
Findings of the Association for Computational Linguistics: ACL 2025, pages 24382–24394
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SCOPE: Compress Mathematical Reasoning Steps for Efficient Automated
Process Annotation

Huimin Xu1, Xin Mao1, Feng-Lin Li2, Xiaobao Wu1*

Wang Chen2, Wei Zhang3, Anh Tuan Luu1*

1Nanyang Technological University, Singapore
2Shopee Pte. Ltd, Singapore, 3SEA Group, Singapore

{huimin.xu, xin.mao, xiaobao.wu, anhtuan.luu}@ntu.edu.sg
{fenglin.li, chen.wang}@shopee.com, terry.zhang@sea.com

Abstract

Process Reward Models (PRMs) have demon-
strated promising results in mathematical rea-
soning, but existing process annotation ap-
proaches, whether through human annotations
or Monte Carlo simulations, remain compu-
tationally expensive. In this paper, we intro-
duce Step COmpression for Process Estimation
(SCOPE), a novel compression-based approach
that significantly reduces annotation costs. We
first translate natural language reasoning steps
into code and normalize them through Abstract
Syntax Tree, then merge equivalent steps to
construct a prefix tree. Unlike simulation-based
methods that waste numerous samples on esti-
mation, SCOPE leverages a compression-based
prefix tree where each root-to-leaf path serves
as a training sample, reducing the complex-
ity from O(NMK) to O(N). We construct
a large-scale dataset containing 196K samples
with only 5% of the computational resources re-
quired by previous methods. Empirical results
demonstrate that PRMs trained on our dataset
consistently outperform existing automated an-
notation approaches on both Best-of-N strategy
and ProcessBench 1.

1 Introduction

As Large Language Models (LLMs) advance in
complex reasoning tasks (Jaech et al., 2024; Liu
et al., 2024; Yang et al., 2024; Dubey et al., 2024),
designing effective reward models has become in-
creasingly crucial. Process Reward Models (PRMs)
(Uesato et al., 2022; Lightman et al., 2023) evalu-
ate the reasoning process step-by-step, providing
more fine-grained supervision than Outcome Re-
ward Models (ORMs) that only assess final outputs
(Cobbe et al., 2021; Yu et al., 2023; Wu, 2025).
Recent studies consistently demonstrate PRMs’ su-
perior performance across complex reasoning tasks

*Corresponding Authors.
1Our code, data, and models are available at https://

github.com/Anna7355/SCOPE.

0.5 0.2 0.4 0.8

Simulation

Compression

Sampling

...

...

0.6

0.5

0 1.0

0.67

1.0 0.5

1.0 01.00

Figure 1: Comparison of PRMs training data construc-
tion. Simulation-based methods require numerous com-
pletions solely for Q-value estimation, with these com-
pletions (gray nodes) being discarded without contribut-
ing to training. Our compression-based approach elimi-
nates such data waste by merging equivalent steps from
all sampled solutions into a prefix tree, where every
root-to-leaf path becomes a valuable training instance.

(Wang et al., 2024; Snell et al., 2024). But PRMs
face a significant challenge: they require intensive
human effort for data annotation, as every reason-
ing step needs a label (Lightman et al., 2023).

To alleviate this limitation, recent studies explore
simulation-based methods. For instance, Math-
shepherd (Wang et al., 2024) uses Monte Carlo
estimation to automate the data annotation. As
shown in Figure 1, it samples N solutions for a
math problem, and then for each step in the so-
lution, it simulates M potential completions and
calculates the Q-value based on the proportion of
completions that lead to the correct answer. While
Math-shepherd eliminates human annotation re-
quirements, it incurs high computational complex-
ity of O(NMK), where K denotes the average
step count of solutions. Recent studies have shown

24382

https://github.com/Anna7355/SCOPE
https://github.com/Anna7355/SCOPE

that Math-shepherd requires 38.8× more FLOPs
than ORM training (Yuan et al., 2024). Although
OmegaPRM (Luo et al., 2024) reduces complexity
to O(NM logK) through a divide-and-conquer
strategy, the efficiency gains remain limited due to
typically short lengths (K < 10). We argue that
these simulation-based approaches are inherently
inefficient as they generate numerous completions
solely for Q-value estimation (gray area in Fig-
ure 1), resulting in wasted data.

In this paper, we introduce Step COmpression
for Process Estimation (SCOPE), a novel auto-
matic PRM label annotation strategy that achieves
O(N) complexity while maintaining annotation
quality. Unlike prior simulation-based methods
(Wang et al., 2024; Luo et al., 2024), SCOPE intro-
duces a novel compression-based approach: first
samples numerous solutions for each problem, then
merges equivalent solution steps to construct a pre-
fix tree (Trie), as shown in Figure 1. For each
node in the tree, its Q-value is calculated as the pro-
portion of solutions passing through it that reach
the correct answer. Each path from root to leaf in
the tree represents a training sample with step-by-
step labels. Compared to simulation-based meth-
ods, SCOPE not only achieves O(N) complexity
through step compression, but also fully utilizes all
sampled solutions by incorporating them directly
into training data through the prefix tree structure.

The key challenge of SCOPE lies in identifying
step equivalence. Naive exact string matching is
too restrictive and results in limited compression.
Edit distance and sentence embeddings often fail to
capture the subtle distinctions in mathematical rea-
soning (Wallace et al., 2019). To address this chal-
lenge, we propose a code-based step compression
through a three-stage process: (1) translate natural
language reasoning steps into executable Python
code using a code LLM, (2) normalize the code
through Abstract Syntax Tree (AST) (Aho et al.,
2007) (e.g., variable renaming), and (3) merge steps
with identical normalized code using a Trie. This
approach enables precise identification of mathe-
matically equivalent steps while being robust to
surface-level variations. Although code translation
and AST add computation, the overall complexity
remains O(N), ensuring substantially lower com-
putational costs for large-scale PRM datasets.

Based on SCOPE, we construct a PRM training
dataset containing 196K samples with 1.4M labels,
exceeding Math-shepherd’s scale while requiring
only 5% of its computational resources. Empirical

evaluation demonstrates the effectiveness of our
approach, with PRMs trained on our dataset consis-
tently outperforming other automated annotation
approaches in both the Best-of-N strategy and the
ProcessBench (Zheng et al., 2024a) evaluation.

Our main contributions are:

• We propose SCOPE, a novel automatic PRM
label annotation method that introduces a
sample-and-compress paradigm to replace
traditional sample-and-simulation paradigm,
achieving O(N) complexity.

• We construct a new PRM training dataset con-
taining 196K samples and 1.4M step-level la-
bels, while requiring only 5% of the computa-
tional resources used by MathShepherd.

• Extensive experiments show that PRMs
trained on our dataset consistently outperform
other automated annotation approaches across
multiple evaluation settings, including Best-
of-N strategy and ProcessBench.

2 Related Work

2.1 PRMs Training

Process Reward Models (PRMs) demonstrate sig-
nificant potential in mathematical reasoning tasks,
though their traditional training approaches re-
quire substantial human annotation effort (Light-
man et al., 2023). While Math-shepherd (Wang
et al., 2024) introduces an innovative approach us-
ing Monte Carlo simulation to automate PRM train-
ing, its practical applications are constrained by in-
tensive computational demands. OmegaPRM (Luo
et al., 2024) attempts to address these limitations
through a divide-and-conquer Monte Carlo Tree
Search strategy, yet computational costs remain a
significant barrier. Recent research explores alter-
native approaches to reduce these computational
requirements: ImplicitPRM (Yuan et al., 2024)
demonstrates the possibility of deriving PRMs from
outcome-level labels, while AutoPSV (Lu et al.,
2024) develops a novel verification model that eval-
uates step quality through confidence variation anal-
ysis. However, recent studies (Zheng et al., 2024a)
have revealed that these approaches often fail short
of their claimed effectiveness, particularly strug-
gling on more challenging datasets.

24383

Code:
<Code 1>
kk_height = 30
kk_climbs = 20
kk_len = kk_height * kk_climbs

<Code 2>
tom_height = 26
tom_climbs = 15
tom_len = tom_height * tom_climbs

<Code 3>
total_len = kk_len + tom_len

<Code 4>
result = 990

Solution:
Step 1: KK climbed a 30-foot ladder
20 times. The total length he climbed
is: $30 \times 20 = 600$ feet.

Step 2: Tom’s ladder is 26 feet tall.
He climbed it 15 times, so the total
length is $26 \times 15 = 390$ feet.

Step 3: To find the total length both
workers climbed, add the lengths
climbed by KK and Tom.

Step 4: Therefore, the answer is:
$600 + $390 = 990$ feet.

Normalized Code:
<Code 1>
var0 = 30
var1= 20
var2 = var0 * var1

<Code 2>
var3 = 26
var4 = 15
var5 = var3 * var4

<Code 3>
var6 = var2 + var5

<Code 4>
var7 = 990

Question: KK climbed a 30-foot ladder 20 times, and Tom climbed a 26-foot ladder 15 times. What is the total length they
climbed in inches?

Figure 2: Illustration of code translation and normalization. The solution of a math problem is first converted into
corresponding codes through a code-LLM. Then, we use AST module of Python to derive the abstract syntax tree.
Finally, the codes are normalized via their corresponding AST.

2.2 PRMs in Mathematical Reasoning

Process Reward Models enhance mathematical rea-
soning capabilities through dual mechanisms: rein-
forcement learning during the training phase and
solution selection during inference. In reinforce-
ment learning (Wang et al., 2024; Yuan et al., 2024;
Shao et al., 2024), PRMs serve as reward func-
tions that guide policy optimization by providing
fine-grained feedback on each reasoning step, en-
abling more targeted learning compared to tradi-
tional outcome-based rewards. During inference
(Lu et al., 2024; Lightman et al., 2023; Wang et al.,
2024), the effectiveness of PRMs is commonly eval-
uated using the Best-of-N strategy, which identifies
the highest-quality solution from multiple candi-
dates by aggregating step-wise scores, demonstrat-
ing superior performance compared to outcome-
based selection methods. The recent introduc-
tion of ProcessBench (Zheng et al., 2024a) estab-
lishes a more rigorous framework for evaluating
PRMs’ capabilities in identifying erroneous reason-
ing steps, offering a comprehensive assessment of
their process-level understanding. Building upon
these insights into PRM effectiveness and evalu-
ation frameworks, we evaluated SCOPE on both
Best-of-N strategy and ProcessBench. Our method
not only achieved state-of-the-art performance on
Best-of-N, but also demonstrated remarkable effec-
tiveness on the challenging ProcessBench.

3 Method

In this section, we present SCOPE, a novel ap-
proach for automatic PRMs dataset annotation: (1)
First, we motivate and explain our code transla-
tion strategy, which converts reasoning steps into
executable code through a code LLM. (2) Then,
we perform AST normalization to standardize code
syntax for accurate equivalence matching. (3) Next,
we apply step compression by merging normalized
steps into a prefix tree. (4) Finally, we describe our
PRMs training details.

3.1 Code Translation
As discussed in Section 1, the key challenge of
SCOPE lies in efficiently identifying and merg-
ing equivalent reasoning steps. A naive approach
based on exact string matching fails to recognize
equivalent steps expressed differently (e.g., “mul-
tiply 5 by 3” vs “calculate 5 × 3”), leading to an
overly sparse compression space. While edit dis-
tance or sentence embeddings offer more flexibility,
they struggle with precise numerical comparisons
or operator precedence (e.g., failing to distinguish
between “(3 + 4) × 2” and “3 + 4 × 2”), making
them unreliable in mathematical scenario (Wallace
et al., 2019). The core issue is that they operate
on surface-level text similarities rather than iden-
tifying true mathematical equivalence, which can
manifest in various forms such as different arith-

24384

0.5

0.5

1.0 0

0

0.5

0.5

1.0 0

0.5

0.5

0.5

1.0 0

0.33

0

0

0

0.5

0.5

1.0 0

+ + +

Figure 3: Visualization of prefix tree construction process. Same-colored nodes indicate equivalent normalized step
codes. Q-values reflect the proportion of correct solutions passing through each node.

metic representations or algebraic transformations.
Therefore, we propose using code as an inter-

mediate representation that can precisely capture
mathematical operations and logical reasoning. As
shown in Figure 2, we first use the math LLM to
sample N solutions for each math problem, then
employ a code LLM to convert each natural lan-
guage step into executable code blocks (see prompt
details in Appendix A). This code translation trans-
forms natural language steps into a more structured
and precise representation, laying the foundation
for identifying mathematical equivalence. A de-
tailed example of complex code generation is pro-
vided in Appendix D.

3.2 AST Normalization
While code translation captures mathematical op-
erations precisely, direct code matching remains
ineffective due to syntactic variations. For example,
“x = 5 * 3” and “result = 3 * 5” would be treated
as different operations despite being mathemati-
cally equivalent, due to different variable names
and operand orders. To address this, we utilize Ab-
stract Syntax Tree (AST), which represents code
as a hierarchical structure of its syntactic elements,
to normalize code through systematic transforma-
tions:

• Variable renaming: Mapping arbitrary vari-
able names and function names to canonical
form (e.g., var0, func0).

• Operation normalization: Standardizing
equivalent operations (e.g., multiply/-
times/product → mul).

• Expression reordering: Sorting commutative
operations for consistent representation.

• Constant folding: calculating constant expres-
sions (e.g., 2 * 3 → 6).

Through AST normalization, as shown in Figure 2,
original code (middle column) becomes standard-
ized (right column), enabling precise matching of
equivalent steps. The complete AST structure for
this code example is provided in Appendix C.

3.3 Step Compression
After AST normalization, we identify identical nor-
malized code blocks and merge them to construct
a prefix tree (Trie), where each node represents a
distinct solution step and edges denote reasoning
branches, as shown in Figure 3. Note that some
steps may contain only comments without code
(see example in Appendix D). We retain such steps
as distinct nodes, which account for 27.3% of all
steps. Section 4.4 discusses how different handling
strategies affect the results.

This hierarchical representation enables efficient
Q-value computation directly from the solution
paths without requiring additional Monte Carlo
simulations. The Q-value is calculated recursively
by propagating the correctness of leaf solutions up
through the tree, weighted by the number of solu-
tions passing through each path. The pseudocode
for Q-value calculation is shown below.

def compute_q(node):
if node.is_leaf ():

return node.is_correct , node.count

total_value , total_count = 0, 0
for child in node.children:

value , count = compute_q(child)
total_value += value * count
total_count += count

q_value = total_value / total_count
return q_value , total_count

Since these three stages have linear complexity
to the number of solutions, SCOPE maintains an
overall complexity of O(N). A detailed explana-
tion is provided in Appendix B.

24385

3.4 PRMs Training

Through the above step compression process, we
obtain Q-values for each step, which naturally serve
as labels for their corresponding reasoning steps.
Following Math-shepherd (Wang et al., 2024), we
explore two strategies to estimate the label ysi for
each step si, hard estimation (HE) and soft estima-
tion (SE). For HE, we assign binary labels based
on the Q-value Q(si) of step si: a positive Q-value
indicates that at least one solution path through this
step reaches the correct answer:

yHE
si =

{
1 Q(si) > 0

0 Otherwise
(1)

For SE, we directly use the Q-value as the label,
which reflects the proportion of paths from this step
that reach the correct answer:

ySEsi = Q(si) (2)

We adopt different loss functions for HE and SE
to align with their respective label characteristics.
For HE with binary labels, we use the binary cross-
entropy loss for optimization:

LHE = −
K∑

i=1

ysi log ŷsi + (1− ysi) log(1− ŷsi)

(3)
where ŷsi is the model’s predicted probability for
step si, and K is the total number of steps. For SE
with continuous Q-values as labels, we employ the
mean squared error (MSE) loss:

LSE = −
K∑

i=1

(ysi − ŷsi)
2 (4)

The choice of different loss functions reflects the
distinct nature of HE and SE: binary cross-entropy
is suited for classification tasks with hard labels,
while MSE better handles regression with continu-
ous values.

4 Experiments

All experiments are conducted on a server equipped
with 8 NVIDIA A100-80GB GPUs and 512GB of
system RAM. We utilize PyTorch (Paszke et al.,
2019) as the implementation framework, SGLang
(Zheng et al., 2024b) for sampling and DeepSpeed
(Aminabadi et al., 2022) for distributed training.

4.1 Settings
Base Models. For our experiments, we employ
Qwen2.5-Math-7B-Instruct2 (Yang et al., 2024)
as the base model for PRMs training and dataset
construction. For code translation, we utilize
Qwen2.5-Coder-32B-Instruct3 (Hui et al., 2024),
which exhibits strong performance in converting
natural language into executable code.

Dataset Construction. We construct our PRMs
training dataset using the SCOPE pipeline. Start-
ing from math problems in the UltraInteract
dataset4, we generate 64 solutions per problem us-
ing Qwen2.5-Math-7B-Instruct. Following prior
work, we remove problems whose model confi-
dence5 equals 0 or 1, as such extremes may in-
troduce training bias. We also observe that the
distribution of model confidence has a strong im-
pact on PRMs performance; thus, we retain only
problems with model confidence greater than 0.75
to ensure label reliability.

For each retained problem, Qwen2.5-Coder-
32B-Instruct translates reasoning steps into code,
followed by AST-based normalization. We then
construct a prefix tree from the 64 normalized
solutions and compute Q-values for each node.
The final dataset contains 196K samples and 1.4M
step labels.

Evaluation. We evaluated our approach using two
complementary metrics: (1) Consistent with previ-
ous work (Lightman et al., 2023; Luo et al., 2024),
we employ the Best-of-N (BoN) sampling strategy
for evaluation, which selects the highest-scored
response from N candidates according to the PRM.
Using Qwen2.5-Math-7B-Instruct, we sample
N = 8 responses across multiple mathematical
benchmarks: GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021), MinervaMath
(Lewkowycz et al., 2022), GaoKao2023En (Liao
et al., 2024), OlympiadBench (He et al., 2024), and
CollegeMath (Tang et al., 2024). Each candidate
solution is scored using the product of step-wise
scores from the PRM. (2) ProcessBench (Zheng
et al., 2024a), which is specifically designed to

2https://huggingface.co/Qwen/Qwen2.
5-Math-7B-Instruct

3https://huggingface.co/Qwen/Qwen2.
5-Coder-32B-Instruct

4https://huggingface.co/datasets/openbmb/
UltraInteract_sft

5Defined as the proportion of correct solutions among the
64 generated by the base model.

24386

https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/datasets/openbmb/UltraInteract_sft
https://huggingface.co/datasets/openbmb/UltraInteract_sft

Setting GSM8K MATH Minerva
Math

GaoKao
2023 En

Olympiad
Bench

College
Math Avg.

Greedy 95.5 83.0 34.6 64.2 38.2 46.3 60.3
Pass@8 (Upper Bound) 97.8 91.8 46.7 79.7 59.4 52.5 71.3
Majority@8 96.5 86.9 40.1 70.4 46.2 47.8 64.7

Math-Shepherd-PRM-7B 96.2 81.7 33.8 63.6 39.1 45.5 60.0
RLHFlow-PRM-Mistral-8B 96.0 85.7 37.5 70.9 43.3 47.6 63.5
RLHFlow-PRM-Deepseek-8B 96.7 85.6 38.2 69.9 44.3 47.4 63.7
EurusPRM-Stage1 95.1 83.4 37.9 66.1 40.2 39.2 60.0
EurusPRM-Stage2 95.8 83.1 37.7 65.8 38.5 41.0 60.3
Skywork-PRM-1.5B 96.2 86.3 38.2 70.6 43.0 48.1 63.7
Skywork-PRM-7B 96.4 86.1 39.1 70.9 42.8 47.9 63.9
*Qwen2.5-Math-7B-PRM800K 96.5 86.5 38.1 70.5 43.5 48.2 63.0

SCOPE 96.7 87.7 38.2 71.9 46.8 48.3 64.9
- w/o AST normalization 96.5 87.3 38.2 72.2 45.6 48.3 64.7
- w/o code translation 96.6 87.0 36.4 70.6 45.5 48.0 64.0
- Step Replacement 96.6 87.3 37.1 71.0 45.3 48.3 64.3
- Step Skipping 96.7 87.7 37.1 71.7 45.8 48.3 64.6

Table 1: Performance comparison on the Best-of-8 strategy. * is trained on high-quality manually annotated
process-level data (PRM800K); all others are trained using automatically constructed datasets.

assess error identification in mathematical rea-
soning, contains four sub-benchmarks: GSM8K,
MATH, OlympiadBench, and Omni-MATH (Gao
et al., 2024). ProcessBench requires models to
either identify the first erroneous step in incorrect
solutions or verify the correctnesss in valid
solutions.

Baselines. We compare against 7B-scale PRMs:
Math-Shepherd-PRM-7B (Wang et al., 2024) esti-
mates process labels through Monte Carlo simula-
tion. RLHFlow-PRM-Mistral-8B and RLHFlow-
PRM-DeepSeek-8B (Xiong et al., 2024) adopt
Math-Shepherd’s methodology with different op-
timization objectives. EurusPRM-Stage1 and
EurusPRM-Stage2 (Cui et al., 2025) learn pro-
cess rewards implicitly from ORM-based train-
ing. Skywork-PRM-1.5B and Skywork-PRM-
7B (o1 Team, 2024) are two recently released
Qwen2.5-Math-based PRMs by Skywork. Finally,
we include Qwen2.5-Math-7B-PRM800K (Zheng
et al., 2024a) as a strong baseline. It is fine-tuned
on the PRM800K dataset (Lightman et al., 2023),
a high-quality, manually annotated corpus of 265K
process-level samples.

For fairness, we do not compare against
Qwen2.5-Math-PRM (Zheng et al., 2024a),
which uses a 72B critic model to supervise 1.5M
process-level annotations. Their focus is on

distilling critic capabilities from large models,
while our work aims to reduce annotation cost.

Training Details. For solution generation, we set
both the sampling temperature and top-p to 0.8,
with a maximum new token limit of 2048 to ensure
comprehensive solution generation. In the code
translation phase, we employ a temperature of 0 to
ensure deterministic outputs, maintaining a maxi-
mum new token limit of 2048. For PRM training,
we use a batch size of 256, gradient clipping of 1.0,
and the AdamW optimizer (Loshchilov, 2017) with
a learning rate of 5e-7 and warm-up ratio of 0.05.

4.2 Main Results

Best-of-N. Table 1 presents a comprehensive com-
parison of our proposed SCOPE with existing
PRMs on the Best-of-8 strategy. SCOPE achieves
an average accuracy of 64.9%, outperforming
Math-Shepherd-PRM-7B by 4.9% while requir-
ing only 5% of its computational cost. No-
tably, SCOPE also surpasses Qwen2.5-Math-7B-
PRM800K (63.0%), which is trained on high-
quality, manually annotated process-level data,
demonstrating the effectiveness of our approach.

For context, we also report three reference
metrics: greedy decoding (60.3%), majority voting
(64.7%), and pass@8 (71.3%, upper bound).
SCOPE is the only method that outperforms

24387

Model
GSM8K MATH OlympiadBench Omni-MATH

Avg. F1
Error Correct F1 Error Correct F1 Error Correct F1 Error Correct F1

Math-Shepherd-PRM-7B 32.4 91.7 47.9 18.0 82.0 29.5 15.0 71.1 24.8 14.2 73.0 23.8 31.5
RLHFlow-PRM-Mistral-8B 33.8 99.0 50.4 21.7 72.2 33.4 8.2 43.1 13.8 9.6 45.2 15.8 28.4
RLHFlow-PRM-Deepseek-8B 24.2 98.4 38.8 21.4 80.0 33.8 10.1 51.0 16.9 10.9 51.9 16.9 26.6
Skywork-PRM-1.5B 50.2 71.5 59.0 37.9 65.2 48.0 15.4 26.0 19.3 13.6 32.8 19.2 36.4
Skywork-PRM-7B 61.8 82.9 70.8 43.8 62.2 53.6 17.9 31.9 22.9 14.0 41.9 21.0 42.1
EurusPRM-Stage1 46.9 42.0 44.3 33.3 38.2 35.6 23.9 19.8 21.7 21.9 24.5 23.1 31.2
EurusPRM-Stage2 51.2 44.0 47.3 36.4 35.0 35.7 25.7 18.0 21.2 23.1 19.1 20.9 31.3
*Qwen2.5-Math-7B-PRM800K 53.1 95.3 68.2 48.0 90.1 62.6 35.7 87.3 50.7 29.8 86.1 44.3 56.5

SCOPE 59.9 86.0 70.6 50.8 74.9 60.6 35.7 59.3 44.6 31.4 62.2 41.7 54.4
- w/o AST Normalization 61.4 85.5 71.4 51.9 74.6 61.2 34.3 56.6 42.8 29.8 57.3 39.2 53.6
- w/o Code Translation 56.5 83.9 67.6 47.0 75.6 57.9 32.7 54.9 41.0 26.5 56.8 36.1 50.6
- Step Replacement 53.6 87.6 66.5 35.5 83.0 49.8 23.8 69.3 35.4 16.5 68.5 26.6 44.6
- Step Skipping 56.5 90.2 69.5 38.0 84.5 52.5 24.1 74.9 36.4 15.9 71.0 26.0 44.6

Table 2: Performance comparison on ProcessBench. * is trained on high-quality manually annotated process-level
data (PRM800K); all others are trained using automatically constructed datasets.

Majority@8, a very strong baseline that reflects the
collective correctness of multiple model outputs.

ProcessBench. As a complementary evaluation
metric, ProcessBench assesses PRMs’ ability to
either identify the first erroneous step in incorrect
solution or verify the correctness of correct solution.
As shown in Table 2, most existing PRMs trained
on automatically annotated data struggle on this
benchmark, with average F1 scores typically below
45%. The strongest performance is achieved by
Qwen2.5-Math-7B-PRM800K (56.5% F1), which
is trained on a high-quality manually labeled
process-level dataset (PRM800K). Our method,
SCOPE, achieves 54.4%, closely approaching this
supervised upper bound, while being fully auto-
matic.

4.3 Ablation on Key Components

To evaluate the impact of core components in
SCOPE, we conduct two ablation studies:

• w/o Code Translation: This variant skips the
code translation step and merges reasoning
steps directly based on natural language.

• w/o AST Normalization: This variant per-
forms code translation but skips AST-based
normalization, merging code blocks in their
raw form.

We begin by analyzing compression efficiency.
We define the compression rate as the ratio of com-
pressed nodes in the Trie to the total number of
reasoning steps before compression. A higher com-
pression rate indicates less effective compression,

i.e., more redundancy remains. As shown in Figure
4, w/o code translation leads to a high compression
rate of 92.0%, suggesting that natural language
steps are too diverse to merge effectively. Intro-
ducing code translation reduces the rate to 79.5%,
while further applying AST normalization brings it
down to 65.5%.

We then examine the impact on downstream per-
formance. From Table 1 and Table 2, we observe:
(1) removing code translation leads to a 0.9% drop
in Best-of-8 accuracy and a 3.8% drop in Process-
Bench F1. (2) Removing AST normalization also
causes slight performance drops, indicating its pos-
itive contribution. These results confirm that both
code translation and AST normalization are essen-
tial for improving compression quality and PRM
performance.

4.4 Comparison of Step Compression
Strategies

Beyond evaluating the core components of SCOPE,
we further investigate whether alternative strategies
can improve the compression process, especially
for comment-only steps. These steps, which ac-
count for 27.3% of all reasoning steps, are treated
as distinct nodes in our default setting. But is this
the best design choice? We design two additional
strategies:

• Step Replacement: Replace all comment-
only steps with a generic placeholder string
like stepi = ”onlycomment”. This allows
more aggressive merging.

• Step Skipping: Omit comment-only steps
from the Trie entirely. During Q-value com-

24388

0.2% 1.2%
6.7%

91.9% 92.0%

1.7%
5.7%

17.3%

75.3%
79.5%

8.4%

14.7%

31.8%

45.2%

65.5%

10.9%

35.8%

47.8%

5.5%

54.0%

40.0%
48.2%

11.5%

0.3%

30.8%

0%

20%

40%

60%

80%

100%

0-25 25-50 50-75 75-100 Avg.

Pe
rc

en
ta

ge

Compression Rate Range (%)

w/o code translation w/o AST normalization SCOPE
Step Replacement Step Skipping

Figure 4: Distribution of compression rates across differ-
ent SCOPE variants. Compression Rate = compressed
nodes in Trie / raw step count.

Soft Label Hard Label

Best-of-8 (Avg. Acc) 64.6 64.9
ProcessBench (Avg. F1) 52.8 54.4

Table 3: Comparison on soft and hard labels.

putation, these steps inherit the score of their
preceding step to preserve label continuity.

Both strategies decrease the compression ratio.
As shown in Figure 4, Step Replacement and Step
Skipping lead to compression rates of 54.0% and
30.8%, respectively—compared to 65.5% in the
default setting. However, this decrease in com-
pression ratio comes at a cost. As shown in Ta-
ble 1 and Table 2, both strategies result in lower
performance on Best-of-8 and ProcessBench, de-
spite achieving higher compression. These results
suggest that over-compression harms PRM perfor-
mance. Treating comment-only steps as distinct
nodes, although computationally less efficient, pro-
vides better alignment supervision by preserving
the reasoning structure.

4.5 Computational Efficiency
To evaluate the computational efficiency, we
sample 100 problems from UltraInteract dataset
and conduct PRMs training dataset using dif-
ferent methods. As shown in Figure 5, the
GPU hours vary significantly across different ap-
proaches. MathShepherd (Wang et al., 2024) re-
quires 19.8× more GPU hours compared to our
method. OmegaPRM (Luo et al., 2024) and Eurus-
PRM (Cui et al., 2025) consume 9.8× and 0.6×
GPU hours respectively. While EurusPRM shows
faster computation, our previous experiments have
demonstrated that it yields the poor performance
on Best-of-8 and ProcessBench. In contrast, our

11.4 (19.8x)

5.7 (9.8x)

0.3 (0.6x) 0.6 (1x)

0

2

4

6

8

10

12

MathShepherd OmegaPRM EurusPRM Ours

G
PU

 H
ou

rs

Figure 5: Comparison of time costs (GPU hours) for
generating PRM training data across different methods.

approach achieves strong performance while main-
taining efficient computation. A detailed break-
down of computational costs for different stages in
our method is provided in Appendix B.

4.6 Soft Labels vs. Hard Labels
As outlined in Section 3.4, PRMs can be trained us-
ing either hard labels or soft labels. Table 3 presents
a comparative analysis of these two training ap-
proaches on both the Best-of-8 and ProcessBench
benchmarks. The results consistently demonstrate
the superiority of hard labels over soft labels across
both evaluation settings, with hard labels achieving
performance gains of 0.3% and 1.6% on Best-of-8
and ProcessBench respectively. We attribute the
limited performance of soft labels to the noise they
introduce into the training process. This limitation
is particularly evident in complex math problems
where correct intermediate steps might receive low
soft labels due to the difficulty of reaching the cor-
rect final answer, which can introduce confusion
during the training process.

5 Conclusion

This paper introduces SCOPE, a novel automatic
PRMs dataset annotation method that significantly
reduces computational costs while maintaining la-
bel quality. By translating natural language rea-
soning steps into code and merging equivalent
steps through AST normalization, our approach
achieves O(N) complexity compared to previ-
ous O(NMK) methods. Using only 5% of the
computational resources, we construct a large-
scale dataset containing 196K samples, and PRMs
trained on our dataset consistently outperform ex-
isting approaches on both Best-of-N strategy and
ProcessBench, demonstrating SCOPE’s effective-
ness as a scalable solution for PRM training.

24389

Acknowledgement

This research/project is supported by the National
Research Foundation, Singapore under its AI Sin-
gapore Programme (AISG Award No: AISG2-TC-
2022-005). We also wish to extend their heart-
felt gratitude to the Sea AI Lab for their generous
support in providing the necessary equipment and
computational resources critical for the successful
completion of this research.

Limitations

While SCOPE demonstrates promising results, sev-
eral limitations deserve attention: (1) Code Trans-
lation Reliability: The quality of our annotations
heavily depends on the code LLM’s ability to ac-
curately translate natural language reasoning into
executable code. Complex mathematical concepts
or domain-specific terminology may lead to inac-
curate translations, affecting the overall annota-
tion quality. (2) Limited Mathematical Coverage:
Our current implementation primarily handles ba-
sic arithmetic operations and common mathemat-
ical functions. More sophisticated mathematical
operations, especially those involving abstract al-
gebra or advanced calculus, may not be adequately
captured by our code-based representation.

Future work could focus on developing more ro-
bust code translation techniques and expanding the
coverage of mathematical operations. Additionally,
investigating the integration of domain-specific
knowledge (Pan et al., 2024; Wu et al., 2020,
2024a,b,c) and mathematical formalism could fur-
ther improve the accuracy and applicability of our
approach.

References
Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey D

Ullman. 2007. Compilers: Principles, techniques
and tools, 2nd editio.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–15. IEEE.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
Qixin Xu, Weize Chen, et al. 2025. Process rein-
forcement through implicit rewards. arXiv preprint
arXiv:2502.01456.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, et al. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. arXiv preprint arXiv:2410.07985.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. 2024. Olympiad-
bench: A challenging benchmark for promoting agi
with olympiad-level bilingual multimodal scientific
problems. arXiv preprint arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring mathematical problem solving with
the math dataset. NeurIPS.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative rea-
soning problems with language models. Advances
in Neural Information Processing Systems, 35:3843–
3857.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and
Kai Fan. 2024. Mario: Math reasoning with code
interpreter output–a reproducible pipeline. arXiv
preprint arXiv:2401.08190.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

24390

https://dl.acm.org/doi/10.5555/1177220
https://dl.acm.org/doi/10.5555/1177220
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2412.19437

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Jianqiao Lu, Zhiyang Dou, WANG Hongru, Zeyu Cao,
Jianbo Dai, Yunlong Feng, and Zhijiang Guo. 2024.
Autopsv: Automated process-supervised verifier. In
The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Skywork o1 Team. 2024. Skywork-o1 open series.
https://huggingface.co/Skywork.

Fengjun Pan, Xiaobao Wu, Zongrui Li, and Anh Tuan
Luu. 2024. Are LLMs good zero-shot fallacy clas-
sifiers? In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 14338–14364, Miami, Florida, USA. Associa-
tion for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and
Furu Wei. 2024. Mathscale: Scaling instruction
tuning for mathematical reasoning. arXiv preprint
arXiv:2403.02884.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,
Geoffrey Irving, and Irina Higgins. 2022. Solv-
ing math word problems with process-and outcome-
based feedback. arXiv preprint arXiv:2211.14275.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do nlp models know num-
bers? probing numeracy in embeddings. arXiv
preprint arXiv:1909.07940.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce llms step-
by-step without human annotations. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9426–9439.

Xiaobao Wu. 2025. Sailing ai by the stars: A survey of
learning from rewards in post-training and test-time
scaling of large language models. arXiv preprint
arXiv:2505.02686.

Xiaobao Wu, Chunping Li, Yan Zhu, and Yishu Miao.
2020. Short text topic modeling with topic distribu-
tion quantization and negative sampling decoder. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1772–1782, Online.

Xiaobao Wu, Thong Nguyen, and Anh Tuan Luu. 2024a.
A survey on neural topic models: Methods, applica-
tions, and challenges. Artificial Intelligence Review.

Xiaobao Wu, Liangming Pan, William Yang Wang, and
Anh Tuan Luu. 2024b. AKEW: Assessing knowl-
edge editing in the wild. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 15118–15133, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Xiaobao Wu, Liangming Pan, Yuxi Xie, Ruiwen
Zhou, Shuai Zhao, Yubo Ma, Mingzhe Du, Rui
Mao, Anh Tuan Luu, and William Yang Wang.
2024c. AntiLeak-Bench: Preventing data contam-
ination by automatically constructing benchmarks
with updated real-world knowledge. arXiv preprint
arXiv:2412.13670.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang.
2024. An implementation of generative prm. https:
//github.com/RLHFlow/RLHF-Reward-Modeling.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122.

Fei Yu, Anningzhe Gao, and Benyou Wang. 2023.
Outcome-supervised verifiers for planning in mathe-
matical reasoning. arXiv preprint arXiv:2311.09724.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. 2024. Free process rewards without
process labels. arXiv preprint arXiv:2412.01981.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024a. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Chris-
tos Kozyrakis, Ion Stoica, Joseph E Gonzalez,
et al. 2024b. Sglang: Efficient execution of struc-
tured language model programs. arXiv preprint
arXiv:2312.07104.

24391

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2405.16802
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://doi.org/10.18653/v1/2024.emnlp-main.794
https://doi.org/10.18653/v1/2024.emnlp-main.794
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/1909.07940
https://arxiv.org/abs/1909.07940
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2505.02686
https://arxiv.org/abs/2505.02686
https://arxiv.org/abs/2505.02686
https://aclanthology.org/2020.emnlp-main.138.pdf
https://aclanthology.org/2020.emnlp-main.138.pdf
https://doi.org/10.1007/s10462-023-10661-7
https://doi.org/10.1007/s10462-023-10661-7
https://doi.org/10.18653/v1/2024.emnlp-main.843
https://doi.org/10.18653/v1/2024.emnlp-main.843
https://arxiv.org/pdf/2412.13670
https://arxiv.org/pdf/2412.13670
https://arxiv.org/pdf/2412.13670
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://github.com/RLHFlow/RLHF-Reward-Modeling
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2311.09724
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2412.06559
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104

A Code Translation Prompt

You are a Python expert. I will provide a math prob-
lem along with a step-by-step solution. Please present
each step of the solution as Python code. Ensure the
following requirements are met:

1. Clearly separate each step and save them in dif-
ferent code blocks, using<STEP_START_i> and
<STEP_END_i> to separate them, where i repre-
sents the i-th step.

2. All calculations should be done in python code.
Provide concise reasoning and thinking in the com-
ments of the code.

3. If libraries are required, import them before the
first step, using <IMPORT_START> and <IM-
PORT_END> tags. The most related python
packages include ‘math’, ‘sympy’, ‘scipy’, and
‘numpy’.

4. Do not use any custom defined functions. Do im-
plement the functionality with the simplest code.

5. Ensure there is corresponding code for each step,
even if the code is empty.

Math Problem:
...(math problem)...

Solution:
...(solution)...

B Complexity Analysis and Time Cost
Evaluation

In this appendix, we provide a more rigorous anal-
ysis of the theoretical time complexity of SCOPE,
alongside a breakdown of the actual GPU an CPU
time costs for each stage in our pipeline.

B.1 Stage-wise Complexity Analysis
SCOPE consists of the following stages: (1) Sam-
pling of solutions, (2) Code translation, (3) AST
normalization, and (4) Step compression. We ana-
lyze the complexity of each component below:

• Solution Sampling. For each math problem,
we sample N complete solutions using a math-
ematical LLM. Since each solution is gener-
ated in a single forward pass, the overall sam-
pling complexity is O(N).

• Code Translation. Each solution is translated
into a sequence of code steps using a code
LLM in a single call. Although this is the
most time-consuming stage in practice due
to the use of a large LLM, the complexity
remains O(N), as each solution corresponds
to one model invocation.

• AST Normalization. After code translation,
each of the K steps in all N solutions is nor-
malized using AST-based transformations. As
each normalization call processes a complete
solution at once, this stage also has linear com-
plexity O(N). Moreover, it runs entirely on
CPU and typically completes in under 10 sec-
onds, making its cost negligible in practice.

• Step Compression. Normalized code se-
quences are merged into a prefix tree (Trie).
Trie construction requires a single pass
through all steps, resulting time complexity
of O(N). In practice, this stage also runs on
CPU and completes within 5 seconds.

All stages in SCOPE have linear time complexity
with respect to the number of sampled solutions.
Therefore, the end-to-end complexity of SCOPE
remains O(N).

B.2 Actual Time Cost Breakdown
Table 4 reports time complexity and empirical GPU
hours required for each stage of our method.

C AST Structure

Figure 6 illustrates the Abstract Syntax Tree (AST)
representation used in our code normalization pro-
cess. The AST transforms code into a hierarchi-
cal structure that prioritizes semantic relationships
over syntactic details. In this representation, the
root Module node connects to various Assign oper-
ations that define variables. Each variable assign-
ment includes nodes for the target identifier (Name
with id attribute) and its value, which may be a
Constant or a binary operation (BinOp). Binary
operations are represented with explicit operator
nodes (Add, Mult) connecting their operands. This
AST-based approach enables our system to recog-
nize that statements like “kk_len = kk_height *
kk_climbs” and “len = height * climbs” are struc-
turally equivalent after normalization, forming the
foundation for our step compression algorithm.

D A Complex Code Translation Example

Table 5 shows a code translation example for a
complex problem, where three steps are comments
only.

24392

Stage Time Complexity GPU Hours Comment

Solution Sampling O(N) 192 Using Qwen2.5-Math-7B
Code Translation O(N) 280 Using Qwen2.5-Coder-32B
AST Normalization O(N) ~0 < 10 seconds on CPU
Step Compression O(N) ~0 < 5 seconds on CPU
Total O(N) ~542 Efficient end-to-end pipeline

Table 4: Breakdown of time complexity and costs in different stages of our method.

Question: The quadratic 8x2 + 12x − 14 has two real roots. What is the sum of the squares of these
roots? Express your answer as a common fraction in lowest terms.
Response Code
Step 1: We are given the quadratic equation
8x2 + 12x− 14 and are asked to find the sum of the
squares of its roots.

Step 2: To find the sum of the squares of the roots,
we can use the relationship between the sum of the
roots, the product of the roots, and the coefficients of
the quadratic equation.

Step 3: Let’s denote the roots of the quadratic
equation as x1 and x2. We know that the sum of the
roots of a quadratic equation ax2 + bx + c = 0 is
given by x1 + x2 = − b

a = −12
8 and the product of

the roots is given by x1x2 =
c
a = −14

8 = −7
4 .

Step 4: In order to find the sum of the squares of the
roots, which is given by x21 + x22, we can use the
identity (x1 + x2)

2 = x21 + 2x1x2 + x22 to express
the sum of the squares of the roots in terms of the
sum and product of the roots.

Step 5: Substituting the values we found earlier, we
get (x1 + x2)

2 =
(
−3

2

)2
= 9

4 .

Step 6: Then, we can express x21 + x22
as (x1 + x2)

2 − 2x1x2, which gives us
x21 + x22 =

9
4 − 2

(
−7

4

)
.

Step 7: Simplifying this, we get x21+x22 =
9
4 +

14
4 =

23
4 .

Step 8: Therefore, the sum of the squares of the roots
of the quadratic equation 8x2 + 12x− 14 is 23

4 .

<CODE_1>
Given quadratic equation coefficients
a = 8
b = 12
c = -14

<CODE_2>
No calculations needed in this step, just setting up
for next steps

<CODE_3>
Calculate the sum and product of the roots
sum_of_roots = -b / a
product_of_roots = c / a

<CODE_4>
No calculations needed in this step, just setting up
for next steps

<CODE_5>
Calculate the square of the sum of the roots
sum_of_roots_squared = sum_of_roots ** 2

<CODE_6>
Calculate the sum of the squares of the roots using
the identity
sum_of_squares_of_roots = sum_of_roots_squared -
2 * product_of_roots

<CODE_7>
Simplify the result
sum_of_squares_of_roots_simplified = sp.Rational
(sum_of_squares_of_roots).limit_denominator()

<CODE_8>
No calculations needed in this step, just stating the
final answer

Table 5: An example of natural language reasoning steps and their corresponding code translations for solving a
quadratic equation problem.

24393

Module

Import
import

Assign

Assign

Assign

Assign

Assign

Assign

Assign

alias

Name
id=var0

Constant
n=30

Store

Name
id=var1

Constant
n=20

Name
id=var2

BinOp
op=*

Name
id=var0

Mult

Name
id=var1

Load

Name
id=var3

Constant
n=26

Name
id=var4

Constant
n=15

Name
id=var5

BinOp
op=*

Name
id=var3

Name
id=var4

Name
id=var6

BinOp
op=+

Name
id=var2

Add

Name
id=var5

Figure 6: AST structure of the ladder problem code.

24394

