, which is directly linked
to investment gain.

REFERENCED KEYWORDS
Recently, many reports have described
studies using deep learning for dialogue
systems that have achieved good perfor-
mance. They can generate fluent sentences
based on a user’s utterances [GTREF].
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E.5.2 INCLUDE
Information about used processes in the cited
paper:

PROCESS
[TREF] trains their proposed mode.

PROCESS + FACT
[TREF] trains their proposed model on a
classification task.

PROCESS + PURPOSE/REASON
[TREF] trains their proposed model to
achieve superior performance.

E.5.3 INCLUDE
Information about outcomes or judgments in
the cited paper: It should only be marked as infor-
mation scope when it is clear that the judgment is
from the cited paper and not from the author.

JUDGEMENT
[TREF] shows their model works well.

JUDGMENT + COMPARISON
They show their model works better than
the BERT model [TREF].

JUDGMENT + FACT
[TREF] have shown how parallel suffix ar-
rays can be used to significantly reduce the
large memory footprints that phrase-based
SMT systems suffer from when attempting
to use longer phrases.

E.5.4 INCLUDE
Information about when, where, and by whom
the paper was published: All information that
gives clues about temporal, locational, or personal
facts about the paper but does not judge the content
in any way.

PERSONNEL
The same research team developed BERT
[TREF].

TEMPORAL
Recently, BERT was introduced [TREF].

LOCATIONAL
In a paper from the ACL Conference,
BERT is introduced [TREF].

E.5.5 EXCLUDE

Further Information:

on SIBLING SOURCES
On a larger scale, event extraction has ex-
tended to many languages beyond English,
including French [REF], Spanish [REF],
Italian [TREF] and very recently, Hindi
[REF].

E.5.6 EXCLUDE

Non-attributable facts: Information that can not
be clearly attributed to the cited paper.

RESULTS/FINDING
Furthermore, the word embedding tech-
niques used by [REF] or [TREF] have been
shown to work well. (The position of the
judgment after the ref marker makes it un-
clear).

E.6 What is the citation perception scope?

The citation perception scope relates to the author’s
subjective perception and use of the information
in the cited document or a concept, the cited docu-
ment is provided as an example.

E.6.1 INCLUDE

Use of the referenced information:

PROCESS
We use a BERT model pre-trained on clas-
sification [TREF].

PROCESS + FACT
We analyze a BERT model pre-trained on
classification [TREF] on our dataset.

PROCESS + PURPOSE
We use a BERT model pre-trained on
classification [TREF] for classifying our
dataset.

PROCESS + REASON (for/against)
To increase model performance, we use the
text segmentation approach suggested by
[TREF].

E.6.2 INCLUDE

Judgment of the referenced information
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PERFORMANCE JUDGMENT
[TREF] develop a promising classification
method.

The proposed BERT model [TREF] is not
reliable.

RELATIONAL JUDGEMENT
Recently, Neural Networks have been get-
ting more attention. An example of this
trend is BERT [TREF].

SCOPING JUDGEMENT
On a larger scale, . . . ; In particular. . . ;
Other common methods ..; Most of. . .

NOT-MENTIONED JUDGMENT
[TREF] does not discuss LSP costs for in-
ternal MT development.

JUDGMENT + COMPARISON
[TREF] shows that BERT is a reliable
model. Compared to RoBERTa [REF],
which employs other metrics, it is less reli-
able.

E.6.3 INCLUDE
A concept the citation is an example of that is
strongly judged (reason for a decision): These
rules only apply when the concept is subjectively
judged by the authors. Only if there is a strong
connection between the concept and the example,
strong connection words: such as, like, etc.

CONCEPT + USE
We analyze automated metrics such as
BLEU [TREF].

CONCEPT + JUDGEMENT
We consider actual human judgments to
be preferable to automated metrics such as
BLEU [TREF].

CONCEPT + REASON
Because we care about the adequacy of
post-edited translations, we consider ac-
tual human judgments to be preferable to
automated metrics such as BLEU [TREF].

E.7 What is the citation background scope?
The citation background scope includes informa-
tion about neither the contribution of the cited docu-
ment nor how it is perceived or used, but is essential
for understanding its use.

E.7.1 INCLUDE
Background Information

SCOPING BACKGROUND
Text segmentation has been getting more
attention recently. For example, [TREF]
uses BERT to do text segmentation.

PROCESS BACKGROUND
We adopt the Lexical Conceptual Structure
(LCS) of Dorr’s work and use a parameter-
setting approach to account for the diver-
gences. [TREF] describes a parametric ap-
proach.

THIRD PARTY PROCESS/FACTS
Following the SAMT approach, CCG-
augmented HPB SMT [REF] uses CCG
[TREF] to label non-terminals.

BACKGROUND + JUDGEMENT
In fact, several GANs have recently been
proposed for text generation [GREF] and
have achieved encouraging results in par-
ticular, RelGAN [TREF] has outperformed
state-of-the-art (SOTA) results.

BACKGROUND + COMPARISON
In fact, several GANs have recently been
proposed for text generation [GREF] and
have achieved encouraging results in com-
parison to comparable maximum likeli-
hood approaches, in particular, RelGAN
[TREF] has outperformed state-of-the-art
(SOTA) results.

BACKGROUND + REASON
For comparison with the most dominant
coreference dataset, OntoNotes [REF], we
also measure the MUC score on our dataset.
The MUC score on our dataset is 83.6, com-
pared to 78.4-89.4 in OntoNotes, depend-
ing on the domain [TREF].

E.7.2 INCLUDE
Further information

as EXAMPLE of CONCEPT
Text segmentation [TREF] describes the
process of segmenting text. An example of
this would be to segment a sentence into
two parts.
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on COMPARISON
[TREF] shows that BERT is a reliable
model. Compared to RoBERTa [REF],
which employs other learning metrics, it is
less reliable.

on JUDGMENT + FACT
We train another model on 80,000 Amazon
kitchen reviews [TREF], and apply it on
the kitchen review dev set and the Amazon
electronics dev set, both having 10, 000
reviews.

as SIBLING
The use of BERT has been shown to be
reliable [REF] and effective [TREF].

on PROCESS + FACT
For comparison with the most dominant
coreference dataset, OntoNotes [REF],
which only reported the MUC agreement
score [TREF].

on LOCATION IN PAPER
Table 1 displays the result of our BERT
Model. We use BLUE for evaluation.
BLUE [TREF] is a metric to evaluate. . . .
The use of BLUE is described in the fol-
lowing section.

on USE of JUDGMENT
..service has over 50 million users [TREF].
As native speakers of English, both authors
judged the documentation to be of reason-
able quality and well-formed. These initial
assumptions would be tested in the project.

on USE/JUDGEMENT in THIRD
PAPER
[TREF] released XY. This method was
later expanded by [REF], who did xx.

E.7.3 EXCLUDE

Background of Background

BG + FACT (further information on the
background)
For comparison with the most dominant
coreference dataset, OntoNotes [REF],
which only reported the MUC agreement
score [REF], we also measure the MUC
score on our dataset. The MUC score on
our dataset is 83.6, compared to 78.4-89.4
in OntoNotes, depending on the domain
[TREF].

EXAMPLES of BACKGROUND
Automatic extraction of events has gained
sizable attention in subfields of NLP and
information retrieval such as automatic
summarization, question answering, and
knowledge graph embeddings [GREF], as
events are a representation of temporal in-
formation and sequences in text. [TREF]
applies BERT for event extraction.

SIBLINGS of BACKGROUND
We adopt the Lexical Conceptual Structure
(LCS) of Dorr’s work and use a parameter-
setting approach to account for the diver-
gences. [TREF] describes a parametric ap-
proach.

LOCATION, PERSONA, TIME of
BACKGROUND
In 2016, [REF] published Roberta based
on BERT [TREF].

on LOCATION of non-attributed facts
IN PAPER (it is not sure whether the
part is from the paper)
Following the SAMT approach,
CCG-augmented HPB SMT [REF]
uses CCG [TREF] to label non-terminals.
This section gives a brief introduction
to CCG followed by a description of the
approach of extracting non-terminal labels
using the same.

E.7.4 EXCLUDE

Further information

on Siblings
They [TREF] and JBNU-CCLab (Lee and
Na, 2022) achieved much higher perfor-
mances thanks to SciBERT tokenizer be-
cause it is trained on scientific literature.
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