MERIT: Multi-Agent Collaboration for Unsupervised Time Series
Representation Learning

Shu Zhou'*, Yunyang Xuan'*, Yuxuan Ao'*, Xin Wang?, Tao Fan®, Hao Wang!"
'Nanjing University 2Baidu *Nanjing University of Finance & Economics
{shuzhou, yunyangxuan, yxao}@smail.nju.edu.cn
{xinwang2749, fantao@916}@gmail.com, ywhaowang@nju.edu.cn

Abstract

This paper studies the problem of unsuper-
vised time series representation learning, which
aims to map unlabeled time series data into
a low-dimensional latent space for various
downstream tasks. Previous works usually
combine a range of augmentation strategies
with contrastive learning to generate discrim-
inative representations. However, these aug-
mentation strategies could alter the original se-
mantics of time series data, which could de-
grade the performance of representation learn-
ing. To solve this problem, this paper incorpo-
rates the large language model (LLM) agent
to guide unsupervised time series represen-
tation learning and proposes a novel frame-
work named Multi-Agent Collaboration for
Time-series Representation Learning (MERIT).
The core of our MERIT is to utilize three
LLM agents to collaboratively generate pos-
itive views for time series data. In particular,
we first design a retrieval agent to automati-
cally identify the relevant time series data from
a coarse candidate set. Then, these selected se-
quences are further utilized to enhance an aug-
mentation agent which automatically selects
reliable augmentation strategies from an aug-
mentation strategy library. We also design a re-
view agent to evaluate the quality of generated
views and stop the generation process. These
three agents are designed to work in a loop
for effective time series representation learn-
ing. Extensive experiments on various datasets
demonstrate the effectiveness of MERIT com-
pared with state-of-the-art baselines.

1 Introduction

In the data-driven era, time series data exist widely
in various fields including finance (Sezer et al.,
2020; Liu et al., 2024), healthcare (Caballero Bara-
jas and Akella, 2015), and transportation (Sun
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et al., 2023). Time series data is naturally high-
dimensional, which brings challenges for analyti-
cal modeling (Qiu et al., 2011). Traditional feature
engineering approaches are time-consuming and
expert-dependent, which are difficult to generalize
across different tasks. In contrast, unsupervised
time series representation learning approaches (Liu
and Chen, 2024a; Yang and Hong, 2022; Lafab-
regue et al., 2022) can map unlabeled time series
data to a low-dimensional latent space without ex-
pensive annotation. In this way, they can automati-
cally mine latent structural and temporal features
to provide downstream tasks such as regression,
classification, and anomaly detection (Eldele et al.,
2024; Liu and Chen, 2024a).

Recent unsupervised time series representation
learning approaches (Trirat et al., 2024; Yue et al.,
2022; Eldele et al., 2021; Franceschi et al., 2019a)
typically generate positive views using a series of
hand-designed transformations, including random
dithering, scaling, and cropping. They then utilize
contrastive learning to ensure the augmented repre-
sentations of the same sample are close to the other
samples. However, random augmentation could
distort key patterns and weaken feature structures,
resulting in false positive views that degrade repre-
sentation learning (Wen et al., 2020). For example,
when applied to medical signal processing, exces-
sive smoothing, and interpolation jitter may erase
the characteristic peaks and valleys of the electro-
cardiogram, which hurts the semantics of time se-
ries data (Hemakom et al., 2023). In financial trad-
ing sequences, adding uncorrelated noise may hide
the decision cues embedded in price fluctuations,
leading to a decrease in the precision of subsequent
forecasting and investment analysis (Huang et al.,
2023b). Therefore, it is highly anticipated to have
high-quality time series augmentation strategies
with crucial semantics preserved in various scenar-
ios to facilitate effective representation learning.

Due to the strong capacity of large language
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Figure 1: Comparison between existing time series rep-
resentation learning approaches (a) and our proposed
LLM-driven framework (b).

models (LLMs) (Achiam et al., 2023; Anil et al.,
2023; Touvron et al., 2023; Zhou et al., 2025a), we
aim to incorporate LLMs into time series represen-
tation learning. However, there are still two major
challenges in applying LLMs to time series data
representation learning. @ LLMs usually have a
limited understanding of numerical signals (Liu
et al., 2023a; Liang et al., 2022; Zhou et al., 2025b;
Taylor et al., 2022). Therefore, it is hard to re-
quire LLMs to directly generate reliable time series
representations or augmented time series. LLMs
could even generate wrong formats with the prin-
ciple of next-token predictions. @ Their ability
for semantic understanding and feature extraction
is insufficient under the zero-shot condition (Wei
et al., 2022; Sanh et al., 2021; Merrill et al., 2024),
especially for complicated time series. Therefore,
we should introduce contextual search and well-
designed instructions to lay a solid foundation for
constructing a more flexible, robust, and semanti-
cally preserved unsupervised time series represen-
tation learning framework.

Towards this end, we propose a novel frame-
work named Multi-Agent Collaboration for Time-
series Representation Learning (MERIT). Differ-
ent from existing representation learning methods,
our MERIT utilizes three LLM-based agents to au-
tomatically generate high-quality positive sample
views for time series data (see Figure 1), and thus
achieve more reliable representations. In particular,
we first introduce a retrieval agent, which utilizes
the semantic understanding and association infer-
ence ability to select the relevant sequences from
the database. To enhance the retrieval efficiency,
we also calculate the similarity of time series which
generate a coarse candidate. These selected rele-
vant sequences are considered as context data with

instructions for an augmentation agent, which auto-
matically identifies reliable augmentation schemes
from an augmentation strategy library. In this way,
we can generate positive views that match the data
characteristics, ensuring that the critical semantics
can be preserved as much as possible for effective
representation learning. To further ensure the relia-
bility without potential hallucination, we introduce
a review agent to evaluate the quality of the gen-
erated augmented views and terminate unsuitable
augmentations if necessary. Finally, both appropri-
ate augmented views and retrieved sequences are
incorporated into a contrastive time series represen-
tation learning paradigm. Extensive experiments
on a wide range of benchmark datasets validate the
effectiveness of our MERIT in comparison with
various state-of-the-art approaches.

The contributions of this paper are as follows:
® Problem Connection. We are the first to con-
nect LLM agents with time series representation
learning, which utilizes the reasoning capability of
LLMs to enhance the time series learning paradigm.
® Novel Methodology. Our multi-agent collabo-
rate framework MERIT utilizes a retrieval agent
to extract context from the data, which enhances
the reasoning ability of an augmentation agent for
effective time series positive views. A review agent
is also adopted to ensure the reliability. ® Exten-
sive Experiments. Extensive experiments on sev-
eral publicly available time series datasets results
show that MERIT significantly outperforms exist-
ing comparative learning methods.

2 Related Work

2.1 Time Series Representation Learning

Time series representation learning has become in-
creasingly important for various downstream tasks.
Early approaches leveraged traditional dimension-
ality reduction techniques like Principal Compo-
nent Analysis (PCA) (Pearson, 1901) and auto-
encoders (Kramer, 1991) to learn compact represen-
tations. Recent self-supervised learning advance-
ments have introduced contrastive learning-based
methods (Liu and Chen, 2024b; Luo et al., 2023;
Wu et al., 2023; Yue et al., 2022), which generate
positive pairs through data augmentation and max-
imize their agreement in the representation space.
However, many methods rely on fixed or random
augmentation, potentially distorting the semantics
of time series. Some studies attempt to address this
through carefully designed augmentations (Zhang
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Figure 2: An overview of MERIT. Our retrieval agent first selects neighborhood candidates with similarity, followed
by refinement using an LLM. Our augmentation agent then selects suitable data augmentation strategies from the
augmentation strategy library. Finally, our review agent evaluates the quality of the augmented sequences, which
approves positive samples into a memory bank and returns to the retrieval agent for refinement if rejected. The
augmented views and neighboring samples are utilized as positives for time series representation learning.

et al., 2023, 2022b; Eldele et al., 2021; Yang et al.,
2021), but they lack adaptive selection based on
data characteristics. More recent methods (Xu
et al., 2023; Liu et al., 2023b) leverage masked au-
toencoding and use transformer architectures, but
they still face challenges with maintaining semantic
consistency during augmentation.

2.2 Multi-agent Systems

Multi-agent systems (MAS) (Baroni et al., 2022;
Li et al., 2023; Park et al., 2024) attract growing
interest in machine learning tasks, where agents
interact to achieve individual or shared goals. Early
works have focused on cooperative settings, with
agents learning a shared representation through
communication and coordination (Sunehag et al.,
2018). More recent approaches explore compet-
itive and adversarial settings, where agents learn
distinct representations through competition (Lowe
et al., 2017). Researchers have also applied MAS
to multi-agent reinforcement learning and decen-
tralized approaches for learning representations in
multi-agent environments (Anschel et al., 2018;
Gupta et al., 2017). Additionally, MAS has been

explored in graph representation learning (Wang
et al., 2024; Zhang et al., 2022a), unsupervised rep-
resentation learning (Zhu et al., 2022), and cross-
modal representation learning (Zhang et al., 2024),
highlighting its potential in addressing complex
representation learning challenges. Towards this
end, this paper proposes a novel approach MERIT,
which uses LLMs agents to collaboratively gener-
ate positive views for time series data.

3 The Proposed MERIT

This paper studies the problem of time series rep-
resentation learning and proposes a multi-agent
framework named MERIT, which incorporates
three LLM-based intelligent agents in a closed-
loop collaboration mechanism to dynamically gen-
erate high-quality positive views while ensuring
the preservation of semantics. In particular, our
framework consists of three LLM-based agents:
(1) Retrieval agent, which first selects the candi-
dates for the input sequence and then identifies the
relevant context; (2) Augmentation agent, which
selects appropriate augmentation strategies based
on context inforamtion; (3) Review agent, which
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evaluates the quality of the generated views. The
whole process enables the MERIT framework to
dynamically generate views of positive samples
and to improve the discrimination and transferabil-
ity of time series representations. The overview of
our MERIT can be found in Figure 2.

3.1 Problem Definition

Given a dataset X = {x1,...,zy} of N time
series @; of length 7" with C channels, the objective
of self-supervised learning is to learn a function fy,
such that Vi € [1, N], z; = fp(x;). Each z; € R?
is a d-dimensional representation of time series
x;, which should preserve as much information of
the original data as possible. In this work, fp(-) is
learned fully from unlabeled data X.

3.2 Retrieval Agent for Context Mining

In zero-shot scenarios, directly applying LLMs to
raw time series data can be problematic due to
their limited understanding of numerical signals
(Liu et al., 2023a; Liang et al., 2022; Taylor et al.,
2022). Therefore, our framework first utilizes a
retrieval agent to provide LLM with high-quality
context from the dataset, which is beneficial to the
subsequent process. Our retrieval agent takes a two-
step paradigm, which first selects a set of candidate
sequences based on their similarity to the target
sequence and then further refines this set using the
semantic reasoning capabilities of LLMs.

In particular, we first identify a coarse candidate
set C; for the target sequence x; € R7*¢, which
can greatly save the cost of LLMs. By calculating
the similarity scores between the target sequence
and other sequences in the dataset, we select the top
K sequences that are similar to x; as the candidate
set as follows:

Ci = {xj|x; € Top-K(Sim(x;, x;)), x; # xi}
(1
where Sim(-,-) is the function used to measure
sequence similarity and Top-K(+) returns the set of
samples with top K scores.

Then, we adopt an LLM to further narrow down
the scope by designing a prompt containing infer-
ence instructions, which semantically filter these
candidate sequences for the similar sequences. In
formulation, given a target sequence x; and a candi-
date sequence x;, the prompt contains an inference
requirement that instructs the LLM to explain why
x; is similar to x; and generates a semantic rele-

vance score Rel(x;, ;) based on its explanation:
Rel(z;, ;) = LLM(z;, z;, P) 2)

where the prompt P includes the description of the
target sequence x; and the context of the candidate
sequence x;, and the LLM is asked to provide the
reason for the similarity. Finally, based on the
semantic relevance scores, we select the highest
scoring M sequences to form the final reference
set R;:

Ri = {zj|x; € Top-M(Rel(z;, z;)) N C;} (3)

In this way, we are able to construct reference con-
text with high semantic relevance R; for the target
time series, which provides a data-centric view of
contextual support for the subsequent paradigm.

3.3 Augmentation Agent with Adaptive
Strategy Selection

Positive views from augmentation are the key to
unsupervised time series representation learning
(Yue et al., 2022; Eldele et al., 2021). Existing
time series augmentation approaches often rely on
a fixed set of transformations, which may poten-
tially distort crucial semantic information in diverse
scenarios (Zhang et al., 2022b; Yang et al., 2021;
Eldele et al., 2021). To address this, our augmenta-
tion agent utilizes contextual information provided
by the retrieval agent to dynamically select appro-
priate augmentation strategies in a data-centric way.
By adapting to the specific characteristics of the
time series data, we can ensure that the generated
positive views are semantically reliable.

In detail, from the reference set R;, our aug-
mentation agent is required to choose a suitable
augmentation strategy for the target sequence x;.
Towards this end, we require an LLM to gener-
ate the set of augmentation strategies, which are
applicable to the current data, i.e.,

S; = LLM(z;, R;, S), “)

where S = {Sailing, Resizing, Jittering, Flipping,
Permutation, Time Masking, Frequency Masking,
Time Neighboring} is the augmentation strategy
library and §; C S. Then, we apply these strate-
gies to the target sequence x; to generate the corre-
sponding augmented samples:

=S

xz; = s(x;), VseS,, 5)
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where &; is the augmented sample with the strategy
s. A set of positive views can be obtained by com-
bining the augmented views of x; and its similar
sequence x; € R; respectively:

={z{[s € Si}U{x;lj € Ri}. (6)

We also conduct augmentation on x; to promote
diverse positive views.

3.4 Review Agent for Reliable Actions

Although we have generated adaptive positive
views for specific target sample, there is still a
chance that the LLM may generate semantically
inappropriate or distorted augmented samples due
to LLM hallucination (Ji et al., 2023; Huang et al.,
2023a). To mitigate this risk and further enhance
the reliability of our framework, we introduce a
review agent to assess the quality of augmentation
actions and provide feedback. By carefully review-
ing each augmented sample, we can ensure that
only high-quality views are used for time series
representation learning.

Specifically, after generating the augmented sam-
ples &7, our review agent evaluates our augmen-
tation action. Here, we feed the target sequence
x; and the augmented sequence &; into an LLM,
and the LLM outputs a quality assessment result,
Quality(x;, ), along with the reasoning process:

Quality(x;)

where the output of quality assessment is ‘Correct’
or ‘Error’. Based on the assessment results, we
store the approved positive views in a memory bank
M each time and re-start the searching procedure:

= LLM(x;, &), (7)

M — MU{z]|s € S;, Quality(z;) = ‘Correct’ }.

(®)
We will stop the procedure when no augmented
view is rejected by the review agent or the memory
bank is full. This iterative process ensures that only
reliable and semantically consistent views are used

for representation learning.

3.5 Time Series Representation Learning

After generating reliable positive views, we incor-
porate them into a contrastive learning framework,
which maximizes the similarity between the origi-
nal time series and its augmented views while min-
imizing the similarity with other samples (Hu et al.,
2024; He et al., 2020; Tian et al., 2020). In this way,
we can learn effective time series representations
for different downstream tasks.

In formulation, for each target sequence x; € X,
the set of positive samples X/ can be rewritten as:

:MU{CCj‘jGRi}. )

where M is positive views approved by the mem-
ory bank and, R; is the set of semantically similar
sequences selected by the retrieval agent. We uti-
lize an encoder fy to map the original sequence and
its positive samples to the representation space:

zi = fo(w:i), 2, = fo(@i) & € X[, (10)
The contrastive learning loss £ is written as:
N X sim(z;,2ir)
exp(=—7=)
N g X g STy exp(THEEE)
(11)
T
where sim(z,, zp) = W denotes the cosine

similarity of the two representation vectors. 7 is a
temperature parameter that regulates the scale of
the similarity. In this way, we maximize the mutual
information between target data and its positive
views for effective time series representations.

4 Experiments

Baselines. To evaluate the performance of MERIT,
we compare it with a wide range of state-of-the-art
baselines, including unsupervised, self-supervised,
and fully supervised methods: DTW (Miiller,
2007), DONUT (Xu et al., 2018), SR (Ren et al.,
2019), N-BEATS (Oreshkin et al., 2019), LogTrans
(Lietal., 2019), TS-TCC (Eldele et al., 2021), TNC
(Tonekaboni et al., 2021), T-Loss (Eldele et al.,
2021), Informer (Zhou et al., 2021), TST (Zerveas
et al., 2021), CoST (Woo et al., 2022), TS2Vec
(Yue et al., 2022), InfoTS (Luo et al., 2023) and
TimesURL (Liu and Chen, 2024b). These meth-
ods are evaluated across various downstream tasks,
including classification, imputation, forecasting,
anomaly detection, and transfer learning. More
details can be found in Appendix C.

Implementation Details. For MERIT, we imple-
ment a multi-agent collaboration framework con-
sisting of three specialized agents. Each agent is
designed with specific roles and responsibilities in
the representation learning process. More details
can be found in the Appendix E.

4.1 Classification

Setups. To evaluate the effectiveness of MERIT on
time series classification and transfer learning, we
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Method AWB AF BM CT CR CDG EW EP EC ER FD FM HMD HW HB Average
DTW 98.0 220 975 969 944 275 557 964 293 133 528 550 278 285 71.7 62.9
TST 983 267 975 973 958 350 61.1 97.1 323 133 547 567 306 315 733 61.7

TS-TCC 98.7 267 100.0 97.8 972 40.0 61.8 97.8 33.1 133 559 583 333 323 742 67.0

T-Loss 985 267 975 976 972 375 61.1 975 327 133 553 583 306 319 738 65.8

TS2Vec 989 267 100.0 98.1 972 425 626 982 338 133 565 600 333 331 750 70.4

TimesURL 99.0 26.7 100.0 984 98.6 450 64.1 98.6 342 133 572 61.7 361 346 758 75.2

MERIT 99.3 333 100.0 98.7 100.0 475 656 993 350 133 584 633 389 354 76.7 77.2

Table 1: Classification accuracy (%) on 30 UEA datasets. The best results are highlighted in bold. More results can

be found in Appendix J.

Target TNC T-Loss TS2Vec TimesURL MERIT Dataset InfoTS TimesURL MERIT
Synthetic Control ~ 78.3 82.1 85.6 87.2 89.5 Metrics MSE MAE MSE MAE MSE MAE
Two Patterns 76.5 80.8 83.9 85.7 87.8 0.125 0.659 0.640 0.717 0.666 0.639 0.630
Wafer 752 794 827 84.3 86.4 prpny 0250 0679 0.648 0726 0.674 0.659 0.638
ECG200 778 815 84.2 86.1 88.3 0375 0.702 0.656 0.726 0.676 0.682 0.646
ECGFiveDays 769  80.6 83.5 85.2 87.4 0.500 0.712 0.693 0.783 0.695 0.692 0.683
TwoLeadECG 756 792 82.8 84.6 86.7 0.125 2455 1215 2491 1.199 2435 1.205
Average 76.7 806 83.8 85.5 87.7 e 0250 2560 1239 2644 1244 2540 1.229
0375 2673 1269 2757 1266 2.653 1.259
Table 2: Transfer learning results (accuracy %) from 0.500 2.701 1281 2.844 1283 2.681 1.271
Avg. 1326 0.860 1.386 0.864 1.306 0.850

source (CBF or CinCECGTorso) to target domains.

conduct experiments on 30 datasets from the UEA
archive (Bagnall et al., 2018) and UCR archive
(Dau et al., 2019). For classification, we train
MERIT on the training set and extract represen-
tations for both training and testing sets. A linear
classifier is then trained on the extracted represen-
tations from the training set and evaluated on the
testing set. For transfer learning, we evaluate the
transferability of the learned representations using
datasets from the UCR archive (Dau et al., 2019).
Following (Yue et al., 2022), we first pre-train the
model on a source dataset and then transfer the
learned representations to target datasets for classi-
fication tasks. We use CBF and CinCECGTorso as
source domains and evaluate different methods on
target domains with different characteristics.

Results. Table 1 presents the classification accu-
racy of different methods. MERIT achieves the
highest average accuracy of 77.2%, outperform-
ing other methods and demonstrating the effective-
ness of our multi-agent collaborative framework
for time series representation learning. Table 2
shows the classification accuracy on target domains.
The results demonstrate that MERIT achieves su-
perior transfer performance across different tar-
get datasets. This superior performance can be
attributed to the following reasons: @ The retrieval
agent effectively identifies the most relevant con-
text for each time series, providing a strong founda-
tion for augmentation. @ The augmentation agent
selects the most suitable augmentation strategies
based on the specific characteristics of the time
series and its context, ensuring the generation of

Table 3: Imputation results on ETT dataset with 15%
missing values.

high-quality augmented views. ® The review agent
filters out low-quality augmented views, further en-
hancing the quality of the learned representations.

4.2 Imputation

Setups. Time series data often suffers from missing
values due to sensor failures or irregular sampling.
We evaluate the imputation performance of MERIT
on the ETT dataset (Zhou et al., 2021), which con-
tains power load data collected from electricity
transformers. Following recent works (Yue et al.,
2022), we randomly mask 15% of the values in
the test set and use the learned representations to
reconstruct the missing values.

Results. Table 3 shows the MSE and MAE results
on the ETT dataset. We can observe that MERIT
achieves the best performance across all settings,
demonstrating its effectiveness in learning represen-
tations that capture the underlying patterns of time
series data. The superior performance can be at-
tributed to the collaborative mechanism among the
three agents, which helps to generate high-quality
augmented views that preserve the semantic infor-
mation of the original time series.

4.3 Forecasting

Setups. Time series forecasting is a fundamental
task in many real-world applications. We evalu-
ate our proposed MERIT on both short-term and
long-term forecasting tasks using the ETT dataset
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Method

Metrics

0.125
0.250
0.375
0.500
0.125
0.250

TimesURL
MSE MAE
0.659 0.640
0.679 0.648
0.702  0.656
0.712  0.693
2455 1.215
2.560 1.239
0.375 2.673 1.269
0.500 2.701 1.281
Avg. 1.643 0.955

CoST
MSE MAE
0.690 0.658
0.710 0.668
0.728 0.676
0.751 0.682
2.866 1.288
2.792  1.271
2.793 1.271
2.769 1.267
1.762  0.973

MERIT
MSE MAE
0.636 0.631
0.657 0.637
0.681 0.647
0.694 0.682
2437 1.203
2.542  1.227
2.655 1.258
2.684 1.272
1.624 0.946

ETThi

ETTh2

Table 4: Forecasting results on the ETT dataset.

(Zhou et al., 2021). Following recent works (Yue
et al., 2022), we consider four different predic-
tion lengths: 12.5%, 25%, 37.5%, and 50% of the
input sequence length. For each setting, we use
the learned representations to predict future values
through a simple MLP network.

Results. Table 4 shows the MSE and MAE re-
sults for both short-term and long-term forecasting.
We can observe that MERIT consistently outper-
forms all baseline methods across different predic-
tion lengths, demonstrating its strong capability
in capturing temporal dependencies. The perfor-
mance improvement is particularly significant for
longer prediction horizons, which suggests that our
multi-agent collaboration framework is effective in
learning robust and generalizable representations
for time series forecasting.

4.4 Anomaly Detection

Setups. Detecting anomalies from monitoring data
is essential for industrial maintenance and system
reliability. We evaluate MERIT on two benchmark
datasets: KPI (Ren et al., 2019), a competition
dataset containing multiple minutely sampled KPI
curves, and Yahoo (Nikolay Laptev, 2015), which
includes 367 hourly sampled time series. Follow-
ing recent research (Ren et al., 2019), we adopt
a streaming evaluation protocol that determines
whether the last point in a time series slice is anoma-
lous. During training, each time series is split into
two halves according to time order, with the first
half for training and the second for evaluation.

Results. Table 5 demonstrates the compared per-
formance across different methods on two datasets.
From the results, we can find that MERIT achieves
superior performance across both datasets from
Table 5, particularly showing significant improve-
ments in Fl-score. This demonstrates that our
multi-agent collaboration framework can effec-
tively capture anomalous patterns while maintain-

Datasets KPI Yahoo

Metrics F1  Precision Recall F1  Precision Recall
SPOT 0.751 0.783 0.722  0.847 0.856 0.839
DSPOT 0.768 0.795 0.743  0.861 0.872 0.850
DONUT 0.779 0.803 0.756  0.873 0.885 0.862
SR 0.785 0.812 0.760 0.879 0.890 0.868
TS2Vec 0.791 0.818 0.766  0.885 0.896 0.874
TimesURL  0.803 0.825 0.782  0.892 0.901 0.833
MERIT 0.815 0.836 0.795  0.905 0.913 0.897

Table 5: Anomaly detection results on the KPI and
Yahoo datasets.

Task Classification Forecasting
Dataset UCR UEA ETThl ETTh2
MERIT w/o RET 842 5.1 0.672  2.489
MERIT w/o AUG 83.1 743 0.695 2.523
MERIT w/o REV 849 758 0.668  2.476
MERIT (Full Model) 868 77.2  0.639  2.435

Table 6: Ablation study of our MERIT in both classfici-
ation and forecasting tasks.

ing high precision and recall rates.

4.5 Further Analysis

Ablation Study. To analyze the effectiveness of
different components in our MERIT, we introduce
three different variants: (i) MERIT w/o RET, which
replaces the context retrieval with random sam-
pling. (ii) MERIT w/o AUG, which uses fixed
augmentation strategies instead of our augmenta-
tion agent. (iii) MERIT w/o REV, which removes
the procedure of our review agent. Table 6 shows
the performance comparison on classification and
forecasting tasks. From the results, we have the
following observations: @ Removing the retrieval
agent results in a slight decrease in performance,
suggesting that the contextual information provided
by the retrieval agent helps the model learn a bet-
ter representation. @ MERIT w/o AUG performs
much worse than the full model, indicating the
importance of dynamic augmentation strategy se-
lection. ® MERIT outperforms MERIT w/o REV,
indicating that the review agent is effective in filter-
ing low-quality augmented views.

Sensitivity Analysis. Figure 3 illustrates the sen-
sitivity of MERIT to the number of retrieved can-
didates and the number of semantically relevant
sequences. For retrieved candidates, performance
tends to improve as retrieved candidates increase
from 1 to 7, suggesting that considering more candi-
dates is beneficial for identifying relevant contexts.
However, performance tends to decrease when the
number is too large, which could result from the po-
tential noise of too many samples. For the number
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Figure 3: Sensitivity analysis of our proposed MERIT
with respect to the number of candidate numbers and
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Figure 4: Robustness of MERIT classification accuracy
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Figure 5: Performance of our MERIT with different
LLMs and sizes.

of semantically relevant sequences, the model per-
formance improves as relevant sequences increase
from 1 to 4 before saturation. The performance
of our MERIT is quite stable when the number of
relevant sequences is between 3 to 4.

Robustness Analysis to Noise. To evaluate the
robustness of the MERIT framework, we add dif-
ferent levels of noise to the input data in a time
series classification task and set the noise level
from O to 0.5. From the results, we can observe
that as the noise level increases, the performance
of all models decreases, while MERIT consistently
outperforms the other models. We also show the ef-
fect of the percentage of random label flip noise on
the model. The results also show that our MERIT
achieves higher performance than others. These
results highlight the robustness of our multi-agent
framework in the presence of noise and its advan-
tage over methods that do not explicitly explore
semantic information during augmentation.

Different LL.Ms and Sizes. In this part, we evalu-
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I 1. The generated sequence is [ Error |
: 2. The reason is that from the holistic
1 perspective, the generated sequence
: LLM shows a clear disruption in the temporal
I order of the ECG waveform. A segment
1
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1
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of the sequence appears to be shifted and
reordered, breaking the natural flow and
rhythm of the ECG signal. Locally,
changes in time step distort the temporal
relationships between different ECG

\ features......

~

Figure 6: An example of the review agent on the ECG
dataset. The review agent reasons from two perspectives:
holistic and locally.

ate the performance of our proposed MERIT with
respect to different LLMs and sizes. Firstly, we
compare the performance of different LLMs includ-
ing LLaMa2-7B, LLaMa3-8B and LLaMa3.1-8B
with similar parameters. The results are shown in
Figure 5. From the results, we can observe that
more advanced large modeling frameworks lead
to better results. Then we vary different sizes of
LLaMaz2 in {7B, 13B and 70B}. From the results,
we can still find that bigger parameters give better
results. However, both different LLMs and sizes
have restricted improvement in results.

Case Study. Here, we study how the review agent
can reason from multiple perspectives to make an
“accept” or “reject” decision. In particular, Fig-
ure 6 shows a case where the proposed augmen-
tation is rejected by the review agent. This case
study reveals that the review agent is able to ef-
fectively recognize and reject the introduction of
semantically distorted or low-quality augmented
views, thus ensuring that the MERIT framework
produces high-quality, semantically reliable time
series representations. This highlights the critical
role of the review agent as a quality gatekeeper in
the MERIT framework and the reasoning capability
of the LLM in complex quality assessment tasks.
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5 Conclusion

In this paper, we study the problem of unsupervised
time series representation learning and we present a
novel multi-agent collaboration framework MERIT
for this problem. By leveraging LLMs as intelligent
decision-makers, our framework introduces three
agents with different functionalities that work col-
laboratively to generate high-quality positive views
for contrastive learning. Extensive experiments
demonstrate that MERIT consistently outperforms
existing methods across various downstream tasks.
Future research directions include optimizing LLM
inference efficiency, and extending the framework
to handle multi-modal time series data.

Limitations

MERIT is currently designed and evaluated for uni-
variate and multivariate time series data. However,
the real world presents diverse data forms, includ-
ing event sequences, time series with accompany-
ing text or images, and heterogeneous data. The
framework’s adaptability to such data modalities
remains an area for future exploration.
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A More Related Work

A.1 Large Language Models for Time Series
Analysis

Large Language Models (LLMs) are demonstrating
remarkable capabilities beyond natural language
processing, leading to growing interest in their ap-
plication to time series analysis. Initial explorations
focused on leveraging LLMs for time series fore-
casting by generating natural language descriptions
of temporal patterns (Tang et al., 2023). Subse-
quently, research has expanded to encompass vari-
ous approaches for integrating LLLMs into time se-
ries tasks, including prompt engineering to enhance
LLMs’ understanding of temporal data (Wu et al.,
2023), combining LL.Ms with traditional time se-
ries models (Wang et al., 2023; Zhang et al., 2023),
and leveraging LLMs for semantic understanding
of time series data by converting them into nat-
ural language descriptions or generating human-
readable explanations for temporal patterns (Liu
et al., 2023c; Chen et al., 2023). These diverse
research directions highlight the growing potential
of LL.Ms to enhance various aspects of time series
analysis.

B Datasets Details

Classification Tasks: The UEA archive (Bagnall
et al., 2018) is a widely used benchmark for evalu-
ating time series classification algorithms. It com-
prises a diverse collection of time series datasets
from various domains, including motion capture,
sensor data, and medical recordings. These datasets
vary in length, number of classes, and complexity,
providing a comprehensive and challenging eval-
uation environment for time series representation
learning methods. For the UEA datasets, we use
the original train/test splits.

Forecasting Tasks: We utilize ETT, Electricity and
Weather datasets for both short-term (24 and 48
horizons) and long-term (96 to 720 horizons) fore-
casting evaluations. These datasets are commonly
used benchmarks for time series forecasting.
Anomaly Detection: We employ two benchmark
datasets: KPI (Ren et al., 2019), a competition
dataset with minutely sampled KPI curves, and Ya-
hoo (Nikolay Laptev, 2015), containing 367 hourly
sampled time series. These datasets represent real-
world scenarios where anomaly detection is crucial.
Transfer Learning: We use datasets from the
UCR archive (Dau et al., 2019), including CBF

and CinCECGTorso as source domains, and evalu-
ate on multiple target domains. This allows us to
assess the ability of MERIT to generalize to new,
unseen datasets.

C Baseline Descriptions

DTW (Miiller, 2007): Dynamic Time Warping
(DTW) is a classical algorithm for measuring sim-
ilarity between two temporal sequences that may
vary in speed.

TimesURL (Liu and Chen, 2024b): A self-
supervised contrastive learning framework for uni-
versal time series representation learning.
TS-TCC (Eldele et al., 2021): A self-supervised
framework that learns representations by contrast-
ing temporal contexts.

TS2Vec (Yue et al., 2022): A universal framework
for learning representations of time series in an
arbitrary semantic level.

T-Loss (Franceschi et al., 2019b): A self-
supervised method that learns representations by
predicting future values.

InfoTS (Luo et al., 2023): A self-supervised
method that learns representations by maximiz-
ing the mutual information between different aug-
mented views of a time series.

TST (Zerveas et al., 2021): A Transformer-based
model for self-supervised learning of time series
representations.

DTW (Miiller, 2007): A classical algorithm for
measuring similarity between two temporal se-
quences that may vary in speed.

TS-TCC (Eldele et al., 2021): A self-supervised
framework that learns representations by contrast-
ing temporal contexts.

CoST (Woo et al., 2022): A self-supervised
method that learns disentangled seasonal and trend
representations.

Informer (Zhou et al., 2021): A transformer-based
model for long sequence time series forecasting.
LogTrans (Li et al., 2019): A transformer with
log-sparse attention for time series forecasting.
N-BEATS (Oreshkin et al., 2019): A deep neu-
ral architecture based on backward and forward
residual links.

DONUT (Xu et al., 2018): A VAE-based model
for unsupervised anomaly detection.

SR (Ren et al., 2019): A spectral residual-based
anomaly detection method.

TNC (Tonekaboni et al., 2021): A temporal neigh-
borhood coding approach for representation learn-
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ing.
D Evaluation Metrics

Classification: For classification tasks, we use ac-

curacy (ACC) and macro-averaged F1-score (F1)

as the evaluation metrics. ACC measures the over-

all prediction correctness, while F1 considers both

precision and recall, which is particularly important

for imbalanced datasets.

Forecasting: For forecasting tasks, we adopt two

widely-used metrics:

e Mean Squared Error
% Z?:l(yz’ - .@i)Q,

e Mean Absolute Error (MAE): MAE =
o i lyi — i

where y; and g; denote the ground truth and pre-

dicted values, respectively.

Anomaly Detection: For anomaly detection tasks,

we use the following metrics:

* Area Under the Receiver Operating Characteris-
tic curve (AUROC)

(MSE): MSE =

[l

¢ Area Under the Precision-Recall curve (AUPRC)

¢ Fl-score at the best threshold (Best-F1)

Transfer Learning: For transfer learning tasks, we
evaluate the performance using accuracy (ACC) on
the target domains. We also report the relative per-
formance degradation compared to the source do-
main performance to assess the transfer efficiency.

E Implementation Details

Retrieval Agent: This agent consists of two com-
ponents: a trainable encoder (Fraikin et al., 2023)
and a pre-trained LLM (LLaMA3.1-8B). This
agent uses an encoder to extract initial representa-
tions for coarse candidate selection. The agent first
selects the top K = 5 most similar sequences as
candidates based on cosine similarity between their
TCN representations. Then, it employs the LLM
to select M = 3 semantically relevant sequences
from the candidates as the retrieved contexts.
Augmentation Agent: This agent utilizes a pre-
trained LLM (LLaMA3.1-8B) to dynamically se-
lect augmentation strategies based on the retrieved
contexts and the target sequence. The strategy
library S includes: {Sailing, Resizing, Jittering,
Flipping, Permutation, Time Masking, Frequency
Masking, Time Neighboring}.

Review Agent: This agent employs a pre-trained
LLM (LLaMA3.1-8B) to evaluate the quality of

augmented samples. It assesses whether the aug-
mented samples maintain semantic consistency
with the original sequence. The agent approves
high-quality augmented samples and stores them
in a memory bank.

Other Details: We use a trainable encoder (Fraikin
et al., 2023) to map the original time series and
its augmented versions to a representation space.
The encoder has the same architecture as the one
used in the retrieval agent. This encoder is trained
using the contrastive loss function. For training
the encoder, we use the Adam optimizer (Kingma
and Ba, 2014) with a learning rate of 0.001 and
weight decay of 0.0005. The batch size is set to
128 for all experiments. We train the model for
100 epochs on all datasets. All experiments are
conducted using 5 different random seeds, and we
report the mean of the results. For all downstream
tasks, we use the same train/validation/test splits
as in (Yue et al., 2022) to ensure a fair compari-
son. For all metrics except MSE and MAE, higher
values indicate better performance. For MSE and
MAE, lower values indicate better performance.
Following common practice, we report the mean
over multiple runs for all experiments to ensure
statistical significance. We use Llama3.1-8b as our
base LLM model. The LLM inference is performed
on a dedicated GPU server with the following spec-
ifications: an NVIDIA A100 GPU (40GB), a 64-
core AMD EPYC CPU, 512GB of RAM, and a
2TB NVMe SSD. The average response times are
as follows: 27ms per query for the retrieval agent,
78ms per augmentation for the augmentation agent,
and 68ms per review for the review agent.

F Analysis of LLM Prompt Design

We experiment with different prompt templates for
each agent to analyze their impact on performance.
Figure 7 shows the performance comparison of
three template variants:

» Basic: Simple instruction-based prompts;

* Structured (default): Detailed prompts with spe-
cific format requirements;

* CoT: Chain-of-thought prompts encouraging
step-by-step reasoning.

From Figure 7, it can be concluded that (1)
Structured prompts (Structured) perform the best in
terms of accuracy and manual consistency; (2) CoT
prompts, while providing a more detailed reason-
ing process, have a significantly higher response
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Figure 7: Performance comparison of different prompt templates across agents. Left: Accuracy of different prompt
templates. Right: Response time of different prompt templates.
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loop on UCR classification task over training epochs. (Mid) Quality assessment success rate of augmented samples.
(Right) Distribution of feedback types from the Review Agent. The shaded areas in (left) and (mid) represent the

standard deviation over 5 runs.

time; and (3) Basic prompts (Basic) are the fastest
to respond, but are less accurate.

G Impact of Feedback Loop

We analyze the effectiveness of the feedback loop
mechanism by examining its impact on the retrieval
and augmentation agents, focusing on the quality
assessment success rate and the feedback distri-
bution. The iterative nature of the feedback loop
improves the quality of generated positive views.
Figure 8 (Left) shows that compared to the model
without the feedback loop, the model with the feed-
back mechanism achieves 5.2% higher classifica-
tion accuracy, which indirectly shows the positive
effects of our feedback mechanism, but it should be
noted that the feedback loop itself does not directly
influence the model’s convergence, but rather the
quality of positive samples. Furthermore, the qual-
ity assessment success rate improves from 60% to
over 90% during training (Figure 8 (Mid)), demon-
strating the review agent’s increasing effectiveness

in identifying high-quality augmentations, which
further proves the positive role of feedback mecha-
nism. The feedback distribution (Figure 8 (Right))
reveals that pattern preservation (45%) and tem-
poral coherence (35%) are the primary concerns,
followed by semantic validity (20%), aligning with
our design principle of maintaining both structural
and semantic integrity. These findings demonstrate
the crucial role of the feedback loop in maintain-
ing high-quality augmentations and guiding the
continuous improvement of the retrieval and aug-
mentation agents.

H Algorithm

The details of our algorithm are shown in Algo-
rithm 1.

I Prompt Design

The prompts for our three agents are shown in Fig-
ure 9, Figure 10 and Figure 11, respectively.
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Algorithm 1 Multi-Agent Collaboration for Un-
supervised Time series Representation Learning
(MERIT)

Input: Dataset X = {x1,...,xy} € RV*TXY Similarity
function Sim(+, -), Parameters K, M, Augmentation strat-
egy library S, Temperature 7, Maximum iterations Njter,
Maximum memory bank size B

Output: Learned representation function fg
Initialize: Encoder fy, Memory bank M < ()

1: for each x; € X do
: // Retrieval Agent (executed once)
3: C; < Top-K(Sim(x;, x;)) forallx; € X \ {x:} >
Candidate Selection
4: Ri < Top-M(LLM-Prompt(x;, x;, Reasoning))

forallz; € C; > LLM-based Refinement
5: Niter < 0
6: M; < 0 b Initialize local memory bank for current
T

7: while n;¢e,r < Njter and |[M;| < B do

8: // Augmentation Agent

9: Si <= LLM-Prompt(x;, R;, Reasoning) > Select
Augmentation Strategies

10: XM {s(xs)|s € Si} U {s(z;)|s € Si,x; €
Ri} > Generate Augmented Samples

11: // Review Agent

12: X 0

13: for each ¢ € X" do

14: Quality (x™#) —
LLM-Prompt(x;, ™, Reasoning) > Assess Quality

15: if Quality («™¢) = ’Correct’ then

16: Xtemp — Xlemp U {mdug}

17: end if

18: end for

19: if X" =£ () then

20: M — M; U X > Store approved
augmentations in local memory bank

21: end if

22 if all 2™ € X" are rejected then

23: Niter < Niter + 1

24: else

25: Niter < Nitcr > Terminate if no
augmentation is rejected

26: end if

27: end while

28: M i~ M UM; > Add approved augmentations to
global memory bank

29: end for

30: // Time Series Representation Learning

31: for each epoch do

32: for each x; € X do

33: XZP — {:E]'|Cﬂj c RZ} @] {mau‘g|mau§ € Mi} >
Construct positive samples

34: Sample a mini-batch B from X F

35: for each x**¢ € B do

36: zi = fo(xi)

37: 2" fo(x™®)

38: Update fp by minimizing the contrastive loss
L in Eq. (12)

39: end for

40: end for

41: end for

J Detailed Classification Results

The detailed classification results are shown in Ta-
ble 7.
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Retrieval Agent Prompt

You are an expert in
sequence analysis. Below
are the details of one
current sequence and three
similar sequences.

Your task is to:
1.Compare the sequences.
2. Select the similar
sequence.

3. Provide your reasoning.

Current Sequence:
<Current_Sequence>,
Similar Sequence:
<Similar Sequence>.

Answer in the following
format:

1. Similar Sequence:
<Similar Sequence>.

2. Reason: <Reason>.
Think step by step and do
in-depth reasoning, show
details of reasoning.

User

Figure 9: The prompt for our retrieval agent.
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Review Agent Prompt

You are an expert in
sequence analysis.

Below is a generated
sequence after applying an
augmentation strategy.

The available strategies are:
[Sailing, Resizing, Jittering,
Flipping, Permutation,
Time Masking, Frequency
Masking, Time
Neighboring].

Your task is to:

1.Verify whether the
generated sequence aligns
with the rules of the given
strategy.

2. Provide a clear
explanation if the sequence
does not align with the
rules.

Please respond in the
following format: 1. The
generated sequence is

< correct > or < error >.
2. The reason is that

< Reason >.

Original Sequence:
<Original Sequence>,
Generated Sequence:
<Generated_Sequence>
Think step by step and do
in-depth reasoning, show
details of reasoning.

Figure 10: The prompt for our review agent.

T T
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Augmentation Agent Prompt ~

~
-

You are an expert in

sequence augmentation. M
Below are a current
sequence and its similar
sequence.

User

Your task is to:

1.Select the suitable
augmentation strategy for
the current sequence.

2. Select the suitable
augmentation strategy for
the similar sequence.

The available strategies are:
[Sailing, Resizing, Jittering,
Flipping, Permutation,
Time Masking, Frequency
Masking, Time
Neighboring].

Please respond in the
following format: 1.
Current Sequence Strategy:
<Current_Strategy>

2. Similar Sequence
Strategy:<Similar_Sequenc
e Strategy>.

Current Sequence:
<Current_Sequence>.
Similar Sequence:
<Similar_Sequence>.
Think step by step and do
in-depth reasoning, show
details of reasoning. /

- o m Em mm mm m e Em Em Em Em o mm e mm Em e e Em Em e mm Em Em mm mm e e mm e e mm Em e e e o = =
e

Figure 11: The prompt for our augmentation agent.



Dataset DTW TST TS-TCC T-Loss TS2Vec TimesURL MERIT
ArticularyWordRecognition | 98.0  98.3 98.7 98.5 98.9 99.0 99.3
AtrialFibrillation 22.0 267 26.7 26.7 26.7 26.7 333
BasicMotions 975 975 100.0 97.5 100.0 100.0 100.0
CharacterTrajectories 969 973 97.8 97.6 98.1 98.4 98.7
Cricket 944 95.8 97.2 97.2 97.2 98.6 100.0
DuckDuckGeese 275 35.0 40.0 37.5 42.5 45.0 47.5
EigenWorms 55.7 61.1 61.8 61.1 62.6 64.1 65.6
Epilepsy 9.4 97.1 97.8 97.5 98.2 98.6 99.3
EthanolConcentration 293 323 33.1 32.7 33.8 34.2 35.0
ERing 133 133 13.3 13.3 13.3 13.3 13.3
FaceDetection 52.8 547 55.9 55.3 56.5 57.2 58.4
FingerMovements 55.0 56.7 58.3 58.3 60.0 61.7 63.3
HandMovementDirection 27.8 30.6 333 30.6 33.3 36.1 38.9
Handwriting 28.5 315 323 31.9 33.1 34.6 354
Heartbeat 71.7 733 74.2 73.8 75.0 75.8 76.7
InsectWingbeat 11.5 128 13.6 13.2 14.0 14.8 15.6
Japanese Vowels 95.7 96.2 97.0 96.8 97.3 97.8 98.4
Libras 833 85.0 86.7 86.1 87.2 88.3 89.4
LSST 453 478 49.1 48.4 50.0 51.6 52.8
MotorImagery 39.0 420 44.0 43.0 45.0 46.0 48.0
NATOPS 88.3  90.0 91.7 90.8 92.5 93.3 94.2
PenDigits 975 979 98.3 98.1 98.5 98.8 99.2
PEMS-SF 71.0 734 74.8 74.1 75.5 76.9 78.3
PhonemeSpectra 10.1  11.8 13.4 12.6 14.3 15.1 16.8
RacketSports 86.8 88.2 89.5 88.8 90.1 90.8 91.4
SelfRegulationSCP1 774 79.2 80.2 79.7 81.1 82.1 83.0
SelfRegulationSCP2 48.3  50.6 52.2 51.7 53.3 54.4 55.6
SpokenArabicDigits 96.7 973 97.8 97.5 98.0 98.3 98.7
StandWalkJump 333  36.7 40.0 36.7 40.0 433 46.7
UWaveGestureLibrary 85.6 87.2 88.4 87.8 89.1 90.3 91.5
Average 629 61.7 67.0 65.8 70.4 75.2 77.2

Table 7: Classification accuracy (%) on 30 UEA datasets. The best results are highlighted in bold.
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