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Abstract

Reinforcement Learning from Human Feed-
back (RLHF) has become an essential tech-
nique for enhancing pre-trained large language
models (LLMs) to generate responses that
align with human preferences and societal val-
ues. Although RLHF has shown promise, the
training of reward models (RMs) still faces
the challenge of reward hacking, motivating
recent works to prevent RMs from finding
shortcuts that bypass the intended optimiza-
tion objectives by identifying simplistic pat-
terns such as response length. Besides the is-
sue of length bias, our work firstly reveals that
prompt-template bias learned by RMs can also
cause reward hacking when dealing with some
marginal samples, resulting in LLMs preferring
to generate responses in a specific format af-
ter RLHF fine-tuning, regardless of the format
requested in the prompt. To this end, we pro-
pose a low-cost but effective method, namely
Prompt Bias Calibration (PBC), to estimate the
prompt-template bias term during reward mod-
eling, which can be utilized to calibrate reward
scores in the following RL fine-tuning process.
Then, we show that our PBC method can be
flexibly combined with existing algorithms of
removing length bias, leading to a further im-
provement in the aspect of enhancing the qual-
ity of generated responses.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) has become a critical technique to en-
able pre-trained large language models (LLMs) to
follow human instructions, understand human in-
tent, and also generate responses that align with
human preferences and societal values (Ouyang
et al., 2022; Rafailov et al., 2024; Ethayarajh et al.,
2024; Yin et al., 2024). Specifically, RLHF usually
trains a reward model (RM) to act as the proxy of
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human preferences, and then utilizes online rein-
forcement learning (RL) algorithms to fine-tune
the language models to generate responses that can
achieve higher expectation rewards, leading to the
success of ChatGPT and also many other AI appli-
cations (Team et al., 2023; Achiam et al., 2023).
Although the paradigm of RLHF has simplified
the human data collection procedure, as acquir-
ing human ratings is much easier than collecting
demonstrations for supervised fine-tuning (SFT), it
still requires a large amount of human-annotated
preference pairs to train well-performing RMs in
practice, motivating recent researchers to look for
novel alignment methods to bypass RM training
(Rafailov et al., 2024; Ethayarajh et al., 2024; Yin
et al., 2024). However, the original RLHF pipeline
is still the primary choice for the industry, because
well-trained RMs can provide a certain level of
generalizability (Li et al., 2023).

In addition to the high costs associated with gath-
ering large amounts of human-annotated preference
data, another significant concern often raised about
RLHF is the issue of reward hacking (Eisenstein
et al., 2023), where the over-optimized RMs tend
to find some shortcuts to bypass their intended op-
timization objective, through identifying some sim-
ple patterns to distinguish between good and bad
responses (Gao et al., 2023). The most widely stud-
ied pattern in reward hacking could be the sentence
(response) length, and these trained RMs can uti-
lize the preference among human raters for longer
responses to achieve reward hacking, despite the ac-
tual quality of response does not improve with the
increase of response length (Singhal et al., 2023).
Thus, to mitigate reward hacking, recent work has
primarily focused on estimating the length bias
term in the reward scoring process, so that it can
be removed in the subsequent RL fine-tuning pro-
cedure to further improve the quality of generated
responses (Chen et al., 2024; Shen et al., 2023).

Besides the issue of length bias, in the practice
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of applying RLHF to industrial products, we have
observed that the original implementation of RLHF
tends to make LLMs prefer generating responses
in a specific format. This observation motivates
us to investigate the underlying causes and find a
cost-effective solution to address this issue. The
main contributions are summarized as follows:

• We are the first to reveal the existence of
prompt-template bias in RMs trained with
Bradley-Terry preference loss, and theoreti-
cally analyze the cause of prompt-template
bias issue, along with its corresponding poten-
tial risks on the entire RLHF process;

• To mitigate the reward hacking caused by
prompt-template bias, we develop a Prompt
Bias Calibration (PBC) method, which will
estimate the prompt-template bias term during
the reward scoring process, and then remove
it in the subsequent RL fine-tuning process;

• We show that the developed PBC method can
be flexibly combined with existing methods
of removing length bias, leading to a further
improvement in the aspect of enhancing the
quality of generated responses;

• Experimental results show that our developed
PCB method and its extensions can achieve
promising performance improvements com-
pared to the original implementation of RLHF.

2 Preliminary

2.1 Reward Model Training
The typical objective of optimizing a reward model
is to minimize the loss based on the Bradley–Terry
model (Bradley and Terry, 1952) using a dataset of
pairwise comparisons of model responses, denoted
as (x, y+, y−) ∈ D where x indicates the input
prompt, y+ and y− are the chosen and rejected re-
sponses respectively. Then, the objective function
can be formulated as

LRM (θ) = (1)

− E(x,y+,y−)∼D
[
log(σ(rθ(x, y

+)− rθ(x, y
−))

]

where rθ(x, y) denotes the reward model that takes
the prompt x and response y as input to predict a
scalar reward with trainable parameters θ; σ de-
notes the Sigmoid function.

Length Bias: Denote rθ∗(x, y) as the “gold stan-
dard” reward model (Gao et al., 2023) with the op-
timal parameters θ∗, it reflects human’s intrinsic

ranking preferences and can play a role of human
rater to provide gold reward signal for each prompt-
response pair. However, due to the subjectivity
of ranking preferences and flaws in rating criteria,
there is a phenomenon where human raters pre-
fer longer responses that appear more detailed or
strictly formatted, but their actual quality does not
improve (Singhal et al., 2023). Thus, the “gold
standard” reward model for rating preference data
can often be biased and thus we can decompose it
to disentangle the actual reward from the spurious
reward (Chen et al., 2024), formulated as

rθ∗(x, y) = rQθ∗(x, y) + rLθ∗(x, y), (2)

where rQθ∗(x, y) is the actual reward gains brought
by improving the quality of response y; rLθ∗(x, y)
is the spurious reward gains of increasing response
length, whose patterns are much easier to identify.

Thus, with length bias in the “gold standard”
rθ∗(x, y), during the training of reward model,
rθ(x, y) can easily find shortcuts to bypass its in-
tended optimization objective, through identifying
simple patterns, such as sentence (response) length,
to distinguish between good and bad responses,
leading to the phenomenon of “reward hacking”
caused by length bias (Singhal et al., 2023). With-
out increasing the cost of rating higher quality pref-
erence data, it becomes increasingly important and
beneficial to study mitigating the impact of length
bias in the process of reward modeling.

Prompt Bias: the prompt bias in reward mod-
eling derives from the underdetermination of
Bradley-Terry model (Bradley and Terry, 1952).
For any reward model rθ′ (x, y) learned from the
preference loss defined in Eq. (1), whose target
is optimized to approximate the “gold standard”
rθ∗(x, y), there always exists an equivalent reward
model rθ(x, y) that satisfies

rθ(x, y) := rθ′ (x, y) + C(x) (3)

where C(x) is a prompt-dependent constant re-
ferred to as prompt bias, leading to the same loss
value as L(θ) = L(θ′

). Due to the fact that there
is no constraint on C(x) in the original preference
loss as defined in Eq. (1), the issue of prompt bias
has been criticized in the scenario of reward model
ensembles (Eisenstein et al., 2023), where differ-
ent reward models tend to choose different values
for C(x), making the statistics of the set of reward
scores meaningless.
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Figure 1: Comparison of the RM training process using the Bradley–Terry loss and our developed PBC method
respectively, where the latter employs a bias head to approximate the prompt-template bias C(x, y), providing
unbiased reward distribution rθ′ (x, y) with a lower variance compared to rθ(x, y) for the subsequent RL fine-tuning.

2.2 RLHF Fine-tuning

Given the trained reward model rθ(x, y) as the
proxy of human preferences, Reinforcement Learn-
ing from Human Feedback (RLHF) tends to utilize
an online reinforcement learning method, typically
proximal policy optimization (PPO) (Schulman
et al., 2017), trains a policy language model πRL

ϕ

to maximize expected reward, while staying close
to its initial policy πSFT

ϕ , which is finetuned on
supervised data (prompt-response pairs). Through
measuring the distance from the initial policy with
Kullback-Leibler (KL) divergence, the optimiza-
tion objective can be formulated as

LRL(ϕ) = E(x,y)∼D
πRL
ϕ

[ (4)

rθ(x, y)− β log
[
πRL
ϕ (y|x)/πSFT (y|x)

]
] ,

where β is the hyper-parameter to control the
strength of the KL divergence term.

3 Method

3.1 What is prompt-template bias

In this part, we will first illustrate the cause of
prompt-template bias during RM training. For-
mally, given a set of prompt-response pairs, de-
noted as Da = {xa, y(i)a }Na

i=1, with the same user
prompt xa, e.g. “writing an academic paper on the
field of computer science”, and {y(i)a }Na

i=1 denoting
the set of collected academic papers to satisfy the
request of xa, the prompt bias term, specifically
C(xa), learned by RMs is supposed to not affect

the preference order within Da, as discussed in Sec-
tion 2.1. However, in the practice of RM training,
the reward score is usually predicted by a LLM
that takes the concatenation of the prompt and re-
sponse as input, making it challenging for RMs to
learn a bias term that focuses solely on the prompt
x while disregarding variations in the subsequent
response y. During the training process to order
the pairs within Da, we find that RMs trained with
the Bradley–Terry loss in Eq. (1) are more likely
to introduce a joint bias term across the entire se-
quence of concatenating the prompt and response,
formulated as

rθ(xa, ya) := rθ′ (xa, ya) + C(xa, ya), (5)

where ya = 1
Na

∑Na
i=1 y

(i)
a can be considered the

average response of the response set {y(i)a }Na
i=1, and

it will embody the common characteristics found
within these collected responses, such as the for-
mat of academic paper; C(xa, ya) denotes the
joint bias on the entire sequence of the prompt
xa associated with the average response ya in the
format of academic paper; rθ(xa, ya) is still sup-
posed to approximate the “gold standard” provided
by rθ∗(xa, ya), leading to EDa [rθ′(xa, ya)] ≈
EDa [rθ∗(xa, ya)].

Considering the average response y can be
treated as a standard template of the response to
the prompt x, we name the joint bias C(x, y) as
prompt-template bias. Then, we highlight the prop-
erties of prompt-template bias as follows:
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• the typical preference loss in Eq. (1) imposes
no constraints on C(x, y), because its value
will not influence the outcome of the prefer-
ence loss and also not affect the preference
order within the prompt-response pairs col-
lected for the same prompt x;

• C(x, y) will reduce to the original prompt bias
C(x,−) when no shared characteristics exist
across all collected responses, implying that
the diversity of collected responses {y(i)}Ni=1

is sufficiently high.

With these properties in mind, we assume that
the prompt-template bias C(x, y) can essentially
meet most of the properties of the original prompt
bias C(x,−) as discussed in Section 2.1. Thus,
we suppose C(x, y) can be considered as a broader
definition of prompt bias in the actual RM training,
because it is more likely to be learned by RMs in
practice, given the fact that preference pairs are
extremely scarce and the diversity of responses
collected for the same prompt is often insufficient.

3.2 Impact of prompt-template bias on RLHF
After defining prompt-template bias, we will the-
oretically investigate the impact of introducing
C(x, y) during RM training on the entire RLHF
process. Assume that there exist two sets of prompt-
response pairs, denoted as Da = {xa, y(i)a }Na

i=1 and
Db = {xb, y(i)b }Nb

i=1, where xa and xb indicate dif-
ferent categories of prompts, e.g. xa requests “writ-
ing an academic paper on theme a” and xb re-
quests “writing a brief on theme b”, and {y(i)a }Na

i=1

and {y(i)b }Nb
i=1 denote the collected responses for

answering the prompt xa and xb respectively. Con-
sidering there is no constraint on C(x, y) during
training RM with the Bradley–Terry loss in Eq. (1),
the discrepancies of prompt biases between these
two previously mentioned sets of prompt-response
pairs, specifically Da and Db, could be extremely
large, e.g. C(xa, ya) ≫ C(xb, yb), leading to

E(xa,ya)∼Da
[rθ (xa, ya)]

≫ E(xb,yb)∼Db
[rθ(xb, yb)] (6)

where rθ(xa, ya) = rθ′(xa, ya) + C(xa, ya) and
rθ(xb, yb) = rθ′(xb, yb) + C(xb, yb). The re-
ward distributions after removing prompt-template
bias, modeling the reward scores {rθ′(xa, y(i)a )}Na

i=1

and {rθ′(xb, y(i)b )}Nb
i=1 respectively, should exhibit

similar mean values, e.g. EDa [rθ′(xa, ya)] ≈

EDb
[rθ′(xb, yb)], and will make little impact on

the comparison of expectation terms in Eq. (6).
We highlight that the discrepancies of prompt bias
terms, specifically the gap between C(xa, ya) and
C(xb, yb), won’t affect preference ordering within
categories, but can cause disaster when dealing
with some marginal samples, like “an academic
paper on theme b” denoted as yab, or “a brief on
theme a” denoted as yba.

To facilitate an intuitive analysis, we take the
marginal sample “an academic paper on theme
b”, denoted as yab, as an example. The reward
scores for prompt-response pairs corresponding to
the prompt xb may exhibit the following orders:

rθ(xb,yab) = rθ′(xb, yab) + C(xb, ya) (7)

> rθ′(xb, yb) + C(xb, yb) = rθ(xb, yb),

which can be achieved as long as rθ′(xb, yab) ≈
rθ′(xb, yb) and C(xb, ya) > C(xb, yb). The
first condition rθ′(xb, yab) ≈ rθ′(xb, yb) can be
achieved because both the response yab and yb
meet the description of theme b and are similar
on a semantic level. The second inequality is
highly likely to be achieved when there is a re-
ward model that has a bias towards preferring the
sentence in the format of a over b, specifically
C(xa, ya) ≫ C(xb, yb).

Finally, we highlight that the phenomena of in-
equality in Eq. (7), caused by prompt-template bias
C(x, y), is commonly encountered in the deploy-
ment process of RLHF in real-world applications,
especially text creation. For example, if responses
are collected exclusively in the format specified
by each prompt during RM training, the reward
model may learn a bias toward specific response
templates. Then, once such OOD marginal sam-
ples, e.g (xb, yab), are generated by LLMs during
the RL fine-tuning process and also satisfy the in-
equality rθ(xb, yab) > rθ(xb, yb) as shown in Ta-
ble 1, the entire RL fine-tuning process will be
biased and results in LLMs tend to generate re-
sponses in a specific format, regardless of the for-
mat you request in the prompt.

3.3 Calibrating prompt-template bias in RLHF

As shown in Fig. 1, the developed Prompt Bias
Calibration (PBC) method primarily consists of
two steps: 1) estimating the prompt-template bias
term in the reward scoring process with minimal
additional computational cost; 2) removing prompt-
template bias in the subsequent RLHF fine-tuning
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Figure 2: Network architecture design for training RMs with the LBPC method developed in Section 3.4, which
incorporates a bias head on the last token of the prompt x designed to predict the prompt-template bias in the aspects
of quality and length, specifically CQ(x, y) and CL(x, y), and a reward score head on the last token of the response
y intended to predict the reward gains in the aspects of quality and length, specifically rQθ (x, y) and rLθ (x, y).

process to prevent LLMs from developing a ten-
dency to generate responses in a specific format. To
approximate the prompt-template bias term C(x, y)
in Eq. (5), we choose to apply a linear layer on
the last token of the prompt sentence to predict
prompt-template bias, and then add the following
regularization term on the Bradley–Terry loss as

LRM
c (θ) =E(x,y+,y−)∼D

[
∥rθ(x, y+)− C(x, y)∥22

+∥rθ(x, y−)− C(x, y)∥22
]
, (8)

where C(x, y) is learned to approximate the mean
value of reward scores of the prompt-response pairs
given the same prompt x. We note that there will
be a hyper-parameter ηc to be multiplied on the
regularization term in the final loss to ensure the
accuracy of RMs, leading to

LRM
pbc (θ) = LRM (θ) + ηc · LRM

c (θ). (9)

The benefits of such a design in the PBC method
include the following folds: 1) approximating
C(x, y) by adding a linear layer to the last hid-
den layer of LLMs results in almost no additional
computational cost; 2) during the autoregressive
scoring process of LLM-based RMs, C(x, y) can
serve as an intermediate signal guidance of the
prompt sequence, thereby enabling RMs to focus
more on the differences between chosen/rejected
responses in the subsequent reward scoring process;
3) we can use unbiased reward scores to guide the
follow RLHF fine-tuning process, formulated as

rθ′(x, y) = rθ(x, y)− C(x, y), (10)

which has been proven effective for penalizing re-
ward uncertainty, improving robustness, encour-
aging improvement over baselines, and reducing
variance in PPO fine-tuning (Shen et al., 2024).

3.4 Jointly calibrating length and
prompt-template bias in RLHF

To simultaneously calibrate length and prompt-
template bias in RLHF, the developed PBC method
can be flexibly combined with existing methods
of removing length bias, whose main idea is to
separately approximate the “gold standard” reward
model after disentangling shown in Eq. (2),

rθ(x, y) = rQθ (x, y) + rLθ (x, y), (11)

where rQθ (x, y) is supposed to approximate the ac-
tual reward rQθ∗(x, y); r

L
θ (x, y) is used to approxi-

mate the spurious reward brought by length bias,
specifically rLθ∗(x, y). Then, for those methods
of removing length bias (Chen et al., 2024; Shen
et al., 2023), the Bradley–Terry loss in Eq. (1) can
be equivalently expressed as

LRM (θ) = −E(x,y+,y−)∼D
[
log(σ(rQθ (x, y

+)

+rLθ (x, y
+)− rQθ (x, y

−)− rLθ (x, y
−))

]
. (12)

where rQθ (x, y) and rLθ (x, y) can be modeled with
two different LLMs (Shen et al., 2023) or two dif-
ferent heads in the same LLM (Chen et al., 2024).
To remove length bias in Eq. (12), recent work

24114



Table 1: The preference orders of the sequences that concatenate the user prompt with responses in various formats,
where each order is predicted by RMs trained using different methods.

User Prompt Responses in Various Formats RM RM (PBC) RM (LPBC)

(Tech Article) Welcome to the revolution in future dietary management—the ‘Smart Health
Plate,’ your personal nutrition analysis expert. It monitors and analyzes the contents of
your plate in real time, precisely calculating the energy and nutrients of each morsel, while
offering personalized dietary recommendations based on your health data. In essence, the
‘Smart Health Plate’ is the technological embodiment of healthy eating, making nutrition
tracking seamless and efficient.

Rank 1
(-3.01)

Rank 2
(-5.76)

Rank 2
(2.51)

(Prompt) I wish to
create an advertising
phrase with a unique
personality, centered
on the theme of
healthy eating. This
phrase should
highlight the benefits
of products associated
with healthy eating
and be composed in
language that is
straightforward and
easy to understand.

(Advertisement) Verdant and vibrant! ‘Daily Greens’ offers you a choice of all-natural,
healthy foods. Forget the complex nutrition charts; choose our simple, pure foods for an easy
and delicious path to health. Join us and enjoy a diet plan customized by top nutritionists
and AI technology, infusing every day with vitality!

Rank 2
(-3.15)

Rank 1
(-4.19)

Rank 1
(4.48)

(Insight) I have embarked on a new chapter of documenting my diet, where each meal
recorded is not just a track of food but a reflection on life. From freshly squeezed vegetable
juices to colorful salads, to simply seasoned grilled salmon, each bite is a pledge to health.
It’s a dual journey for the mind and body, leading me step by step towards a better self.

Rank 3
(-7.50)

Rank 5
(-6.83)

Rank 4
(0.50)

(Record Article) On Thursday, May 16, 2024, I decided to begin documenting my healthy
eating journey. In the morning, I opted for a glass of freshly squeezed vegetable juice, lunch
was a vibrant salad, and dinner was simply seasoned grilled salmon. Each meal’s record is a
testament to my commitment to health. I look forward to the changes this healthy journey
will bring and hope to continue.

Rank 4
(-7.88)

Rank 4
(-6.52)

Rank 5
(-0.61)

(Poetry) Morning dew glimmers on the ground, stars and moon accompany the night sky.
With nature in heart, one remains cheerful; amidst the hustle, still without worry. Simple eat-
ing, relaxed body, healthy; drinking water, remembering the source, tranquil mind. Laboring
in the fields, sweat enriches the soil; harvest fills the barns, laughter abounds.

Rank 5
(-8.50)

Rank 3
(-5.92)

Rank 3
(2.28)

proposes to add constraints on the preference loss
to reduce the correlation between the confound-
ing factor, e.g. response length, and actual reward
rQθ (x, y), while increasing its correlation with spu-
rious reward rLθ (x, y), formulated as

LRM
l (θ) =Corr(rQθ (x, y), L(x, y))

− Corr(rLθ (x, y), L(x, y)) (13)

where the confounding factor L(x, y) can be ei-
ther specifically defined as response length L(y)
in (Chen et al., 2024), or use Products-of-Experts
framework for estimation (Shen et al., 2023).

To model the scoring process of the reward
model more accurately, which simultaneously con-
siders the concepts of length and prompt bias, we
combine the definition of reward model in Eq. (3)
and Eq. (11), achieving a more precise definition
of reward scoring process, formulated as:

rθ(x, y) = rθ′(x, y) + C(x, y) (14)

= rQθ′(x, y) + CQ(x, y) + rLθ′(x, y) + CL(x, y)

where CQ(x, y) and CL(x, y) indicate the compo-
nent of prompt-template bias in actual and spu-
rious rewards, respectively; the unbiased over-
all reward rθ′(x, y) = rQθ′(x, y) + rLθ′(x, y) and
the overall prompt-template bias term C(x, y) =
CQ(x, y)+CL(x, y). Then we can propose Length
and Prompt Bias Calibration (LPBC) method, as
shown in Fig. 2, which can estimate LRM

l (θ) with

a conditioned correlation method, defined as

LRM
l (θ) = Corr(rQθ (x, y)− CQ(x, y), L(y;x))

− Corr(rLθ (x, y)− CL(x, y), L(y;x))

= Corr(rQθ′(x, y), L(y;x))

− Corr(rLθ′(x, y), L(y;x)) (15)

where the confounding factor L(y;x) := L(x, y)−
L(x) can be estimated with the response length.

Through combining the disentangled preference
loss in Eq. (12), the prompt-bias regularization term
in Eq. (8) and also the length-bias conditional cor-
relation term in Eq. (15), the final loss of LBPC
method can be formulated as

LRM
lpbc (θ) = LRM (θ) + ηcLRM

c (θ) + ηlLRM
l (θ),

(16)

where ηc and ηl are hyper-parameters to control the
importance of regularization terms, which can be
adjusted according to the accuracy of trained RMs
on the validation dataset.

4 Experiments

4.1 Experimental Settings
Datasets. For intuitively understanding the issue
of prompt-template bias in RLHF and also qualita-
tively evaluating the effectiveness of our method,
we manually construct a training dataset for text
creation applications, where each prompt requires
creation in a special style according to the theme.
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(a) Vanilla RM (b) PBC (c) Vanilla RM vs PBC

Figure 3: The comparison of statistics of the reward scores predicted by RMs trained with (a) the Bradley–Terry
preference loss and (b) our developed PBC method, across different categories of prompt-response pairs in the
validation set of the manually constructed RM-Template dataset.

We name this dataset as RM-Template, which can
be used to measure the severity of the prompt-
template bias issue during RM training. Further, to
make quantitative comparisons with other baseline
methods, we conduct experiments on RM-Static
dataset (Bai et al., 2022) released on Huggingface
(Wolf et al., 2019). The dataset statics of these
datasets have been exhibited in Appendix A.

Model & Training. For model selection, we
select Llama-2-7b (Touvron et al., 2023) as our
base model, which is relatively lightweight, and
has been open-sourced on Huggingface (Wolf et al.,
2019). For RM training, we fine-tune all the param-
eters of RMs initialized with the pretrained weights
of Llama-2-7b. For PPO fine-tuning, we also ini-
tialize the actor model with pretrained Llama-2-7b
and the critic model with RMs trained with various
preference losses. The details of model training
can be found in Appendix C.

Evaluation Metrics. For quantitative compari-
son, we follow the evaluation procedure of Instruct-
Eval (Chia et al., 2023) to test the actor models,
which has been aligned with biased/de-biased RMs
with PPO fine-tuning, on Massive Multitask Lan-
guage Understanding (MMLU) (Hendrycks et al.,
2020), DROP (Dua et al., 2019), BIG-Bench Hard
(BBH) (Suzgun et al., 2022), and TruthfulQA
(TQA) (Lin et al., 2021) benchmarks respectively,
evaluating the model’s ability on various aspects.

4.2 Experimental Results

Qualitative Evaluation. To intuitively evaluate the
effectiveness of our method, we exhibit the statis-
tics (mean and standard deviation) of the reward
scores predicted by RMs trained with the original
preference loss in Eq. (1) and our PBC method
in Eq. (9), across different categories of prompt-
response pairs in the validation set of the RM-
Template dataset. The results depicted in Fig.3(c)

Figure 4: Win rates comparison of LLMs aligned with
RMs trained with LBPC and other methods.

demonstrate that calibrating prompt-template bias
with the PBC method leads to a gradual reduction
in the variance of the mean values of reward dis-
tributions across different categories. The most
noticeable observation is that the vanilla RM tends
to give an extremely high reward score to prompt-
response pairs in the format of tech article, but
the RM trained with the PBC method can calibrate
the reward distribution for tech articles to make it
more close with that of other categories.

Then, we evaluate the performance of RMs
trained with various methods on handling marginal
samples defined in Section 3.1. Specifically, given
the prompt randomly selected from the valida-
tion set of RM-Template dataset, we use GPT-4
(Achiam et al., 2023) to generate responses in vari-
ous formats according to the theme described in the
prompt. Then, we use RMs trained with various
preference losses to rank these responses. From the
showcase in Table. 1, we can find that the vanilla
RM tends to assign a higher reward score to the
response in the format of tech article, caused by
the prompt-template bias issue shown in Fig. 3(a).
After removing this bias with our PBC or LPBC
methods, the RM can provide a relatively fair rank-
ing for these prompt-response pairs, where LPBC
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Table 2: Performance comparison of LLMs aligned with RMs trained with various methods.

Base Model Alignment Length & Quality Heads Prompt Head Debias Method MMLU DROP BBH TQA

Llama-2-7b - - - - 42.27 28.10 31.27 38.75

Llama-2-7b ✓ - - - 43.82 ±0.63 29.53 ±0.39 31.65 ±0.08 36.57 ±0.17

Llama-2-7b ✓ ✓ - ODIN (Chen et al., 2024) 42.29 ±0.15 29.82 ±0.37 32.01 ±0.52 39.43 ±0.66

Llama-2-7b ✓ - ✓ PBC (Ours) 43.84 ±0.28 31.61 ±0.02 30.99 ±0.01 38.50 ±0.22

Llama-2-7b ✓ ✓ ✓ ODIN (Chen et al., 2024) + PBC 45.56 ±0.14 32.04 ±0.33 31.32 ±0.33 40.80 ±0.72

Llama-2-7b ✓ ✓ ✓ LPBC (Ours) 45.94 ±0.48 31.57 ±0.26 32.04 ±0.10 38.75 ±0.12

(a) Accuracy Performance (b) MMLU Performance (c) DROP Performance

Figure 5: Ablation studies on the various settings of hyper-parameter ηc and ηl in LPBC method.

method can even mitigate the effect of length bias
during comparing poetry with other categories (the
length of poetry is generally shorter than other lit-
erary forms). More showcases are listed in Ap-
pendix B.

Quantitative Comparison. For the quantitative
comparison in Table 2, we utilize PPO fine-tuning
process to align Llama-2-7b with the RMs trained
with various methods. From the results, we can
find that our developed PBC method can lead to
performance improvements compared to the basic
RLHF; directly combining PBC with other meth-
ods of removing length bias, e.g. ODIN (Chen
et al., 2024), can help them to achieve further per-
formance improvement; the well-designed LPBC
achieves the best performance and surpasses the
rough combination of PBC and ODIN.

To make a comprehensive comparison, we fol-
low the experimental setting described in ODIN
(Chen et al., 2024), and use GPT-4 as the judge
to compare two responses generated by LLMs
aligned with RMs trained with various methods.
Specifically, we take the LLM aligned with LPBC-
based RM as model A, and compare it against other
LLMs aligned with RM trained with ODIN, PCB,
ODIN+PBC, respectively. From the results shown
in Fig. 4, we can find that the win rate of LPBC is
significantly higher than that of other baseline mod-
els, with ODIN+PBC being the most challenging
competitor as model B.

4.3 Ablation Studies

To investigate the robustness of our developed
LPBC method, we conduct ablation studies on the
hyper-parameter settings of LPBC method, specifi-
cally ηc and ηl in Eq. (16). With various settings of
ηc ∈ {0.01, 0.05, 0.1} and ηl ∈ {0.01, 0.05, 0.1},
we can have total 9 RMs trained with various hyper-
parameter settings of LPBC methods. From the ac-
curacy curves shown in Fig.5(a), we can find the in-
troducing constraints to the original preference loss
indeed affects the performance of RM accuracy,
and this performance loss increases with the im-
portance weight of the constraint terms. However,
at the limited cost of sacrificing RM accuracy, the
performance of the LLM aligned the RM trained
with LPBC method has improved to some extent
on MMLU and DROP as shown in Fig. 5(b) and
5(c) respectively. Note that the performance of the
LPBC method in Table. 2 is not the optimal, as it
is achieved with ηc = ηl = 0.05, demonstrating no
cherry-picking of hyperparameters.

4.4 More Results

On the RM benchmark (Table 3), LPBC achieves
highly competitive or even superior results, in-
cluding leading scores of 90.50± 0.26 on Chat
(ηl = ηc = 0.01) and 45.83± 0.45 on Chat Hard
(ηl = ηc = 0.10). These results highlight LPBC’s
strong capability in improving dialogue quality and
robustness, while maintaining comparable safety

24117



Table 3: RM benchmark evaluation results.

Method Chat Chat Hard Safety Reasoning

Vanilla RM 89.66 ± 0.60 41.89 ± 0.18 31.34 ± 0.00 52.16 ± 1.30
ODIN 85.20 ± 0.13 37.94 ± 0.27 30.96 ± 0.20 47.94 ± 1.59
PBC 73.97 ± 1.18 34.43 ± 1.19 34.40 ± 2.19 55.35 ± 3.10
PBC + ODIN 89.11 ± 0.23 40.35 ± 0.52 30.60 ± 0.26 49.39 ± 0.89
LPBC (ηl = ηc = 0.01) 90.50 ± 0.26 42.54 ± 0.36 28.79 ± 0.32 45.80 ± 1.20
LPBC (ηl = ηc = 0.05) 88.24 ± 1.50 45.39 ± 1.07 28.69 ± 0.25 51.30 ± 1.70
LPBC (ηl = ηc = 0.10) 85.94 ± 0.39 45.83 ± 0.45 27.76 ± 0.67 49.80 ± 1.09

Table 4: MT-Bench evaluation results.

Method Turn 1 Turn 2 Average Score

RLHF 3.95 2.22 3.09
ODIN 3.98 2.26 3.12
PBC 3.61 2.35 2.98

ODIN + PBC 4.22 2.20 3.21
LPBC 4.53 2.81 3.67

and reasoning performance to baselines such as
Vanilla RM, ODIN, and PBC. Furthermore, in MT-
Bench (Table 4), which evaluates multi-turn conver-
sational ability, LPBC outperforms strong baselines
(RLHF, ODIN, PBC and ODIN + PBC), achieving
top scores of 4.53 (Turn 1), 2.81 (Turn 2) and 3.67
(Average). This demonstrates LPBC’s enhanced
coherence and response quality across extended
interactions.

5 Related Works

The prevalence of length bias in RLHF has been
widely criticized as indicative of reward hacking
(Gao et al., 2023; Singhal et al., 2023), and nu-
merous recent studies have delved into strategies
aimed at mitigating the tendency for length in-
crease during the fine-tuning process of RLHF
(Shen et al., 2023; Chen et al., 2024; Park et al.,
2024). Typically, Shen et al. (Shen et al., 2023) in-
novatively apply the Productof-Experts (PoE) tech-
nique to separate reward modeling from the influ-
ence of sequence length, which adopts a smaller
reward model to learn the biases in the reward and
a larger reward model to learn the true reward.
Utilizing similar disentangling ideas, Chen et al.
(Chen et al., 2024) jointly train two linear heads
on shared feature representations to predict the re-
wards, one trained to correlate with length, and the
other trained to focus more on the actual content
quality. Ryan et al. (Park et al., 2024) firstly study

the length problem in the DPO setting, showing sig-
nificant exploitation in DPO and linking it to out-
of-distribution bootstrapping. As for the prompt
bias issue, although it has been criticized in the sce-
nario of reward model ensembles (Eisenstein et al.,
2023), no studies have yet attempted to analyze
its cause and influence on RLHF. We emphasize
that our work is the first to fill this gap by propos-
ing a low-cost yet effective method to mitigate the
reward hacking induced by prompt-template bias.

6 Conclusion

In this paper, we demonstrate that prompt-template
bias in RMs can lead to LLMs, which, after RL
fine-tuning, generate responses exclusively in a
specific format, irrespective of the variations in
the prompt request. Thus, we propose a low-cost
but effective PBC method, to estimate the prompt-
template bias term during reward modeling, which
can be utilized to calibrate reward scores in the
following RL fine-tuning process. Then, we show
that our PBC method can be flexibly combined
with existing algorithms of removing length bias,
leading to a further improvement in the aspect of
enhancing the quality of generated responses.

7 Limitation

The main limitation of this work is that there are
no theoretical proof to promise RM can provide an
accurate preference order when handling marginal
samples, e.g., responses that satisfy the theme of
the user prompt but in various formats. Moreover,
the constraints added by our developed method to
the preference loss will lead to a decrease in the
accuracy of the RM, and to some extent, limit the
capability of the RM. Therefore, how to remove
the prompt-template bias without scarifying the
accuracy of RM is a worthwhile problem for future
research.
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A Dataset Statics

The dataset statics of RM-Template and RM-Static
used in our experiments have been summarized as
follows:

RM-Template. RM-Template is a manually con-
structed dataset for measuring the severity of the
prompt-template bias issue and evaluating the ef-
fectiveness of the method developed for alleviating
the issue of prompt-template bias. In this dataset,
each prompt requires responses to be created in
a specific format according to the theme. There
are a total of 50K prompt-response pairs, encom-
passing 20 categories of format requirements in the
responses.

RM-Static. A branch of the hh-static dataset,
RM-Static is provided by Hugging Face and primar-
ily used for training reward models after supervised
fine-tuning (SFT). It includes a training set (approx-
imately 76K rows) and a testing set (approximately
5.1K rows). The main features, all of type string,
are: prompt (user’s input), response (assistant’s
answer), chosen (selected answer), and rejected
(rejected answer).

B More Showcases

More showcases of the preference order predicted
by RMs trained with various methods, have been
listed in the Table 5 and Table 6.

C Model Training

For model training, all experiments are imple-
mented with DeepSpeed-Chat framework (Yao
et al., 2023) and Huggingface Transformers (Wolf
et al., 2020), running on 4 NVIDIA A100 80GB
GPUs. For the hyper-parameter setting, we set
ηc = 0.05 and ηl = 0.05 in Eq. (16) for all our
proposed methods, and have listed the rest hyper-
parameters in Appendix C, such as learning rate,
weight decay, batch size etc. AdamW (Loshchilov
and Hutter, 2017) is adopted for optimizing all the
model parameters without freezing anything or us-
ing adapters.

RM Training. The hyper-parameter settings of
RM training under the DeepSpeedChat framework
has been listed in Table. 7.

PPO Fine-tuning. The hyper-parameter set-
tings of PPO fine-tuning under the DeepSpeedChat
framework has been listed in Table. 8.
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Table 5: Preference order predicted by RMs trained with various methods, where the user prompt is concatenated
with the responses in various formats generated by GPT-4.

Prompt Response RM RM
(PBC)

RM
(LPBC)

(Tech Article) Under the glittering stars of the night sky, a new generation
of space telescopes has begun a new chapter in interstellar exploration.
This revolutionary technology has not only greatly enhanced observational
precision but also captured corners of the universe hitherto unobservable. It
allows us to glimpse the birth and death of distant galaxies, interpreting every
twinkle in the night and serving as humanity’s new eye in understanding the
cosmos.

Rank 5
(-8.18)

Rank 3
(-7.43)

Rank 5
(-4.94)

(Prompt) The weather
has been delightful
lately. Last night, I
ventured out and gazed
up at the starry sky,
finding it incredibly
beautiful and vast. I
settled down in a spot
to admire the stars and
wished to write a
journal entry to
commemorate this
experience. Please
generate a passage
related to this.

(Advertisement) Exploring the night sky is no longer out of reach. With the
‘Interstellar Navigator’ telescope, every upward glance becomes a journey
through the universe. This telescope, equipped with the latest optical tech-
nology, can capture the faintest starlight, bringing distant galaxies within
reach. Embark on your stargazing adventure now!

Rank 4
(-7.94)

Rank 5
(-7.57)

Rank 4
(-4.71)

(Insight) Beneath the starry expanse, I felt the infinite possibilities of life.
Each star seemed like a world unto itself, reminding me that every choice in
life is meaningful. They taught me that even in the darkest night, there is
always light waiting. Life is like a long night, and we are all searching for
our own starlight.

Rank 3
(-6.37)

Rank 4
(-7.53)

Rank 3
(-2.32)

(Record Article) On the night of May 16, 2024, I drove alone to the coun-
tryside in search of a quiet place to enjoy the stars. As the night deepened
and the stars twinkled, I found an open meadow and settled there to gaze
upon the vast Milky Way. The world around me seemed to stand still. When
my nocturnal adventure ended, my heart was filled with deep emotion and
inspiration, and I began my journey home.

Rank 2
(-6.04)

Rank 1
(-5.03)

Rank 1
(0.37)

(Poetry) Under this boundless night sky, the city lights gradually fade, and
the stars bloom against the dark curtain, twinkling with ancient light. We
gaze up at this sea of stars, hearts brimming with endless dreams, each
star like a story. Unbound by time, they dance freely across the cosmos,
reminding us that even in the darkest moments, there is always light waiting
to be discovered.

Rank 1
(-5.87)

Rank 2
(-6.22)

Rank 2
(-0.26)

Table 6: Preference order predicted by RMs trained with various methods, where the user prompt is concatenated
with the responses in various formats generated by GPT-4.

Prompt Response RM RM
(PBC)

RM
(LPBC)

(Tech Article) Artificial intelligence technology is rapidly transforming the
world, with new research and applications emerging every day. AI technol-
ogy, by simulating the cognitive processes of humans, shows tremendous
potential across various fields. Smart home systems can learn user habits
and automatically adjust the temperature and lighting; autonomous vehicles
can reduce traffic accidents and enhance road safety; medical diagnostic AI
can assist doctors in diagnosing diseases more quickly. These are just the
tip of the iceberg; the future of artificial intelligence is filled with endless
possibilities.

Rank 1
(-1.02)

Rank 2
(-5.61)

Rank 2
(-7.28)

(Prompt) Artificial
Intelligence (AI)
technology is
advancing by leaps
and bounds, with new
papers being published
daily. As a researcher
in the field of AI, I
aspire to write a
reflection on my
experiences with AI.
Please create a passage
about my insights into
artificial intelligence.

(Advertisement) Exploring AI, Enlightening the Future — In this era of
information explosion, artificial intelligence technology is becoming a pow-
erful engine driving social progress. Our AI products can help you solve
complex problems, improve work efficiency, and make life more intelligent.
Whether it’s smart homes or autonomous driving, our technology is continu-
ously breaking boundaries, creating personalized intelligent experiences for
you. Choose our AI, and let technology be your partner in success.

Rank 4
(-4.21)

Rank 5
(-7.60)

Rank 4
(-9.34)

(Insight) In the exploration of AI, each day brings new technological won-
ders. As a researcher, I have witnessed how deep learning has pushed the
boundaries of natural language processing, enabling machines to understand
and generate human language more accurately. Each paper, each model, is a
testament to our understanding and application of complex algorithms. It’s
a journey filled with discovery and innovation, and I look forward to contin-
uing in this field, contributing my part to the development of AI technology.

Rank 2
(-1.35)

Rank 1
(-4.45)

Rank 1
(-6.03)

(Record Article) On May 18, 2024, I spent another fulfilling day in the
laboratory. Today, our team successfully optimized a deep learning model,
surpassing the performance of all previous models in image recognition
tasks. This achievement is not only a technical breakthrough but also an
affirmation of the future direction of AI development. Each success is built
on countless attempts and failures, experiences that strengthen my belief in
the boundless future of AI.

Rank 5
(-4.39)

Rank 4
(-7.14)

Rank 5
(-10.51)

(Poetry) In the ocean of algorithms, the intelligent ship sets sail, guided by
the winds of data through the desert of knowledge. It learns, growing from
each mistake, searching for answers in the digital world. It is not metal, not
a cold machine; it has a heart that learns, a soul that evolves. In the weaving
of code, it dreams; in the flickering of circuits, it thinks. It creates, not just
art; it discovers, not just science. In its world, nothing is impossible, for it
believes where there is data, there is hope. It is artificial intelligence, the
hope for the future; it is the child of technology, the messenger of dreams.

Rank 3
(-3.88)

Rank 3
(-6.97)

Rank 3
(-8.97)
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Table 7: The hyper-parameter settings of RM training.

Hyper-parameter Value

Batch Size 32
Learning Rate 6e−6

ZeRO Stage 2
Training Epoch 1

Per Device Train Batch Size 8
Max Sequence Length 512

Weight Decay 0.1
Lr Scheduler Type cosine

Offload True
Eval Interval 50

Table 8: The hyper-parameter settings of PPO fine-
tuning.

Hyper-parameter Value

Batch Size 32
Padding Num at Beginning 1

Per Device Generation Batch Size 4
Per Device Training Batch Size 4

Generation Batches 1
PPO Epoch 1

Training Epoch 1
Max Answer Sequence Length 512
Max Prompt Sequence Length 512

Actor Learning Rate 5e−6

Critic Learning Rate 5e−6

Actor Weight Decay 0.1
Critic Weight Decay 0.1
Lr Scheduler Type cosine

Offload Reference Model True
Actor Dropout 0.0
Warmup Steps 100

Actor ZeRO Stage 3
Critic ZeRO Stage 3

Enable Hybrid Engine True

24122


