
Findings of the Association for Computational Linguistics: ACL 2025, pages 24085–24100
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

KaFT: Knowledge-aware Fine-tuning for Boosting LLMs’ Domain-specific
Question-Answering Performance

Qihuang Zhong1, Liang Ding2, Xiantao Cai1∗, Juhua Liu1*, Bo Du1, Dacheng Tao3

1 School of Computer Science, National Engineering Research Center for Multimedia Software, Institute of Artificial Intelligence

and Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University, China
2 The University of Sydney, Australia 3 Nanyang Technological University, Singapore

{zhongqihuang, caixiantao, liujuhua, dubo}@whu.edu.cn

{liangding.liam, dacheng.tao}@gmail.com

Abstract

Supervised fine-tuning (SFT) is a common
approach to improve the domain-specific
question-answering (QA) performance of large
language models (LLMs). However, recent
literature reveals that due to the conflicts be-
tween LLMs’ internal knowledge and the con-
text knowledge of training data, vanilla SFT
using the full QA training set is usually subopti-
mal. In this paper, we first design a query diver-
sification strategy for robust conflict detection
and then conduct a series of experiments to ana-
lyze the impact of knowledge conflict. We find
that 1) training samples with varied conflicts
contribute differently, where SFT on the data
with large conflicts leads to catastrophic perfor-
mance drops; 2) compared to directly filtering
out the conflict data, appropriately applying the
conflict data would be more beneficial. Moti-
vated by this, we propose a simple-yet-effective
Knowledge-aware Fine-tuning (namely KaFT)
approach to effectively boost LLMs’ perfor-
mance. The core of KaFT is to adapt the train-
ing weight by assigning different rewards for
different training samples according to conflict
level. Extensive experiments show that KaFT
brings consistent and significant improvements
across four LLMs. More analyses prove that
KaFT effectively improves the model general-
ization and alleviates the hallucination.

1 Introduction

While large language models (LLMs) (OpenAI,
2023; Dubey et al., 2024; Zhao et al., 2023)
have showcased powerful general-purpose capa-
bilities, they often struggle to handle domain-
specific question-answering (QA) tasks, e.g., med-
ical QA (Labrak et al., 2024). Hence, supervised
fine-tuning (SFT), aiming to activate LLMs’ inter-
nal knowledge and align LLMs’ output with the
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Figure 1: Comparison between (a) vanilla SFT and (b)
our KaFT. Different from vanilla SFT treating all train-
ing data equally, KaFT uses sample-adaptive rewards to
facilitate more effective learning of LLMs.

desired behavioral norms, is usually required (Zhou
et al., 2024; Zhang et al., 2024).

However, recent literature (Ren et al., 2024;
Gekhman et al., 2024) reveals that domain-specific
SFT usually suffers from a crucial problem: knowl-
edge conflict, which is the discrepancy between the
LLMs’ internal knowledge and the context knowl-
edge of training data (Xu et al., 2024). Due to
the long-tail distribution and timeliness of pretrain-
ing corpora, LLMs might struggle to learn suffi-
cient domain-specific knowledge during pretrain-
ing. Conversely, SFT training datasets usually con-
tain more up-to-date and professional knowledge.
Unfortunately, SFT fails to learn additional knowl-
edge (Ren et al., 2024), and enforcing LLMs to
learn new knowledge through SFT would easily
damage their prior abilities and lead to hallucina-
tion (Gekhman et al., 2024).

To tackle this problem, some empirical studies
have been conducted (Ren et al., 2024; Gekhman
et al., 2024; Ye et al., 2024). For instance, Ren et al.
(2024) employ in-context learning (ICL) (Brown
et al., 2020) to probe LLMs’ internal knowledge
and determine whether it conflicts with the training
data. Based on this, they analyze the behavior of
LLMs after SFT with conflict data. Despite provid-
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ing some insightful findings, they still have some
shortcomings: 1) the proposed conflict detection
methods are simply based on ICL, which is sensi-
tive to few-shot examples and might introduce bias
into the results (Min et al., 2022; Ye et al., 2024);
2) they alleviate the negative effect of knowledge
conflict by directly filtering the conflict data, while
neglecting how to make full use of these data.

To this end, we first improve the ICL-based con-
flict detection with a query diversification strategy
to reduce the bias of few-shot examples. Based on
it, we conduct a series of preliminary analyses to re-
veal the impact of knowledge conflict. Specifically,
we calculate the conflict score for each training data
and split the training set evenly into four subsets
with varied conflicts. By fine-tuning LLMs with
different subsets, we find that:

• Different subsets contribute differently, where
SFT on the individual subset with more con-
flicts causes catastrophic performance drops.

• Compared to directly filtering the subset with
more conflicts, appropriately applying these
data might be more beneficial.

Based on these observations, we recognize that
not all training samples are equally important
for SFT, and LLMs should pay different atten-
tion to different samples. Motivated by this, we
proposed a simple-yet-effective Knowledge-aware
Fine-Tuning (namely KaFT) approach to effec-
tively boost LLMs’ QA performance. As illustrated
in Figure 1, the core of KaFT is to assign different
rewards to varied subsets and use these rewards to
adapt the learning of LLMs. Specifically, for the
data with more conflicts, KaFT assigns a smaller re-
ward to alleviate its negative effect. Conversely, for
the data with fewer conflicts, KaFT uses a larger re-
ward to encourage its learning. By doing so, KaFT
can not only avoid overfitting to conflict data, but
also effectively activate its internal knowledge for
more efficient domain adaptation.

We mainly evaluate our KaFT in the medical QA
applications upon four popular LLMs, including
LLaMA3-8B/3B (Dubey et al., 2024), Qwen1.5-
7B (Bai et al., 2023), and Mistral-7B (Jiang et al.,
2023). Extensive results show that KaFT surpasses
the other baselines by a clear margin, and brings
consistent and significant performance gains across
all LLMs, , i.e., up to +5.73% and +2.40% average
scores than the base model and vanilla SFT method,
respectively. More in-depth analysis prove that

KaFT can be expanded to other domain-specific
applications. More encouragingly, KaFT improves
the model generalization and alleviates the model
hallucination problem effectively.

Contributions. To summarize, our contributions
are three-fold: (1) We propose a query diversifica-
tion strategy for robust conflict detection. Based on
it, we conduct a series of preliminary analyses and
reveal that training samples with varied conflicts
contribute differently. (2) Motivated by this, we
propose a simple-yet-effective knowledge-aware
SFT (KaFT) approach, which employs sample-
adaptive rewards to boost LLMs’ QA performance.
(3) Extensive experiments show that KaFT out-
performs the vanilla SFT by a clear margin and
improves the model generalization effectively.

2 Preliminary

2.1 Task Formulation

Given a domain-specific QA training dataset D =
{(qi, oi, ai)}Ni=1 and a pretrained base LLM Mθ

parameterized by θ, where qi, oi and ai denote the
question, options and answer, and N denotes the
number of all training samples. The goal of SFT
is to use the D to fine-tune Mθ with supervised
learning, i.e., maximum likelihood estimates, and
obtain the final adapted LLM Mθ∗ .

2.2 Knowledge Conflict Detection with Query
Diversification Strategy

As mentioned in §1, SFT usually suffers from the
knowledge conflict problem. To detect the knowl-
edge conflicts in D, Ren et al. (2024) propose an
ICL-based probing method. Specifically, they ran-
domly select some training samples as the few-shot
examples and utilize them to probe Mθ’s response
ri with greedy decoding, i.e., temperature=0, to
each query (qi, oi). The response ri is referred to
as the model’s parameter knowledge for this ques-
tion qi. Then, they determine whether the ri is
aligned with reference answer ai, i.e., I(ri = ai),
where I(·) is the indicator function, and regard the
misaligned samples as the conflict data. To have a
closer look, we provide a case in Appendix A.3.

Obviously, such a simple ICL-based approach is
not robust, as it is sensitive to the few-shot exam-
ples and introduce bias. To this end, we improve
this method with a query diversification strategy.
The primary intuition of our strategy is that, if we
replace the internal order of options oi and Mθ
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Figure 2: (a) Illustration of distributions of Scorei on MedQA across different LLMs. We use the kernel density
estimate for visualizing, where the larger density refers to more training samples. (b) Performance comparison
(%) of different subsets. Note that all subsets hold the same number of training samples. (c) Analysis of different
proportions of wrong data. Specifically, we randomly select varied samples from wrong and merge them with
the other three subsets. We use three different random seeds for data sampling and report the average results.

always fails to output the correct answer, Mθ in-
deed does not learn the knowledge for the question.
In practice, for each data point, we first replace
the internal order of oi and obtain No different
queries {(qi, oji )}No

j=1. Then, we feed the queries
into Mθ to obtain its responses. Moreover, in-
spired by self-consistency (Wang et al., 2023), we
set the temperature to 0.7 and sample Nr candidate
responses {rjik}

Nr
k=1 for each query (qi, o

j
i ). Lastly,

the knowledge conflict can be measured as:

Scorei =

∑No
j=1

∑Nr
k=1 I(r

j
ik
) = ai)

No ×Nr
, (1)

where Scorei denotes the conflict score (larger
value refers to fewer conflicts) of i-th training data.

2.3 Empirical Analyses

Setting. We use a popular medical QA bench-
mark, i.e., MedQA (Jin et al., 2021), as the
testbed, containing 10,178 training data. We per-
form SFT on four cutting-edge LLMs, including
LLaMA3-8B/3B (Dubey et al., 2024), Qwen1.5-
7B (Bai et al., 2023), and Mistral-7B (Jiang
et al., 2023). The tuned models are evaluated
on six medical QA benchmarks, covering the test
sets of MedQA, MedMCQA (Pal et al., 2022),
MMLU∗ (Hendrycks et al., 2020)1), CMB (Wang
et al., 2024b), CMExam (Liu et al., 2024b), and
CMMLU∗ (Li et al., 2024). For conflict detection,
we set the No and Nr to 10. The distributions of
Score are illustrated in Figure 2 (a).

1Following Singhal et al. (2025), we select six medical sub-
tasks from MMLU, and denote this subset as MMLU∗. Simi-
larly, we also collect the medical sub-tasks from CMMLU (Li
et al., 2024) and denote it as CMMLU∗.

Train/Test wrong mig-wr mig-ri right

wrong 28.93 27.99 25.79 25.08
mig-wr 12.58 51.57 87.42 98.75
mig-ri 5.66 48.43 88.05 99.69
right 7.55 47.17 88.36 98.75

Table 1: Fine-grained test results of trained LLaMA3-
8B models on MedQA. “mig-ri” and “mig-wr” re-
fer to might-right and might-wrong subsets.

Findings. To investigate the impact of knowl-
edge conflict, we conduct systematic analyses and
empirically observe that:

❶ Different subsets contribute differently, where
SFT on the individual subset with more con-
flicts causes catastrophic performance drops.
First, we calculate the Score for each training
data and sort the D based on the score. Then,
we split D evenly into four subsets with var-
ied conflicts, denoted as right, might-right,
might-wrong and wrong, where right has
less conflicts and wrong has most conflicts. No-
tably, these subsets have the same number of train-
ing samples. We fine-tune the LLMs using different
individual subsets and illustrate the comparative re-
sults in Figure 2 (b). For reference, we also present
the results of SFT on the randomly selected sam-
ples. As seen, LLMs tuned with different subsets
perform differently. Similar to prior findings (Ren
et al., 2024), SFT on the wrong leads to catas-
trophic performance drops, proving the negative
effect of knowledge conflict. More interestingly,
right is usually not the optimal subset, while
might-right performs better among all LLMs.
We conjecture that many right samples have
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been learned by LLMs and struggle to provide use-
ful information. Conversely, might-right can
help activate LLMs’ internal knowledge and better
boost their performance.

Moreover, to further investigate the effect of dif-
ferent subsets, we split the MedQA test set into 4
groups with varied conflicts, and report the fine-
grained test results of trained LLaMA3-8B models
in Table 1. As seen, the model trained with wrong
data indeed performs better on the wrong test sub-
set. However, it performs much poorly in the other
test subsets, confirming our statement that enforc-
ing the model to learn conflict data would damage
its prior abilities.

❷ Compared to directly filtering the subset with
more conflicts, appropriately applying these
data might be more beneficial. Intuitively, a
straightforward way for alleviating the negative ef-
fect of knowledge conflict is to filter out the wrong
subset from D and use the other subsets for SFT.
However, as aforementioned, appropriate conflict
data might help activate LLMs’ internal knowledge
and lead to better performance. To verify our con-
jecture, we introduce different proportions λ of
conflict data from wrong into the collection of
other less-conflict subsets, where λ ranges from
0% to 100%. The results are illustrated in Figure 2
(c), from which we find that compared to directly
filtering the wrong (i.e., λ = 0%), introducing
some conflict data (e.g., λ = 25%) could be more
beneficial. This highlights the necessity of explor-
ing more effective SFT methods to make full use
of the conflict data.

3 Knowledge-aware Fine-tuning

Based on the observations in §2.3, we recognize
that not all training samples are equally important
for SFT, and LLMs should pay different attention
to different samples. To this end, we propose a
knowledge-aware fine-tuning (KaFT) approach to
alleviate the negative effect of knowledge conflict
and boost LLMs’ performance. In this section, we
introduce our KaFT in detail.

Motivation and Intuition. In addition to the
empirical findings in §2.3, our KaFT is also in-
spired by a famous cognitive structure migration
theory (Ausubel et al., 1978), i.e., “The most im-
portant single factor influencing learning is what
the student already knows”, which highlights that
paying more attention to the new content relevant

to prior learned knowledge can lead to more effec-
tive knowledge transfer. Intuitively, for the data
with more conflicts, e.g., wrong, LLMs might eas-
ily over-fit the unfamiliar knowledge and lead to
poor generalization. In contrast, for data with fewer
conflicts, more in-depth learning is beneficial for
transferring LLMs’ internal knowledge and facili-
tating effective domain adaptation.

Implementation of KaFT. In practice, based on
our proposed strategy in §2.2, we first calculate
the conflict score Scorei for each training data
(qi, oi, ai), and split D evenly into four subsets
with varied conflicts, as done in §2.3. Then, we as-
sign different rewards for different subsets, where
might-right and right hold the larger re-
wards, and the wrong and might-wrong hold
the smaller rewards. Lastly, the rewards are used
to control the learning weights of different subsets.
The learning objective can be formulated as:

Ri =





α, if(qi, oi, ai) ∈ wrong,

β, if(qi, oi, ai) ∈ might-wrong,

1, if(qi, oi, ai) ∈ might-right,

1, if(qi, oi, ai) ∈ right,

θ∗ := argminE(q,o,a,R)∼D[R logM(a|q, o)],
(2)

where Ri denotes the reward for i-th training data
and θ∗ denotes the parameters of final LLM Mθ∗ .
α and β are rewards between 0 and 1, where α is
generally smaller than β. Empirically, we set α and
β as 0.1 and 0.5, respectively.

4 Experiments

4.1 Setup
Tasks and Datasets. Similar to the settings of
§2.3, we mainly apply our KaFT in the medical
QA and fine-tune LLMs with the training set of
MedQA. The tuned models are evaluated on six
in-domain test sets, covering English medical QA
(MedQA, MedMCQA, MMLU∗) and Chinese med-
ical QA (CMB, CMExam and CMMLU∗). More-
over, we follow Ren et al. (2024) and use the con-
structed QA test sets from three domains: history,
engineering and law, as the out-of-domain (OOD)
benchmarks. For evaluation, we use the public
lm-evaluation-harness toolkit and report
the zero-shot accuracy for each benchmark. The
details of all tasks are shown in Appendix A.1.

Models. We conduct extensive experiments on
four cutting-edge LLMs across different model ar-

24088



Backbone Method English Medical Benchmark Chinese Medical Benchmark Score

MedQA MedMCQA MMLU∗ CMB CMExam CMMLU∗ Avg. ∆ ↑

Mistral-7B

Base 50.98 48.31 65.07 31.73 30.68 32.90 43.28 -
Vanilla SFT 59.86 43.75 68.06 36.25 36.25 35.48 46.61 +3.33
No-conflict 58.37 51.11 68.69 38.09 36.92 36.17 48.22 +4.94
Self-aligning 55.62 50.99 68.81 36.70 36.81 35.13 47.34 +4.06
KaFT (Ours) 59.54 49.87 68.47 38.11 37.35 40.73 49.01 +5.73

Qwen1.5-7B

Base 48.94 50.08 62.79 74.77 76.59 70.42 63.93 -
Vanilla SFT 52.71 50.20 61.60 74.30 76.15 70.16 64.19 +0.26
No-conflict 52.24 50.54 61.55 75.04 76.87 70.77 64.50 +0.57
Self-aligning 51.77 50.11 63.18 75.23 77.05 70.71 64.67 +0.74
KaFT (Ours) 53.57 49.82 63.23 75.57 77.27 72.07 65.25 +1.32

LLaMA3-8B

Base 59.62 56.51 72.66 45.50 46.04 44.62 54.16 -
Vanilla SFT 61.82 55.75 73.34 45.99 45.85 44.95 54.62 +0.46
No-conflict 61.98 56.11 73.40 47.17 47.72 45.59 55.33 +1.17
Self-aligning 61.35 56.56 73.00 47.53 48.34 46.55 55.55 +1.39
KaFT (Ours) 64.10 56.94 74.01 47.39 47.89 45.44 55.96 +1.80

LLaMA3-3B

Base 51.14 49.41 62.34 35.98 36.48 36.50 45.31 -
Vanilla SFT 54.99 50.08 62.94 38.00 39.17 38.13 47.22 +1.91
No-conflict 52.95 49.20 63.76 38.91 39.78 37.27 46.98 +1.67
Self-aligning 52.79 49.82 62.93 38.53 38.66 38.55 46.88 +1.57
KaFT (Ours) 54.52 50.51 64.93 40.19 39.93 39.70 48.30 +2.99

Table 2: Performance comparison (%) on the medical QA benchmarks. “Avg.” denotes the average results, and
“∆ ↑” refers to the gains against the base models. Best results are in bold, and second-best results are underlined.

chitectures and sizes, i.e., LLaMA3-8B/3B (Dubey
et al., 2024), Qwen1.5-7B (Bai et al., 2023), and
Mistral-7B (Jiang et al., 2023). In the implemen-
tation of KaFT, the No and Nr are set to 10. We
train each model with a batch size of 16 and a peak
learning rate of 1e-4, except 2e-4 for LLaMA3-3B.
All models are trained with the LoRA (Hu et al.,
2021) for 1 epoch. The details of model training
and inference can be found in Appendix A.2.

Baselines. We compare KaFT with a series of
baselines: 1) Base denotes the original LLMs with-
out SFT, 2) Vanilla SFT denotes directly fine-
tuning LLMs on the full training set equally, 3)
No-conflict denotes first removing the conflict data
(wrong identified in §2.3) and then fine-tuning
LLMs on the remaining training data, and 4) Self-
aligning, inspired by Ren et al. (2024), denotes
first modifying the answers of wrong to match
LLM’s internal knowledge (i.e., replacing ai with
ri) and then fine-tuning LLMs on the combination
of aligned wrong and the other original subsets.

4.2 Compared Results

The main results on medical QA benchmarks and
OOD benchmarks are reported in Tables 2 and 3,
respectively. From these results, we can find that:

KaFT surpasses the other baselines by a clear
margin. As seen, compared to the vanilla SFT,
“No-conflict” usually achieves better performance,
highlighting the harmfulness of conflict data. “Self-
aligning” can sometimes bring further performance
gains against “No-conflict”, e.g., +0.22% average
score in LLaMA3-8B. However, it might lead to
worse performance in some cases. One possible
reason is that ri obtained by the method in (Ren
et al., 2024) can not probe LLMs’ internal knowl-
edge well, thus leading to some noise. Conversely,
our KaFT surpasses the other counterparts by a
clear margin, proving its superiority.

KaFT brings consistent and significant perfor-
mance gains among all model sizes and types.
We see that KaFT not only achieves remarkable per-
formance for LLaMA3-family models, but is also
beneficial to the Qwen and Mistral models. Specif-
ically, compared to the base models, KaFT brings
+5.73%, +1.32%, +1.80% and +2.99% average
gains for Mistral-7B, Qwen1.5-7B and LLaMA3-
8B/3B, respectively. These results prove the effec-
tiveness and universality of KaFT.

KaFT effectively improves the OOD perfor-
mance. Additionally, we evaluate the tuned
LLMs on the OOD benchmarks to verify LLMs’ ro-
bustness. Due to space limitations, we only present
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Method Mistral-7B LLaMA3-3B

History Engineering Law Avg. ∆ ↑ History Engineering Law Avg. ∆ ↑
Base 41.20 53.20 46.80 47.07 - 33.60 54.80 38.40 42.27 -
Vanilla SFT 46.00 59.20 50.00 51.73 +4.66 40.00 56.40 46.40 47.60 +5.33
No-conflict 45.20 61.20 49.60 52.00 +4.93 40.80 58.00 48.00 48.93 +6.66
Self-aligning 44.40 56.80 49.20 50.13 +3.06 39.60 56.40 48.00 48.00 +5.73
KaFT (Ours) 50.40 60.00 51.60 54.00 +6.93 40.40 58.40 49.60 49.47 +7.20

Table 3: Performance comparison (%) of tuned medical LLMs on the out-of-domain QA test sets. “Avg.”
denotes the average performance. Best results are in bold, and second-best results are underlined.

the contrastive results of Mistral-7B and LLaMA3-
3B models in Table 3. It can be observed that KaFT
significantly outperforms the baselines among all
domains, indicating that alleviating the negative
effect of conflict data can avoid the overfitting of
LLMs, continuing to prove KaFT’s effectiveness.

4.3 Ablation Study

Effect of conflict detection methods. One of
our contributions is to design a query diversifica-
tion strategy for robust conflict detection. Here, to
verify its effectiveness, we compare it with some
variants: 1) “-w/o diverse query” means remov-
ing the query diversification process and obtaining
multiple responses for the original query. 2) “-w/o
response sampling” means using greedy decoding
to obtain the model responses with the highest prob-
ability for diverse queries, respectively. 3) “-w/o
both” means removing both processes and directly
using greedy decoding to obtain the model response
for each original query, as done in Ren et al. (2024).
After obtaining the responses, we compared them
with the references to calculate the conflict score.
Based on it, we sort the training data and select the
wrong set. Taking the LLaMA3-8B as an example,
we present the medical QA results of models tuned
with different wrong sets in Table 4. As seen, the
wrong selected by our method leads to maximum
performance degradation, i.e., our method can ef-
fectively detect the conflict data and select the most
conflict subset, proving its effectiveness.

Effect of reward strategies in KaFT. As men-
tioned in §3, KaFT empirically assigns the rewards
for subsets with varied conflicts. In this part, we
investigate this strategy by comparing it with two
variants: 1) “-w. constant” refers to the constant
reward for all subsets, i.e., Ri = 1.0, and 2) “-w.
auto-adapt” refers to using the conflict scores as the
rewards, i.e., Ri = Scorei. Comparative results of
medical QA are illustrated in Figure 3. Both of ours

Method Score ∆ ↓
Random 54.38 -
Ours 27.16 ↓ 27.22
-w/o diverse query 38.96 ↓ 15.42
-w/o response sampling 30.15 ↓ 24.23
-w/o both 49.00 ↓ 5.38

Table 4: Performance comparison (%) of wrong sets
selected by different conflict detection methods. The
LLaMA3-8B is used as the base model. “∆ ↓” denotes
the performance drops against the random selection,
where larger values refer to better performance.
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Figure 3: Effect of reward strategies in KaFT. The
y-axis denotes the average performance of medical QA.

and “-w. auto-adapt” outperform the “-w. constant”
by a clear margin, proving the effectiveness of
knowledge-aware SFT. Moreover, “-w. auto-adapt”
usually performs worse than ours. One possible
reason is that it assigns a relatively small reward for
the more important might-right subset, thus
hindering the activation of LLMs’ internal knowl-
edge. Conversely, our strategy can make full use of
the training data and achieve the best performance.

Impact of data partitioning strategies in KaFT.
In our KaFT, we split the total training dataset into
4 subsets and assign different rewards for these
subsets. Here, we investigate the effectiveness of
KaFT with different data partitioning strategies.
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Backbone Method English Medical Benchmark Chinese Medical Benchmark Score

MedQA MedMCQA MMLU∗ CMB CMExam CMMLU∗ Avg. ∆ ↑

LLaMA3-8B

Base 59.62 56.51 72.66 45.50 46.04 44.62 54.16 -
KaFT-2 subsets 61.90 56.30 73.45 48.41 48.07 46.68 55.80 +1.64
KaFT-4 subsets 64.10 56.94 74.01 47.39 47.89 45.44 55.96 +1.80
KaFT-8 subsets 63.45 56.63 73.82 47.93 48.01 47.12 56.16 +2.00

Table 5: Analysis of different data partitioning strategies in KaFT. “KaFT-* subsets” denotes that we split the
total training dataset into * subsets, and assign different rewards for these subsets.

Method Mistral-7B LLaMA3-8B

QA Dialogue Sumarization Avg. ∆ ↑ QA Dialogue Sumarization Avg. ∆ ↑
Base 51.65 62.22 44.50 52.79 - 50.79 67.27 49.49 55.85 -
Wrong-only 48.92 56.71 44.40 50.01 -2.78 45.55 51.73 42.56 46.61 -9.24
Vanilla SFT 50.66 69.60 49.24 56.50 +3.71 45.43 72.04 48.77 55.41 -0.44
No-conflict 54.54 70.48 45.89 56.97 +4.18 49.16 71.98 48.55 56.56 +0.71
Self-aligning 54.22 72.41 46.11 57.58 +4.79 49.67 72.24 48.64 56.85 +1.00
KaFT (Ours) 54.20 73.57 47.68 58.48 +5.69 50.85 72.65 48.79 57.43 +1.58

Table 6: Performance comparison (%) on the hallucination evaluation, i.e., HaluEval (Li et al., 2023a). Green
and red results refer to the average performance gains and drops against the “Base” baseline, respectively. For
references, we also report the results of “Wrong-only”, which fine-tunes LLMs on the individual wrong subset.
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Figure 4: Parameter analyses of KaFT. The y-axis
and x-axis denote the varied α and β, respectively. We
report the average results on medical QA benchmarks.

Specifically, we split the training data into 2, 4
and 8 subsets based on the conflict scores, respec-
tively. After manually tuning the rewards of the
conflict data subset, we train the LLaMA3-8B with
our KaFT method and report the comparative re-
sults in Table 5. We find that splitting the dataset
into more subsets generally results in better perfor-
mance, as it can achieve more fine-grained and ac-
curate knowledge-aware training. However, more
subsets require more manual hyperparameter tun-
ing. Thus, in our work, we split the dataset into 4
subsets for a better trade-off.

Parameter Analysis. In Eq. 2, we use two hy-
perparameters, i.e., α and β, to control the rewards
for wrong and might-wrong subsets. In this
study, we analyze their influence by evaluating the
performance of KaFT with different α and β, span-
ning {0.1, 0.5, 1.0}. Figure 4 illustrates the average

results of Mistral-7B and Qwen1.5-7B on medical
QA benchmarks, from which we find that: 1) In-
creasing the α leads to a continuous performance
decline, confirming the motivation to suppress the
learning of conflict data. 2) Increasing the β ap-
propriately brings better performance, but too large
β (i.e., 1.0) is harmful. We conjecture that the
might-wrong could contain some conflict data,
and overemphasizing its learning would cause over-
fitting. More specifically, the case of α = 0.1 and
β = 0.5 performs best, thus leaving as our default
experimental settings.

5 Discussion

5.1 Does KaFT improve the generalization?
Intuitively, by alleviating the negative effect of con-
flict data, KaFT can achieve better model general-
ization. To verify it, we further analyze its effect
from the following aspects:

Multilingual Generalization. We evaluate the
tuned models on a popular multilingual medi-
cal QA benchmark, i.e., MMedBench (Qiu et al.,
2024), consisting of six languages: Chinese, En-
glish, French, Japanese, Russian, and Spanish. The
comparative results of tuned LLaMA3-8B models
are illustrated in Figure 5. As seen, our KaFT
brings better performance gains than the other
methods across most languages. Specifically, com-
pared to the base model, KaFT achieves +4.94%
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Method History → Engineering → Law →
History Engineering Law Avg. History Engineering Law Avg. History Engineering Law Avg.

Base 49.60 59.20 51.60 53.47 49.60 59.20 51.60 53.47 49.60 59.20 51.60 53.47
Vanilla SFT 64.40 66.00 67.20 65.87 57.60 65.20 56.80 59.87 64.40 64.40 60.80 63.20
No-conflict 60.00 66.80 65.20 64.00 56.80 65.20 56.00 59.33 61.60 64.00 60.00 61.87
Self-aligning 56.80 66.00 60.40 61.07 52.80 63.60 55.20 57.20 57.60 64.40 58.00 60.00
KaFT (Ours) 66.40 66.00 67.60 66.67 58.80 67.20 56.80 60.93 66.00 65.60 61.20 64.27

Table 7: Performance comparison (%) on more domain-specific QA applications. Notably, we fine-tune the
LLaMA3-8B with the individual domain-specific training set (i.e., History, Engineering, and Law) and evaluate
them on all domains’ test sets. “Avg.” denotes the average performance, and the best results are in bold.

EnglishFrench

Russian Spanish

55 56 57 58 59 60

Base
Vanilla SFT

No-conflict
Self-aligning

KaFT (Ours)

58

59

60

61

62

63

53

54

55

56

57

58

414243444546

53

55

57

59

61

63

65

59.5

60

60.5

61

61.5

62

ChineseJapanese

Figure 5: Performance comparison (%) on multilin-
gual medical QA. LLaMA3-8B is used as base model.

average performance gains, especially +6.25%
gains in Japanese and +7.81% gains in Russian.

Hallucination Alleviation. As stated in the prior
work (Gekhman et al., 2024), fine-tuning with con-
flict data increases the LLMs’ tendency to halluci-
nate. Here, we investigate this problem by evalu-
ating the tuned models on a popular hallucination
detection benchmark, HaluEval (Li et al., 2023a).
Specifically, the models are required to classify
whether a sample contains hallucinated contents
from three tasks, i.e., question answering (QA),
knowledge-grounded dialogue (Dialogue), and text
summarization (Summarization). The results of
Mistral-7B and LLaMA3-8B models are reported
in Table 6. For references, we also report the re-
sults of directly fine-tuning on the wrong sub-
set, denoted as “Wrong-only”. It can be found
that enforcing LLMs to learn the new knowledge
from conflict data indeed causes serious hallucina-
tion, as “Wrong-only” and “Vanilla SFT” cause
up to -9.24% and -0.44% average score drops,
respectively. More encouragingly, our KaFT can

effectively alleviate this side effect and bring up to
+5.69% average score gains against base models.
Takeaway: These results prove that our KaFT can
indeed bring better model generalization.

5.2 Does KaFT still work in other scenarios?
Although our KaFT is mainly evaluated in the med-
ical domain, we believe that it has great potential to
expand to more domain-specific applications. To
verify it, we conduct additional experiments from
three domains: history, engineering, and law. Fol-
lowing Ren et al. (2024), we use the corresponding
domain-specific training and test sets, collected
from Xiezhi Benchmark (Gu et al., 2024). The
data statistics are provided in Appendix A.1. We
fine-tune the LLMs with the individual domain-
specific training set and evaluate them on the test
sets of all domains. Results of tuned LLaMA3-8B
models are reported in Table 7, from which we
observe that KaFT performs best and brings consis-
tent and significant performance gains among all
domains. Takeaway: KaFT not only works well
in medical QA, but also can be applied to more
domain-specific scenarios.

6 Related Works

LLMs (Ouyang et al., 2022; OpenAI, 2023; Dubey
et al., 2024; Liu et al., 2024a) have showcased pow-
erful general-purpose capabilities. However, they
might fall short in domain-specific applications,
such as medical QA (Labrak et al., 2024). To this
end, many prior works (Singhal et al., 2023; Li
et al., 2023b; Chen et al., 2023; He et al., 2025)
attempt to perform SFT on the domain-specific QA
dataset for facilitating domain adaptation.

Despite achieving remarkable performance, SFT
often faces a critical challenge, i.e., knowledge con-
flicts. Specifically, since domain-specific SFT is
more knowledge-intensive and contains rich pro-
fessional knowledge that has not been learned
during the LLMs’ pretraining, there is usually a
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discrepancy between the LLMs’ internal knowl-
edge and the context knowledge of the SFT corpus.
More recently, Ren et al. (2024) reveal that SFT
fails to learn additional knowledge and Gekhman
et al. (2024) find that enforcing LLMs to learn new
knowledge through SFT would easily damage their
prior abilities and lead to hallucination. Thus, it
is suboptimal to directly fine-tune LLMs using the
full SFT training samples equally.

To address this problem, there are few existing
works (Ren et al., 2024; Gekhman et al., 2024; Ye
et al., 2024). However, they still have some short-
comings and struggle to tackle this problem effec-
tively. On the one hand, their conflict detection
methods highly rely on ICL (Brown et al., 2020),
which is sensitive to the few-shot examples (Min
et al., 2022). On the other hand, after detecting the
conflict data, they mitigate its negative effect by
either using early-stopping or filtering out it from
the training dataset, while neglecting how to make
full use of these conflict data.

Different from these prior studies, we first design
a query diversification strategy to robustly detect
the conflict and then propose KaFT to make full
use of all training data. The main idea of KaFT is
to use sample-adaptive rewards for better guiding
the learning of LLMs, which is somewhat similar
to prior adaptive-learning methods (Wang et al.,
2024a; Li et al., 2020; Kang et al., 2020; Ghorbani
and Zou, 2019; Yoon et al., 2020; Zhong et al.,
2024). We should emphasize that, although assign-
ing different weights to subsets is a common and
intuitive approach, it is non-trivial to determine
the weights for different subsets, especially for the
domain-specific SFT of LLMs. Thus, we believe
that KaFT is innovative and our work is insightful.

7 Conclusion

In this paper, we focus on the knowledge conflict
problem in the domain-specific SFT, which is criti-
cal yet under-explored. Specifically, we propose a
query diversification strategy to robustly detect the
conflict. Based on it, we conduct a series of prelimi-
nary analyses and reveal that different training sam-
ples contribute differently, where those with more
conflicts would dynamically damage LLMs’ abili-
ties. To this end, we further propose a knowledge-
aware SFT approach (KaFT). In short, KaFT uti-
lizes sample-adaptive rewards to suppress the neg-
ative effect of conflict data and encourage LLMs
to activate more relevant knowledge. Extensive re-

sults on medical QA benchmarks demonstrate the
effectiveness and universality of KaFT. More en-
couragingly, in-depth analyses prove that KaFT can
achieve better model generalization and alleviate
the model hallucination effectively.

Limitations

Our work has several potential limitations. First,
given the limited computational budget, we only
validate our KaFT on up to 8B LLMs in the main
experiments. It will be more convincing if scaling
up to super-large model sizes (e.g., 70B) and apply-
ing KaFT to more cutting-edge model architectures.
On the other hand, to better probe LLMs’ internal
knowledge, we follow the prior studies (Ren et al.,
2024; Ye et al., 2024) and mainly focus on multiple-
choice QA tasks. We will expand our methods to
the long-form QA scenarios in future work.

Ethics Statements

We take ethical considerations very seriously and
strictly adhere to the ACL Ethics Policy. This pa-
per proposes a knowledge-aware fine-tuning frame-
work to improve the domain-specific QA perfor-
mance of LLMs. It aims to activate LLMs’ internal
domain-specific knowledge, e.g., medical, instead
of encouraging them to learn privacy knowledge
that may cause an ethical problem. Moreover, all
training and evaluation datasets used in this pa-
per are publicly available and have been widely
adopted by researchers. Thus, we believe that this
research will not pose ethical issues.
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A Appendix

A.1 Details of Tasks and Datasets
In this work, to investigate the effectiveness and
universality of our KaFT, we conduct extensive ex-
periments on four domain-specific QA applications,
covering medical, history, and law. In addition, the
multilingual medical QA tasks and hallucination
detection tasks are used to reveal the underlying
mechanism of our method. Here, we introduce
the descriptions of these tasks and datasets in de-
tail. First, we present the statistics of all datasets in
Table 8. Then, each task is described as:

MedQA. MedQA (Jin et al., 2021) consists of
questions and corresponding 4-option or 5-option
answers in the style of the US Medical License
Exam (USMLE). Since it consists of diverse med-
ical knowledge, MedQA is a challenging bench-
mark and is thus used as our training corpus.
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Dataset #Training #Test

Medical QA
MedQA (Jin et al., 2021) 10,178 1,273
MedMCQA (Pal et al., 2022) - 4,183
MMLU∗ (Hendrycks et al., 2020) - 1,089

- Anatomy - 135
- Clinical Knowledge - 265
- College Biology - 144
- College Medicine - 173
- Medical Genetics - 100
- Professional Medicine - 272

CMB (Wang et al., 2024b) - 9,998
CMExam (Liu et al., 2024b) - 6,607
CMMLU∗ (Li et al., 2024) - 1,140

- Anatomy - 148
- Clinical Knowledge - 237
- College Medical Statistics - 106
- College Medicine - 273
- Professional Medicine - 376

Other domain-specific QA
History (Gu et al., 2024) 8,605 250
Engineering (Gu et al., 2024) 4,805 250
Law (Gu et al., 2024) 6,510 250

More in-depth analyses
MMedBench (Qiu et al., 2024) - 8,178

- Chinese - 3,426
- English - 1,273
- French - 321
- Japanese - 160
- Russian - 256
- Spanish - 2,742

HaluEval (Li et al., 2023a) - 30,000
- question answering - 10,000
- knowledge-grounded dialogue - 10,000
- text summarization - 10,000

Table 8: Statistic information of all used datasets in
our study. “#Training” and “#Test” denote the number
of training and test samples, respectively.

Specifically, the training set consists of 10,178 sam-
ples, and the test set has 1273 questions.

MedMCQA. MedMCQA (Pal et al., 2022) con-
sists of 4-option multiple-choice QA samples from
the Indian medical entrance examinations (AI-
IMS/NEET). This dataset covers 2.4K healthcare
topics and 21 medical subjects. We use the valida-
tion set with 4,183 questions for evaluation.

MMLU∗. MMLU (Hendrycks et al., 2020) is a
comprehensive benchmark, including exam ques-
tions from 57 subjects (e.g., STEM and social sci-
ences). Each MMLU subject contains 4-option
multiple-choice QA samples. Similar to prior
works (Singhal et al., 2025), we select 6 subjects
that are most relevant to medical and clinical knowl-

edge: Anatomy, Clinical Knowledge, College Bi-
ology, College Medicine, Medical Genetics and
Professional Medicine. For convenience, we de-
note this subset as MMLU∗.

CMB. CMB (Wang et al., 2024b) is a comprehen-
sive medical benchmark in Chinese, designed and
rooted entirely within the native Chinese linguistic
and cultural framework. It consists of two parts:
CMB-Exam, featuring multiple-choice questions
from qualification exams, and CMB-Clin, includ-
ing complex clinical diagnostic questions derived
from real case studies. In our experiments, we eval-
uate the models on the samples with single answers
from the test set of CMB-Exam.

CMExam. CMExam (Liu et al., 2024b) is
sourced from authentic medical licensing exams,
containing more than 60K questions. It can reflect
the comprehensive coverage of medical knowledge
and reasoning required in clinical practice, cover-
ing Traditional Medicine Disease Patterns, Diges-
tive System Diseases, Certain Infectious, etc. For
evaluation, we select the data with single-choice
answers from the test set.

CMMLU∗. CMMLU (Li et al., 2024) is a com-
prehensive Chinese benchmark that covers vari-
ous subjects, including natural sciences, social sci-
ences, engineering, and the humanities. Similar to
MMLU-Medical, we also select the subjects that
are most relevant to medical and clinical knowledge
as the medical QA benchmarks, covering Anatomy,
Clinical Knowledge, College Medical Statistics,
College Medicine, and Professional Medicine. For
convenience, we refer to this subset as CMMLU∗

in the main experiments.

Other domain-specific QA. In addition to the
medical QA, we also evaluate our method in the
other domains, covering history, engineering, and
law. Specifically, we follow Ren et al. (2024) and
procure the relevant items from the Xiezhi (Gu
et al., 2024) Benchmark for each domain. Xiezhi
contains 249587 questions with 516 disciplines,
ranging from 13 different categories. Since Ren
et al. (2024) have publicly released the collected
dataset, we directly reuse the corresponding train-
ing and test sets in our experiments.

MMedBench. MMedBench (Qiu et al., 2024) is
a multilingual medical multiple-choice QA bench-
mark across six primary languages: English, Chi-
nese, Japanese, French, Russian, and Spanish. The
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entire test set of MMedBench comprises 8,518 QA
pairs. For a unified evaluation, we remove the
samples with multiple answers and use the filtered
8,178 samples as the evaluation set.

HaluEval. HaluEval (Li et al., 2023a) is a large
collection of generated and human-annotated hal-
lucinated samples for evaluating the performance
of LLMs in recognizing hallucination. It includes
5,000 general user queries with ChatGPT responses
and 30,000 task-specific examples from three tasks,
i.e., question answering, knowledge-grounded dia-
logue, and text summarization. In the evaluation, it
randomly samples a ground-truth or a hallucinated
output for each data. If the text is a hallucinated an-
swer, the LLM should recognize the hallucination
and output “Yes”, which means the text contains
hallucinations. If the text is a ground-truth answer,
the LLM should output “No” indicating that there
is no hallucination. The accuracy can evaluate the
hallucination, where a larger value means less hal-
lucination. In our study, we use task-specific exam-
ples from HaluEval for hallucination evaluation.

A.2 Training and Evaluation Details

For model training, we fine-tune each LLM with
a batch size of 16 and a peak learning rate of 1e-
4, except 2e-4 for LLaMA3-3B. The warm-up ra-
tio is 0.1 and the maximum tokenizer length is
2,048. All models are trained with LoRA (Hu
et al., 2021) method for 1 epoch. We conduct all
experiments on 8 NVIDIA A100 (40GB) GPUs.
For conflict detection in KaFT, we set the tem-
perature to 0.7 and sample 10 responses for each
query. During evaluation, we set the tempera-
ture to 0 for reproducibility. Specifically, we use
the widely-used lm-evaluation-harness2

toolkit to measure the zero-shot accuracy of LLMs
on multiple-choice QA benchmarks.

A.3 Prompt Details

As mentioned in §2, we use the ICL-based method
to probe the LLMs’ internal domain-specific knowl-
edge for each query. Specifically, we randomly
select three samples from the training set as the
few-shot examples, and use them to guide the out-
put format of LLMs. Taking the medical QA as an
example, we present a case as follows:

2https://github.com/EleutherAI/lm-evaluation-harness

Probing for LLMs’ internal knowledge

For the following medical question, select
one correct answer from A to D.
Question: A 3900-g (8.6-lb) male infant
is delivered at 39 weeks’ gestation via
spontaneous vaginal delivery. Pregnancy
and delivery were uncomplicated but a
prenatal ultrasound at 20 weeks showed a
defect in the pleuroperitoneal membrane.
Further evaluation of this patient is most
likely to show which of the following
findings?
Options:
A. Gastric fundus in the thorax
B. Pancreatic ring around the duodenum
C. Hypertrophy of the gastric pylorus
D. Large bowel in the inguinal canal
Answer: A

. . . (the other two examples)

For the following medical question, select
one correct answer from A to D.
Question: <question>
Options:
A. <option_a>
B. <option_b>
C. <option_c>
D. <option_d>
Answer: [output]

where <question> and <option> denote the
input question and answer options, [output]
denotes the corresponding model response.

A.4 Full Results
Here, we report the full results of experiments in
our main paper. Specifically, Table 9 shows the de-
tailed results of different subsets. Table 10 shows
the detailed results of varied wrong data. Table 11
and Table 12 show the ablation study of our pro-
posed conflict detection method and KaFT method,
respectively. Table 13 shows the detailed results of
parameter analyses of α and β. Table 14 shows the
detailed results on the MMedBench. Please refer
to the tables for more details.
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Backbone Subset English Medical Benchmark Chinese Medical Benchmark Avg.
MedQA MedMCQA MMLU∗ CMB CMExam CMMLU∗

Mistral-7B

Random 55.85 50.32 66.67 36.24 36.10 35.30 46.75
right 53.10 47.72 66.55 37.48 36.69 36.18 46.29
might-right 57.11 50.42 67.69 36.85 35.92 36.45 47.41
might-wrong 56.56 50.25 64.71 35.09 34.43 34.29 45.89
wrong 27.89 32.27 22.58 18.47 19.95 24.95 24.35

Qwen1.5-7B

Random 50.82 50.35 62.06 75.05 76.62 70.27 64.19
right 50.04 49.63 60.78 74.95 77.02 70.95 63.89
might-right 51.37 50.35 62.87 75.61 77.37 70.32 64.65
might-wrong 45.48 45.04 46.32 68.41 70.70 65.08 56.84
wrong 15.63 29.69 14.72 22.79 20.13 20.87 20.64

LLaMA3-8B

Random 60.80 55.42 71.68 46.84 47.15 44.42 54.38
right 59.31 56.59 72.20 47.37 47.54 45.64 54.77
might-right 60.49 55.58 73.15 48.13 48.01 46.96 55.39
might-wrong 61.67 55.49 72.58 45.76 46.12 43.75 54.23
wrong 23.72 30.43 37.96 23.65 22.16 25.04 27.16

LLaMA3-3B

Random 53.10 49.03 62.32 38.26 38.40 37.93 46.51
right 51.30 50.08 62.07 40.39 40.29 37.73 46.98
might-right 54.20 48.29 61.09 37.09 38.14 37.48 46.05
might-wrong 50.75 46.14 61.11 30.26 30.92 32.95 42.02
wrong 19.25 25.32 19.80 21.02 20.63 24.58 21.77

Table 9: Full results of Figure 2 (b), i.e., comparison of different subsets. For reference, we also present the
results of SFT on the randomly selected samples. Note that all subsets hold the same number of training samples.

Backbone Ratio English Medical Benchmark Chinese Medical Benchmark Avg.
MedQA MedMCQA MMLU∗ CMB CMExam CMMLU∗

Mistral-7B

0% 52.95 49.20 63.76 38.91 39.78 37.27 46.98
25% 53.73 49.15 64.52 38.86 39.14 37.47 47.15
50% 54.91 49.94 62.04 37.81 38.70 36.32 46.62
75% 55.85 49.32 62.93 38.17 38.99 38.37 47.27
100% 54.99 50.08 62.94 38.00 39.17 38.13 47.22

LLaMA3-3B

0% 58.37 51.11 68.69 38.09 36.92 36.17 48.22
25% 58.29 51.23 69.25 37.54 37.17 39.25 48.79
50% 60.02 50.32 69.69 36.75 36.73 39.15 48.78
75% 61.19 51.66 68.54 35.87 35.51 37.29 48.34
100% 59.86 43.75 68.06 36.25 36.25 35.48 46.61

Table 10: Full results of Figure 2 (c), i.e., analysis of ratio of wrong data. Notably, we randomly select varied
samples from the wrong subset and merge them with the other three subsets. We set three different random seeds
for data sampling and report the average results in this table.

Backbone Method English Medical Benchmark Chinese Medical Benchmark Avg.
MedQA MedMCQA MMLU∗ CMB CMExam CMMLU∗

LLaMA3-8B

Random 60.80 55.42 71.68 46.84 47.15 44.42 54.38

Ours 23.72 30.43 37.96 23.65 22.16 25.04 27.16
-w/o diverse query 41.32 40.04 61.80 29.93 29.60 31.05 38.96
-w/o response sampling 29.38 26.63 45.03 27.46 27.27 25.16 30.15
-w/o both 55.22 52.88 69.61 38.10 39.14 39.07 49.00

Table 11: Full results of Table 4, i.e., ablation of our conflict detection method. LLaMA3-8B is used as the base
model. Notably, we use different conflict detection to select the wrong subset for training. The worse results mean
that the method can detect the conflict data more accurately, i.e., worse results refer to better performance.
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Backbone Method English Medical Benchmark Chinese Medical Benchmark Avg.
MedQA MedMCQA MMLU∗ CMB CMExam CMMLU∗

Mistral-7B
KaFT (Ours) 59.54 49.87 68.47 38.11 37.35 40.73 49.01
-w. constant 59.86 43.75 68.06 36.25 36.25 35.48 46.61
-w. auto-adapt 59.07 51.09 68.53 37.72 36.92 39.56 48.82

Qwen1.5-7B
KaFT (Ours) 53.57 49.82 63.23 75.57 77.27 72.07 65.25
-w. constant 52.71 50.20 61.60 74.30 76.15 70.16 64.19
-w. auto-adapt 52.55 50.06 63.04 75.18 77.04 70.73 64.77

LLaMA3-8B
KaFT (Ours) 64.10 56.94 74.01 47.39 47.89 45.44 55.96
-w. constant 61.82 55.75 73.34 45.99 45.85 44.95 54.62
-w. auto-adapt 61.35 56.49 73.19 47.91 48.45 46.26 55.61

LLaMA3-3B
KaFT (Ours) 54.52 50.51 64.93 40.19 39.93 39.70 48.30
-w. constant 54.99 50.08 62.94 38.00 39.17 38.13 47.22
-w. auto-adapt 53.57 50.30 63.65 39.15 39.55 38.17 47.40

Table 12: Full results of Figure 3, i.e., performance comparison (%) between different reward strategies in
KaFT. The best average results are in bold.

Backbone Method English Medical Benchmark Chinese Medical Benchmark Avg.
MedQA MedMCQA MMLU∗ CMB CMExam CMMLU∗

Mistral-7B

α=0.1, β=0.1 57.03 48.10 68.84 37.67 37.79 40.54 48.33
α=0.1, β=0.5 59.54 49.87 68.47 38.11 37.35 40.73 49.01
α=0.1, β=1.0 58.68 50.39 68.35 37.99 37.63 39.29 48.72

α=0.5, β=0.1 58.76 48.82 67.98 37.38 36.76 40.05 48.29
α=0.5, β=0.5 59.78 51.21 68.06 37.30 36.72 39.27 48.72
α=0.5, β=1.0 59.31 49.70 69.05 37.99 36.87 40.18 48.85

α=1.0, β=0.1 56.32 46.12 67.67 36.83 36.87 40.04 47.31
α=1.0, β=0.5 60.09 50.18 68.41 36.31 36.39 38.77 48.36
α=1.0, β=1.0 59.86 43.75 68.06 36.25 36.25 35.48 46.61

Qwen1.5-7B

α=0.1, β=0.1 53.57 50.13 62.45 75.57 77.27 71.55 65.09
α=0.1, β=0.5 53.57 49.82 63.23 75.57 77.27 72.07 65.25
α=0.1, β=1.0 52.47 50.18 62.53 75.25 76.89 71.46 64.80

α=0.5, β=0.1 52.95 49.65 61.96 75.14 76.99 71.94 64.77
α=0.5, β=0.5 53.97 50.04 61.24 75.09 76.69 71.30 64.72
α=0.5, β=1.0 53.42 50.27 60.82 74.59 76.19 70.90 64.37

α=1.0, β=0.1 52.87 50.59 62.35 75.17 76.48 70.45 64.65
α=1.0, β=0.5 51.53 50.08 61.73 74.86 76.13 70.49 64.14
α=1.0, β=1.0 52.71 50.20 61.60 74.30 76.15 70.16 64.19

Table 13: Full results of Figure 4, i.e., parameter analyses of α and β. The best average results are in bold.
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Backbone Method MMedBench Avg.
Chinese English French Japanese Russian Spanish

Mistral-7B

Base 35.76 51.06 41.74 26.88 48.05 49.27 42.13
Vanilla SFT 41.07 58.99 48.29 30.00 60.94 58.02 49.55
No-conflict 41.77 56.56 49.84 36.25 62.50 56.20 50.52
Self-aligning 41.04 54.91 46.11 32.50 61.33 55.87 48.63
KaFT (Ours) 41.36 58.37 48.29 38.12 62.11 57.22 50.91

Qwen1.5-7B

Base 82.25 46.19 41.12 35.62 55.08 49.02 51.55
Vanilla SFT 79.16 46.82 45.48 36.25 61.72 49.12 53.09
No-conflict 83.07 50.90 48.60 44.38 57.81 52.88 56.27
Self-aligning 82.11 47.29 46.11 38.75 58.59 51.50 54.06
KaFT (Ours) 82.81 51.61 47.66 40.62 63.67 52.63 56.50

LLaMA3-8B

Base 56.98 58.68 53.58 40.00 55.86 59.48 54.10
Vanilla SFT 58.20 61.74 57.01 42.38 63.67 61.93 57.49
No-conflict 59.40 60.72 58.57 46.25 62.50 61.42 58.14
Self-aligning 59.78 60.49 57.63 45.62 62.50 62.31 58.09
KaFT (Ours) 60.19 63.24 58.88 46.25 63.67 62.00 59.04

LLaMA3-3B

Base 46.15 49.65 40.81 28.12 50.78 49.31 44.14
Vanilla SFT 47.14 53.10 40.81 33.75 51.95 51.79 46.42
No-conflict 48.63 53.57 42.06 35.00 51.17 51.17 46.93
Self-aligning 47.72 52.40 39.56 33.12 51.17 50.95 45.82
KaFT (Ours) 48.22 53.42 46.11 33.12 51.95 52.81 47.61

Table 14: Full results of Figure 5, i.e., performance of MMedBench (Qiu et al., 2024). In addition to LLaMA3-8B
models, we also report the results of other LLMs. The best average results are in bold.

24100


