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Abstract

Large Language Models (LLMs), such as the
GPT-4 and LLaMA families, have demon-
strated considerable success across diverse
tasks, including multiple-choice questions
(MCQs). However, these models exhibit a
positional bias, particularly an even worse
“anchored bias” in the GPT-2 family, where
they consistently favour the first choice ‘A’ in
MCQs during inference. This anchored bias
challenges the integrity of GPT-2’s decision-
making process, as it skews performance based
on the position rather than the content of the
choices in MCQs. In this study, we utilise the
mechanistic interpretability approach to iden-
tify the internal modules within GPT-2 mod-
els responsible for this bias. We focus on the
Multi-Layer Perceptron (MLP) layers and at-
tention heads, using the “logit lens” method
to trace and modify the specific value vec-
tors that contribute to the bias. By updating
these vectors within MLP and recalibrating
attention patterns to neutralise the preference
for the first choice ‘A’, we effectively mitigate
the anchored bias. Our interventions not only
mitigate the bias but also improve the overall
MCQ prediction accuracy for the GPT-2 fam-
ily across various datasets. This work repre-
sents the first comprehensive mechanistic anal-
ysis of anchored bias from the failing cases
in MCQs within the GPT-2 models, introduc-
ing targeted, minimal-intervention strategies
that significantly enhance GPT2 model robust-
ness and accuracy in MCQs. Our code is avail-
able at https://github.com/ruizheliUOA/
Anchored_Bias_GPT2.

1 Introduction

Large Language Models (LLMs) exhibit remark-
able capabilities across a wide array of tasks, in-
cluding multiple-choice question (MCQ) (Robin-
son and Wingate, 2023), which are largely at-
tributed to the advancements in the Transformer
backbone. These models not only excel at rea-

soning but also demonstrate significant inductive
capabilities, which make them highly effective in
different domains (Hu et al., 2023b; Chen et al.,
2023; Hu et al., 2023a; Team et al., 2023; Anil
et al., 2023; Hu et al., 2024a,b; Li et al., 2025; Liu
et al., 2025; Ji et al., 2024; Gao et al., 2025).

Despite their success, recent studies have uncov-
ered a notable flaw: LLMs exhibit a positional bias
when tasked with MCQs. Specifically, the perfor-
mance of these models (e.g., LLaMA (Touvron
et al., 2023a), LLaMA2 (Touvron et al., 2023b),
GPT-4 (Achiam et al., 2023)) varies significantly
depending on the position of the correct answer
within the given choices (Pezeshkpour and Hr-
uschka, 2024; Zheng et al., 2024a). We further
observe that this vulnerability to positional bias
is even worse in the GPT-2 family, ranging from
GPT2-Small-124M to GPT2-XL-1.5B (Radford
et al., 2019). Our investigations reveal that GPT-2
models consistently favour the first choice ‘A’, re-
gardless of the actual position in the input MCQ
prompt where the correct answer choice is placed,
which we term as “anchored bias” in Fig. 1.

Previous work primarily mitigated positional
bias in MCQ by analysing the impact of differ-
ent prompt structures (Pezeshkpour and Hruschka,
2024) or by estimating different datasets’ prior
bias based on test samples (Zheng et al., 2024a).
Such approaches often remain superficial, merely
altering the prompt presentation, or lacking a
comprehensive analysis of fundamental reasons.
While Lieberum et al. (2023); Wiegreffe et al.
(2025) investigated positional bias-related problem
using mechanistic interpretability, they mainly fo-
cus on success cases. There has been a lack of in-
vestigation into the internal mechanisms of LLMs
from the failing cases that contribute to the an-
chored bias and strategies to mitigate it without
the need for prompt engineering or prior estima-
tion.

We apply mechanistic interpretability to reverse-
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Question:
On a shelf, there are three books: a black book, an orange book, and 
a blue book. The blue book is to the right of the orange book. The 
orange book is to the right of the black book?
Answer Choices:
A: The blue book is the leftmost 
B: The black book is the leftmost 
C: The orange book is the leftmost
Answer:

Performance on correct answer token:
Rank: 20 Logit: 13.34 Prob: 0.91% Token: B

Top 0th token. Logit: 16.28 Prob: 17.09% Token: A
Top 1st token. Logit: 15.61 Prob:  8.80% Token: The 
Top 2nd token. Logit: 14.68 Prob:  3.47% Token: On 
Top 3rd token. Logit: 14.53 Prob:  2.97% Token: I

Rankings:

A: The orange book is the leftmost.
B: The blue book is the leftmost. 
C: The black book is the leftmost. 

Performance on correct answer token:
Rank: 34 Logit: 12.54 Prob: 0.41% Token: C

Rankings:
Top 0th token. Logit: 16.27 Prob: 17.16% Token: A 
Top 1st token. Logit: 15.72 Prob: 9.88% Token: The 
Top 2nd token. Logit: 14.79 Prob:  3.89% Token: On 
Top 3rd token. Logit: 14.48 Prob:  2.87% Token: I

Figure 1: MCQ prompt paradigm used in GPT2-Small
and next token logit rankings with probability during
inference. Regardless of the order in which correct
answer choices are placed in the prompt except ‘A’,
GPT2-Small always give a higher logit score to the
choice immediately following the Answer Choices:,
i.e., A, where represents the anchored bias for the
incorrect choices (the correct choices should be B and C
for this example).

engineer the internal workings of the GPT-2 fam-
ily to understand the origins and extent of the an-
chored bias in the failing cases. We quantitatively
demonstrate that the GPT-2 Small, Medium, Large,
and XL models exhibit this anchored bias with sig-
nificant regularity across various MCQ datasets,
ranging from 2-choice to 5-choice settings. Our
detailed analysis using the “logit lens” (Nostalge-
braist, 2020) approach localises Multi-Layer Per-
ceptron (MLP) layers with specific dimensionality
and attention heads that disproportionately influ-
ence this anchored bias. We find that certain value
vectors in the MLP, which inherently harbour this
bias, and specific attention heads pay more weight
on the ‘A’ position over the correct answer choice
positions in the input prompt.

Inspired from (Geva et al., 2021, 2022) where
MLPs can be treated as key-value memories, we
use a straightforward yet potent method (Dai et al.,
2022) to update these critical value vectors in the
MLP, effectively mitigating the anchored bias. This
adjustment not only mitigates the anchored bias but
also enhances the overall MCQ prediction accuracy
over 70% averaged across various MCQ datasets
and all GPT-2 family. Additionally, we propose

a novel strategy to recalibrate the attention pat-
terns by swapping the attention weight between the
anchored position and the correct answer choice
position. This strategy also mitigates the anchored
bias to a certain extent, especially for the classifica-
tion accuracy improvement of the Indirect Object
Identification (IOI) dataset (Wang et al., 2023) over
90% on GPT2-Medium. Finally, we trace the full
anchored bias circuit of each GPT2 model, which
includes all attention heads and MLPs contributing
to this bias.

In conclusion, to the best of our knowledge, this
work is the first comprehensive mechanistic anal-
ysis of the intrinsic anchored bias from the failing
cases in MCQ tasks across the entire GPT-2 family.
By identifying and rectifying the critical value vec-
tors within MLP and attention heads responsible for
this bias, we introduce novel, minimal-intervention
strategies that significantly reduce GPT-2 models’
vulnerability and enhance robustness against an-
chored bias in the MCQ task.

2 Related Work

Several studies have documented the effects of
positional bias on LLM accuracy in MCQs.
Pezeshkpour and Hruschka (2024) found a "sensi-
tivity gap" in models like GPT-4, where positional
bias can decrease performance by up to 75% in a
zero-shot setting, and they improved accuracy with
new calibration strategies. Wang et al. (2024) also
noted the impact of option order on GPT-4’s scores,
enhancing accuracy through a calibration frame-
work including multiple evidence and balanced po-
sition adjustments, along with human involvement.
Zheng et al. (2024a) addressed "selection bias"
where LLMs disproportionately favour certain op-
tions, introducing a debiasing method, PriDe, that
adjusts predictions during inference. Wang et al.
(2025) explored performance changes from reorder-
ing answer options, confirming that this impacts
understanding. Turpin et al. (2023) and Zheng et al.
(2024b) explore the effects of positional bias in
LLMs, showing how it skews Chain-of-Thought
generation and evaluator judgments, and emphasise
the need for strategies to detect and mitigate these
biases. However, those studies did not analyse such
bias within models and further identify which com-
ponent is relevant. Recently, Lieberum et al. (2023)
analyses final-token attention heads and identifies
a subset “correct letter heads”, which focus on ear-
lier answer symbols to promote the correct choice
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based on its order (mainly for A/B/C/D). However,
their findings are based solely on MMLU task using
the closed-source Chinchilla-70B. Wiegreffe et al.
(2025) investigates how successful models perform
formatted MCQs with symbol binding internally
rather than focusing on the failure cases when mod-
els have positional bias. Compared to (Lieberum
et al., 2023; Wiegreffe et al., 2025) focusing on the
success cases, our work is focused on the failing
cases, and we believe that these complementary per-
spectives help form a more complete understanding
of how LLMs handle MCQs.

3 Background: Large Language Models
and Mechanistic Interpretability

Architecture of LLMs. We focus on the au-
toregressive Transformer-based LLM architec-
ture (Vaswani et al., 2017) based on prior
works (Geva et al., 2021, 2022; Elhage et al., 2021;
Dai et al., 2022; Meng et al., 2022, 2023; Yuksek-
gonul et al., 2024) with simplifications in certain
explanations. Given an input prompt containing T
tokens (t1, . . . , tT ) and each token ti belonging to
a vocabulary V , tokens are initially encoded by d-
dimensional vectors x0

i ∈ Rd using an embedding
matrix WE ∈ R|V|×d.

As shown in Fig. 2, the architecture has L layers,
and each layer consists of attention and MLP mod-
ules, which transform token embeddings to resid-
ual streams (xℓ

1, . . . ,x
ℓ
T ) ∈ Xℓ at layer ℓ, where

xℓ
i ∈ Rd. The residual stream at layer ℓ is a place

where all attention and MLP modules at layer ℓ
read from and write to (Elhage et al., 2021), and it
is updated by the following equation for token i at
layer ℓ:

xℓ
i = xℓ−1

i + aℓi +mℓ
i (1)

Here, aℓi is the attention contribution for token i
and mℓ

i is the MLP contribution at layer ℓ1. At L
layer, the predicted probability distribution for the
next token P(tT+1|t1:T ) is produced following:

P(tT+1|t1:T ) = Softmax
(
WUσ(x

L
T )
)

(2)

where WU ∈ Rd×|V| is unembedding matrix, σ(·)
is pre-unembedding layer normalisation.

The attention module mainly updates each token
residual stream xl−1

i by attending to all previous to-
kens in parallel. Specifically, the attention module
contains QK and OV circuits, where the former

1We omit the layer normalisation of attention and MLP
modules at layer ℓ for simplification.

operates WQ,WK ∈ Rd×d matrices and the latter
operates WO,WV ∈ Rd×d matrices, respectively.
Normally, QK circuit determines the attention pat-
tern Aℓ, i.e., where information is moved to and
from the residual stream. OV circuit further de-
termines the attention output aℓi based on the fixed
attention pattern, i.e., what information is from
the previous tokens’ position to the current token
position (Elhage et al., 2021):

aℓi,j =

H∑

h=1

Aℓ,h
i,j (x

ℓ−1
j W ℓ,h

V )W ℓ,h
O =

H∑

h=1

rℓ,hi,j (3)

where aℓi,j indicates the attention contribution from

token i to token j, and aℓi =
∑T

j=1 a
ℓ
i,j . rl,hi,j in-

dicates the weighted average values where token
i attend to token j by head h at the layer ℓ, and
rℓ,hi =

∑T
j=1 r

ℓ,h
i,j (See Appendix B for detailed

explanations about attention module).
MLP module is normally treated as key-value

memories (Geva et al., 2021, 2022; Elhage et al.,
2021; Dai et al., 2022), where columns of W ℓ

in[:,i]

and rows of W ℓ
out[i,:] are viewed as keys and val-

ues in Fig. 2, respectively. Given the input xℓ−1
i ,

the keys of MLP produce a vector of cofficients
kℓ
i = γ(W ℓ

inx
ℓ−1
i ) ∈ Rdm , and they weights the

corresponding values vℓ
i in W ℓ

out (See Appendix B
for detailed introduction about MLP):

mℓ
i =

dm∑

n=1

kℓ,n
i vℓ,n

i (4)

Logit lens. Logit lens is a mechanistic inter-
pretability approach to investigate the contribution
of the intermediate layer representation in the au-
toregressive Transformer-based LLMs (Nostalge-
braist, 2020). Based on the architecture of LLMs
above, the P(tT+1|t1:T ) at layer L is the produc-
tion of linear softmax of logits unembedded via
WU , which is the sum of input x0

i and attention and
MLP contributions at each layer ℓ. Therefore, logit
lens can be used to measure the weighted atten-
tion value of each head rℓ,hi ∈ Rd, each weighted
value vector kℓ,n

i vℓ,n
i ∈ Rd at n-th dimensionality

in MLP and intermediate residual stream xℓ
i ∈ Rd

for token i:

logitℓ,hi (rℓ,hi ) = WUσ(r
ℓ,h
i )

logitℓ,ni (mℓ,n
i ) = WUσ(k

ℓ,n
i vℓ,n

i )

logitℓi(x
ℓ
i) = WUσ(x

ℓ
i)

(5)
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Figure 2: Left: the MLP and attention modules of LLMs, where the input prompt is encoded via WE , and then the
processed information via attention and MLP layer is accumulated back to the residual stream Xℓ at layer ℓ. Finally,
the residual stream at L layer is unembedded as logits and normalised as a probability distribution for next token
prediction. Right: logit lens (Nostalgebraist, 2020) is used to investigate the contribution of attention pattern and
MLP module for the next token prediction.

Datasets Train Test A (%) B (%) C (%) D (%) E (%)

IOI (2) - 1000 0 100 - - -
LD (3) - 200 0 50 50 - -
Greater (4) - 1000 0 33.33 33.33 33.33 -
ARC (4) 1.12k 907 20.82 26.18 25.65 25.29 -
CSQA (5) 9.74k 982 19.60 20.25 19.98 20.38 19.79

Table 1: The distribution of correct choices on each
training dataset. IOI, LD, and Greater-than datasets are
manual-synthesised and we did not choose or place the
correct choice at A. For test datasets, we only select sam-
ples whose correct choices are not ‘A’ to avoid overlap
between anchored predictions from GPT2 models and
the correct choice. (·) indicates the number of choices.

4 Preliminaries: Zero-shot Learning with
MCQs

Zero-shot learning. We mainly focus on the
zero-shot learning regarding each GPT2 model,
i.e., the input prompt is formatted as “Question:
<Question sample> Answer Choices: <Multiple
Choices> Answer:”, which is explained in Fig. 1.
After encoding the input prompt, GPT2 model will
decode the next token prediction, which is expected
as the correct answer choice.

Datasets and models. To comprehensively ver-
ify and evaluate the anchored bias of GPT2 family,
we consider 5 datasets, which include different
numbers of choices from 2 to 5. Indirect Object
Identification (IOI) (Wang et al., 2023) and Greater-
than task (Greater) (Hanna et al., 2023): These
two datasets have been verified that GPT2 fam-
ily works well (Wang et al., 2023; Merullo et al.,
2024; Hanna et al., 2023). However, we found
that GPT2 family immediately fails these tasks if
the input prompt is formatted as MCQ in Fig. 1,
where the incorrect subject of the last clause or
incorrect years is placed in the ‘A’ choice and the

prediction is always anchored at incorrect choice
‘A’. Logical Deduction of the Big-Bench (LD)2 (Sri-
vastava et al., 2023): LD is a subtask which eval-
uates three-object logical deduction tasks, and it
is used to measure whether model can parse in-
formation about multiple choices and their mutual
relationships. ARC-Challenge (ARC) (Clark et al.,
2018) and CommensenseQA (CSQA) (Talmor et al.,
2019) are commonly-used MCQ benchmarks to
evaluate LLMs. For each dataset, we split into
90% Infer. set for anchored bias discovering
and mitigation, and 10% Eva. set to evaluate the
modified GPT2 model performance without access-
ing the gold labels. For models, we comprehen-
sively evaluate the GPT2 family, i.e., GPT2-Small-
124M, GPT2-Medium-355M, GPT2-Large-774M,
and GPT2-XL-1.5B (Radford et al., 2019) (See
Appendix C for a detailed introduction of each
dataset).

Evaluation metrics. We use logit lens (Nostal-
gebraist, 2020) introduced in § 3 to localise the
specific layer of MLP and specific attention head
which contribute to the anchored bias (more details
in § 5). Moreover, we use MLP contribution (Geva
et al., 2022) to locate the specific dimensionality
from W ℓ

out which leads to anchored bias. Regard-
ing mitigating anchored bias, we use classification
accuracy to evaluate whether the anchored bias can
be mitigated and GPT2 family can successfully
predict correct choices in MCQ.

5 Discovering Anchored Bias in MCQs

2https://github.com/google/BIG-bench/blob/
main/bigbench/benchmark_tasks/logical_deduction/
three_objects/task.json
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Dist. (%) GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

IOI (2) 45.5 97.4 100.0 85.8
LD (3) 63.0 94.0 100.0 17.0
Greater (4) 32.1 95.0 99.5 98.0
ARC (4) 54.6 91.6 97.6 69.9
CSQA (5) 34.8 81.5 99.6 97.7

Table 2: The distribution of anchored bias ‘A’ happened
for GPT2 family across different datasets.

Frequency of anchored bias in GPT2 family
across all datasets. As introduced in § 4, we
use 5 different datasets with choices from 2 to 5
to investigate the anchored bias. Table 1 shows
that the correct choices distribution of ARC and
CSQA training datasets is balanced from ‘A’ to ‘E’.
In addition, IOI, LD and Greater test datasets are
manually synthesised, and we did not choose or
place the correct choice at ‘A’. For all test datasets,
we only select samples whose correct choice is not
‘A’ to avoid introducing extra bias, i.e., the mix-up
between correct prediction and anchored bias of
GPT2 family. Based on the randomly sampled test
datasets in Table 1, we further calculate the distribu-
tion of anchored bias ‘A’ that happened within each
test dataset when different GPT2 model is used in
Table 2. We can find that GPT2-Large and GPT2-
Medium have the most serious anchored bias, and
GPT2-XL and GPT2-Small have relatively less se-
rious issues. Based on this situation, we mainly
focus on investigating test samples which have an-
chored bias for each dataset. Table 8 in Appendix D
shows the number of test samples for each dataset
and GPT2 model, where Infer. is used to localise
and mitigate anchored bias and Eva. is used to
verify the performance of mitigation.

Locating MLP of GPT2 family for anchored
bias. We first investigate MLP modules within
GPT2 family for anchored bias. Inspired
from (Geva et al., 2021, 2022), the MLP modules
can be regarded as key-value memories. As intro-
duced in § 3 and Fig. 2, the keys of MLP module is
a vector of coefficients kℓ

i = γ(W ℓ
inx

ℓ−1
i ) ∈ Rdm ,

which dynamically controls the contributions of the
corresponding values vℓ

i in W ℓ
out based on different

input prompts. The value vℓ
i is treated as a mem-

ory bank which stores knowledge after the model
pertaining.

Based on the consensus about MLP module, we
aim to solve these research questions: 1) Is MLP
responsible for the anchored bias in GPT2 family?
2) Which layer and dimensionality of MLP is an-
chored bias relevant to? 3) Is this bias stored as

knowledge in a specific value vector of W ℓ
out?

We use logit lens (Nostalgebraist, 2020) to calcu-
late logit of the final input prompt token contribut-
ing to incorrect choice token ‘A’ and correct choice
token ‘B/C/D/E’ based on different datasets using
Eq. 4 and Eq. 53:

logitℓT (m
ℓ
T )[A] = WU [A]σ(m

ℓ
T )

logitℓT (m
ℓ
T )[B/C/D/E] = WU [B/C/D/E]σ(m

ℓ
T )

(6)

where WU [A] ∈ Rd×|A|,WU [B/C/D/E] ∈
Rd×|B/C/D/E|, and |A|, |B/C/D/E| represents the to-
ken number index of ‘A’ and one of token number
index of ‘B/C/D/E’, respectively.

We calculate the MLP logit difference between
anchored bias token ‘A’ and correct choice token
B/C/D/E averaged across all layers and datasets for
each GPT2 model using Infer. test samples. As
shown in Fig. 3, layer 9 in GPT2-Small, layer 20
in GPT2-Medium, layer 34 in GPT2-Large, and
layer 37/38/44 in GPT2-XL are dominant layers4

related to anchored bias. In addition, these lay-
ers are much closer to the final layer of GPT2,
which agrees with (Geva et al., 2022; Gurnee et al.,
2023)’s finding that higher layers in GPT2 are rele-
vant to semantic concepts or complicated tasks. We
also notice that the last one or two layers in each
GPT2 model do not have anchored bias at all, and
they contribute more logits to the correct choice
token ‘B/C/D/E’ than to ‘A’. However, as the an-
chored bias logits are accumulated from previous
layers, the final one or two layers cannot totally
correct this bias.

Based on the pattern from Fig. 3, we further use
MLP contribution (Geva et al., 2022) to localise the
specific dimensionality from W ℓ

out in these identi-
fied layers leading to anchored bias:

Contrib(vℓ,n
T ) = |kℓ,n

T |||vℓ,n
T || (7)

where |kℓ,n
T | is the absolute value of the coefficient

kℓ,n
T , and n ∈ dm. After using Eq. 7, we can locate

the top-10 most dominant weighted value vector
kℓ,n
T vℓ,n

T and dimensionality with the largest contri-
bution of the final input prompt token. We further
calculate logit difference of these identified layers

3The reason why we focus on the final input token is that
the information inside of autoregressive transformer-based
model will accumulate to the final input token for the next
token prediction.

4In this work, the layer number and head number start
from 0.
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Figure 3: MLP logit difference between anchored bias token ‘A’ and correct tokens (one of B,C,D,E), i.e.,
logitℓT [A](m

ℓ
T )− logitℓT [B/C/D/E](m

ℓ
T ) which is averaged within GPT-2 family across all layers and all datasets.

The deeper the blue blocks are at each layer, the more serious the anchored bias is, and vice versa.

Model Vector Top-10 Tokens

GPT2-Small
v9,1853 (100%) ␣The, ␣This, ␣A, ␣There, ␣It, ␣In, ␣We, ␣If, ␣When, ␣An
v9,2859 (61.8%) ␣A, ␣In, ␣The, ␣(, \n, -, ␣", ␣To, ␣No, ‘

GPT2-Medium v20,3713 (79.3%) ␣a, ␣an, a, an, ␣another, ␣something, A, ␣the, ␣some, ␣any

GPT2-Large v34,1541 (100%) ␣A, A, ␣An, ␣Aires, ␣Ae, ␣An, ierrez, AAF, Aim, ␣Aus

GPT2-XL
v44,4967 (98.0%) A, ␣A, a, AIN, aic, acebook, aa, An, AAAA, ae
v38,4191 (100%) ␣a, ␣an, a, ␣of, „ ␣and, ., ␣in, an, ␣the

Table 3: Identified anchored-bias value vectors vℓ,n of
n-row of W ℓ

out at layer ℓ for each GPT2 model, where the
percentage indicates how frequently the specific vℓ,n is
detected as an anchored-bias vector across all datasets,
and ␣ represents single space within the token because
GPT2 tokeniser encodes same word with or without
␣ as different token numbers. For each value vector,
we further unembedded the top-10 tokens, and most of
them are human-interpretable words, which also verify
that pretrained GPT2 family has intrinsic anchored bias
within Wout (See Appendix E for more unembedded
tokens for each GPT2 model).

and dominant dimensionality in MLP of the final in-
put token contributing anchored bias token ‘A’ and
correct choice tokens B/C/D/E using Eq. 5, i.e.,
logitℓ,nT [A](mℓ,n

T )− logitℓ,nT [B/C/D/E](mℓ,n
T ). Then

we select candidates among the top-10 dominant di-
mensionality where difference score is larger than
4. In the Table 3, the vector column demonstrates
the specific value vectors vℓ,n which are responsi-
ble for anchored bias. For each value vector, we
also calculate how frequently it is recognised as an
anchored-bias vector across all datasets for each
GPT2 model. We can find that most identified
value vectors have more than a 50% chance with
anchored bias happening across all datasets and
different GPT2 models. To further verify whether
these value vectors store anchored knowledge bias,

Model Updated Vector New Top-10 Tokens

GPT2-Small
v9,1853 (100%) ␣B, B, ␣b, ␣C, ␣D, ␣P, ␣L, ␣R, ␣H, ␣F
v9,2859 (61.8%) ␣B, B, ␣b, ␣C, ␣D, ␣L, ␣P, ␣R, ␣G, ␣F

GPT2-Medium v20,3713 (79.3%) ␣C, C, ␣B, ␣c, ␣D, ␣G, ␣F, ␣P, ␣CS, ␣T

GPT2-Large v34,1541 (100%) ␣C, ␣A, ␣B, C, ␣c, ␣D, ␣F, ␣P, ␣G, ␣T

GPT2-XL
v44,4967 (98.0%) ␣C, ␣c, C, ␣A, ␣B, ␣D, ␣F, ␣P, ␣T, ␣G
v38,4191 (100%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣F, ␣T, ␣L, ␣R

Table 4: The new top-10 tokens of each updated value
vector for each GPT2 model (See Appendix F for more
new unembedded tokens for each GPT2 model).

we unembedded each value vector logit and se-
lected the top-10 tokens with the highest prob-
ability. As shown in Table 3, we can find that
most top-10 tokens within each value vector are
relevant to ‘A’, e.g., ␣A, A, ␣a, a, etc. This
finding proves that some value vectors in Wout of
GPT2 family store knowledge bias after pertain-
ing, and these knowledge biases will become an-
chored bias when the input prompt is formatted as
MCQ. In addition, most unembedded tokens are
stopwords, e.g., pronouns, articles, prepositions,
etc, which also agrees with the findings that “stop-
words/punctuation” are commonly distributed in
the value vectors of MLP (Geva et al., 2022).

Locating attention heads of GPT2 family for
anchored bias. Following a similar method to lo-
cating anchored bias in MLP, we also aim to solve
these research questions: 1) Is the attention head
also responsible for the anchored bias in GPT2 fam-
ily? 2) Which layer and head of attention pattern is
anchored bias relevant to?

As explained in § 3, attention pattern rℓ,hi,j in-
dicates the weighted average values where token
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GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

Figure 4: Attention pattern logit difference between anchored bias token ‘A’ and correct tokens (one of B,C,D,E),
i.e., logitℓ,hT [A](rℓ,hT ) − logitℓ,hT [B/C/D/E](rℓ,hT ) which is averaged within GPT-2 family across all layers and all
datasets. The deeper the blue blocks are at each layer, the more serious the anchored bias is, and vice versa.

i attend to token j by head h at the layer ℓ. We
use logit lens to analyse the logit difference of fi-
nal input prompt token contribution between an-
chored bias ‘A’ and correct choices ‘B/C/D/E’,
i.e., logitℓ,hT [A](rℓ,hT )− logitℓ,hT [B/C/D/E](rℓ,hT ). As
shown in Fig. 4, L8H1 and L10H8 in GPT2-Small,
L18H12 and L20H5 in GPT2-Medium, L23H8 and
L30H0 in GPT2-Large, L31H9 and L34H145 in
GPT2-XL are dominant heads related to anchored
bias. Those heads are also distributed closer to the
final layer in each GPT2 model. We zoom in on
the L8H1 and L10H8 attention pattern of the final
input token in GPT2-Small using a sample from
IOI dataset. As shown in Fig. 5, the final token ‘:’
attends more weights on the anchored bias token
‘A’ than the correct choice token ‘B’, which agrees
with our identified attention head using logit dif-
ference in Fig. 4. In addition, the full circuit of
anchored bias for each GPT2 model can be built
based on the MLP and attention logit difference in
Fig. 6.

6 Mitigating Anchored Bias in MCQs

Mitigating anchored bias in MLP. According
to findings in § 5, we localise the specific value vec-
tor in MLP related to the anchored bias. We further
aim to solve the following research question: Can
we fix the identified value vector in MLP by updat-
ing its values and editing the biased knowledge?

Following (Dai et al., 2022), we directly modify

5L34H14 indicates layer 34 and head 14 and both of them
start from 0.

and update the identified value vector as6:

vℓ,n = vℓ,n − λ1WU [A] + λ2WU [B/C/D/E] (8)

where λ1 = 1, λ2 = 8. After updating the corre-
sponding value vector in MLP, we utilise the up-
dated GPT2 model to predict the next token of the
same input MCQ prompts. We comprehensively
evaluate each updated GPT2 model with the corre-
sponding modified value vector using Infer. and
Eva. across all datasets. As shown in Table 5,
most updated value vectors achieve high classifi-
cation accuracy regarding MCQ tasks, even with
multiple near 100% or 100% accuracy in v9,1853

of GPT2-Small, v34,1541 of GPT2-Large, v44,4967

and v38,4191 of GPT2-XL. For those value vectors
with around a 60-70% chance of anchored bias hap-
pening across all datasets and different GPT2 mod-
els (i.e., v9,2859 of GPT2-Small, v20,3713 of GPT2-
Medium, v34,2103 of GPT2-Large, and v37,2966 of
GPT2-XL in Appendix G), the classification ac-
curacy still 68.09% averaged all datasets and all
models. This means that the simple and straight-
forward method (i.e., Eq. 8) is effective, and we do
not need to fine-tune the whole GPT2 model to fix
the anchored bias. In addition, such performance
gains can be generalised to the Eva. dataset with-
out accessing gold labels. We further unembedded
the updated value vectors in Table 4, and it shows
that the anchored bias token ‘A’ is significantly re-
moved and the new top-10 tokens for each new

6The [A] and [B/C/D/E] represent the corresponding to-
ken index number from the tokenizer vocabulary. Then
WU [B/C/D/E] means that we extract the token unembedding
vector from WU for token B or C or D or E. For example, if we
assume the token index number of ‘B’ is 358 in the vocabulary,
we will extract the 358-th column from WU ∈ Rd×|V|. Then
we use Eq. 8 to update the value vector by adding back the
unembedding vector multiplied by to the value vector, where
the shape of the value vector and the unembedding vector are
the same.
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L10H8

L8H1

Figure 5: The visualisation of identified anchored-bias attention head L8H1 and L10H8 in the GPT2-Small based on
Fig. 4, where the attention weight of final token ‘:’ mainly attends to ‘A’ rather than ‘B’.
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Figure 6: The full circuit of anchored bias for GPT2-Small model, where each attention head and MLP module are
selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-Small model when threshold is
larger than 4 (See Appendix L for the full circuits of other GPT2 models).

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
v9,2859 (61.8%) 44.6 44.2 100.0 100.0 58.8 92.3 93.7 96.2 60.1 56.4

GPT2-Medium v20,3713 (79.3%) 99.4 98.1 97.1 88.5 30.6 70.2 56.8 60.4 26.9 27.5

GPT2-Large v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 96.7 96.7 99.7 100.0

GPT2-XL
v44,4967 (98.0%) 98.2 97.8 100.0 100.0 100.0 100.0 90.7 90.8 94.8 94.2
v38,4191 (100%) 100.0 100.0 100.0 100.0 94.9 100.0 97.4 96.9 96.5 95.2

Table 5: The classification accuracy of each MCQ infer-
ence (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using
λ2 = 8 (See Appendix G for the ablation study of λ2

with different values).

value vector are replaced with the correct choices
token ‘B/C/D/E’.

Mitigating anchored bias in attention heads.
Based on the located attention heads for each GPT2
model in § 5, we follow the same pattern as fixing
anchored bias in MLP and further propose a recali-
bration approach to mitigate the anchored bias in
the attention head by swapping the attention weight
of rℓ,hT between the position of ‘A’ and ‘B/C/D/E’:

rℓ,hT,p(A) = rℓ,hT,p(B/C/D/E) rℓ,hT,p(B/C/D/E) = rℓ,hT,p(A)
(9)

where p(A) and p(B/C/D/E) indicate the actual
position of anchored bias token ‘A’ and correct
choices token ‘B/C/D/E’ in the input prompts. As
shown in Table 6, the attention recalibration works
in L18H12 of GPT2-Medium, especially for IOI
dataset. This finding means that MLP module plays

Model Head
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Medium L18H12 92.47 90.72 21.76 27.78 3.39 3.16 24.33 21.69 1.67 1.25

GPT2-XL
L31H9 0.0 0.0 9.68 0.0 0.57 0.0 0.53 0.0 0.12 0.0
L34H14 0.0 0.0 12.90 0.0 0.57 0.0 3.33 1.67 0.46 0.0

Table 6: The Top-1 classification accuracy changes after
attention pattern recalibration for each GPT2 model
across all datasets (See Appendix H for other GPT2
model’s results).

an important role than the attention head for the
anchored bias, and the performance of attention re-
calibration depends on the choice of GPT2 model
and dataset.

7 Discussion

Is Few-shot learning helpful? Based on the
comprehensive zero-shot learning MCQ across all
datasets, we have a good understanding of how im-
portant the MLP and attention head are regarding
the anchored bias in the GPT2 family. The follow-
ing question might be whether few-shot learning
can mitigate this anchored bias without updating
specific value vectors in MLP or recalibrating the
attention head. We conduct an experiment to eval-
uate GPT2 family across all datasets using 1-shot
and 2-shot learning settings. The initial finding
is that the anchored bias could be relatively mit-
igated and average MCQ classification accuracy
across GPT2 family is 46.74%, 44.44%, 38.46%

2446



Models CNN (Rouge-Avg) WikiText2 (PPL) PTB (PPL)
GPT2-Small 16.8 / 15.2 31.2 / 33.5 66.1 / 67.4
GPT2-Medium 20.4 / 18.6 23.8 / 25.9 48.2 / 49.7
GPT2-Large 21.5 / 19.9 20.5 / 22.3 41.8 / 43.2
GPT2-XL 21.7 / 20.2 19.1 / 20.1 36.2 / 37.9

Table 7: The performance of different GPT2 models on
three different tasks with random-selected 1000 sam-
ples before and after updating the identified MLP value
vectors in the § 6. We use / to separate the performance
before and after the intervention.

and 23.34% under 1-shot learning and 46.52%,
45.70%, 43.22% and 32.62% under 2-shot learning
(See Appendix I). This result indicates that GPT2
family still struggles to predict correct choices, es-
pecially for GPT2-XL, which needs more investi-
gation in the future.

Is direct value vector updating in MLP harmful
to the general ability of GPT2 for other tasks?
We conduct an experiment to evaluate whether di-
rect value vector updating in MLP is harmful to the
general ability of GPT2-Small for the original IOI
and Greater-than tasks. The experiment shows that
the modified GPT2 family can still achieve the aver-
age 85.8%, 91.1%, 81.7% and 78.8% accuracy on
the original IOI dataset, and 96.1%, 98.0%, 98.5%
and 98.4% on the original Greater-than dataset (See
Appendix J). Although direct value vector updating
in MLP is harmful to the general ability of GPT2
on the original IOI and Greater-than datasets, this
model editing approach does not produce serious
damage, which matches the findings from Gu et al.
(2024). Similarly, we further evaluate the general
ability of GPT-2 families on the CNN and Daily
Mail, WikiText2 and PTB tasks using the iden-
tified value vector of MLP in the § 6. Table 7
demonstrates similar findings to the Appendix J.
However, we need to develop a better and minimal-
harm model editing algorithm in the future.

Is anchored bias sensitive to specific content
of input prompts? We construct two random
MCQ datasets which include random concatenated
characters and random vocabulary words (see Ta-
ble 19 and Table 20 in Appendix K). The result
shows that anchored bias still happens across dif-
ferent GPT2 models, especially for GPT2-Large
and GPT2-XL. This indicates that anchored bias
is insensitive to MCQ input prompts, which also
confirms our findings that GPT2 family exhibit the
anchored bias with significant regularity across var-
ious MCQ datasets.

8 Conclusion

In this work, we identify the anchored bias of GPT2
family, where GPT-2 models consistently favour
the first choice ‘A’ in the MCQ task. Based on
this observation, we comprehensively conduct a
mechanistic analysis of the internal workings of
GPT2 family. We find that some value vectors in
MLP modules with specific layers and dimension-
ality play a significant role in the anchored bias,
and we further use a straightforward but potent
approach to update the corresponding value vec-
tors, which effectively mitigate the anchored bias
in GPT2 family. In addition, some attention heads
also play auxiliary roles in this bias, and the recali-
bration approach works well for the IOI dataset in
GPT2-Medium.
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Limitations

This work mainly focuses on the mechanistic analy-
sis of GPT2 family with the model size from 124M
to 1.5B. It is worth comprehensively investigating
whether larger open-source LLMs have similar an-
chored biases, such as LLaMA-7B-65B, LLaMA2-
7B-70B, LLaMA3-8B-71B, etc. In addition, dif-
ferent LLM architectural backbones might have
different extents of anchored bias, e.g., Mixture
of Experts (MoE) and Mamba with selective state
spaces. It is meaningful to compare how differ-
ent MLPs and attention heads are across different
LLMs above and why anchored bias disappears
if larger LLMs do not have such an issue. More-
over, the knowledge editing approach by directly
updating value vectors from MLPs is not optimal
as it will introduce some extent of damage to the
general ability of GPT2 models. However, how to
develop a better and minimal-harm model editing
algorithm is an open question (Gu et al., 2024),
which is worth exploring in the future.
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A Broader Impacts

Mechanistic interpretability of anchored bias for
the GPT2 family under the MCQ setting is worth
investigating, as it can help us better understand
the inner working mechanism of MLPs and atten-
tion heads for autoregressive Transformer-based
LLMs. The identified MLPs and attention heads
leading to the anchored bias can be used to guide
the larger LLMs development for safer, less biased
and more trustworthy LLMs. Such a mechanistic
analysis approach can be extended to other tasks,
such as LLMs mathematical reasoning, dialogue
generation, and different training methods, such as
chain-of-thoughts (CoTs), reinforcement learning
from human feedback (RLHF), direct preference
optimization. In addition, an adversarial attack
might be used for commercial LLM products when
this anchored bias is analysed. This also encour-
ages researchers to develop much safer and robust
LLMs.

B Detailed Explanations of LLMs
Architecture

We focus on the autoregressive Transformer-based
LLM architecture (Vaswani et al., 2017) based on
prior works (Geva et al., 2021, 2022; Elhage et al.,
2021; Dai et al., 2022; Meng et al., 2022, 2023;
Yuksekgonul et al., 2024) with simplifications in
certain explanations. Given an input prompt con-
taining T tokens (t1, . . . , tT ) and each token ti
belonging to a vocabulary V , tokens are initially
encoded by d-dimensional vectors x0

i ∈ Rd using
an embedding matrix WE ∈ R|V|×d.

The architecture has L layers, and each layer
consists of attention and MLP modules, which
transform token embeddings to residual streams
(xℓ

1, . . . ,x
ℓ
T ) ∈ Xℓ at layer ℓ, where xℓ

i ∈ Rd. The
residual stream at layer ℓ is a place where all at-
tention and MLP modules at layer ℓ read from and
write to (Elhage et al., 2021), and it is updated by
the following equation for token i at layer ℓ:

xℓ
i = xℓ−1

i + aℓi +mℓ
i (10)

Here, aℓi is the attention contribution for token i
and mℓ

i is the MLP contribution at layer ℓ7. At L
layer, the predicted probability distribution for the
next token P(tT+1|t1:T ) is produced following:

P(tT+1|t1:T ) = Softmax
(
WUσ(x

L
T )
)

(11)

where WU ∈ Rd×|V| is unembedding matrix, σ(·)
is pre-unembedding layer normalisation.

The attention module mainly updates each token
residual stream xl−1

i by attending to all previous to-
kens in parallel. Specifically, the attention module
contains QK and OV circuits, where the former
operates WQ,WK ∈ Rd×d matrices and the latter
operates WO,WV ∈ Rd×d matrices, respectively.
Normally, QK circuit determines the attention pat-
tern Aℓ, i.e., where information is moved to and
from the residual stream. OV circuit further de-
termines the attention output aℓi based on the fixed
attention pattern, i.e., what information is from
the previous tokens’ position to the current token
position (Elhage et al., 2021):

Aℓ,h = Softmax

(
(Xℓ−1W ℓ,h

Q )(Xℓ−1W ℓ,h
K )T

√
dh

)

(12)

7We omit the layer normalisation of attention and MLP
modules at layer ℓ for simplification.
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aℓi,j =
H∑

h=1

Aℓ,h
i,j (x

ℓ−1
j W ℓ,h

V )W ℓ,h
O =

H∑

h=1

rℓ,hi,j

(13)
where aℓi,j indicates the attention contribution from
token i to token j, and aℓi =

∑T
j=1 a

ℓ
i,j . Attention

pattern Aℓ,h ∈ RT×T is a lower triangular weight
matrix calculated by the h-th attention head at layer
ℓ, representing that each token can only attend to
previous tokens within autoregressive Transformer-
based LLMs. All matrices are split into multiple
attention heads, i.e., W ℓ,h

Q ,W ℓ,h
K ,W ℓ,h

V ∈ Rd×dh ,

and W ℓ,h
O ∈ Rdh×d for head h. dh is the dimension-

ality of each head, H represents the total number
of attention heads, and dh = d/H . Aℓ,h

i,j is the

i-th row and j-th column entry of Aℓ,h, and rl,hi,j
indicates the weighted average values where token
i attend to token j by head h at the layer ℓ, and
rℓ,hi =

∑T
j=1 r

ℓ,h
i,j .

For MLP module, it receives the xℓ−1
i as input

and updates following:

mℓ
i = γ(W ℓ

inx
ℓ−1
i )W ℓ

out (14)

where γ(·) is activation function, W ℓ
in ∈ Rd×dm ,

and W ℓ
out ∈ Rdm×d. dm is the dimensionality of

MLP module, which is larger than d. MLP module
is normally treated as key-value memories (Geva
et al., 2021, 2022; Elhage et al., 2021; Dai et al.,
2022), where columns of W ℓ

in[:,i] and rows of
W ℓ

out[i,:] are viewed as keys and values, respectively.

Given the input xℓ−1
i , the keys of MLP produce a

vector of cofficients kℓ
i = γ(W ℓ

inx
ℓ−1
i ) ∈ Rdm , and

they weights the corresponding values vℓ
i in W ℓ

out.
Therefore, Eq. 14 can be reformatted as8:

mℓ
i =

dm∑

n=1

kℓ,n
i vℓ,n

i (15)

C Details of Each Dataset and
Experimental Settings

• Indirect Object Identification (IOI) (Wang
et al., 2023): IOI is a manually synthesised
corpus used to understand a specific natural
language task, where sentences such as “Af-
terwards Lisa and Rachel went to the garden,
and Lisa gave a bone to” should be followed
with “Rachel”. When two names are included
in such sentences, the predicted name should

8We omit all bias bQ, bK , bO, bV , bin, bout, bU for simplifi-
cation.

not be the subject of the last clause. This
task has been verified that GPT2 family works
well (Wang et al., 2023; Merullo et al., 2024).
However, we found that GPT2 family imme-
diately fails this task if the input prompt is for-
matted as MCQ, where the incorrect subject
of the last clause is placed in the ‘A’ choice.

• Greater-than task (Greater) (Hanna et al.,
2023): Greater-than task is also a manually
synthesised corpus, which is used to evaluate
GPT2’s ability to sentences such as “The war
lasted from the year 1732 to the year 17”, and
model will predict valid two-digit end years,
i.e., years > 32. However, we found the same
anchored bias like IOI when this task is for-
matted as MCQ in Fig. 1, and GPT2 family
also fails to predict valid years and the pre-
diction is always anchored at incorrect choice
‘A’.

• Logical Deduction of the Big-Bench
(LD)9 (Srivastava et al., 2023): LD is a
subtask which evaluates three-object logical
deduction tasks, and it is used to measure
whether model can parse information about
multiple choices and their mutual relation-
ships. Each MCQ in the task includes three
similar objects in a naturally ordered context
(e.g., books of various colours sitting on a
shelf) and a set of simple clues regarding
their placement (e.g., "the red book is to the
right of the green book") such that no clue
is redundant. The challenge is to assign the
highest probability to correct MCQ choice
about which object lies at which position.

• ARC-Challenge (ARC) (Clark et al., 2018):
ARC is a real grade-school level, multiple-
choice science questions, which includes Easy
and Challenge versions. We choose the Chal-
lenge version to evaluate the anchored bias.

• CommensenseQA (CSQA) (Talmor et al.,
2019): CSQA is a new multiple-choice ques-
tion answering dataset that requires different
types of commonsense knowledge to predict
the correct answers.

All GPT2 models are run during inference time and
parameters inside of each GPT2 model are frozen.

9https://github.com/google/BIG-bench/blob/
main/bigbench/benchmark_tasks/logical_deduction/
three_objects/task.json
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All experiments can be easily run using CPU or
GPU, e.g., Apple Macbook Pro with M1 Pro chip
or NVIDIA 3090 Ti with 24GB GPU RAM.

D The Statistic Information of Each Test
Dataset for GPT2 Models

We split each dataset into 90% Infer. set for
anchored bias discovering and mitigation, and 10%
Eva. set for modified GPT2 model verification on
the MCQ task. Table 8 shows the number of test
data samples for each dataset.

Num.
GPT2-Small GPT2-Medium GPT2-Large GPT2-XL
Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

IOI (2) 410 45 877 97 900 100 773 85
LD (3) 114 12 170 18 180 20 31 3
Greater (4) 289 32 856 95 897 99 883 98
ARC (4) 446 49 748 83 797 88 571 63
CSQA (5) 308 34 720 80 881 97 864 95

Table 8: Statistic of the test datasets for each GPT2
model, where Infer. represents 90% test dataset used
to discover and mitigate anchored bias, and Eva. repre-
sents 10% test dataset used to verify the performance of
updated GPT2 models.

E Top-10 Unembeded Tokens from
Identified Value Vectors

We unembedded more identified anchored-bias
value vectors in Table 9, and we can find there are
several tokens related to ‘A’, such as ␣a, ␣first,
␣First, ␣1, ␣A.

F Top-10 Unembedded Tokens from
Updated Value Vectors

After directly updating each identified value vec-
tor from MLP, we further unembedded them and
selected the top-10 tokens with the highest prob-
ability. Table 10 shows that those top-10 tokens
changes from original ‘A’ to other correct choice
tokens, i.e., B, C, D, E.

G Ablation Study of Different λ2 in Eq. 8

We conduct an ablation study by changing λ2 from
8 to 2 in Eq. 8, and evaluate the classification ac-
curacy of each Infer. and Eva. dataset using GPT2
family. Table 11,12,13,14,15,16,17 show the abla-
tion study results under different λ2. We can find
that the classification accuracy shows a decreas-
ing trend with λ2 from 8 to 2, which indicates that
the effect of direct value vector update using Eq. 8
decreases.

H Top-1 Classification Accuracy Changes
Using Attention Pattern Recalibration

We also evaluate the top-1 classification accuracy
when the attention pattern recalibration is used to
the identified attention head. In Table 18, we can
find that most top-1 classification accuracy is close
to 0%, which indicates that those identified atten-
tion heads play less important roles compared to
specific MLP modules in each GPT2 model under
the MCQ task setting.

I One-shot and Two-shot MCQ
Classification Results

Based on the discussion in § 7, we further conduct
an experiment to evaluate whether the anchored
bias can be mitigated under the few-shot learn-
ing setting. Fig. 7 and Fig. 8 show that 2-shot
leaning performs better than 1-shot setting across
all datasets, especially for IOI dataset. However,
GPT2-XL always struggle to predict higher accu-
racy across all datasets. This finding indicates that
simple few-shot learning cannot mitigate anchored
bias and a more comprehensive analysis is needed
to investigate this bias.

J Damage to Updated GPT2 Family’s
Performance on IOI and Greater
Datasets

Based on the discussion in § 7, we further evaluate
the damage of direct value vector update from MLP
for the general ability of GPT2 family. We choose
original IOI and Greater-than datasets as they have
been verified that GPT2 family works well (Wang
et al., 2023; Merullo et al., 2024; Hanna et al.,
2023). Fig. 9 and Fig. 10 show that classification
accuracy is acceptable when a value vector with a
specific layer and dimensionality is updated, which
matches the findings from Gu et al. (2024).

K MCQ Prompt Template with Random
Words

In order to evaluate whether anchored bias is sen-
sitive to the specific content of the input MCQ
prompts, we built two random MCQ datasets. One
of them contains randomly selected characters and
we concatenate them as a word with length from
5 to 10, and each MCQ prompt is built based on
“Question: <Question sample> Answer Choices:
<Multiple Choices> Answer:”. For the random
word dataset, we randomly select words from a
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Model Vector Top-10 Tokens

GPT2-Small v9,788 (50.0%) ␣and, ␣in, ␣to, ␣or, ␣a, ␣at, ␣the, ␣..., ␣that, "

GPT2-Medium v20,1731(38.2%) ␣first, ␣First, first, ␣FIRST, First, ␣1, 1, ␣Firstly, Firstly, ␣begin

GPT2-Large
v34,2103(70.1%) romeda, maxwell, ドラゴン, lvl, mobi, elaide, amsung, nil, 911, dylib
v34,4178 (55.4%) reply, interstitial, ␣emer, 76561, ␣err, sg, ␣whe, eers, oi, ␣ignor

GPT2-XL

v44,2995 (27.5%) ggles, atchewan, ␣aw, ␣let, eed, ␣ont, wn, ␣be, gg, ␣palp
v44,128 (22.7%) ␣A, ␣C, ␣E, ␣B, ␣S, ␣G, ␣F, ␣P, ␣D, ␣K
v38,4174 (20.2%) ␣A, „ ␣and, ␣a, ␣at, ., ␣of, ␣as, ␣on, ␣(
v37,423 (91.8%) ␣The, ␣This, ␣It, ␣There, ␣A, ␣If, ␣You, ␣We, ␣These, ␣When
v37,2966 (66.2%) ␣a, ␣an, „ ␣and, ␣to, ␣the, ␣in, ␣(, ␣one, .

Table 9: Identified anchored-bias value vectors vℓ,n of n-row of W ℓ
out at layer ℓ for each GPT2 model, where the

percentage indicates how frequently the specific vℓ,n is detected as an anchored-bias vector across all datasets,
and ␣ represents single space within the token because GPT2 tokeniser encodes same word with or without ␣ as
different token numbers. For each value vector, we further unembeded the top-10 tokens, and most of them are
human-interpretable words, which also verify that pretrained GPT2 family has intrinsic anchored bias within Wout.

Model Updated Vector New Top-10 Tokens

GPT2-Small v9,788 (50.0%) ␣B, ␣b, B, ␣C, ␣D, ␣L, ␣P, ␣R, ␣G, ␣BC

GPT2-Medium v20,1731 (38.2%) ␣C, C, ␣B, ␣c, ␣D, ␣CS, ␣F, ␣P, ␣G, ␣T

GPT2-Large
v34,2103 (70.1%) ␣C, ␣c, C, ␣B, ␣D, ␣F, ␣P, ␣G, ␣T, ␣M
v34,4178 (55.4%) ␣C, ␣c, C, ␣B, ␣P, ␣D, ␣F, ␣G, ␣T, ␣L

GPT2-XL

v44,2995 (27.5%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣T, ␣F, ␣R, ␣G
v44,128 (22.7%) ␣A, ␣C, ␣E, ␣B, ␣S, ␣G, ␣F, ␣P, ␣D, ␣K
v38,4174 (20.2%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣F, ␣T, ␣L, ␣S
v37,423 (91.8%) ␣C, ␣c, C, ␣B, ␣D, ␣F, ␣P, ␣T, ␣L, ␣G
v37,2966 (66.2%) ␣C, ␣c, C, ␣B, ␣D, ␣P, ␣F, ␣T, ␣G, ␣L

Table 10: The new top-10 tokens of each updated value
vector for each GPT2 model.

word vocabulary10. Finally, each dataset has 80
samples with the number of choices from 2 to 5
(see Table 20). As shown in Table 19, anchored
bias still happens across GPT2 family, especially
for GPT2-Large and GPT2-XL. This finding con-
firms our findings that GPT2 family exhibit the
anchored bias with significant regularity across var-
ious MCQ datasets.

L Full Circuit of Anchored Bias of Each
GPT2 Model

Based on the identified MLP module and atten-
tion head using logit difference between anchored
choice ‘A’ and correct choices ‘B,C,D,E’. We
can construct the full anchored-bias circuit for each
GPT2 model. Fig. 11,12,13 show the full anchored-
bias circuit of GPT2-Medium, GPT2-Large and
GPT2-XL including identified attention heads and
MLPs starting from layer 0 to the final layer.

10https://www.mit.edu/~ecprice/wordlist.10000
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium v20,1731 (38.2%) 33.6 33.7 81.8 50.0 0.0 0.0 51.2 51.6 22.4 23.1

GPT2-Large
v34,2103 (70.1%) 71.2 63.5 55.6 57.7 32.0 96.2 49.7 50.5 52.9 49.0
v34,4178 (55.4%) 25.1 21.2 12.2 19.2 33.2 93.3 45.2 46.2 55.1 57.7

GPT2-XL

v44,2995 (27.5%) 24.8 36.3 100.0 100.0 99.2 100.0 93.3 92.3 92.7 94.2
v44,128 (22.7%) 67.8 64.8 96.8 100.0 100.0 100.0 91.1 90.8 92.5 95.2
v38,4174 (20.2%) 11.4 16.5 38.7 23.1 44.6 75.0 21.0 26.2 7.5 7.7
v37,423 (91.8%) 54.3 60.4 100.0 100.0 93.5 100.0 76.9 81.5 39.5 36.5
v37,2966 (66.2%) 34.0 31.9 100.0 100.0 77.2 97.1 73.7 76.9 55.2 60.6

Table 11: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 8.

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 99.5 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0
v9,2859 (61.8%) 22.7 26.9 100.0 100.0 37.8 69.2 89.2 96.2 45.8 41.0
v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium
v20,3713 (79.3%) 97.7 95.2 90.6 73.1 17.3 47.1 43.0 52.7 14.2 8.8
v20,1731 (38.2%) 27.6 26.9 61.2 30.8 0.0 0.0 41.4 47.3 13.8 8.8

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 95.7 95.6 99.2 99.0
v34,2103 (70.1%) 57.6 54.8 40.6 46.2 26.6 85.6 38.6 38.5 42.6 39.4
v34,4178 (55.4%) 16.8 16.3 2.2 3.8 27.0 85.6 35.5 37.4 45.5 45.2

GPT2-XL

v44,4967 (98.0%) 97.4 96.7 96.8 92.3 99.8 100.0 87.6 90.8 91.6 92.3
v44,2995 (27.5%) 18.6 30.8 100.0 100.0 97.7 100.0 91.9 92.3 86.9 89.4
v44,128 (22.7%) 59.6 59.3 93.5 92.3 100.0 100.0 90.0 90.8 89.7 92.3
v38,4191 (100%) 99.4 100.0 100.0 100.0 88.0 100.0 96.1 95.4 92.6 89.4
v38,4174 (20.2%) 6.7 7.7 38.7 23.1 37.8 60.6 16.3 18.5 4.7 4.8
v37,423 (91.8%) 38.2 41.8 100.0 100.0 86.9 100.0 67.3 70.8 30.1 29.8
v37,2966 (66.2%) 22.3 26.4 93.5 84.6 71.3 96.2 65.7 64.6 44.6 48.1

Table 12: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 7.
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 96.1 96.2 100.0 100.0 94.8 100.0 98.7 98.1 99.4 97.4
v9,2859 (61.8%) 7.6 7.7 92.1 100.0 20.1 38.5 79.8 84.6 25.6 25.6
v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium
v20,3713 (79.3%) 92.5 90.4 77.6 26.9 7.8 26.0 29.3 37.4 4.9 2.2
v20,1731 (38.2%) 22.0 20.2 31.2 11.5 0.0 0.0 29.7 36.3 7.1 5.5

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 93.1 91.2 97.8 97.1
v34,2103 (70.1%) 39.8 37.5 20.6 46.2 14.8 51.9 28.7 29.7 30.8 26.9
v34,4178 (55.4%) 9.8 7.7 0.6 0.0 15.7 51.0 26.1 28.6 35.0 31.7

GPT2-XL

v44,4967 (98.0%) 95.2 95.6 93.5 84.6 99.4 100.0 84.2 90.8 85.5 87.5
v44,2995 (27.5%) 12.9 19.8 96.8 92.3 93.1 100.0 87.9 92.3 76.6 85.6
v44,128 (22.7%) 50.7 50.5 90.3 84.6 99.8 100.0 87.6 89.2 84.8 87.5
v38,4191 (100%) 96.9 98.9 100.0 100.0 78.1 100.0 95.1 95.4 82.5 83.7
v38,4174 (20.2%) 3.2 5.5 35.5 23.1 29.9 47.1 13.0 16.9 2.7 1.0
v37,423 (91.8%) 23.2 27.5 100.0 100.0 80.3 100.0 57.8 60.0 20.5 17.3
v37,2966 (66.2%) 12.5 15.4 77.4 76.9 60.7 92.3 56.0 56.9 32.4 29.8

Table 13: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 6.

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 76.8 82.7 100.0 100.0 69.2 100.0 93.0 96.2 96.1 94.9
v9,2859 (61.8%) 1.2 3.8 48.2 69.2 4.5 12.8 63.2 69.2 12.3 12.8
v9,788 (50.0%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

GPT2-Medium
v20,3713 (79.3%) 79.8 76.9 50.0 0.0 0.9 1.9 18.9 24.2 0.8 0.0
v20,1731 (38.2%) 15.7 15.4 10.0 0.0 0.0 0.0 20.2 18.7 3.1 2.2

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 100.0 100.0 87.6 83.5 95.3 95.2
v34,2103 (70.1%) 23.4 17.3 7.8 26.9 3.6 10.6 20.2 13.2 21.2 14.4
v34,4178 (55.4%) 4.6 2.9 0.0 0.0 5.4 20.2 17.4 16.5 25.1 17.3

GPT2-XL

v44,4967 (98.0%) 88.6 90.1 77.4 69.2 95.8 100.0 77.6 84.6 76.0 78.8
v44,2995 (27.5%) 7.2 15.4 90.3 84.6 86.2 98.1 82.7 84.6 61.0 69.2
v44,128 (22.7%) 38.9 41.8 83.9 84.6 98.5 100.0 82.5 86.2 74.8 76.0
v38,4191 (100%) 85.0 87.9 100.0 100.0 68.4 99.0 88.1 87.7 64.4 67.3
v38,4174 (20.2%) 1.3 4.4 32.3 15.4 21.1 35.6 9.3 13.8 1.7 0.0
v37,423 (91.8%) 12.5 17.6 96.8 100.0 69.8 95.2 47.8 47.7 13.5 13.5
v37,2966 (66.2%) 5.6 8.8 64.5 61.5 49.2 73.1 43.4 40.0 21.2 20.2

Table 14: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 5.
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 30.7 36.5 58.8 69.2 26.3 59.0 63.9 73.1 64.9 69.2
v9,2859 (61.8%) 0.0 0.0 3.5 0.0 0.0 0.0 35.0 44.2 2.3 2.6
v9,788 (50.0%) 99.5 100.0 100.0 100.0 100.0 100.0 97.8 100.0 99.7 100.0

GPT2-Medium
v20,3713 (79.3%) 59.4 55.8 16.5 0.0 0.0 0.0 7.6 9.9 0.1 0.0
v20,1731 (38.2%) 11.1 9.6 0.6 0.0 0.0 0.0 10.4 13.2 1.0 0.0

GPT2-Large
v34,1541 (100%) 100.0 100.0 100.0 100.0 98.2 100.0 80.7 79.1 86.8 89.4
v34,2103 (70.1%) 10.3 4.8 1.1 0.0 0.1 0.0 10.9 8.8 12.6 5.8
v34,4178 (55.4%) 2.2 1.9 0.0 0.0 0.6 1.0 12.3 9.9 15.9 10.6

GPT2-XL

v44,4967 (98.0%) 74.6 76.9 61.3 38.5 85.7 100.0 68.0 76.9 57.4 62.5
v44,2995 (27.5%) 4.1 9.9 77.4 61.5 73.4 96.2 73.9 75.4 42.9 50.0
v44,128 (22.7%) 26.3 31.9 71.0 61.5 92.1 99.0 75.7 78.5 58.9 65.4
v38,4191 (100%) 58.9 57.1 71.0 61.5 58.1 90.4 75.5 75.4 43.2 45.2
v38,4174 (20.2%) 0.5 2.2 32.3 15.4 13.1 22.1 6.8 10.8 1.2 0.0
v37,423 (91.8%) 4.4 3.3 80.6 76.9 54.9 76.0 34.7 38.5 7.5 4.8
v37,2966 (66.2%) 1.9 4.4 51.6 38.5 33.5 54.8 32.2 30.8 11.1 7.7

Table 15: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 4.

Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 1.7 1.9 0.0 0.0 2.1 10.3 16.8 23.1 14.3 15.4
v9,2859 (61.8%) 0.0 0.0 0.0 0.0 0.0 0.0 8.5 9.6 0.0 0.0
v9,788 (50.0%) 67.6 71.2 71.1 76.9 98.3 100.0 70.6 73.1 92.9 97.4

GPT2-Medium
v20,3713 (79.3%) 34.7 31.7 0.0 0.0 0.0 0.0 1.5 3.3 0.0 0.0
v20,1731 (38.2%) 8.1 4.8 0.0 0.0 0.0 0.0 4.8 6.6 0.4 0.0

GPT2-Large
v34,1541 (100%) 100.0 100.0 95.0 100.0 67.7 100.0 65.1 68.1 70.4 72.1
v34,2103(70.1%) 3.1 1.9 0.0 0.0 0.0 0.0 6.1 3.3 5.8 4.8
v34,4178 (55.4%) 0.9 0.0 0.0 0.0 0.0 0.0 6.1 4.4 6.5 5.8

GPT2-XL

v44,4967 (98.0%) 51.2 58.2 61.3 38.5 64.2 91.3 52.0 53.8 33.3 34.6
v44,2995 (27.5%) 1.8 4.4 61.3 46.2 49.8 78.8 56.4 58.5 24.0 24.0
v44,128 (22.7%) 12.7 17.6 54.8 53.8 76.6 94.2 61.8 64.6 40.4 42.3
v38,4191 (100%) 21.7 27.5 58.1 38.5 38.1 63.5 54.1 63.1 19.7 21.2
v38,4174 (20.2%) 0.1 0.0 29.0 7.7 6.2 13.5 4.4 6.2 0.8 0.0
v37,423 (91.8%) 1.3 2.2 67.7 53.8 34.7 52.9 22.2 24.6 3.7 3.8
v37,2966 (66.2%) 0.5 1.1 48.4 30.8 19.6 37.5 22.2 18.5 6.6 5.8

Table 16: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 3.
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Model Vector
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
v9,1853 (100%) 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.9 1.0 0.0
v9,2859 (61.8%) 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.9 0.0 0.0
v9,788 (50.0%) 5.4 7.7 0.0 0.0 24.2 53.8 15.5 19.2 26.9 30.8

GPT2-Medium
v20,3713 (79.3%) 15.6 16.3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0
v20,1731 (38.2%) 4.2 1.9 0.0 0.0 0.0 0.0 1.7 4.3 0.0 0.0

GPT2-Large
v34,1541 (100%) 99.9 100.0 66.1 69.2 34.4 100.0 37.5 37.4 39.5 34.6
v34,2103 (70.1%) 0.6 1.0 0.0 0.0 0.0 0.0 2.3 2.2 1.8 1.9
v34,4178 (55.4%) 0.1 0.0 0.0 0.0 0.0 0.0 2.1 1.1 2.7 2.9

GPT2-XL

v44,4967 (98.0%) 18.5 17.6 48.4 23.1 33.3 62.5 31.7 33.8 13.8 14.4
v44,2995 (27.5%) 0.6 2.2 48.4 30.8 25.4 49.0 36.1 35.4 9.0 5.8
v44,128 (22.7%) 4.0 7.7 48.4 38.5 48.9 76.9 43.1 38.5 18.9 20.2
v38,4191 (100%) 4.3 6.6 41.9 23.1 16.1 28.8 28.9 29.2 6.5 5.8
v38,4174 (20.2%) 0.0 0.0 22.6 7.7 2.8 4.8 2.5 4.6 0.5 0.0
v37,423 (91.8%) 0.4 1.1 48.4 30.8 15.6 32.7 12.3 12.3 1.5 1.9
v37,2966 (66.2%) 0.1 0.0 32.3 15.4 7.5 15.4 11.2 15.4 2.0 0.0

Table 17: The classification accuracy of each MCQ inference (Infer.) and evaluation (Eva.) dataset after updating
the identified value vectors for each GPT2 model using λ2 = 2.

Model Head
IOI (2) LD (3) Greater (4) ARC (4) CSQA (5)

Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva. Infer. Eva.

GPT2-Small
L8H1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.04 0.0 0.0
L10H8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.04 0.0 0.0

GPT2-Medium
L18H12 92.47 90.72 21.76 27.78 3.39 3.16 24.33 21.69 1.67 1.25
L20H5 0.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPT2-Large
L23H8 0.0 0.0 0.0 0.0 0.0 0.0 0.38 1.14 0.0 2.06
L30H0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GPT2-XL
L31H9 0.0 0.0 9.68 0.0 0.57 0.0 0.53 0.0 0.12 0.0
L34H14 0.0 0.0 12.90 0.0 0.57 0.0 3.33 1.67 0.46 0.0

Table 18: The Top-1 classification accuracy changes after attention pattern recalibration for each GPT2 model
across all datasets.
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Figure 7: One-shot MCQ classification accuracy of different datasets across GPT2 family.

Figure 8: Two-shot MCQ classification accuracy of different datasets across GPT2 family.
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Figure 9: Damage to updated GPT2 family’s classification accuracy on original IOI dataset using Eq. 8 with λ2 = 8.

Figure 10: Damage to updated GPT2 family’s classification accuracy on original Greater dataset using Eq. 8 with
λ2 = 8.
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Figure 11: The full circuit of anchored bias for GPT2-Medium model, where each attention head and MLP module
are selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-Medium model when the
threshold is larger than 4.
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Figure 12: The full circuit of anchored bias for GPT2-Large model, where each attention head and MLP module
are selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within
each module indicates the probability of anchored bias across different datasets for GPT2-Large model when the
threshold is larger than 4.
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Figure 13: The full circuit of anchored bias for GPT2-XL model, where each attention head and MLP module are
selected when MLP and attention pattern logit difference threshold is larger than 4. The percentage within each
module indicates the probability of anchored bias across different datasets for GPT2-XL model when the threshold
is larger than 4.
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Type GPT2-Small GPT2-Medium GPT2-Large GPT2-XL

Random Characters 70.0 69.0 99.0 96.0
Random Words 65.0 82.0 95.0 100.0

Table 19: The percentage of anchored bias occurring
when MCQ prompt template is replaced with random
characters and random words.
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Random
Charac-
ters

Question: cgryp rkodmajc ajwsqby jnqqaqcmsa agbyyasj ibng-
bxtn dazvqigre urbnmumw ltpjslayp ighfudgy hbaldde? Answer
Choices: A: samdaheepw ltvlpeh B: rqqtxdgiyb rznosxhk djpsitdar
ubjgq ioamje C: bkdjziiy Answer:

Random
Words

Question: citysearch logical bidder discount kentucky forming
rapid digit flash putting reid liechtenstein mate? Answer Choices:
A: seven owner voluntary B: clicking it C: harassment beam
firewire D: run helpful Answer:

Table 20: The MCQ prompt template with random characters and random words.
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