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Abstract

Vision-language models (VLMs) integrate tex-
tual and visual information, enabling the model
to process visual inputs and leverage visual in-
formation to generate predictions. Such models
are demanding for tasks such as visual ques-
tion answering, image captioning, and visual
grounding. However, some recent work found
that VLMs often rely heavily on textual infor-
mation, ignoring visual information, but are
still able to achieve competitive performance
in vision-language (VL) tasks. This survey
reviews modality collapse analysis work to
provide insights into the reason for this unin-
tended behavior. It also reviews probing studies
for fine-grained vision-language understanding,
presenting current findings on information en-
coded in VL representations and highlighting
potential directions for future research.

1 Introduction

Integration of information from multiple sensory
modalities, such as language and vision is crucial
in forming a cohesive understanding of the world.
Humans naturally combine sensory inputs in a way
that balances and enhances the contributions of
each modality. This is called cross-modal integra-
tion, which allows humans to interpret complex
environments effectively and make inferences that
go beyond any single information source (McGurk
and MacDonald, 1976; Shams and Seitz, 2008).
Despite the clear advantages of cross-modal inte-
gration observed in human cognition, many vision-
language models (VLMs) struggle with modality
collapse problems and fail to achieve a similar bal-
ance (Jabri et al., 2016; Goyal et al., 2018; Frank
et al., 2021). This problem arises when a model
fails to utilize one modality (modality collapse)
and only relies on another (modality dominance).
Modality collapse is when an unimodal model
achieves similar accuracy on a vision-language
task compared to a multimodal model, showing

/Q: Which of the following could Wendy’s test\
show?

A: whether producing insulin would help the bacteria grow
faster

B: whether different types of bacteria would need different
nutrients to produce insulin

C: whether she added enough nutrients to help the bacteria

Qroducc 20% more insulin /
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Answer: C [ Answer: C (=

Model “correctly” guessed the answer even
Qhen the image is replaced by all-black image.

Figure 1: An example of modality collapse, where a
unimodal VQA model still selects the “correct” option,
as if it could see and read the image, even when the
input is an all-black image.

the other modality is not fully utilized (Javaloy
et al., 2022; Parcalabescu and Frank, 2023; Liang
et al., 2024; Gapp et al., 2025). Modality collapse
can impact the reliability of VLMs, especially in
tasks requiring a fine-grained understanding of both
vision and text. Figure 1 shows examples where
even powerful VLMs fail on simple tasks due to
modality collapse.

Previous works mainly focus on improving the
model’s performance and robustness through de-
biasing (Berg et al., 2022; Si et al., 2023; Seth
et al., 2023), increasing model size (Dehghani et al.,
2023), and using more training data (Zhai et al.,
2022). Nevertheless, the extent to which VLMs uti-
lize vision and language modalities and their limi-
tations remain unclear. To guide further research
in VLMs, we collect and piece together existing
knowledge about modality collapse in VLMs to
complete the puzzle, answering the following re-
search questions.
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Figure 2: The contributing factors to modality collapse in the VLMs, including (1) dataset bias: that can cause
VLMs to ignore visual input, (2) model behavior: where the model unintentionally learned to utilize one modality
more than the other, (3) lack of fine-grained supervisory signal: existing pretraining paradigms often rely on
automatically annotated silver annotations and coarse-grained signal and (4) task setup: some tasks are meant to use

one modality only by nature.

RQ1: Do VLMs Effectively Utilize Both Modal-
ities When Relevant? State-of-the-art VLMs
demonstrate strong performance on various VL
tasks (OpenAl et al., 2024; Liu et al., 2023b). How-
ever, questions persist about the extent to which
these models genuinely utilize both modalities
when relevant. Previous studies showed that, in
practice, text modality often dominates, leading to
concerns about whether these models exhibit true
vision-language understanding (Cao et al., 2020;
Zhu et al., 2022). In addition, VLMs can exploit
textual bias in the dataset, neglecting the image
input (Jabri et al., 2016; Goyal et al., 2019; Srini-
vasan and Bisk, 2022). Comparing performance
between unimodal models and multimodal models
does not reflect the utilization of different modal-
ities. Therefore, it is crucial to have methods to
quantify the modality contribution and assess the
existence of cross-modal interaction.

RQ2: What Are (Not) Encoded in VL. Repre-
sentations? Following RQ1, we aim to further
understand what information is encoded in VL rep-
resentations and what is not. As vision modality
collapse is very common in VLMs (Goyal et al.,
2019; Frank et al., 2021; Zhu et al., 2022), we hy-
pothesize that these models struggle to encode fine-
grained information and hence perform poorly on
tasks requiring vision-language compositionality.
Based on the two research questions above, this
survey systematically reviews the contributing fac-
tors to modality collapse and information encoded
by VLMs. Our key contributions are as follows:

» This paper comprehensively reviews recent
advancements investigating modality collapse
and dominance in VLMs, providing insights
into contributing factors of modality collapse.

* It categorizes the information encoded in
VL representations into three distinct dimen-
sions: linguistic semantics, visual content, and
vision-language compositional, providing the
first taxonomy for understanding VL represen-
tations’ capabilities and limitations.

* Building on these findings, this paper pro-
poses actionable future directions to allow
VLMs to utilize both text and vision modali-
ties, generating more reliable predictions.

Related Surveys Several surveys have been con-
ducted to review VLMs (Du et al., 2022; Long et al.,
2022), multimodal models! (Uppal et al., 2022;
Xu et al., 2023; Liang et al., 2024), large multi-
modal models (Yin et al., 2024; Caffagni et al.,
2024; Wu et al., 2023) and hallucination issue in
large multimodal models (Bai et al., 2024). To
the best of our knowledge, our survey is the first
one that reviews the utilization of vision and lan-
guage modalities in VLMs and their limitations in
encoding fine-grained information.

"The scope of this paper is vision-and-language only.
When the term “multimodal” is used, it refers to vision and
language or combinations that also include other modalities.
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e.g., MM-SHAP (Parcalabescu and Frank, 2023), Perceptual Score (Gat et al., 2021),
EMAP (Hessel and Lee, 2020), DIME (Lyu et al., 2022), M2Lens (Wang et al., 2022a), Mul-
tiViz (Liang et al., 2023b), IMF (Xue et al., 2021)

Linguistic Semantics

e.g., Predicate-Noun Understanding (Nikolaus et al., 2022), Negation (Wang et al., 2024a), Verb
Understanding (Hendricks and Nematzadeh, 2021a), Structural Knowledge (Milewski et al.,
2022)

Visual Content

e.g., Counting (Parcalabescu et al., 2021, 2022), Color Identification (Goyal et al., 2018; Zhao
et al., 2022)

e.g., Text Encoders Bottleneck (Kamath et al., 2023a), Structural Knowledge (Milewski et al.,

VL Compositional

2022), Spatial Relations (Kamath et al., 2023b; Pantazopoulos et al., 2024), Game-Theoretic
View (Wang et al., 2024b)

Figure 3: Taxonomy of modality collapse contributing factors and information encoded in vision-language (VL)

representations.

2 Preliminary

We group existing vision-language models (VLMs)
into four architectural categories based on their
vision-language fusion strategies: single-stream,
dual-stream, dual-encoder, and large vision-
language models (LVLMs).

Single-stream VLMs refer to VLMs that process
text and image input with a single Transformer
encoder. Examples in this category include VL-
BERT (Su et al., 2020), VisualBERT (Li et al.,
2019a), UNITER (Chen et al., 2020), Unicoder (Li
et al., 2020a) and Oscar (Li et al., 2020b). This
design is also referred to as early fusion, as text
and visual inputs are combined at the input level.

Dual-stream VLMs process text and image in-
puts independently using dedicated encoders, and
then fuse their representations via a multimodal fu-
sion module (e.g., co-attention). The fusion is per-
formed in a shared transformer designed to jointly
reason over both modalities. Early dual-stream
VLMs include BERT-based VLMs such as ViL-
BERT (Lu et al., 2019) and LXMERT (Tan and
Bansal, 2019).

LVLMs or Large Vision-Language Models ex-
tend pretrained large language models by incorpo-
rating visual inputs through an adapter (e.g., MLP
or Q-former). Some LVLMs (e.g., LLaVA (Liu
et al., 2023b)) directly project image embeddings
into the language model’s input space, and some
use a more complex network (e.g., Q-former in
BLIP-2 (Li et al., 2023)) to perform lightweight

vision-language fusion before passing the result to
the language model. Unlike dual-stream models,
LVLMs avoid deep co-attentional fusion and rely
on the language model to generate outputs from
injected visual context.

Dual Encoder Models like CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) encode im-
ages and text separately, aligning them in a shared
embedding space via contrastive learning. Unlike
other architectures, they perform no cross-modal
fusion, making them efficient for retrieval tasks but
less suited for generation or fine-grained reasoning.

3 RQI1: Do VLMs Effectively Utilize Both
Modalities When Relevant?

Takeaway Message: No, modality collapse often
happens in VLMs and text modality often domi-
nates. Though VLMs showed outstanding perfor-
mance on several VL tasks when tested on bench-
marks, little is known about whether they really
“see” and “read” the input image. In this section,
we divide this research question into two parts: con-
tributing factors to modality collapse, and methods
to measure the contribution of different modalities.

3.1 Contributing Factors to Modality Collapse

In this subsection, we systematically review works
that investigate the contribution of vision and lan-
guage modalities, grouped by their findings which
lead to modality collapse in VLLMs.
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3.1.1 Dataset Bias

VLMs are often trained on datasets where textual
information dominates over visual content, due to
statistical bias that hinders the effective utilization
of visual modality. This over-representation of
text can lead models to rely heavily on the tex-
tual modality while ignoring visual cues, even for
tasks requiring detailed visual information. Stud-
ies in this category examine statistical bias in the
datasets that can cause modality collapse in VLMs.
Statistical bias in datasets refers to the dispropor-
tionate representation of certain features or cate-
gories, such as gender biases, arising from high-
frequency occurrences. For example, VQA task re-
quires VLMs to obtain answers from images. How-
ever, earlier work finds VQA models can exploit
statistical textual bias and cause modality collapse,
where the model can achieve competitive perfor-
mance without accessing the image input (Jabri
et al., 2016) and rely on the first few text tokens in
the question (Agrawal et al., 2016).

Parcalabescu et al. (2021) probe VLMs ability
to count and reveal that VLMs struggle with count-
ing, often defaulting to predicting common quan-
tities in the datasets, rather than accurately inter-
preting visual information. For example, VLMs
favor frequent numbers such as “two” (predicted by
the model 51% of the time), while larger numbers
are predicted less frequently, showing poor gener-
alization of VLMs in counting tasks. Similar to
counting tasks, Salin et al. (2022b) find that VLMs
struggle in understanding size and position infor-
mation, where the models rely heavily on text input
and learned textual bias. They further show that
fine-tuning on specially crafted data does not lead
to better performance. Srinivasan and Bisk (2022)
shows that VL-BERT exhibits notable gender bi-
ases, where stereotypical assumptions override the
actual visual inputs. Statistical bias not only causes
vision modality to collapse, but also makes VLMs
less reliable and poses safety issues in real-world
applications.

3.1.2 Model Behavior

Previous studies find that some design choices,
though unintentional, could lead the VLMs to rely
more heavily on text, contributing to modality col-
lapse This section explores how model behavior
leads to modality collapse.

Most existing pretrained VLMs have a special
[CLS] token which absorbs information from text
and vision modalities through self-attention. Cao

et al. (2020) find that [CLS] token has a higher
attention on text over image input, absorbing more
information from text modality for VQA task in
the general domain.

Zhu et al. (2022) probe VLMs for Visual Lan-
guage Navigation (VLN) task to assess the impor-
tance of language and vision modalities. The au-
thors find that masking text tokens caused a sharp
performance drop while masking all visual tokens
did not. This contradicts the definition of VLN task,
where vision input should be the primary source of
information to generate output.

Recent works have also explored different model
behaviors contributing to the ineffectiveness of
cross-modality interaction in LVLMs. Zhang et al.
(2024a); Kaduri et al. (2024) find that LVLMs
decoder attends to irrelevant tokens, leading to
ineffective visual input processing. Zhu et al.
(2024) highlights cross-modality knowledge con-
flicts, where inconsistencies between vision en-
coder and language model lead to misalignment
and suboptimal fusion of multimodal information.
Additionally, Zhang et al. (2024b) identifies a con-
ceptual mismatch problem caused by contrastive
learning training paradigm, where text-image pairs
may not always align semantically.

3.1.3 Lack of Fine-grained Supervisory Signal
The supervisory signal in pretraining plays a piv-
otal role in shaping VLMs performance. In VL
setting, fine-grained pretraining is to train a model
to capture more detailed local information within
the image and map it to the corresponding text seg-
ment, while coarse-grained pretraining only aim to
align the whole image with its corresponding text
description.

The importance of fine-grained pretraining sig-
nal is shown in Bugliarello et al. (2023), where
they find that modeling objects has more impact
than increasing data scale. The authors find that
VLM trained on a smaller size fine-grained dataset,
e.g., X-VLMy,s (Zeng et al., 2022), outperform
BLIP 99, (Li et al., 2022), which is trained on
129M coarse-grained data points. Besides, X-VLM
is trained on image region and text matching, and
bounding box prediction task, forcing it to learn
visual grounding by aligning text descriptions with
specific object regions in an image. In contrast,
BLIP is pretrained on image-text matching only,
without enforcing the connections between image
regions and text segments. These findings highlight
the importance of fine-grained training objective,
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which can shape VLMs’ ability in utilizing visual
input, instead of relying on text cues only.

Many BERT-based VLMs (e.g., VL-BERT (Su
et al., 2020) and VILBERT (Lu et al., 2019)) use
silver annotations from Faster-RCNN (Ren et al.,
2016) as training data. However, Frank et al. (2021)
observe that these silver annotations are not reli-
able when compared to the gold labels with only
38% agreement. This raises concerns about VLMs
trained with such noisy supervision signal can truly
develop fine-grained understanding from visual in-
formation, or if they learn to rely on linguistic cues,
which lead to modality collapse.

3.1.4 Task Setup

Multimodal setting is first proposed to address the
limitations of unimodal models, by enabling mod-
els to process and integrate information from mul-
tiple modalities. However, not all task setups can
benefit from multimodal settings. Certain tasks
inherently require multiple modalities as inputs
(e.g.,VQA requires image input and corresponding
text questions), while others are initially defined as
unimodal tasks, where additional modalities serve
as supplementary information (e.g., multimodal
summarization).

Ma et al. (2023a) conducted an annotation study
on Japanese Wikipedia text classification task. The
dataset is curated from Wikipedia pages and the
task aims to classify them into corresponding
named entity classes Ma et al. (2021). Human an-
notators find that images tend to be distracting and
misleading. An annotation study in the radiology
domain (Jain et al., 2021) also showed a similar
finding. Different groups of radiologists are asked
to label radiology images and radiology reports
and compare them against ground truth. There is a
significant disagreement between labels from these
two groups of annotators. One of the reasons men-
tioned by Jain et al. is the difference in modality-
specific context: radiologists labeling reports have
access to clinical history and additional contex-
tual information, while those labeling images rely
solely on visual cues. This highlights how different
input modalities, such as text and image modalities,
can lead to varying interpretations, even among
experts. Consequently, the choice of modality, ei-
ther vision or language, can influence the labeling
outcomes, and the effectiveness of each modality
often depends on the specific task and setup.

Huo et al. (2024) conduct a neuron-level analysis
to understand the utilization of vision modality in

LVLMs. They concluded that deactivating domain-
specific multimodal neurons in some domains (e.g.,
medical and auto-driving domain) does not cause
a sharp decrease in overall performance, showing
that vision inputs are not required for those tasks.

Discussion It is essential to highlight that the
factors contributing to modality collapse are not in-
dependent. For instance, noisy pretraining dataset
can cause VLMs to exploit textual bias and task
setup that do not need visual information can cause
a model to rely more on text input (or vice versa).
Therefore, it is important to ensure that the pretrain-
ing and finetuning dataset are unbiased or de-biased
and the task itself needs both visual and textual in-
put, in order to unlock the capability of VLMs in
utilizing both modalities.

3.2 Measuring Modality Contributions

One simple way to demonstrate the usefulness
of different modalities is to compare the perfor-
mance of unimodal models with multimodal mod-
els (Wang et al., 2022c; Hu et al., 2023; Li et al.,
2024). The intuition is, if a multimodal model that
uses both text and image inputs outperforms a uni-
modal model (typically using text only) on the test
set, it is generally assumed that images are effec-
tively contributing to the task. However, this simple
comparison overlooks many other factors, such as
model size and dataset bias (Yogatama et al., 2015;
Dodge et al., 2019; Hessel and Lee, 2020). For
instance, a unimodal modal can be “upgraded” to
a multimodal model by adding a projection layer
to project vision representation obtained from pre-
trained vision encoder to the language model rep-
resentation space. However, even when the vision
representation is irrelevant, the performance might
still be improved due to the increase of trainable
parameters, given the language models are of the
same size (Du et al., 2022; Long et al., 2022).

Therefore, methods for quantifying modality
contribution and cross-modal interaction are ex-
plored to assess the effectiveness of different
modalities in a more controlled setup. In this sec-
tion, we review methods for measuring how differ-
ent modalities contribute to downstream prediction
and cross-modal interaction within VLMs.

Modality contribution refers to the extent to
which a given modality influences model predic-
tions (Parcalabescu and Frank, 2023; Liang et al.,
2023b). Parcalabescu and Frank (2023) propose
a contribution measure, MM-SHAP, inspired by
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cooperative game theory (Shapley, 1953; Lund-
berg and Lee, 2017). MM-SHAP randomly mask
pairs of text and image tokens, computes the output,
and measures the change in probabilities compared
to those obtained with the original inputs. MM-
SHAP and its extension, CC-SHAP (Parcalabescu
and Frank, 2024), can be applied to encoder-only
VLMs and VLMs with a decoder, respectively. Gat
et al. (2021) introduce Perceptual Score to assess
the degree to which a model relies on different sub-
sets of the input features (i.e., a combination of
modalities). After training the classifier, they per-
mute the features of a modality across test samples
and observe the impact on performance. A signifi-
cant drop in accuracy indicates a high contribution
from the permuted modality.

Cross-modal interaction refers to how differ-
ent modalities relate with each other and poten-
tially create new information that unimodal can-
not achieve (Liang et al., 2023b). This line of
work aims to disentangle cross-modal interactions
from multimodal models and observe changes in
output logits or overall performance. Hessel and
Lee (2020) introduce EMAP, a formal definition
and method to measure cross-modal interactions
with statistical non-additive interactions. That is, a
function truly learns cross-modal interaction when
it cannot be decomposed into two separate sub-
functions that each process a single modality inde-
pendently and then simply combine their results.
This means the function must process the different
modalities in an interconnected way, rather than
handling each modality in isolation and merely
adding their individual contributions. DIME (Lyu
et al., 2022) extends EMAP and LIME? (Ribeiro
et al., 2016) to enable feature visualization and ex-
planation for each data instance. MultiViz (Liang
et al., 2023b) incorporates EMAP’s ability to dis-
entangle unimodal and cross-modal contributions
globally, and DIME’s feature visualization for dis-
entangled representations locally, while introduc-
ing a novel second-order gradient approach that
can scale to more than two modalities. It uses a
sparse linear model to understand how features are
composed for final predictions. Similarly, Wang
et al. (2022a) proposes M2Lens, an interactive mul-

2LIME is a perturbation-based method that works for uni-
modal input only. It first breaks unimodal input into different
parts, and randomly modifying these parts multiple times to
see how each change affects the model’s output. It then trains
a linear model to shows which part of the input is the most
important for the model’s decision.

timodal sentiment analysis system. M2Lens uses
SHAP values to group inputs into three groups:
dominance, complement, and conflict. This cate-
gorization enables the visualization of connections
between modalities and tokens.

Some interpretability methods can be used to
understand the utilization of vision and language
input. For instance, neuron-level interpretability
methods can show VLMs’ sensitivity to vision and
language representations (Huo et al., 2024; Dai
et al., 2022; Pan et al., 2024). Techniques such as
logit lens (Daujotas; Neo et al., 2024), gradient-
based (Rajabi and Kosecka, 2024), attention-based
(Jiang et al., 2024; Chefer et al., 2021) visualiza-
tion, and causal tracing tools (Palit et al., 2023;
Basu et al., 2024) enable tracing information flow
within Transformer models, revealing how visual
and textual representations influence final predic-
tions. Although these interpretability methods do
not directly quantify and measure modality con-
tribution, they can enhance our understanding of
cross-modal interactions and help diagnose modal-
ity collapse or dominance.

Discussion Existing modality contributions and
cross-modal interactions metrics have their
strengths and limitations. Perturbation-based meth-
ods like MM-SHAP and EMAP are computation-
ally expensive as they need to compute all possible
pairs of inputs. They are more suitable for show-
ing the overall modality contribution for a dataset.
Metrics like MultiViz and DIME are more ideal
for visualization purposes, showing the important
parts of the inputs.

In addition, we note that almost all modality con-
tribution and cross-modal interaction measures are
perturbation-based. They compare the outputs from
paired and unpaired text-image inputs to quantify
the degree of contribution and interaction. While ef-
fective in capturing some aspects of cross-modal in-
teraction and modality contribution, this paradigm
poses challenges. For example, real-world datasets
can contain various types of statistical bias (e.g., the
word “dog” frequently co-occurs with images fea-
turing grass). A perturbation-based method might
remove text input (“dog”) to assess the model’s
reliance on visual information. As the model has
learned a spurious correlation between “dog” and
“grass” during training, it might still perform well
using the grass in the image background as a hint.
Hence, these measures might underestimate the
contribution of the permuted modality.
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* Counting [3, 9, 10] . Attribute [5, 7, 8, 9, 10] * Predicate-Noun Understanding [11]
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Figure 4: Fine-grained vision-language probing tasks, grouped into visual content, vision-language composition,
and linguistics semantic. Benchmark datasets that have subset to probe these information are as labeled: [1] FOIL
IT! (Shekhar et al., 2017), [2] SVO (Hendricks and Nematzadeh, 2021b), [3] VALSE (Parcalabescu et al., 2022),
[4] Winoground (Thrush et al., 2022), [S] VL-Checklist (Zhao et al., 2023), [6] Visual Spatial Reasoning (VSR)
(Liu et al., 2023a), [7] ARO (Yuksekgonul et al., 2023), [8] CREPE (Ma et al., 2023b), [9] EQBEN (Wang et al.,
2023) and [10] MMVP (Tong et al., 2024), [11] Predicate-Noun (Nikolaus et al., 2022). For full description of these
benchmark datasets, please refer to Appendix B. Examples for each category are shown in Figure 5.

4 RQ2: What Are (Not) Encoded In VL
Representation? Through The Lens of
Probing Studies

Takeaway Message: VLMs can encode basic lin-
guistic structure, simple fine-grained information
(one-object setting), but fail to encode rich compo-
sitional information®. Following RQ1, we see that
VLMs are often dominated by text modality, due
to textual bias, task setup, and lack of fine-grained
training objective. Studies reviewed in RQ1 reveal
the limitations of VLMs, showing that VLMs per-
form relatively well on coarse-grained tasks but fail
to utilize visual information on fine-grained tasks.

In this section, we aim to understand what is en-
coded in VL representation, categorized into three
categories: i) linguistic semantics, ii) visual con-
tent, and iii) VL compositional.

4.1 Linguistic Semantics

As VLMs are trained by aligning images and
their corresponding text descriptions , do they
learn and encode linguistic semantics? Hendricks
and Nematzadeh (2021a) collected a benchmark
dataset for verb understanding and tested verb un-
derstanding in VLMs like UNITER, ViLBERT, and
LXMERT. Their results show that verbs are harder
than subjects and objects and that models perform
badly identifying negative captions.

Analysis by Ma et al. (2022) reveals that VLMs
have a preference on visual tokens. The model

3Bexte et al. (2024) combine publicly available probing
datasets into a unified benchmark dataset. Our review in this
section aims to provide insights into when and why VLMs fail
on such probing tasks, instead of providing an exhaustive list
of all possible probing tasks.

learns to match the visual token in the caption to
the corresponding image and discard global seman-
tics. Milewski et al. (2022) show that multimodal
BERT models encode less structural grammatical
knowledge in the text embeddings, compared to
text-only BERT.

Nikolaus et al. (2022) manually curate a dataset
to test VLMs predicate-noun understanding. Re-
sults show that LXMERT and UNITER are among
the best-performing models, while CLIP performs
worse. The authors hypothesize that this is due
to the pretraining objective, as LXMERT and
UNITER have multimodal pretraining objectives,
in addition to image-text matching.

Compared to pretrained VLMs, Wang et al.
(2024a) show that LVLMs showed a better un-
derstanding of negation and triplet relationships
(subject, verb, object), though still underperform
on spatial relationship and compositional aspects
(noun and attributes) which will be discussed later
in Section 4.3.

4.2 Visual Content

When we use a VLM, we expect the model to re-
ally “see” an input image and provide a response
based on the query. However, there are research
works that show VLMs suffer from simple tasks
that require visual perception only like counting
(Segui et al., 2015; Kamath et al., 2023a) and color
identification. Parcalabescu et al. (2021) show that
pretrained VLMs could not count and exploit sta-
tistical bias in the training dataset. Their follow-up
work shows the same finding on their newly pro-
posed benchmark dataset VALSE (Parcalabescu
et al., 2022).
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Another simple yet underperformed task in
VLMs is color identification. Similar to count-
ing tasks, VLMs often exploit statistical bias in the
training dataset rather than faithfully encoding fine-
grained information (Zhao et al., 2022; Akula et al.,
2024). For example, when asked “What color is the
banana?”’, a model might answer “yellow” without
looking at the image input (Goyal et al., 2019).

Contrary to previous findings, Salin et al. (2022a)
find that image input is utilized by VLMs, by show-
ing that mismatched image-text pairs lead to sig-
nificant degrade in model performance. However,
it is worth noting that they do not control dataset
bias in the probing dataset. In particular, the prob-
ing dataset used includes only unambiguous colors,
such as blue, red, and black, which may introduce
bias to their findings.

4.3 Vision-Language Compositional

Vision-language compositionality refers to the abil-
ity of VLMs to understand components that form
visual and textual information. It allows the model
to distinguish between “the man is eating the steak”
and “the steak is eating the man”. This requires a
VLM to encode both linguistic semantics and vi-
sual content into the VL representation, in order to
recognize the presence of both a man and a steak,
and correctly determine the relationship between
them (i.e., who is performing the action and who
is receiving it). This is essential for challenging
downstream tasks like VQA, visual-language nav-
igation (VLN), and image captioning. However,
VLMs often take shortcuts by exploiting text input
and do not utilize visual input.

A number of benchmark datasets have been
created to understand VL compositionality in
VLMs, such as: FOIL IT! (Shekhar et al., 2017),
Winoground (Thrush et al., 2022), VALSE (Parcal-
abescu et al., 2022), and EVil-Probe (Bexte et al.,
2024). For a full description of these benchmark
datasets, please refer to Appendix B.

Kamath et al. (2023a) find CLIP (Radford et al.,
2021) failed to encode compositional information,
such as spatial information and relations. Parallel
research supports this finding and further reveals
that text encoders preserve compositional infor-
mation better than vision encoders, a result that
contradicts intuition (Milewski et al., 2022; Alper
et al., 2023; Wang et al., 2024b).

Most recently, Hsieh et al. (2023) proposed the
SugarCrepe benchmark dataset to evaluate VL com-
positionality and showed that many benchmark

datasets (e.g., CREPE (Ma et al., 2023b), ARO
(Yuksekgonul et al., 2023), VL-Checklist (Zhao
et al., 2023)) are hackable, as they used a rule-
based method to generate negative pairs, which can
introduce unintentional biases, where the model
can easily distinguish negative text caption, with-
out truly understanding the image input. To reduce
such biases, the authors generate hard negatives
by using LLMs with human validation. Experi-
mental results on SugarCrepe suggest that existing
VLMSs perform well on object recognition, but not
on composing attributes and relations.

Discussion Many works attempt to create harder
benchmark datasets, covering more visual patterns
that previous works have missed (e.g., counting,
position, attributes etc). They all point to the same
conclusion: VLMs perform well on conventional
VL tasks but fail on tasks that require VL. compo-
sitionality (Parcalabescu et al., 2022; Hsieh et al.,
2023; Zeng et al., 2024). To some extent, it is
useful to finetune a pretrained VLM on datasets
to improve VL compositionality. However, it is
more effective to address this issue during the pre-
training stage to ensure that VL compositionality
generalizes better to unseen data. We discuss more
actionable directions in Section 5.

5 Future Direction

A review of existing studies shows that modality
collapse is common in VLMs. Although coarse-
grained visual information (e.g., distinguishing
paired image-text samples from unmatched pairs)
is encoded into VL representations and benefits
downstream tasks, current VLMs still struggle to
encode fine-grained information (e.g., spatial rela-
tionships and attributes) and handle VL. composi-
tionally. To address these limitations and unlock
the full potential of VLMs, we believe there are
several future research directions.

Analysis on Modality Contribution and Cross-
Modal Interaction Most methods reviewed in
Section 3.2 rely on the perturbation of text-image
pairs to measure the modality contribution and
cross-modal interaction. Although these methods
have intriguing model-agnostic features, they are
likely affected by dataset bias and do not reflect
real modality contribution and cross-modal interac-
tion within a multimodal model. We believe one
promising research direction is to develop a model-
specific method that can directly analyze internal
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model representations and feature space (Huo et al.,
2024), in order to quantify modality interaction.
Another research direction is to develop a dataset-
centric and model-agnostic metric, to evaluate the
multimodal complexity of a task based on a dataset.
Such metrics would help to determine the extent
to which a task requires multimodal inputs. These
two research directions disentangle the factors of
the dataset and model behavior. Addressing these
gaps is critical in mitigating modality imbalance
and enhancing the robustness of VLMs.

Curation of Fine-Grained Probing Datasets
Probing encoded information in VL representa-
tions is essential in understanding the capabilities
and limitations of VLMs. However, most exist-
ing benchmarks rely on simple rules (e.g., syntac-
tic modifications or basic attribute swaps), which
may not truly assess the capabilities of VLMs.For
instance, Hsieh et al. (2023) finds many existing
datasets (e.g., CREPE (Ma et al., 2023b), ARO
(Yuksekgonul et al., 2023)) contain samples that do
not make logical sense and captions that contain
obvious grammatical errors, which make it easy for
VLMs to make the correct selection, even without
accessing image inputs. In addition to conducting
more controlled experiments to rule out these fac-
tors, future research could focus on building more
rigorous datasets that minimize artifacts and bi-
ases to ensure model performance reflects genuine
multimodal understanding, rather than reliance on
spurious correlations.

Enhacing VLM Training Training VLMs is a
data-hungry process, often relying on automatically
scraped image-text pairs and auto-generated anno-
tations, which may contain significant noise and
often lack fine-grained information. This leads to
significant statistical bias and unintended behavior,
such as exploring non-visual attributes for concepts
(Alper et al., 2023), and exploitation of statistical
bias (Jabri et al., 2016). Future work should fo-
cus on developing high-quality training datasets
with better text-image alignment (Peng et al., 2024)
and fine-grained annotations. Simultaneously, pre-
training objectives that explicitly encourage fine-
grained understanding, such as using predicting
bounding box and image region-text matching as
objective (Zeng et al., 2022). As highlighted in
(Bugliarello et al., 2023), while dataset scale con-
tributes to generalization, it is the choice of pretrain-
ing objective that determines how a model balances
its use of visual and textual modalities. Among the

papers we reviewed, no model architecture stands
out as the best solution to the problem of modality
collapse.

6 Conclusion

This survey explores the issue of modality collapse
in VLMs, highlighting the tendency of existing
models to rely more on text input than visual in-
formation. We review factors that may contribute
to this imbalance, including dataset bias, model
behavior, pretraining objectives, and task setup.
The issue of modality collapse also underscores the
importance of properly evaluating cross-modal in-
teractions, particularly in assessing whether VLMs
genuinely and effectively utilize multimodal inputs.
This paper is the first systematic review of modal-
ity collapse in VLMs. We hope this survey will
facilitate further research in this area.

Limitations

This survey paper aims to understand whether vi-
sual input is being utilized in VLMs and what infor-
mation is encoded into VL representation. We do
not aim to cover all possible model architectures,
tasks, and analyses in VLMs. Instead, we only fo-
cus on the issue of modality collapse, particularly
the tendency of VLMs to rely more heavily on tex-
tual input than visual input. In addition, though
related to VLMSs’ robustness, this survey does not
extensively address robustness in VLMs. However,
it is worth noting that the problem of modality col-
lapse can be treated as a subtopic of robustness,
emphasizing how multimodal inputs impact model
performance and behavior.
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A Glossary

Modality Contribution The degree of each
modality contributes towards the final prediction
in downstream tasks. Modality contribution aims
to quantify how important each modality is when
generating output, and each modality is given an
important score (Parcalabescu and Frank, 2023).

Cross-Modal Interaction How different modali-
ties relate with each other and provide new infor-
mation that unimodal alone cannot achieve (Liang
et al., 2023b). For example, in VQA setting, given
an image of an apple on a table and the text query
“Where is the apple?”, it is impossible to provide
correct answers using text or images only. Both
inputs have to be utilized in order to generate the
correct answer.

Dominant Modality The modality that weights
more during inference (Frank et al., 2021; Liang
et al., 2023a). Dominant modality could exist either
naturally or due to unintended factors. Naturally,
certain task setups are designed to rely more on one
modality, where additional modalities provide sup-
plementary information. Unintentionally, a model
may learn to rely more heavily on one modality
over the other(s) due to an imbalanced or coarse-
grained pretraining dataset.

Unimodal Collapse A unimodal model achieves
similar accuracy on a vision-language task com-
pared to a multimodal model (Parcalabescu and
Frank, 2023). This is an antonym for dominant
modality. For instance, the input to a model con-
sists of modality A and B, if modality A is the
dominant modality, then modality B is “collapsed”.

B Benchmark Datasets

FOIL IT! (Shekhar et al., 2017) is an extension
of COCO dataset (Lin et al., 2014). It modifies the
text description in each text-image pair to contain
one mistake (so-called "foil word’). Experimen-
tal results showed that VLMs perform poorly on
caption classification, foil word detection, and foil
word correction.

VALSE (Parcalabescu et al., 2022) contains six
tasks: linguistic phenomena, including existence,
plurality, counting, relations, actions, and corefer-
ence. Each instance is a correct caption, a foiled
caption, and an image. The task is to ask a model
to select the correct captions from foils. Experi-
mental results showed that VLMs can identify the
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existence of an object, but fail to ground other lin-
guistic phenomena.

Winoground (Thrush et al., 2022) is a small-
scale visio-linguistic compositional reasoning
dataset annotated by expert annotators with expe-
rience in vision and language research. In this
dataset, two images and two text captions are con-
sidered as a pair. Both captions contain the exact
same set of words, but in a different order. Di-
wan et al. (2022) showed that Winoground required
commonsense reasoning and complex localization,
which is beyond the scope of vision-linguistic com-
positional reasoning.

VSR (Visual Spatial Reasoning) (Liu et al.,
2023a) contains over 10k text-image pairs with
66 types of spatial relations (e.g., under, facing).
Both text and image are randomly sampled from
MS COCO dataset. Each pair of images are then
labeled by human annotators, such that the caption
is correct for one image, and incorrect for another
one, determined by spatial relations only.

ARO (Yuksekgonul et al., 2023) Attribution, Re-
lation and Order Benchmark (ARO) is a fine-
grained dataset for relation, attribution, and order
understanding. The authors utilize Visual Genome
(VG) and GQA for relations and attribution under-
standing probing tasks. They also utilize COCO Or-
der (Lin et al., 2014) and Flicker30k Order (Young
et al., 2014), by perturbating image captions to test
VLMs’ sensitivity to word order.

CREPE (Ma et al., 2023b) aims to test VLMs
ability to generalize knowledge to unseen data (e.g.,
“red apple” in training, “green apple” in testing)
and increasingly complex compositions (e.g., mul-
tiple attributes or relationships). It draws from
existing datasets such as CC-12M, YFCC-15M,
and LAION-400M. The authors filter and split the
dataset into seen/unseen atoms, and increasingly
complex scenes.

EQBEN (Wang et al., 2023) is a challenging
VL compositionality dataset where it defines a
stricter rule for “minimal semantic change”. Specif-
ically, it utilizes temporal frame changes in video
dataset(e.g., Action Genome (Ji et al., 2019),
GEBC (Wang et al., 2022b), and YouCook?2 (Zhou
et al., 2017)) to achieve minimal semantic differ-
ence between text and image pairs.

SVO-Probes (Hendricks
2021b) tests VLMs verb understanding.

and Nematzadeh,
The

authors first created a large set of verb lists
from Conceptual Captions dataset and generate
negative samples by replacing the subject, verb,
and object from the original caption. The images
are collected from Google Image and verified via
crowd-sourcing.

VL-Checklist (Zhao et al., 2023) uses four ex-
isting datasets: VG (Krishna et al., 2016), SWIG
(Pratt et al., 2020), VAW (Pham et al., 2021), and
HAKE (Li et al., 2019b) and transformed their orig-
inal captions into incorrect captions. It aims to
measure the ability of VLMs to detect incorrect
object, attribute and relation.

MMYVP (Tong et al., 2024) stands for Multi-
modal Visual Patterns, is a human-annotated bench-
mark dataset consisting of 9 visual patterns. Images
are first collected by choosing samples that are con-
tradicted in DINO and CLIP (i.e., high text-image
similarity for one encoder but low in another). Hu-
man annotators then create captions and multiple-
choice questions.

Predicate-Noun (Nikolaus et al., 2022) test
VLMs’ ability to understand relationships be-
tween a subject and its descriptor. Images from
this dataset are collected from Open Images
(Kuznetsova et al., 2018), where the authors manu-
ally verify examples and corresponding counterex-
amples, to ensure that counterexamples serve as
strong distractors.

C Probing Studies

C.1 Linguistic Comprehension

Probing studies under linguistic comprehension
focus on the ability of VLMs to comprehend textual
input and extract meaningful patterns. Tasks in
this category include negation, verb, and predicate-
noun understanding. These tasks evaluate whether
VLMs can handle syntactic and semantic nuances
for language comprehension.

Verb understanding probes VLMs ability to
comprehend actions or states described in textual
input. For instance, given an image of a person
running and a caption, “The person is running”, the
model should be able to match the alignment and
able to identify mismatch with the caption says,
“The person is sitting;;.

Predicate-noun understanding examines the
model’s ability to understand relationships between
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Name Paper VQA QA Sent Anal. Fusion Retrieval Vid. Reason. Visual Ent. Vis. Reason. MM. Class.
Modality Contribution
MM-SHAP (Parcalabescu and Frank, 2023) v
Perceptual Score (Gatet al., 2021) v v
Cross-Modal Interaction
EMAP (Hessel and Lee, 2020) v v
MultiViz (Liang et al., 2023b) v v v
DIME (Lyu et al., 2022) v v
IMF (Xue et al., 2021) v v v
M2Lens (Wang et al., 2022a) v

Table 1: List of metrics that evaluate the contribution of different modalities and cross-modal interaction and the
task they have been evaluated on. Abbreviations: VQA: Visual Question Answering; QA: Question Answering; Sent
Anal.: Multimodal Sentiment Analysis; Fusion: Vision-Language Fusion; Retrieval: Vision-Language Retrieval,
Vid. Reason.: Video Reasoning; Visual Ent.: Visual Entailment; Vis. Reason.: Visual Reasoning; MM. Class.:

Multimodal Classification

a subject (predicate) and its descriptor (noun). For
example, given an image of a small cat and a cap-
tion, “The small cat is on the mat’, the model
should recognize the link between “small” and
‘cat”.

3

Negation understanding tests VLMSs’ ability to
understand negated statements. For an image of a
red ball, the model should interpret the negation in
the caption, “The ball is not red”, and identify it
as negative caption. Another example is, “A beach
with people” and “A beach without people”.

C.2 Visual Perception

Visual perception tasks examine the capacity of
VLMs to interpret visual information. Studies in
this category assess the model’s ability to under-
stand counting, attributes (e.g., identifying shapes,
materials, colors, or sizes), and spatial reasoning.
These tasks measure how well VLMs encode visual
details and align them with corresponding textual
descriptions, bridging vision and language.

Color understanding tasks test a model’s ability
in recognizing the color of a specific object in an
image. For example, given an image of a green ba-
nana and query “What is the color of the banana?”,
VLMs that fail to perceive visual information will
rely on textual bias, and answer “Yellow”, given
that most bananas are yellow color.

Existence tasks test the model’s ability to detect
the presence or absence in a scene. Given an image
of a dog and a query, “Is there a dog in this pic-
ture?”, the model should verify the dog’s presence
and provide “Yes” as a response.

Counting tasks require models to determine the
number of objects in an image. For instance, given
an image of three apples and a query, “How many

apples are in the image?”, the model should pro-
vide response, “Three apples”. Incorrect response
shows that the model fails to count from the input
image.

C.3 VL Composition

VL compositionality tasks require VLMs to inte-
grate visual and textual input to generate mean-
ingful, cross-modal representations. It involves
combining the semantics of linguistic comprehen-
sion with fine-grained visual features that require
visual perception.

Attributes evaluates whether a model can iden-
tify characteristics related to an object, such as
color, shape, or size. For example, given an image
of a yellow triangle and a caption, “The triangle
is yellow”, the model should confirm the attribute.
Conversely, it should flag a mismatch for a caption
like “The triangle is blue”.

Spatial relationships evaluates a model’s under-
standing of object arrangements within the image.
For example, given an image of a ball under a table
and a caption, “The ball is under the table”, the
model should confirm the spatial relationship and
identify mismatch like, “The ball is on the table”.

Relations assess whether a model can capture
interactions between multiple objects in an image.
For instance, given an image of a god chasing a
ball, the model should correctly verify the caption
“The dog is chasing the ball” while rejecting “The
ball is chasing the dog” as incorrect. Proper un-
derstanding of object relations is crucial for VLMs
to generate accurate and contextually grounded de-
scriptions.
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Figure 5: Example for each groups in linguistic semantics, visual content and vision-language compositional. Blue

words indicate positive examples, while red words denote negative examples.

D Cross-Modal Interaction and Modality
Contribution Metrics

Table 1 shows a list of metrics for modality contri-
bution and cross-modal interaction and tasks that
are evaluated in the original paper.

E Examples for Probing Tasks

Figure 5 shows example for each category de-
scribed in Section 4.
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