
Findings of the Association for Computational Linguistics: ACL 2025, pages 24192–24207
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Communication-Efficient and Tensorized Federated Fine-Tuning of Large
Language Models

Sajjad Ghiasvand1 Yifan Yang2 Zhiyu Xue1
Mahnoosh Alizadeh1 Zheng Zhang1 Ramtin Pedarsani1

Electrical and Computer Engineering Department, UC Santa Barbara1

Computer Science Department, UC Santa Barbara2

{sajjad,yifanyang,zhiyuxue,alizadeh,zhengzhang,ramtin}@ucsb.edu

Abstract

Parameter-efficient fine-tuning (PEFT) meth-
ods typically assume that Large Language Mod-
els (LLMs) are trained on data from a single
device or client. However, real-world scenar-
ios often require fine-tuning these models on
private data distributed across multiple devices.
Federated Learning (FL) offers an appealing
solution by preserving user privacy, as sen-
sitive data remains on local devices during
training. Nonetheless, integrating parameter-
efficient fine-tuning (PEFT) methods into FL
introduces two main challenges: communi-
cation overhead and data heterogeneity. In
this paper, we introduce FedTT and FedTT+,
methods for adapting LLMs by integrating ten-
sorized adapters into client-side models’ en-
coder/decoder blocks. FedTT is versatile and
can be applied to both cross-silo FL and large-
scale cross-device FL. FedTT+, an extension
of FedTT tailored for cross-silo FL, enhances
robustness against data heterogeneity by adap-
tively freezing portions of tensor factors, fur-
ther reducing the number of trainable parame-
ters. Experiments on BERT and LLaMA family
models demonstrate that our proposed meth-
ods successfully address data heterogeneity
challenges and perform on par or even better
than existing federated PEFT approaches while
achieving up to 10× reduction in communica-
tion cost.

1 Introduction

Large Language Models (LLMs) such as GPT-
4 (Achiam et al., 2023), LLaMA (Touvron et al.,
2023), and BERT (Devlin et al., 2018) excel in
tasks such as translation and summarization (Bom-
masani et al., 2021) due to the capabilities of trans-
former architectures (Vaswani, 2017). While fine-
tuning enhances adaptability (Howard and Ruder,
2018), fully fine-tuning these massive models is
computationally expensive and prone to overfitting.
Parameter-efficient fine-tuning (PEFT) methods

such as Adapters (Houlsby et al., 2019), Prompt-
Tuning (Lester et al., 2021), and LoRA (Hu et al.,
2021) address this by optimizing only a subset of
parameters, reducing costs without sacrificing per-
formance (Ding et al., 2023). However, traditional
PEFT assumes centralized data, whereas real-world
applications often involve private, distributed data,
such as medical or legal records (Manoel et al.,
2023; Shoham and Rappoport, 2023; Soltanmo-
hammadi and Hikmet, 2024). Federated Learn-
ing (FL) emerges as a compelling solution, as it
prioritizes user data privacy by ensuring sensitive
information remains on individual devices during
training. Instead of transmitting data to a central
server, clients in FL locally update their model pa-
rameters and share only model information, such as
parameters or gradients, which are then aggregated
by the server into a global model (McMahan et al.,
2017a).

To address the aforementioned problems, FL has
been integrated into PEFT methods (Zhang et al.,
2023; Fan et al., 2023; Zhao et al., 2023). These
methods, however, often result in two major chal-
lenges: (i) communication and computation over-
head in the FL system, and (ii) significant accuracy
degradation, particularly under heterogeneous sce-
narios.

Communication efficiency is crucial in FL, as
edge devices typically have limited storage and
computational power. While some methods at-
tempt to reduce the number of training parameters
by incorporating sparsity in PEFT approaches, they
either perform poorly in FL (He et al., 2022; Wu
and Chen, 2022) or are computationally expensive
for clients (Kuo et al., 2024), rendering them un-
suitable for practical scenarios.

Data heterogeneity happens when training data is
not identically and independently distributed across
clients (non-i.i.d.). In such scenarios, local models
on individual clients can diverge from the global
model’s optimal state, leading to slower conver-

24192

gence (Hsieh et al., 2020; Li et al., 2020). This is-
sue is particularly pronounced when training LLMs
in federated environments, as data heterogeneity
can severely impact model performance (Zhang
et al., 2023). Although various studies have em-
ployed techniques such as gradient tracking to ad-
dress this challenge in federated learning (Ghias-
vand et al., 2024; Ebrahimi et al., 2024), these
approaches often become inefficient in terms of
communication and computational demands when
applied to federated LLMs. Several works have
modified LoRA to improve its efficiency in highly
heterogeneous federated settings (Babakniya et al.,
2023). However, these methods require commu-
nicating a large number of parameters (at least as
much as LoRA).

In this work, we present a federated and ten-
sorized framework that reduces communication
load compared to other PEFT methods, while main-
taining comparable or even superior accuracy, and
addressing challenges such as data heterogene-
ity. We introduce the Federated Tensor Train
(FedTT) algorithm, where tensorized adapters
serve as trainable parameters embedded within the
encoder/decoder blocks of models used by clients.
FedTT is applicable to both cross-silo FL, where
all clients participate in training, and large-scale
cross-device (LSCD) FL, where only a subset of
clients is selected in each round. For cross-silo FL,
we propose the FedTT+ algorithm, a heterogeneity-
robust method that further reduces the number of
parameters by adaptively freezing portions of the
tensor factors in the models. We summarize our
contributions as follows:

• We study the TT decomposition of adapters to
enable communication-efficient federated fine-
tuning of LLMs.

• We propose FedTT, an efficient FL method
to fine-tune LLMs using tensorized adapters,
achieving up to 10× communication reduction
than other popular federated PEFT methods.

• We introduce FedTT+, an enhancement of FedTT
that further reduces the number of trainable pa-
rameters and improves robustness against data
heterogeneity in cross-silo FL. FedTT+ outper-
forms state-of-the-art (SOTA) cross-silo FL meth-
ods with fewer trainable parameters.

• We conduct extensive experiments across vari-
ous settings, including data heterogeneity and
differential privacy, using widely adopted LLMs
such as the BERT and LLaMA-2 model families.

These experiments validate the effectiveness of
our proposed algorithms in reducing communi-
cation overhead while preserving high accuracy.

2 Related Work

2.1 Parameter Efficient Fine-Tuning (PEFT)

PEFT methods can be generally divided into three
categories (Han et al., 2024). The first is Additive
PEFT, where a small set of trainable parameters
is added to the model, and only these are updated
during training. Methods like Prefix-tuning (Li
and Liang, 2021) and Prompt-tuning (Lester et al.,
2021) fall into this category, and our approach
aligns with this strategy. The second is Selective
PEFT, which chooses a subset of existing model
parameters for tuning, as seen in techniques like
BitFit (Zaken et al., 2021) and PaFi (Liao et al.,
2023). Lastly, Reparameterized PEFT introduces a
low-rank parameterization of pre-trained weights
for training, with methods such as LoRA (Hu et al.,
2021) and DoRA (Liu et al., 2024).

2.2 PEFT in Federated Setting

(Zhang et al., 2023) tests and compares various
PEFT methods such as Adapter, LoRA, Prompt
Tuning, and BitFit in FL. Several works have mod-
ified LoRA to improve its efficiency in highly
heterogeneous federated settings. For example,
SLoRA (Babakniya et al., 2023; Yan et al., 2024)
modify initialization to address data heterogene-
ity, whereas HetLoRA (Cho et al., 2023) and
FlexLoRA (Bai et al., 2024) adaptively adjust
LoRA ranks for each client to handle system het-
erogeneity. However, these methods still require
communicating massive parameters.

Recently, (Kuo et al., 2024) introduced sparse
fine-tuning to reduce the communication load in
federated LoRA. Although this method lowers com-
munication overhead and shows robustness to data
heterogeneity in some tasks, it suffers from com-
putational inefficiency due to the extensive matrix
computations required during each communication
round, both on the server and client sides. FFA-
LoRA (Sun et al., 2024) and RoLoRA (Chen et al.)
aim to improve accuracy in the presence of hetero-
geneity while simultaneously reducing trainable
parameters. Our algorithms can reduce commu-
nication overhead while achieving comparable or
better accuracy to these approaches, particularly
when data heterogeneity exists.

(Kim et al., 2023) employs hypernetworks for

24193

adapters to reduce the number of trainable parame-
ters, and this approach can be integrated with any
PEFT method, including ours. However, it intro-
duces additional computational overhead, as each
client must generate adapters from the hypernet-
work (Hu et al., 2024).

2.3 Tensor-based Model Compression

Tensor compression has shown its great potential to
reduce model size and enhance training efficiency.
Early work by Novikov et al. (2015) employeed
the TT format for network compression. Recent ef-
forts in tensorized fine-tuning of LLMs have shown
promise in achieving high performance with signif-
icantly fewer parameters compared to traditional
fine-tuning methods. However, these approaches
still involve training a large number of variables,
especially when compared to the more recent meth-
ods like LoRA. In response, Yang et al. (2024b)
developed the Low-Rank Economic Tensor-Train
Adaptation, which innovates by using tensorized-
layer based adapters and reshaping update matrices
into smaller tensor factors. Despite demonstrating
substantial reductions in trainable parameters—up
to 100 times less than popular PEFT methods—the
performance of these tensorized approaches in FL
scenarios, particularly in the presence of data het-
erogeneity, remains an open question.

3 Preliminaries

3.1 Federated Fine-tuning

Federated fine-tuning is a distributed approach for
collaboratively fine-tuning a global model across a
central server and a network of N clients, denoted
by C = {c1, . . . , cN}. The objective is to optimize
the global trainable parameters w by minimizing
the following objective function:

min
w
L(w̃,w) =

1

N

N∑

i=1

ℓi(w̃,w;Di),

where w̃ is the pre-trained model parameters,
which are identical and fixed for all clients, ℓi(·)
represents the local objective, and Di represents
the local data distribution for client ci.

A well-known FL method is the FedAvg algo-
rithm (McMahan et al., 2017a). The server se-
lects a subset of clients S ⊆ C in each training
round. Each chosen client cs ∈ S initializes its
local model with the global model parameters from
the previous round w(t), and then performs local

training using stochastic gradient descent on its
dataset for K local updates:

w(t)+k+1
s ←− w(t)+k

s − η∇ℓs(w̃,w(t)+k
s ;Ds),

where η is the learning rate and w
(t)+k
s refers to the

local model parameters for client cs during com-
munication round t and local update k. After local
training is completed, clients send their updated
model parameters to the server, which then aggre-
gates these updates to form the new global model:
w(t+1) = 1/|S|∑|S|

s=1w
(t)+K
s .

Despite its advantages, FL faces two major chal-
lenges: (i) the large size of local models, which
results in significant communication overhead, and
(ii) data heterogeneity, which can cause local mod-
els to diverge from each other.

3.2 Tensor-Train Decomposition
In this subsection, we provide some introduction
to the tensor and tensor train (TT) decomposition
(Oseledets, 2011). Tensors are natural multidimen-
sional generalizations of matrices. The tensorW ∈
Rk1×···×kJ is indexed as W = (wi1···iJ)1≤ij≤kj

said to have order of J and dimension k1, · · · , kJ .
Given two tensors W ∈ Rk1×···×kJ and V ∈
Rl1×···×lM with ks = lt, the multiplication between
two tensors C =W ×s,t V can be performed as:

C(ip)p ̸=s,(jp)p̸=t
=

ks∑

is=jt=1

wi1···is···iJvj1···jt···jM .

The TT decomposition serves as a potent alterna-
tive to traditional matrix decomposition techniques,
which decompose a large tensor into a list of ten-
sor factors (Oseledets, 2011) by TT-SVD method.
As shown in Fig. 1 (a), to decompose the weight
matrix into small tensors, we begin by reshaping a
matrix W ∈ RP×Q into a tensorW ∈ Rk1×···×kJ .
ThenW can be parameterized compactly via a se-
quence of J tensor factors G1, . . . ,GJ as:

W = G1 ×3,1 G2 ×3,1 · · · ×3,1 GJ , (1)

Here, each tensor factor Gj has the shape of
Gj ∈ Rrj−1×kj×rj , where r = (r0, r1, · · · , rJ)
is the tensor rank, and the product of dimensions
Πjkj = P ·Q. The setup of tensor ranks follows
the boundary conditions with r0 = rJ = 1, while
the other ranks rj , j /∈ 0, J are chosen based on
specific tasks or made adaptive (Yang et al., 2024c).

As we can see, the tensorized layer substantially
reduces the parameter count for the weight matrix

24194

𝑊 𝒲

×3,1 ⋯ ×3,1

𝑃 × 𝑄 𝑘1 × ⋯ × 𝑘𝐽

𝑘1 × 𝑟1 𝑟𝑗−1 × 𝑘𝑗 × 𝑟𝑗 𝑟𝐽−1 × 𝑘𝐽

(a) Tensorized Linear Layer
Feed-forward

MLP

Multi-head Attention

Tensorized Adapter

Tensorized Adapter

Client Tensorized Adapter

Nonlinearity

Client 𝐍

Hidden states

labels

(c) Optional Tensorized Classifier

Client 1

…

𝒢1,𝑗Server

𝒢𝑖,𝑗

𝒢𝑁,𝑗

𝒢𝑗

Aggregation

𝒢𝑗 =
1

𝑁
෍

𝑖

𝒢𝑖,𝑗

⋯
⋯

Input Hidden States

Output Hidden States

(b) FedTT Algorithm

Client 𝐍

…
Client 1

Broadcasting

×3,1 ⋯ ×3,1

×3,1 ⋯ ×3,1 ×3,1 ⋯ ×3,1

×3,1 ⋯ ×3,1 ×3,1 ⋯ ×3,1

×3,1 ⋯ ×3,1 ×3,1 ⋯ ×3,1

Figure 1: Illustration for the tensorized linear layer (a), FedTT algorithm (b), and the optional tensorized classifier
applied for classification tasks (c). The FedTT algorithm workflow includes fine-tuning clients’ tensorized adapters,
aggregating tensor factors on the server, and broadcasting the updated weights back to clients.

W from P ×Q to
∑d

i=1 ri−1kiri, offering a much
higher compression ratio than previous PEFT work.
Unlike the traditional Adapters method (Houlsby
et al., 2019), which uses a bottleneck structure to re-
duce trainable parameters, our tensorized adapters
achieve an even larger compression ratio by using
two tensorized linear layers with a nonlinear activa-
tion in between. For example, with weight W with
size 768× 768 and bottleneck size 64, a standard
Adapter incurs 2 · 768 · 64 ≈ 98K trainable param-
eters for its weight matrices, whereas our method
adds only

∑6
i=1(5

2 · 8) = 1.2K parameters (as-
suming core dimensions [8, 8, 8, 8, 8, 8] forW and
TT rank 5). This high compression ratio enables
FedTT to achieve higher performance under a simi-
lar communication cost compared with other PEFT
approaches.

Instead of performing TT decomposition on the
weight matrix, we directly initialize, store, and up-
date the list of tensor factors in this work, as shown
in Fig. 1 (a). During the forward pass, the tensor
factors are directly contracted with the vector of
activation values, and the weight matrix W does
not need to be reconstructed. Since the size of the
tensor factors is small, the contraction process is
significantly faster than the original matrix-vector
product (Yang et al., 2024c).

4 Proposed Algorithm

In this section, we introduce the proposed FedTT
method, which is built on a novel parameter-
efficient tensorized adapter. This adapter is inte-
grated into clients’ local models to effectively adapt
LLMs. We begin with discussing the structure and
setup of the tensorized adapters, followed by the

introduction of FedTT and its enhanced version,
FedTT+, which can be selected based on commu-
nication budget constraints. The workflow of our
FedTT method is shown in Fig. 1 (b).

4.1 Tensorized Adapters

To facilitate fine-tuning in a FL framework, we
incorporate tensorized adapters designed to adapt
LLMs with minimal additional parameters. These
adapters are underpinned by the novel tensorized
linear layer (Yang et al., 2024b,a), which re-
places the matrix weight in linear layers with more
parameter-efficient TT format weights. This sec-
tion first details the architecture of the tensorized
linear layer and then elucidates the process of con-
structing tensorized adapters.

In Sec. 3.2, we introduced how to represent
a weight matrix in the TT format, where the TT
format tensor factors G1, . . . ,GJ are initialized,
stored, and updated during the fine-tuning process.
The tensorized layer is successfully integrated into
matrix-based LLMs, performing tensor contraction
over the list of tensor factors and reshaping them to
match the traditional weight matrix W . Compared
to traditional matrix-based linear layers, the ten-
sorized layers only store the smaller tensor factors,
significantly reducing the number of parameters.

We now introduce the tensorized adapters, built
based on the tensorized layers in Fig. 1. These
adapters use a bottleneck structure similar to that
in the original sequential adapter methodology
(Houlsby et al., 2019), comprising two tensorized
linear layers with a nonlinear layer in between. The
bottleneck structure further reduces the number of
trainable parameters by decreasing the channels

24195

Algorithm 1 FedTT
1: for communication round t← 1 to T do
2: for clients ci ∈ C in parallel do
3: for local update k ← 1 to K do
4: w

(t)+k+1
i ← Update(w(t)+k

i ,Di)
5: end for
6: Client ci sends w(t)+K

i to the server
7: end for
8: At server: w(t+1) = 1

N

∑N
i=1 w

(t)+K
i

9: Server sends w(t+1) to all clients in C
10: end for

connected between the two tensorized layers and
the nonlinearity layer, from the size of the hidden
dimension to a smaller number, such as 64. As
illustrated in Fig. 1 (b), the tensorized adapter is
strategically placed after the attention and MLP
components of an encoder/decoder block. In prac-
tical applications, we compress the classification
head (linear layer) into a tensorized layer and make
it trainable for sequence classification tasks, as
shown in Fig. 1 (c). Instead, we retain the origi-
nal language model head without compression for
general language modeling tasks, as experiments
show a significant reduction in performance when
the language modeling head is compressed.

4.2 FedTT Method

We introduce the FedTT algorithm, as outlined in
Alg. 1. In FedTT, the full model weights and archi-
tecture are initially distributed to all clients in the
set C = {c1, · · · , cN} at the start of the fine-tuning
process. Tensorized adapters are then injected into
each client’s local model and designated as the
trainable parameters. FedTT operates over T com-
munication rounds, where each client performs K
local updates on its trainable parameters during
each round.

During the communication round t, each client
ci ∈ C updates its trainable parameters w

(t)
i , in-

cluding the tensorized classifier, tensorized adapter,
and bias terms (if they exist), for K local up-
dates. Afterward, each client sends its updated
parameters, w

(t)+K
i , to the central server. The

server then aggregates the weights as w(t+1) =

1/N
∑N

i=1w
(t)+K
i for the next training round and

sends updated weights w(t+1) back to the clients.
Note that while we have primarily described cross-
silo FL scenarios, the LSCD FL setting operates
similarly, with the key distinction being that in
each communication round, the server sends the
aggregated weights to a randomly chosen subset of
clients S ⊆ C, rather than to all clients in C.

Algorithm 2 FedTT+
1: for communication round t← 1 to T do
2: for clients ci ∈ C in parallel do
3: r ← (choose index r s.t. mod(t, J − 2) = r − 1)
4: for local update k ← 1 to K do

5: for h ∈ {1, r, J}:
6: G(t)+k+1

i,h ← Update(G(t)+k
i,h ;Di)

7: end for
8: Client ci sends {G(t)+K

i,1 ,G(t)+K
i,r ,G(t)+K

i,J } to
server

9: end for
10: At server: G(t+1)

h = 1
N

∑N
i=1 G

(t)+K
i,h for h ∈

{1, r, J}
11: Server sends {G(t+1)

1 ,G(t+1)
r ,G(t+1)

J } to all clients
in C

12: end for

Compared with most previous federated PEFT
methods, FedTT significantly reduces communi-
cation overhead by only transferring small tensor
factors. This approach leads to over 10× commu-
nication reduction compared to LoRA adapters, as
demonstrated in Sec. 4.1, making FedTT particu-
larly advantageous in FL scenarios where efficient
communication is critical.

4.3 FedTT+ Method
In this section, we propose an improved version
of the FedTT method, named FedTT+ to further
reduce the number of trainable parameters and en-
hance FedTT’s suitability for scenarios with data
heterogeneity. Before introducing FedTT+, we first
explain the intuitive idea behind it.

In FedTT, the loss for back-propagation is com-
puted on the product of tensor factors G1, . . . ,GJ .
However, under the federated setup, the aggrega-
tions in the server are performed separately on
G1, . . . ,GJ . This practice introduces additional
terms in the product of the averaged G1, . . . ,GJ ,
which may slow down the convergence of the al-
gorithms. Ideally, the aggregation on the server
should be performed on the product of the low-
rank matrices G1, . . . ,GJ . The left-hand side of Eq.
(2) shows the parameters after aggregation with
FedTT using FedAvg, while the right-hand side
represents the ideal aggregation.
(

1

N

N∑

i=1

Gi,1
)
×3,1 . . .×3,1

(
1

N

N∑

i=1

Gi,J
)

̸= 1

N

N∑

i=1

Gi,1 ×3,1 . . .×3,1 Gi,J ,
(2)

where Gi,j is the tensor factor j for clientuser ci.
It is important to note that the difference between
the right-hand side and the left-hand side of Eq. (2)

24196

Table 1: Comparative analysis of various federated PEFT methods using the DeBERTa-Base model in a cross-silo
FL setting with an i.i.d. data distribution and 5 clients.

Model & Method # Param. MRPC SST-2 QNLI QQP MNLI Avg.

DeBERTa-Base (LoRAr=8) 0.30M 91.87 94.95 92.68 89.2 87.31 91.10
DeBERTa-Base (P-Tuning) 0.30M 82.01 90.48 82.12 84.0 80.74 83.87

DeBERTa-Base (LoRAr=4) 0.15M 91.72 94.95 92.66 86.7 86.91 90.58
DeBERTa-Base (BitFit) 0.10M 91.33 94.72 91.89 88.4 86.02 90.47
DeBERTa-Base (RoLoRAr=4) 0.08M 91.17 94.61 92.40 87.9 86.27 90.47
DeBERTa-Base (Prompt) 0.01M 82.96 92.32 82.13 80.5 74.46 82.47
DeBERTa-Base (FedTT) 0.06M 92.68 94.61 92.02 88.4 85.99 90.74
DeBERTa-Base (FedTT+) 0.02M 92.60 93.58 90.54 87.9 85.33 89.99

becomes more significant when: i) the number of
clients is large, ii) the clients have non-IID data
distributions, and iii) the number of local updates
in each communication round is substantial.

In FedTT+, we alleviate this interference
problem by freezing most of the tensor factors in
each communication round and only updating
a small fraction of them. In this approach, most of
the tensor factors remain fixed and identical across
all clients during training while only a few ten-
sor factors are trainable in each communication
round. For example, assume that we just update G1
and freeze G2, . . . ,GJ in communication t. Then,
G2, . . . ,GJ are identical across the clients and Eq.
(2) can be re-written as
(

1

N

N∑

i=1

G(t)i,1

)
×3,1 G(t−1)

2 ×3,1 . . .×3,1 G(t−1)
J

=
1

N

N∑

i=1

(
G(t)i,1 ×3,1 G(t−1)

2 ×3,1 . . .×3,1 G(t−1)
J

)
.

This modification to FedTT can improve accuracy,
particularly in cases of severe data heterogeneity.
The detailed algorithm is presented in Algorithm 2.

FedTT+ operates similarly to FedTT, but with a
key difference: in each communication round t, an
index r is selected from the set r ∈ {2, . . . , J − 1}
(line 3 in Alg. 2). In this process, {G1,Gr,GJ}
are set as trainable parameters (as the first and
last tensors are always trained), while the other
factors, {G2, . . . ,Gr−1,Gr+1, . . . ,GJ−1}, remain
frozen (line 5 and 6 in Alg. 2). As a result, clients
only send their updated {Gi,1,Gi,r,Gi,J} to the
server for aggregation, significantly reducing com-
munication overhead. Note that the classification
head is always trainable and present in all commu-
nication rounds.

(Sun et al., 2024; Chen et al.) have also demon-
strated that freezing certain parameters improves
the performance of LoRA in the presence of data

heterogeneity, particularly with larger models like
RoBERTa-large. In the numerical section, we com-
pare FedTT+ with their method under the same
settings and show that our approach achieves com-
parable or better accuracy while using even fewer
trainable parameters.

5 Numerical Results

5.1 Experiments Setup

We conduct extensive experiments to evaluate the
performance of the proposed algorithms across var-
ious language models. For the BERT-family mod-
els, we utiliz RoBERTa-base (Liu et al., 2019),
DeBERTa-base (He et al., 2020), and RoBERTa-
large (Liu et al., 2019), while for large-scale mod-
els, we employed LLaMA-2 (Touvron et al., 2023).
Using these models, we compare the proposed al-
gorithm against several PEFT methods in FL sce-
narios, including BitFit, LoRA, Adapter, Prefix-
Tuning, and Prompt-Tuning. Additionally, we
benchmark it against SOTA federated PEFT meth-
ods such as FFA-LoRA (Sun et al., 2024) and
RoLoRA (Chen et al.).

We consider two main FL scenarios: the cross-
silo FL scenario (Kairouz et al., 2021) and the
LSCD FL scenario (Lai et al., 2022). The cross-
silo scenario is suitable for networks with typically
fewer than 100 clients. In this case, the server sends
the updated model to all clients, meaning every
client participates in training during each communi-
cation round. In contrast, LSCD FL is more appro-
priate for environments with thousands of clients,
where only a randomly selected subset of clients is
involved in each training round. For cross-silo FL,
the number of clients is set to n ∈ {5, 10, 20, 50},
while for LSCD FL, similar to (Zhang et al., 2023),
we randomly select 10 clients from a pool of 1000.
All experiments are conducted using the AdamW
optimizer (Loshchilov and Hutter, 2018), with a

24197

Table 2: Comparative analysis of various federated PEFT methods using the RoBERTa-Base model. The reported
accuracy for federated LoRA, Adapter, Prefix, and BitFit methods is sourced from (Zhang et al., 2023).

Model & Method # Param. MRPC SST-2 QNLI QQP MNLI Avg.

RoBERTa-Base (Prefix) 3.50M 88.1 93.7 84.6 81.8 80.4 85.7
RoBERTa-Base (P-Tuning) 0.88M 86.8 92.1 85.6 81.5 79.8 85.2
RoBERTa-Base (Adapter) 0.70M 88.5 94.0 85.9 87.0 84.9 88.1
RoBERTa-Base (IA3) 0.65M 88.0 93.0 89.4 85.4 82.7 87.7
RoBERTa-Base (LoRA) 0.30M 89.8 94.4 86.0 86.5 84.7 88.3
RoBERTa-Base (BitFit) 0.10M 88.6 92.8 80.5 84.0 80.7 85.3
RoBERTa-Base (FedTT) 0.06M 88.9 93.8 88.9 86.2 84.2 88.4

similar learning rate and batch size setup across
different methods. We perform the experiments on
NVIDIA A6000 and V100 GPUs.

5.2 Performance on the BERT Family

We conduct experiments using the Generalized Lan-
guage Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2018), employing the com-
plete training dataset for each task. We record the
best validation results after the 100 communication
round for cross-silo FL and after the 1000 commu-
nication round for LSCD FL. Initially, we compare
FedTT and FedTT+ with various PEFT methods in
a cross-silo FL setting, using the DeBERTa-base
model and assuming independent and identically
distributed (i.i.d.) data among clients. We set the
number of clients to 5 and the local training epochs
to 1. The results, shown in Table 1, indicate that
FedTT achieves a higher average score compared to
other methods with lower than 0.15M trainable pa-
rameters. Notably, FedTT exhibits only a 0.5% per-
formance gap compared to LoRA with a rank of 8,
which has 5× more trainable parameters. FedTT+
achieves comparable accuracy to other methods
while drastically reducing the number of trainable
parameters. It exhibits only a 0.6% performance
gap compared to LoRA with a rank of 4, while
using 6× fewer trainable parameters, which signif-
icantly lowers communication overhead.

We then use the RoBERTa-base model to further
evaluate FedTT against other PEFT methods. For
the MRPC and SST-2 tasks, we employ a cross-
silo FL setup with 10 clients, while for the other
tasks, we apply a LSCD FL configuration with
1000 clients, randomly selecting 10 clients per
round. Our settings for the RoBERTa-base model
align with those in (Zhang et al., 2023), allowing
us to leverage their results of PEFT methods like
LoRA, Adapter, Prefix, and BitFit under FL set-
tings. Table 2 shows that FedTT achieves a higher

0 2 4 6 8 10
T

50

60

70

80

90

T
es

t
A

cc
(%

)

SST-2

RoLoRA

FedTT+

0 2 4 6 8 10
T

50

60

70

80

90

T
es

t
A

cc
(%

)

QNLI

RoLoRA

FedTT+

0 2 4 6 8 10
T

65

70

75

80

85

T
es

t
A

cc
(%

)

QQP

RoLoRA

FedTT+

0 2 4 6 8 10
T

65

70

75

80

85

T
es

t
A

cc
(%

)

MNLI

RoLoRA

FedTT+

Figure 2: Test accuracies versus communication rounds
for RoBERTa-Large models across different tasks in a
cross-silo FL setting with 50 clients.

average score with the fewest trainable parameters
among all methods. Additional details regarding
Tables 1 and 2 are provided in Appendices A.3 and
A.4, respectively.

5.3 Impact of Data Heterogeneity

Similar to (Chen et al.), we simulate varying levels
of data heterogeneity by using different numbers
of clients: 3 clients (i.i.d. data distribution), 20
clients (mild heterogeneity), and 50 clients (severe
heterogeneity), with 20 local updates to further in-
crease data heterogeneity. To ensure a comparable
number of trainable parameters, we make the last 6
layers trainable for the SST-2 dataset and the last 9
layers for the other datasets in LoRA, FFA-LoRA,
RoLoRA, and FedTT. In contrast, for FedTT+, all
layers are made trainable. Additional details are
provided in Appendix A.5. Our RoBERTa-Large
model settings align with those in (Che et al., 2023),
allowing us to leverage their results for LoRA,
FFA-LoRA, and RoLoRA methods. As shown
in Table 3, FedTT+ consistently outperforms the

24198

Table 3: Comparison of SOTA cross-silo FL methods using RoBERTa-Large models under varying degrees of data
heterogeneity. The accuracies for LoRA, FFA-LoRA, and RoLoRA methods are sourced from (Chen et al.).

Data Dist. Model & Method # Param. SST-2 QNLI QQP MNLI Avg.

i.i.d.

RoBERTa-Large (LoRAr=2) 68K 95.64 92.04 85.85 86.16 89.92
RoBERTa-Large (FFA-LoRAr=2) 34K 94.91 90.11 84.06 85.48 88.64
RoBERTa-Large (RoLoRAr=2) 34K 95.60 91.62 85.66 86.16 89.76
RoBERTa-Large (FedTT) 51K 94.38 93.01 88.30 87.20 90.72
RoBERTa-Large (FedTT+) 28K 95.64 94.05 88.99 88.27 91.74

mild het.

RoBERTa-Large (LoRAr=2) 68K 94.27 86.91 81.22 82.07 86.12
RoBERTa-Large (FFA-LoRAr=2) 34K 93.92 89.58 80.51 82.62 86.66
RoBERTa-Large (RoLoRAr=2) 34K 94.84 90.77 85.13 85.10 88.96
RoBERTa-Large (FedTT) 51K 94.15 91.38 86.25 86.53 89.58
RoBERTa-Large (FedTT+) 28K 95.64 92.60 87.76 88.11 91.03

sever het.

RoBERTa-Large (LoRAr=2) 68K 93.23 82.57 58.96 76.96 77.93
RoBERTa-Large (FFA-LoRAr=2) 34K 92.32 85.15 62.79 77.78 79.51
RoBERTa-Large (RoLoRAr=2) 34K 94.61 89.83 85.15 85.55 88.78
RoBERTa-Large (FedTT) 51K 94.38 90.55 85.47 85.27 88.92
RoBERTa-Large (FedTT+) 28K 94.50 90.17 86.65 86.28 89.40

Table 4: Comparison of cross-silo FL methods using
RoBERTa-Large models under varying differential pri-
vacy guarantees. The accuracies for LoRA and FFA-
LoRA methods are sourced from (Sun et al., 2024).

Priv. Budget Method # Param. SST-2 QNLI QQP MNLI

ϵ = 6
LoRAr=8 1.57M 93.70 84.99 82.11 39.46
FFA-LoRAr=8 0.79M 93.73 87.27 83.31 78.81
FedTT 0.24M 93.80 87.43 84.61 85.45

ϵ = 3
LoRAr=8 1.57M 93.32 83.94 82.08 35.82
FFA-LoRAr=8 0.79M 93.59 86.18 83.03 77.42
FedTT 0.24M 93.96 86.64 84.36 85.08

ϵ = 1
LoRAr=8 1.57M 94.32 88.95 81.28 33.80
FFA-LoRAr=8 0.79M 94.32 90.35 82.50 75.05
FedTT 0.24M 95.64 91.67 83.11 83.81

other methods across varying heterogeneity set-
tings while utilizing fewer parameters. This further
demonstrates that, under a comparable number of
trainable parameters and in the presence of data
heterogeneity, FedTT+ outperforms FedTT, high-
lighting the effectiveness of adaptively freezing ten-
sorized adapters in addressing data heterogeneity.
Fig. 2 illustrates test accuracy versus the number of
communication rounds in the severe heterogeneity
scenario, showing that FedTT+ achieves faster con-
vergence than RoLoRA across multiple tasks. An
additional experiment examining the effect of data
heterogeneity using an alternative heterogeneity
measure is provided in Appendix B.

5.4 Performance on Larger Models

We use SuperGLUE tasks (Wang et al., 2019) and
a generation task (SQuAD (Rajpurkar et al., 2016))
to compare FedTT and FedTT+ with LoRA. The
results are shown in Table 5. We use the LLaMA2-
7B model to simulate LSCD FL with 1000 clients,
where 10 of them are chosen randomly in each
round for training. Additional details are provided

in Appendix A.6. FedTT has performance nearly
identical to LoRA with a rank of 8, while achieving
about 10× lower communication overhead. For
cross-silo FL, we utilize the LLaMA2-13B model
with 10 clients. As seen in Table 5, both FedTT and
FedTT+ demonstrate performance close to LoRA,
with 10× and 30× lower communication overhead,
respectively.

5.5 Communication Cost Analysis

In this section, we present the communication cost
analysis for the MNLI task of Table 1 in Table
6. The analysis for all tasks of Table 1 and Table
3 can be found in Appendix C. Following (Guo
et al., 2024), we compare the proposed method
with baselines in terms of: (i) Up-link message
size (in KB) per communication round, (ii) Num-
ber of communication rounds required to reach
95% of the prediction accuracy reported in Table
1, and (iii) Total size of transmitted messages. As
demonstrated, our proposed algorithms effectively
minimize both the up-link message size and the
total size of transmitted messages.

5.6 Differential privacy guarantees

We compare our proposed FedTT algorithm with
baseline methods under differential privacy guaran-
tees. Definitions and theoretical results related to
DP are provided in Appendix D. Following (Sun
et al., 2024), we train the RoBERTa-Large model
with a learning rate of 1e− 3 and three clients. We
implement the DP-SGD algorithm using the Opa-
cus (Yousefpour et al., 2021) library with privacy
parameters δ = 1e− 5 and three different privacy
budgets, ϵ ∈ {1, 3, 6}. The clipping threshold is

24199

Table 5: Comparative analysis of LoRA, FedTT, and FedTT+ using the LLaMA2-7B and LLaMA2-13B models.

Fed. Set. Model & Method # Param. COPA ReCoRD SQuAD Avg.

large-scale FL
LLaMA2-7B (LoRAr=8) 4.19M 87 81.0 90.49 86.16
LLaMA2-7B (FedTT) 0.52M 90 80.1 89.32 86.47

cross-silo FL
LLaMA2-13B (LoRAr=8) 6.55M 89 83.6 91.07 87.89
LLaMA2-13B (FedTT) 0.64M 89 83.5 90.06 87.52
LLaMA2-13B (FedTT+) 0.18M 88 83.7 90.40 87.70

Table 6: Total transmitted messages for the MNLI task.

Methods Total transmitted messages (KB) Comm. overhead

LoRA 1172 ×1.88
BitFit 390 ×0.62
RoLoRA 624 ×1.00
Prompt 1523 ×2.44
FedTT 234 ×0.37
FedTT+ 78 ×0.12

Table 7: Tensor rank analysis using the DeBERTa-Base
model.

Model & Method # Param. SST-2 QNLI QQP MNLI Avg.

FedTTr=2 0.03M 93.58 90.76 86.79 85.29 89.10
FedTTr=5 0.06M 93.00 91.87 87.65 85.91 89.61
FedTTr=10 0.17M 93.69 92.48 88.22 87.01 90.35

chosen from C ∈ {2, 5}.
We follow the experimental setup from (Sun

et al., 2024), enabling direct evaluation against
LoRA and FFA-LoRA. The results in Table 4
demonstrates that FedTT consistently achieves
higher accuracy across different privacy budgets
while using fewer trainable parameters. Notably,
the largest performance gap is observed in the
MNLI task, a three-class classification problem.

5.7 Tensor Rank Analysis

In this section, we evaluate the performance of
the proposed FedTT method with varying tensor
ranks across four datasets using the DeBERTa-base
model. The number of clients is set to 5, each
performing one local update per round. We use a
learning rate of 1e− 3 and a batch size of 32. The
best validation results are reported after 20 com-
munication rounds. As shown in Table 7, higher
tensor ranks lead to better average accuracy, albeit
at the cost of an increased number of trainable pa-
rameters. In our experiments, we set the rank to 5,
as it offers a favorable trade-off between accuracy
and model size.

6 Conclusion
This work presents a novel federated and tensorized
fine-tuning framework, addressing the key chal-
lenges of communication overhead and data hetero-
geneity in FL. FedTT leverages tensorized adapters
to significantly reduce communication costs while
maintaining high performance, achieving up to a
10× reduction in trainable parameters compared to
existing methods. Additionally, FedTT+ enhances
robustness in cross-silo FL by adaptively freez-
ing portions of tensor factors, further optimizing
parameter efficiency. Extensive experiments with
models like BERT and LLaMA-2 demonstrate the
effectiveness of FedTT and FedTT+ in both cross-
silo and LSCD FL settings, offering a scalable and
communication-efficient solution for fine-tuning
LLMs in distributed environments.

Limitations

In this work, while we addressed the data hetero-
geneity challenge, we did not conduct experiments
on another significant challenge in FL: system het-
erogeneity. However, our framework has the po-
tential to tackle this challenge as well, by allowing
different tensor ranks to be assigned to clients based
on their computational capabilities. This presents
an interesting direction for future research.

Acknowledgments

This work was supported by the National Sci-
ence Foundation under Grant 2419982 and Grant
2342253. Z. Zhang and Y. Yang were supported
by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Re-
search, Artificial Intelligence for Science program,
under contract DE-SC0025390. This research used
resources of the National Energy Research Scien-
tific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231 using NERSC award
ASCR-ERCAP0030039.

24200

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep learning with differential pri-
vacy. In Proceedings of the 2016 ACM SIGSAC con-
ference on computer and communications security,
pages 308–318.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H
Ezzeldin, Qingfeng Liu, Kee-Bong Song, Mostafa
El-Khamy, and Salman Avestimehr. 2023. SLoRA:
federated parameter efficient fine-tuning of language
models. arXiv preprint arXiv:2308.06522.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao,
and Yaliang Li. 2024. Federated fine-tuning of
large language models under heterogeneous lan-
guage tasks and client resources. arXiv preprint
arXiv:2402.11505.

Rouzbeh Behnia, Arman Riasi, Reza Ebrahimi, Sher-
man SM Chow, Balaji Padmanabhan, and Thang
Hoang. 2024. Efficient secure aggregation for
privacy-preserving federated machine learning. In
2024 Annual Computer Security Applications Con-
ference (ACSAC), pages 778–793. IEEE.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen
Zhou, Victor S Sheng, Huaiyu Dai, and Dejing Dou.
2023. Federated learning of large language models
with parameter-efficient prompt tuning and adaptive
optimization. arXiv preprint arXiv:2310.15080.

Shuangyi Chen, Yue Ju, Hardik Dalal, Zhongwen Zhu,
and Ashish J Khisti. Robust federated finetuning of
foundation models via alternating minimization of
LoRA. In Workshop on Efficient Systems for Founda-
tion Models II@ ICML2024.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi,
Matt Barnes, and Gauri Joshi. 2023. Heterogeneous
lora for federated fine-tuning of on-device founda-
tion models. In International Workshop on Federated
Learning in the Age of Foundation Models in Con-
junction with NeurIPS 2023.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177–190. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. 2023.
Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nature Machine Intelli-
gence, 5(3):220–235.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryptog-
raphy: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006.
Proceedings 3, pages 265–284. Springer.

Mohammadjavad Ebrahimi, Uday V Shanbhag, and
Farzad Yousefian. 2024. Distributed gradient track-
ing methods with guarantees for computing a solu-
tion to stochastic mpecs. In 2024 American Control
Conference (ACC), pages 2182–2187. IEEE.

Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wen-
bin Wei, Lixin Fan, and Qiang Yang. 2023. Fate-
llm: A industrial grade federated learning frame-
work for large language models. arXiv preprint
arXiv:2310.10049.

Sajjad Ghiasvand, Amirhossein Reisizadeh, Mahnoosh
Alizadeh, and Ramtin Pedarsani. 2024. Robust de-
centralized learning with local updates and gradient
tracking. arXiv preprint arXiv:2405.00965.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan,
Feifei Wang, and Liangqiong Qu. 2024. Selective ag-
gregation for low-rank adaptation in federated learn-
ing. arXiv preprint arXiv:2410.01463.

Erfan Hajihashemi and Yanning Shen. Multi-model
ensemble conformal prediction in dynamic environ-
ments. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Shwai He, Liang Ding, Daize Dong, Miao Zhang, and
Dacheng Tao. 2022. Sparseadapter: An easy ap-
proach for improving the parameter-efficiency of
adapters. arXiv preprint arXiv:2210.04284.

24201

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and
Phillip Gibbons. 2020. The non-iid data quagmire
of decentralized machine learning. In International
Conference on Machine Learning, pages 4387–4398.
PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Jiahui Hu, Dan Wang, Zhibo Wang, Xiaoyi Pang, Huiyu
Xu, Ju Ren, and Kui Ren. 2024. Federated large
language model: Solutions, challenges and future
directions. IEEE Wireless Communications.

Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2021. Advances and
open problems in federated learning. Foundations
and trends® in machine learning, 14(1–2):1–210.

Yeachan Kim, Junho Kim, Wing-Lam Mok, Jun-Hyung
Park, and SangKeun Lee. 2023. Client-customized
adaptation for parameter-efficient federated learning.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1159–1172.

Kevin Kuo, Arian Raje, Kousik Rajesh, and Virginia
Smith. 2024. Federated lora with sparse communica-
tion. arXiv preprint arXiv:2406.05233.

Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu,
Xiangfeng Zhu, Harsha Madhyastha, and Mosharaf
Chowdhury. 2022. Fedscale: Benchmarking model
and system performance of federated learning at
scale. In International conference on machine learn-
ing, pages 11814–11827. PMLR.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. 2020.
Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems, 2:429–
450.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Baohao Liao, Yan Meng, and Christof Monz. 2023.
Parameter-efficient fine-tuning without introducing
new latency. arXiv preprint arXiv:2305.16742.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrea Manoel, Mirian del Carmen Hipolito Garcia,
Tal Baumel, Shize Su, Jialei Chen, Robert Sim, Dan
Miller, Danny Karmon, and Dimitrios Dimitriadis.
2023. Federated multilingual models for medical
transcript analysis. In Conference on Health, Infer-
ence, and Learning, pages 147–162. PMLR.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017a.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR.

H Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2017b. Learning differentially pri-
vate recurrent language models. arXiv preprint
arXiv:1710.06963.

Alexander Novikov, Dmitrii Podoprikhin, Anton Os-
okin, and Dmitry P Vetrov. 2015. Tensorizing neural
networks. Advances in neural information process-
ing systems, 28.

Ivan V Oseledets. 2011. Tensor-train decomposition.
SIAM Journal on Scientific Computing, 33(5):2295–
2317.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Vishal Rathod, Seyedsina Nabavirazavi, Samira Zad,
and Sundararaja Sitharama Iyengar. 2025. Privacy
and security challenges in large language models. In

24202

2025 IEEE 15th Annual Computing and Communi-
cation Workshop and Conference (CCWC), pages
00746–00752. IEEE.

Ofir Ben Shoham and Nadav Rappoport. 2023. Feder-
ated learning of medical concepts embedding using
behrt. arXiv preprint arXiv:2305.13052.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Ehsan Soltanmohammadi and Neset Hikmet. 2024. Op-
timizing healthcare big data processing with con-
tainerized pyspark and parallel computing: A study
on etl pipeline efficiency. Journal of Data Analysis
and Information Processing, 12(4):544–565.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding.
2024. Improving LoRA in privacy-preserving feder-
ated learning. arXiv preprint arXiv:2403.12313.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Jiarun Wu and Qingliang Chen. 2022. Pruning adapters
with lottery ticket. Algorithms, 15(2):63.

Nan Wu, Farhad Farokhi, David Smith, and Mo-
hamed Ali Kaafar. 2020. The value of collaboration
in convex machine learning with differential privacy.
In 2020 IEEE Symposium on Security and Privacy
(SP), pages 304–317. IEEE.

Yuxuan Yan, Shunpu Tang, Zhiguo Shi, and Qianqian
Yang. 2024. FeDeRA: efficient fine-tuning of lan-
guage models in federated learning leveraging weight
decomposition. arXiv preprint arXiv:2404.18848.

Yifan Yang, Kai Zhen, Ershad Banijamal, Athanasios
Mouchtaris, and Zheng Zhang. 2024a. Adazeta:
Adaptive zeroth-order tensor-train adaption for
memory-efficient large language models fine-tuning.
arXiv preprint arXiv:2406.18060.

Yifan Yang, Jiajun Zhou, Ngai Wong, and Zheng Zhang.
2024b. LoRETTA: low-rank economic tensor-train
adaptation for ultra-low-parameter fine-tuning of
large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 3161–3176.

Zi Yang, Samridhi Choudhary, Xinfeng Xie, Cao
Gao, Siegfried Kunzmann, and Zheng Zhang. 2024c.
CoMERA: computing-and memory-efficient training
via rank-adaptive tensor optimization. arXiv preprint
arXiv:2405.14377.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablay-
rolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharad-
waj, Jessica Zhao, et al. 2021. Opacus: User-friendly
differential privacy library in pytorch. arXiv preprint
arXiv:2109.12298.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang,
Yue Yu, Lizhen Qu, and Zenglin Xu. 2023. Fedpetun-
ing: When federated learning meets the parameter-
efficient tuning methods of pre-trained language mod-
els. In Annual Meeting of the Association of Compu-
tational Linguistics 2023, pages 9963–9977. Associ-
ation for Computational Linguistics (ACL).

Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and
Gongshen Liu. 2023. Fedprompt: Communication-
efficient and privacy-preserving prompt tuning in fed-
erated learning. In ICASSP 2023-2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE.

24203

A Experiment setup

A.1 Dataset Setup

We begin our experiments using the Generalized
Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018), which includes
a range of natural language understanding
tasks. These tasks consist of perceptual analysis
(SST2 (Socher et al., 2013)), similarity and
paraphrase tasks (MRPC, QQP (Dagan et al.,
2005)), and natural language reasoning (MNLI,
QNLI (Williams et al., 2017; Rajpurkar et al.,
2018)). The utilized metrics for the GLUE
benchmark are summarized in Table 8. We record
the best validation results after 100 communication
rounds for cross-silo FL and after 1000 communi-
cation rounds for large-scale cross-device FL. For
the DeBERTa-Base models on the QQP task, we
randomly select 1000 samples from the validation
set and report the highest accuracy achieved.

Table 8: Dataset descriptions and statistics.

Task # Train # Dev. Metric

MRPC 3,301 367 F1 Score
SST-2 66,675 674 Accuracy
QNLI 103,695 5,463 Accuracy
QQP 360,210 40,430 Accuracy
MNLI 388,774 9,815 Accuracy

We then select two multiple-choice tasks
(COPA and ReCoRD) from the SuperGLUE bench-
mark (Wang et al., 2019) and a question-answering
generation task (SQuAD (Rajpurkar et al., 2016)).
The metrics used for evaluation are summarized in
Table 9.

Table 9: The utilized metrics for the SuperGLUE bench-
mark.

Task Name Metric

COPA Accuracy
ReCoRD F1
SQuAD F1

A.2 Additional Detail of TT-format

In this paper, we use the TT format to structure the
weight matrices within the tensorized layers. To ac-
commodate matrices of varying shapes, we design
specific tensor shapes based on the hidden sizes
and bottleneck configurations of different models.

The tensor shapes are outlined in Table 10, with ex-
amples provided for the DeBERTa/RoBERTa-base
and LLaMA-2-7b models, which have hidden sizes
of 768 and 4096, respectively. For models with
other hidden sizes, the appropriate tensor shape
must be determined prior to training.

Table 10: The shape settings of the TT-format

Modules Matrix Shape Tensor Shape

Tensorized Adapters 768× 64 [8, 8, 12, 8, 8]
4096× 64 [16, 16, 16, 4, 4, 4]
64× 768 [8, 8, 12, 8, 8]
64× 4096 [4, 4, 4, 16, 16, 16]

Tenosrized Classifier (Optional) 768× 768 [12, 8, 8, 8, 8, 12]
768× 768 [8, 8, 8, 8, 8, 8, 8, 8]

A.3 Additional Details for Table 1

We use DeBERTa-Base models with the GLUE
dataset in a cross-silo FL setup. The learning rate
is selected from [5e − 3, 1e − 3, 5e − 4, 1e − 4],
and the batch size from [16, 32] for all tasks and
methods. The number of clients is set to 5, with one
local update per communication round. The best
validation results were recorded after 100 commu-
nication rounds. Additional details on the chosen
parameters are provided in Table 11.

Table 11: The hyperparameter grids used for GLUE
experiments.

Experiment Hyperparameters Values

LoRA Rank 4, 8

RoLoRA Rank 4

Bitfit Bias Terms All

Prompt # Tokens 10

P-tuning # Tokens 20
Prompt Length [128, 768]

FedTT Tensor Rank 5

FedTT+ Tensor Rank 5

A.4 Additional Details for Table 2

We follow the experimental setup of (Zhang et al.,
2023), using RoBERTa-Base models with the
GLUE dataset in both cross-silo and large-scale
cross-device FL configurations. The learning rate
was selected from [1e − 2, 5e − 3, 1e − 3, 5e −
4, 1e−4, 5e−5], and batch size from [16, 32] across
all tasks and methods. For the MRPC and SST-2
tasks, we use a cross-silo FL setup with 10 clients,

24204

Table 12: Number of trainable parameters for results in Table 3.

Model & Method SST-2 QNLI QQP MNLI Avg.

RoBERTa-Large (LoRAr=2) 49K 74K 74K 74K 68K
RoBERTa-Large (FFA-LoRAr=2) 25K 37K 37K 37K 34K
RoBERTa-Large (RoLoRAr=2) 25K 37K 37K 37K 34K
RoBERTa-Large (FedTT) 39K 55K 55K 55K 51K
RoBERTa-Large (FedTT+) 28K 28K 28K 28K 28K

while for the other tasks, we employ a large-scale
cross-device FL setup with 1000 clients, selecting
10 clients per round. Accuracy results for Prefix,
Adapter, LoRA, and BitFit methods are sourced
from (Zhang et al., 2023). In addition to report-
ing the accuracy of the FedTT method, we also
includ the P-Tuning method with prompt lengths
[128, 768], and IA3 (Liu et al., 2022) method, to
further enrich the experiments.

A.5 Additional Details for Table 3

We adopt the same settings as (Chen et al.), using
RoBERTa-Large models with the GLUE dataset
in cross-silo FL scenarios. To simulate varying
levels of data heterogeneity, we report the accu-
racy of our method for 3 clients (i.i.d. data distri-
bution), 20 clients (moderate heterogeneity), and
50 clients (high heterogeneity), with 20 local up-
dates. The learning rate is set to 1e−3 for all tasks,
with a batch size of 64 for SST-2 and 32 for other
tasks. To ensure a comparable number of trainable
parameters, we make the last 6 layers trainable
for the SST-2 dataset and the last 9 layers for the
other datasets in LoRA, FFA-LoRA, RoLoRA, and
FedTT. In contrast, for FedTT+, all layers are made
trainable. We provide a comparison of the num-
ber of trainable parameters for LoRA, FFA-LoRA,
RoLoRA, and our proposed FedTT, and FedTT+
methods in Table 12. Accuracy results for LoRA,
FFA-LoRA, and RoLoRA are sourced from (Chen
et al.).

A.6 Additional Details for Table 5

Due to the large number of parameters in LLaMA-
2, it is rarely used in FL scenarios, and few existing
works provide results for such models. However,
FedTT significantly reduces communication
overhead, making it feasible to utilize these
models in FL settings. We evaluate FedTT
and FedTT+ against LoRA using SuperGLUE
tasks (Wang et al., 2019) and a generation task
(SQuAD (Rajpurkar et al., 2016)). The results are

presented in Table 5.

For each task, we randomly select 1000 samples
for training and 1000 for validation, reporting the
best validation accuracy. We use a learning rate of
1e− 4, batch size of 2, and 3 local updates across
all tasks. In large-scale cross-silo FL, we simulate
training with the LLaMA2-7B model across 1000
clients, selecting 10 randomly per round. FedTT
achieves performance nearly identical to LoRA
with a rank of 8, while reducing communication
overhead by approximately 10×.

For cross-silo FL, we utilize the LLaMA2-
13B model with 10 clients. As shown in Table 5,
both FedTT and FedTT+ achieve performance
close to LoRA while reducing communication
overhead by approximately 10× and 30×,
respectively.

B Additional Experiment on Data
Heterogeneity

Data heterogeneity is a common challenge in most
practical scenarios (Hajihashemi and Shen). In
FL, local models on individual clients can diverge
from the global model’s optimal state, resulting
in slower convergence (Hsieh et al., 2020; Li
et al., 2020). This issue is particularly pronounced
when training LLMs in federated environments,
as data heterogeneity can severely impact model
performance (Zhang et al., 2023).

As mentioned before, three primary factors
contribute to data heterogeneity: (1) the number
of clients, (2) the number of local updates, and
(3) non-i.i.d. data distribution. In Section 5.3
of the paper, which evaluates the heterogeneity
robustness of FedTT+, we considered the effects
of the number of clients and local updates.
Specifically, we increased the number of clients
to intensify heterogeneity. In this section, we

24205

Table 13: Comparison of cross-silo FL methods using RoBERTa-Large models under varying degrees of data
heterogeneity. The accuracies for LoRA and FFA-LoRA methods are sourced from (Sun et al., 2024).

Data Dist. Model & Method # Param. SST-2 QNLI QQP MNLI Avg.

i.i.d.
RoBERTa-Large (LoRAr=8) 1.57M 94.42 91.38 84.47 86.90 89.29
RoBERTa-Large (FFA-LoRAr=8) 0.79M 95.14 92.64 86.31 87.13 90.30
RoBERTa-Large (FedTT+) 0.03M 95.41 94.05 88.15 88.65 91.56

mild het.
RoBERTa-Large (LoRAr=8) 1.57M 93.55 91.36 84.41 87.01 89.08
RoBERTa-Large (FFA-LoRAr=8) 0.79M 94.10 91.62 85.33 87.04 89.52
RoBERTa-Large (FedTT+) 0.03M 95.53 93.54 87.91 88.45 91.36

sever het.
RoBERTa-Large (LoRAr=8) 1.57M 94.32 88.95 83.51 82.03 87.20
RoBERTa-Large (FFA-LoRAr=8) 0.79M 94.32 90.35 84.35 85.05 88.52
RoBERTa-Large (FedTT+) 0.03M 95.64 91.67 86.66 87.73 90.42

conduct an additional experiment to evaluate the
performance of FedTT+ under varying levels of
data heterogeneity. Similar to (Sun et al., 2024),
we train the RoBERTa-Large model and consider
three levels of data distribution for three clients:

• i.i.d. Data Distribution: Data is evenly dis-
tributed across all clients.

• Mild Heterogeneity: For binary classifi-
cation tasks, data is split as [0.15, 0.85],
[0.85, 0.15], and [0.5, 0.5] among three
clients. For three-class classification tasks,
the splits are [0.6, 0.2, 0.2], [0.2, 0.6, 0.2], and
[0.2, 0.2, 0.6].

• Severe Heterogeneity: For binary classi-
fication tasks, data is split as [0.05, 0.95],
[0.95, 0.05], and [0.5, 0.5]. For three-
class classification tasks, the splits are
[0.9, 0.05, 0.05], [0.05, 0.9, 0.05], and
[0.05, 0.05, 0.9].

To further amplify heterogeneity, we used 10 lo-
cal updates. We followed the exact experimental
setup described in (Sun et al., 2024), allowing us to
directly compare our results with those reported
for LoRA and FFA-LoRA. The results are pre-
sented in Table 13. As shown in the Table, FedTT+
consistently outperforms LoRA and FFA-LoRA
across different heterogeneity settings while utiliz-
ing fewer parameters.

C Communication Cost Analysis

In this section, we provide communication cost
analysis for Table 1 and Table 3. Specifically, we
compare the proposed method with baselines in
terms of communication cost, following (Guo et al.,
2024). The analysis includes:

• Up-link message size (in KB) for each com-
munication round.

• Number of communication rounds needed to
reach the predefined target performance on
the SST-2, QNLI, QQP, and MNLI datasets.

• Total transmitted messages (in KB).

The target performance is defined as 95% of the
prediction accuracy reported in Table 1 and Table 3.

In a federated learning system, two key pa-
rameters influence communication efficiency:
the up-link message size and the total size of
transmitted messages, computed as the product
of the number of communication rounds and
the up-link message size. We provide detailed
comparisons in Table 14 and Table 15. As
demonstrated, our proposed algorithms effectively
minimize both the up-link message size and the
total number of transmitted messages.

D Privacy

While LLMs excel in performance due to their
transformer-based architecture and vast parameter
count, their ability to memorize and inadvertently
reveal sensitive information from training data is a
concern (Carlini et al., 2021; Rathod et al., 2025).
A widely adopted framework for mitigating such
privacy risks is DP (Dwork et al., 2006), which
provides formal guarantees against data leakage.

In this section, we first outline key defini-
tions of DP and introduce the DP-SGD algorithm.
We then establish a theoretical privacy guarantee
within the DP framework.

Definition 1. ((ϵ, δ)-Differential Privacy
(Dwork et al., 2006)]) A randomized mechanism

24206

Table 14: Communication cost analysis for Table 1.

Method Up-link Message Size (KB) # Communication Round Total transmitted messages (KB)

SST-2 QNLI QQP MNLI SST-2 QNLI QQP MNLI

LoRAr=4 586 2 2 2 2 1172 1172 1172 1172
RoLoRAr=4 312 2 2 1 2 624 624 312 624

FedTT 234 2 2 2 2 468 468 468 468
FedTT+ 78 5 6 3 3 390 468 234 234

Table 15: Communication cost analysis for sever heterogeneity in Table 3.

Method Up-link Message Size (KB) # Communication Round Total transmitted messages (KB)

SST-2 QNLI QQP MNLI SST-2 QNLI QQP MNLI

RoLoRAr=2 133 3 10 11 11 399 1330 1463 1463
FedTT 199 3 3 3 3 597 597 597 597

FedTT+ 109 3 3 3 3 327 327 327 327

M : D → R satisfies (ϵ, δ)-differential privacy
if for any two adjacent datasets D,D′ ∈ D that
differ in at most one data point, and for any subset
of possible outputs S ⊆ R, the following holds:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ.

DP ensures that the mechanism M provides
privacy guarantees by limiting the impact of any
single data point on the output, with ϵ controlling
the privacy loss and δ allowing for a small
probability of failure in the guarantee.

Differentially Private Stochastic Gradient
Descent (DP-SGD) Algorithm (Abadi et al.,
2016): DP-SGD is a modification of the SGD
algorithm designed to provide differential privacy
guarantees. It achieves this by introducing two key
modifications:

• Gradient Clipping: To ensure that individual
data points do not have a disproportionate in-
fluence on the model update, each per-sample
gradient is clipped to a fixed norm C.

• Noise Addition: After aggregating the
clipped gradients, Gaussian noise z ∼
N
(
0, C2σ2I

)
is added to the sum of clipped

gradients in a batch B from the dataset D
before updating the model parameters. This
helps obscure the contribution of any single
data point.

The noisy sum of clipped gradients is computed as:

ḡ =

∑
i∈B Clip(∇fi, C) + z

|B| ,

which is then used to update the model. Here, the
noise scale σ is determined based on sequential
composition rules, given the privacy parameters ϵ
and δ, the number of iterations T , and the sampling
probability q = |B|/|D|.

Although other techniques like secure aggre-
gation have been explored in privacy-preserving
FL (Behnia et al., 2024), our focus here is on DP.
In federated learning with DP, the level of privacy
protection depends on whether the aggregation
server is trusted by the clients. In global DP, the
server is trusted, allowing clients to send raw
model updates, while the server applies differential
privacy by adding noise to the aggregated updates
before releasing them (McMahan et al., 2017b).
In contrast, local DP assumes an untrusted server,
requiring each client to add noise to their updates
before transmission, ensuring privacy even if
the server is compromised (Wu et al., 2020).
In Section 5.6, we adopt the stronger local DP
approach to guarantee robust privacy protection
without relying on a trusted server.

Proposition 1. The mechanism for updat-
ing FedTT using locally run DP-SGD and FedAvg
satisfies (ϵ, δ)-DP, given that ∀i, the sampling
probability is defined as q = |Bi| / |Di|. Further-
more, the total number of local updates per client
is denoted as T , and σ is chosen as

σ = O

(
q
√
T log(1/δ)

ϵ

)
.

Proof. Similar to (Sun et al., 2024).

24207

