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Abstract

High-quality math datasets are crucial for ad-
vancing the reasoning abilities of large lan-
guage models (LLMs). However, existing
datasets often suffer from three key issues: out-
dated and insufficient challenging content, ne-
glecting human-like reasoning, and limited re-
liability due to single-LLM generation. To
address these, we introduce STORM-BORN,
an ultra-challenging dataset of mathematical
derivations sourced from cutting-edge aca-
demic papers, which includes dense human-
like approximations and heuristic cues. To
ensure the reliability and quality, we propose
a novel human-in-the-loop, multi-agent data
generation framework, integrating reasoning-
dense filters, multi-agent collaboration, and
human mathematicians’ evaluations. We cu-
rated a set of 2,000 synthetic samples and de-
liberately selected the 100 most difficult prob-
lems. Even most advanced models like GPT-o1
solved fewer than 5% of them. Fine-tuning
on STORM-BORN boosts accuracy by 7.84%
(LLaMA3-8B) and 9.12% (Qwen2.5-7B). As
AI approaches mathematician-level reasoning,
STORM-BORN provides both a high-difficulty
benchmark and a human-like reasoning train-
ing resource. Our code and dataset are pub-
licly available at https://github.com/
lwhere/STORM-BORN.

1 Introduction

Mathematical reasoning has emerged as a corner-
stone for scaling large language models (LLMs)
and probing their upper bounds of intelligence
(Shao et al., 2024; Ye et al., 2024; Glazer et al.,
2024). Recent advances stem from architectural

*Core contribution.
†Corresponding authors: Xiaohong Huang and Yuxiang

Ren.

innovations (McLeish et al., 2024; Li et al., 2025),
enhanced pretraining data (Shao et al., 2024; Al-
lal et al., 2025; Wang et al., 2024b), supervised
fine-tuning (Yu et al., 2024b; Cobbe et al., 2021;
Fan et al., 2025), reinforcement learning (Wang
et al., 2024a; Zelikman et al., 2022), and chain-of-
thought prompting (Zhang et al., 2022; Lu et al.,
2024b; Liu et al., 2024). Current supervised math-
ematical datasets fall into two categories: numeri-
cal reasoning focuses on arithmetic computations
yielding numbers (Cobbe et al., 2021; Hendrycks
et al., 2021; Glazer et al., 2024), and theorem prov-
ing uses formal languages for computer-verifiable
proofs (Ying et al., 2024; Wu et al., 2024).

However, existing mathematical datasets face
several challenges. First, they lack nuance and
complexity. Current datasets, like GSM8k (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021),
focus on grade-school or competition problems, of-
fering limited complexity. As LLMs excel on these
benchmarks, more advanced mathematical reason-
ing tasks are needed. Second, human-like reason-
ing is limited. While formal languages (de Moura
et al., 2015) ensure precise verification in recent
datasets (Ying et al., 2024; Wu et al., 2024), they
obscure interpretable and intuitive reasoning pro-
cesses (Chervonyi et al., 2025). Finally, synthetic
data lacks reliable annotations. While LLMs are
used to generate large-scale math data (Yu et al.,
2024b; Shao et al., 2024; Chen et al., 2024), they
struggle with curating and evaluating expert-level
derivations, leading to unreliable step-by-step an-
notations.

To address these limitations, we focus on a pre-
viously underexplored area: mathematical deriva-
tion. These tasks involve long chains of reasoning
(CoT), revisions, and iterative computations, pos-
ing significant challenges for current LLMs. More-
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(I) Numerical Reasoning (PRM-800K)

Question:
An unfair coin lands on heads with probability 3/4 and
tails with probability 1/4. A heads flip gains $3, but
a tails flip loses $8. What is the expected worth of a
coin flip? Express your answer as a decimal rounded
to the nearest hundredth.

Steps:
The expected value is equal to the probability of getting
heads times the value of heads plus the probability of
getting tails times the value of tails. Let’s call the
expected value E. So we can write that as E = 3/4 ∗
3 + 1/4 ∗ (−8). That simplifies to E = 9/4 − 2. So
the expected value is E = 1/4 = 0.25 dollars.

Answer: $0.25.

(II) Formalized Theory Proving (MiniF2F)

Informal Question:
Expand the following expression: 7(3y + 2), show
that it is 21y + 14.

Formal Question:

theorem mathd_algebra_182 (y : C)

: 7 * (3 * y + 2) = 21 * y +

14 := by

Answer:

theorem mathd_algebra_182 (y : C)

: 7 * (3 * y + 2) = 21 * y +

14 :=

by ring

(III) Human-like Derivations (Our STORM-BORN)

Question. Based on Formula (3):

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)] − βDKL[πθ(y|x)∥πref(y|x)],

which enforces a KL-constrained reward maximization, how can we derive Formula (4):

πr(y|x) =
1

Z(x)
πref(y|x) exp

(
1
β
r(x, y)

)
,

where Z(x) is the partition function ensuring πr is a valid probability distribution?

Answer. We optimize the following objective:

max
π

Ex∼D,y∼π
[
r(x, y)

]
− βDKL

[
π(y|x)∥πref(y|x)

]
, (1)

under any reward function r(x, y), reference model πref . We now have:

max
π

Ex∼D,y∼π
[
r(x, y)

]
− βDKL

[
π(y|x)∥πref(y|x)

]

=max
π

Ex∼DEy∼π(y|x)


log

π(y|x)
1

Z(x)
πref(y|x) exp

(
1
β

r(x,y)
) − logZ(x)


 ,

(2)
Observing the result of the final step in the derivation, we notice that π is itself a probability
distribution. This naturally raises a question: what if we could also interpret the denominator as
a probability distribution? If so, it would allow us to reformulate the expression in a way that
aligns with the perspective of KL divergence optimization. Based on this idea, we construct a
partition function Z(x) as follows:

Z(x) =
∑

y

πref(y|x) exp
(

1

β
r(x, y)

)
(3)

We substitute this Z(x) into the denominator in the previous expression, resulting in:

1

Z(x)
πref exp

(
1

β
r

)
=

πref(y|x) exp
(

1
β
r(x, y)

)

∑
y πref(y|x) exp

(
1
β
r(x, y)

) (4)

Note that the partition function is a function of only x and the reference policy πref , but does not
depend on the policy π. We can now define

π
∗
(y|x) =

1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
, (5)

which is a valid probability distribution as π∗(y|x) ≥ 0 for all y and
∑

y π∗(y|x) = 1.
Since Z(x) is not a function of y, we can then re-organize the final objective in Eq. (2) as:

min
π

Ex∼D

[
Ey∼π(y|x)

[
log

π(y|x)
π∗(y|x)

]
− logZ(x)

]

=min
π

Ex∼D
[
DKL(π(y|x)∥π∗

(y|x)) − logZ(x)
]
.

(6)

Figure 1: (I) Numerical Reasoning datasets (e.g., PRM-800K) require numerical values, which may be too simplistic
for advanced LLMs. (II) Formalized Theory Proving datasets (e.g., MiniF2F) depend on formal languages like Lean,
limiting intuitive reasoning and informal generalization. (III) In contrast, our STORM-BORN dataset emphasizes
human-like reasoning (highlighted in purple), requiring deep understanding and creativity, more challenging than (I)
and more interpretable/generalizable than (II).

over, the data source is both accessible and scal-
able (e.g., academic papers). Given the complex-
ity of mathematical reasoning, expert annotation
is costly and error-prone, while single LLMs of-
ten lack reliability. To overcome this, we devel-
oped STORM (Synergistic Theorem and fORmula
Mining), a multi-agent framework that extracts de-
duction logic, generates question-answer pairs, and
performs iterative refinement to ensure reliability.

Using STORM, we synthesized 2,000 high-
quality math derivation samples. Recent stud-
ies (Ye et al., 2025; Muennighoff et al., 2025)
show that dataset quality and complexity are key
drivers of reasoning improvements, especially for
reasoning-focused models. This is reflected in
datasets like Frontier Math (50 samples) (Glazer

et al., 2024) and LIMO (817 samples) (Ye et al.,
2025), where small and rigorously curated datasets
lead to significant reasoning gains. Based on this
insight, we further integrate human experts into the
curation process, selecting the 100 most challeng-
ing problems to form our dataset: STORM-BORN,
prioritizing reasoning density and correctness. No-
tably, even advanced models like Deepseek-R1
and GPT-o1-Pro achieve less than 5% accuracy on
STORM-BORN, compared to 95% on GSM8K, un-
derscoring its exceptional difficulty. Furthermore,
fine-tuning on STORM-BORN leads to strong gen-
eralization on numerical reasoning tasks: TinyL-
lama achieves a 233% relative improvement on
MATH, and Qwen improves by 16.7%, despite
STORM-BORN not containing explicit numerical
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reasoning tasks. This demonstrates the broad rea-
soning skills acquired through our dataset.

Our key contributions can be summarized as fol-
lows: (1) We introduce a challenging mathematical
derivation dataset curated from recent high-impact
papers, featuring complex derivations that demand
deep theoretical understanding and creative reason-
ing. (2) We develop a human-in-the-loop, multi-
agent data generation system that extracts complete
derivation processes, ensuring human-like reason-
ing patterns and high-quality, reliable annotations.
(3) Extensive human and automatic assessments
confirm that even the most advanced LLMs solve
fewer than 5% of STORM-BORN problems, high-
lighting its difficulty. Meanwhile, fine-tuning on
our dataset yields strong generalization, particu-
larly for numerical reasoning tasks.

2 Related Work

2.1 Large Language Models for Mathematical
Reasoning

Mathematical reasoning has become a critical
benchmark for evaluating and improving the ca-
pabilities of large language models (LLMs). Ad-
vances in this field have been driven by multi-
ple factors, including architectural improvements
(McLeish et al., 2024), enhanced pretraining
datasets (Shao et al., 2024; Allal et al., 2025; Wang
et al., 2024b), supervised fine-tuning (Yu et al.,
2024b; Cobbe et al., 2021), reinforcement learning
(Wang et al., 2024a; Zelikman et al., 2022), and
prompt-based methods such as chain-of-thought
reasoning (Ye et al., 2024; Zhang et al., 2022).
Frieder et al. (2024) explored LLMs for assisting
mathematicians, advocating a hybrid human-model
approach. Chang et al. (2023); Fan et al. (2024)
evaluated LLMs in mathematical reasoning, not-
ing strengths and limitations. Testolin (2024) and
Lu et al. (2023) analyzed deep learning in math
problem-solving, highlighting challenges in gener-
alization.

Despite advancements, LLMs in mathematical
reasoning remain limited by reliance on dataset-
driven learning, leading to brittleness and poor
generalization (Ahn et al., 2024; Lu et al., 2024a;
Tian et al., 2025). To address this, reinforcement
learning has been employed to enhance verification
mechanisms (Wang et al., 2024a), while prompt en-
gineering, such as physics-inspired prompting (Ye
et al., 2024) and automated chain-of-thought gen-
eration (Zhang et al., 2022; Fan et al., 2024), has

improved reasoning consistency. These findings
highlight the need for structured reasoning tech-
niques alongside architectural and data improve-
ments to further advance mathematical capabilities
in LLMs.

2.2 Mathematical Datasets

Mathematical datasets for LLMs can be broadly cat-
egorized into numerical reasoning and automated
theorem proving (ATP). For numerical reason-
ing, PRM800K (Lightman et al., 2024), GSM8K
(Cobbe et al., 2021), and GSM_PLUS (Li et al.,
2024a) focus on arithmetic problem-solving, re-
quiring step-by-step derivations. FormulaReason-
ing (Li et al., 2024b) assesses formula-based nu-
merical reasoning, while GAOKAO (Zhang et al.,
2024b) benchmarks LLMs’ ability to solve com-
plex mathematical problems in Chinese university
entrance exams. For automated theorem proving,
MiniF2F (Zheng et al., 2022) compiles problems
from formal proof assistants, including Metamath
(Yu et al., 2024a), Isabelle (Frieder et al., 2024),
and Lean (Han et al., 2022). ProofNet (Azerbayev
et al., 2023) spans undergraduate-level mathemat-
ics, bridging LLMs with formal proof verification.
Additionally, DRAW-1K (Upadhyay and Chang,
2017) aids in equation derivation, while Ying et al.
(2024); Wu et al. (2024) introduced datasets for
Lean, supporting machine-verifiable proof genera-
tion.

In contrast, our STORM-BORN dataset focuses
on challenging mathematical derivations in natural
language, demanding complex reasoning and cre-
ativity, and is more likely to contain dense, human-
like thinking patterns, such as approximations and
heuristic cues.

3 Overall Pipeline

In order to enhance LLMs’ reasoning abilities for
mathematical expressions found in research pa-
pers, we created STORM-BORN, a dataset that
involves advanced mathematical reasoning. This
section describes in detail the construction process
of STORM-BORN.

3.1 Reasoning-dense Content Filtering

Distinguishing between basic concept explanations
and genuinely complex reasoning requires human-
like cognitive processes. To ensure our dataset
contains more data and of higher quality, a key as-
pect lies in the selection of data sources—academic
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Figure 2: Overview of the data generation framework of STORM-BORN, which consists of three main components:
(1) Reasoning-dense Content Filtering selects reasoning-dense arXiv papers through linguistic markers and
complexity criteria to ensure high-quality mathematical derivations. (2) Multi-agent Data Generation orchestrates
specialized agents for LaTeX extraction, query formulation, answer retrieval, and context enrichment, culminating
in refined mathematical problems. (3) Human Expert Selection applies rigorous evaluation criteria to select
the most challenging and well-structured problems, resulting in the final STORM-BORN dataset for advancing
mathematical reasoning capabilities.

papers. Different papers vary in the amount and
quality of data they provide, with some contain-
ing extensive mathematical content and detailed
proofs and derivation processes, while others do
not. Therefore, the focus should be on papers that
not only contain a sufficient number of formulas but
also provide thorough theorem proofs and deriva-
tion processes. More specifically, we select papers
based on the following principles.

Publication Status and Review Score. To en-
sure data reliability, we prioritized papers from rep-
utable journals and conferences, which were peer-
reviewed and met stringent acceptance criteria. We
also limited the selection to papers published from
May 2023 to October 2024 to ensure content fresh-
ness and reduce the risk of using outdated material.
Additionally, all selected papers had to receive a
score higher than "weak accept" from reviewers
on the OpenReview platform, ensuring high data
quality.

Richness of Mathematical Derivations. We use
linguistic markers such as “assume”, “derive”, and
“proof” to filter papers that contain detailed deriva-
tions and complete sequences of proofs (most of

this data comes from the appendices). If the target
keywords appear more than five times in a paper,
we consider it to have a higher likelihood of being
our target paper. This ensures that the filtered pa-
pers contain high-quality mathematical reasoning.

3.2 Multi-agent Data Generation
We present a six-agent methodology to generate
data. This streamlined workflow (see Fig. 2) en-
sures that each mathematical expression is accom-
panied by a coherent proof or derivation, a self-
contained question, and a human-like step-by-step
answer (a detailed explanation of this process is
included below). We spent 200 USD on GPT-o1-
Pro and spent about three weeks on prompt en-
gineering. Appendix A contains further details.
This multi-agent framework aims to generate high-
quality mathematical data by systematically extract-
ing expressions, posing meaningful questions, re-
trieving and refining answers, gathering requisite
background information, and presenting the self-
contained results, ultimately providing more trans-
parent insight into mathematical derivations and
proofs. In each step, all mathematical symbols and
expressions are converted to LaTeX format.
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Why not single-agent? We initially experi-
mented with a single-agent approach for data gen-
eration, but the results were poor. The task is inher-
ently complex and involves multiple steps. Using
a single LLM leads to excessively long prompts
with numerous critical points, making it difficult
for the model to follow the instructions effectively.
By employing a multi-agent system, we can de-
compose the task into smaller, more manageable
components, allowing each LLM agent to focus on
a specific step or key point, which improves the re-
sults. Additionally, this modular approach provides
greater flexibility, making it easier to modify, refine,
or integrate new modules for further improvements.
In practice, the multi-agent system significantly
enhances both the efficiency and quality of data
generation.

Math Expression Extractor Agent We utilize
lightweight multi-modal LLMs with extensive
prompts for accurate LaTeX formula extraction,
avoiding the limitations of traditional OCR tech-
niques (He et al., 2024). It uses a multi-modal large
language model (MLLM) that can recognize math-
ematical expressions in text. After collecting these
expressions, the original paper and the extracted ex-
pressions are forwarded to the Query Draft Agent.

Query Draft Agent We employ the GPT-o1-Pro
LLM as our Query Draft Agent, leveraging a well-
structured and effective long prompt exceeding 1k
tokens. It receives the entire paper rather than
the chunked paper, which ensures it can compre-
hensively understand the entire paper. For each
expression extracted from the Math Expression Ex-
tractor Agent, it generates at least one query, focus-
ing on the theorem or formula derivation problems.
We also add a few shots to enhance the output
format stability. The details of its prompt are in
Appendix A.2.

Answer Retriever Agent The Answer Retriever
takes the entire paper, a given expression, and its
corresponding query as input. The Answer Re-
triever Agent searches the paper for relevant con-
tent that can answer the query. Once relevant con-
tent is found, it extracts the entire answer directly
from the paper rather than make a proof itself to
avoid hallucination. Similar to Query Draft Agent,
practice has proved that the task of this agent is
also difficult and requires a more powerful LLM
(e.g., GPT-o1-Pro). The effective prompt we finally
use is also relatively long with nearly 500 tokens.

The details of this prompt are in Appendix A.3.

Context Collector Agent Although Query Draft
Agent and Answer Retriever Agent could gener-
ate high-quality query and answer, there still re-
mains the possibility that they lack full information
to make them self-contained, which means that
the LLMs and humans could answer the question
without reading the original paper. The Context
Collector captures this information and stores it as
evidence for the target self-contained questions and
answers.

Question Refiner Agent The goal of this agent
is to incorporate the information from the evidence
into the query and answer, thereby generating self-
contained question that can be answered indepen-
dently without reading the original resource.

Answer Filter Agent Since our goal is to fo-
cus on mathematical reasoning, the Answer Fil-
ter Agent filters out any irrelevant content after
receiving the data processed by the Question Re-
finer Agent, retaining only the essential informa-
tion needed to understand how the expression is de-
rived or proven. By filtering out unnecessary data,
the subsequent modules can significantly reduce
redundant workload and generate self-contained
questions and answers.

3.3 Human Expert Selection

Through Multi-agent Data Generation, we obtained
2k samples. We could have directly retained these
2k samples, but our goal was to extract the most
challenging and high-quality dataset. To achieve
this, we employed a group of expert mathemati-
cians to conduct a rigorous selection process, ulti-
mately arriving at a refined set of 100 samples. We
sent the self-contained question and answer gener-
ated in (Sec. 3.2) to human experts who are familiar
with the reasoning-dense paper samples for selec-
tion. Human experts conducted strict audits on
data quality, retained data that meets the standards,
eliminated data that has no research value, and
manually modified and optimized data that was
not of borderline quality but could be improved.
Each paper was processed by experts for about
30 samples of questions and answers, and the pro-
cessing of a single paper took about 15 minutes.
Through iterative expert feedback and revision, we
refined the dataset, ensuring that each sample met
the high-quality standards set by our guiding prin-
ciples. This expert-driven process was critical to
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ensuring that the dataset reflects complex human-
like mathematical reasoning, resulting in the final
STORM-BORN dataset. This process was guided
by the following five core principles: Reasoning
Type, Problem Clarity, Derivation Correctness and
Reasoning Density.

(Q1) Reasoning Type: Does the problem de-
mand creative insight and complex reasoning? Ini-
tially, mathematicians determine whether the prob-
lem involves genuinely complex reasoning like de-
riving or proving a formula, as opposed to simple
explanation or definition.

(Q2) Problem Clarity: Is the problem clear,
well-defined, and solvable with the existing infor-
mation? This step evaluates the explicitness of the
problem’s goal and conditions. Ambiguities or in-
complete queries, where critical context is missing,
are flagged for refinement. Human expert interven-
tion is crucial here, as mathematical clarity often
requires subjective interpretation, especially when
key information is implied or subtly conveyed.

(Q3) Derivation Correctness: Are all deriva-
tion steps logically valid, error-free, and complete?
Mathematicians carefully review each derivation
step for correctness, ensuring that all logical transi-
tions are accurate and coherent. This stage presents
a significant challenge, as identifying logical er-
rors or omissions often requires a deep theoretical
understanding and specialized expertise.

(Q4) Reasoning Density: Does the reasoning
process include sufficient logical steps, exhibit
heuristic reasoning cues, and demonstrate trial-
and-error similar to human problem-solving? This
requires human expertise to assess whether the rea-
soning is sufficiently dense, complete, and heuristic.
Mathematicians identify patterns in the reasoning
that reflect human-like trial-and-error approaches.
Missing or incomplete justifications are flagged for
further revision.

4 Experiments

4.1 Case Study

In this preliminary case study, we compared three
different types of datasets (see Fig. 1): (I) Numeri-
cal reasoning datasets such as PRM-800K, which
mainly examine numerical calculations, but may
be too simple for advanced language models. For
example, it can be solved like the expected value
of a coin toss, which first calculates the probability

of heads and tails, then calculates the payoff. (II)
Formal proof datasets, such as Minif2F, which use
formal languages such as Lean to describe prob-
lems. Although rigorous, they are not easy to under-
stand intuitively and are not easy to associate with
real-world scenarios. Moreover, the answer exam-
ples can be solved with only one ring. (III) Our
proposed STORM-BORN dataset focuses more
on human-like reasoning processes and requires
deeper understanding, flexible thinking, and com-
plex reasoning. It is not only more challenging than
(I), but also more interpretable and general than
(II). We selected the DPO (Rafailov et al., 2023)
paper as our example, and then the system captured
the derivation of important formulas and extracted
the complete details of the derivation from the ap-
pendix of the paper, which added some human
expert thinking, demonstrating the effectiveness of
our method in scenarios of complex research.

4.2 Human Evaluation
To validate the challenges of our dataset, we use
STORM-BORN as a benchmark and evaluate cur-
rent state-of-the-art models. Given that our data in-
cludes complex mathematical proofs, direct correct-
ness evaluation is difficult. We observe that LLMs
often overrate derivation accuracy (e.g., DeepSeek-
R1 assigns a perfect score to flawed cases). This
makes expert validation essential since mathemati-
cal derivations differ fundamentally from numeri-
cal reasoning or formal proofs.

In our experiments, we identified consistent er-
ror patterns in LLMs, such as algebraic miscal-
culations, unproven assumptions, symbol misuse,
and unjustified logical leaps. Detecting these prob-
lems requires reliable expert annotation. To en-
sure robustness, we conducted multiple evaluation
runs, with each model generating three responses
per question, independently scored by experts. A
fully correct derivation receives 1 point, while par-
tial credit reflects the proportion of key steps com-
pleted. We evaluated six leading language models:
GPT-o1-Pro, GPT-o1, GPT-o1-Preview, GPT-4o,
and DeepSeek-R1. As shown in Fig. 3, the most ad-
vanced models (GPT-o1-Pro) achieve just 5% accu-
racy on STORM-BORN versus 96.4% on MMLU,
demonstrating our dataset’s unique challenge to
mathematical reasoning.

4.3 Automatic Evaluation
To evaluate the fine-tuning effectiveness of our
dataset, we assess it in two key aspects: in-domain
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Figure 3: Performance of leading language models on STORM-BORN based on a human expert evaluation. All
models show consistently poor performance, with even the best models solving less than 5% of problems. When
re-evaluating problems that were solved at least once by any model, GPT-o1-Pro demonstrated the strongest
performance across repeated trials.

Model GSM8K-0shot GSM8K-8shot MATH-0shot MATH-4shot

Tiny-LLaMA-1.1B-Chat 1.36% 2.19% 1.20% 2.14%
Tiny-LLaMA-1.1B-Chat (Ours) 2.05% (↑ 0.69) 2.65% (↑ 0.46) 4.00% (↑ 2.80) 3.46% (↑ 1.32)

LLaMA2-7B 7.96% 14.33% 1.60% 4.44%
LLaMA2-7B (Ours) 8.80% (↑ 0.84) 16.98% (↑ 2.05) 2.60% (↑ 1.00) 4.56% (↑ 0.12)

LLaMA3-8B 15.39% 50.27% 0.12% 17.08%
LLaMA3-8B (Ours) 42.91% (↑ 27.52) 45.49% (↓ 4.78) 7.96% (↑ 7.84) 13.82% (↓ 3.26)

Qwen2.5-7B 80.67% 83.32% 67.82% 54.42%
Qwen2.5-7B (Ours) 81.96% (↑ 1.29) 83.70% (↑ 0.38) 67.96% (↑ 0.14) 63.54% (↑ 9.12)

Table 1: Experimental results of four LLMs on GSM8K and MATH. Models marked with “(Ours)” are additionally
fine-tuned on the STORM-BORN dataset. The uparrow (↑) beside each score denotes the absolute accuracy gain
obtained after this fine-tuning, relative to the corresponding base model.

Model AIME2024 AIME2025

Qwen2.5-7B 0.00% 3.33%
Qwen2.5-7B (Ours) 3.33% (↑ 3.33) 6.67% (↑ 3.34)

Qwen2.5-32B 20.00% 15.00%
Qwen2.5-32B (Ours) 23.33% (↑ 3.33) 15.00% (↑ 0.00)

Table 2: Accuracy (%) of Qwen 2.5 7B and 32B on the
AIME 2024 and AIME 2025. Models marked with
“(Ours)” are additionally fine-tuned on the STORM-
BORN dataset. The uparrow (↑) beside each score
denotes the absolute accuracy gain obtained after this
fine-tuning, relative to the corresponding base model.

formula derivation performance and out-of-domain
numerical reasoning generalization ability.

Numerical Reasoning To assess the generaliza-
tion of STORM-BORN on mathematical reason-
ing, we conduct full fine-tuning experiments on
four most popular models: TinyLLaMA-1.1B-chat
(Zhang et al., 2024a), LLaMA2-7B (Touvron et al.,
2023), LLaMA3-8B (Grattafiori et al., 2024) and
Qwen2.5-7B (Qwen et al., 2025), evaluating their

Method Correctness Completeness Similarity Avg.

Qwen2.5-7B 1.10 1.14 0.50 0.91
Qwen2.5-7B (Ours) 1.23 1.32 0.66 1.07

Table 3: Formula Derivation Performance

performance on GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021) and AIME. For
few-shot evaluation, we follow the setup from Tou-
vron et al. (2023), using 8-shot for GSM8K and
4-shot for MATH. Due to the extreme difficulty of
AIME and the negligible performance of LLaMA-
based models (scoring near zero), we evaluate only
Qwen2.5-7B on this benchmark.

As shown in Table 1, fine-tuning solely on
100 STORM-BORN samples significantly boosts
performance across benchmarks:relative improve-
ment of 233.3% MATH for Tiny-LLaMA-1.1B-
chat, 62.5% for LLaMA2-7B, absolute improve-
ment of 7.84% MATH for LLaMA3-8B, and 9.12%
for Qwen2.5-7B. These results demonstrate that
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Method GSM8k-0shot GSM8k-8shot Math-0shot Math-4shot

LLaMA2-7B 7.96 14.33 1.60 4.44
LLaMA2-7B + top-100 8.80 16.98 2.60 4.56
LLaMA2-7B + top-500 8.11 15.09 2.40 4.52
LLaMA2-7B + 2k 6.70 14.87 2.28 4.46
LLaMA2-7B + fullset 5.16 14.10 2.58 4.92

Table 4: Quality Ablation Performance

STORM-BORN generalizes well to out-of-domain
numerical reasoning tasks. Moreover, the im-
provement increases with model capability, indicat-
ing that stronger foundation models benefit more
from our dataset. Table 2 illustrates that even
on the highly challenging AIME benchmark, our
dataset continues to drive improvements in model
performance. This highlights the strong general-
ization and reasoning capabilities gained through
fine-tuning on STORM-BORN, particularly for ad-
vanced problem-solving skills required in expert-
level mathematics.

Formula Derivation We evaluated our method
on a formula derivation test set extracted from
NuminaMath-1.5 (LI et al., 2024). We fully fine-
tune Qwen2.5-7B (Qwen et al., 2025) on STORM-
BORN and use Deepseek-R1 for evaluation. We
assessed correctness, completeness, and similar-
ity to ground-truth proofs (each scored on a 0–2
scale) by comparing both ground-truth proofs and
predicted derivations. The evaluation prompt is
detailed in Appendix C. The results show a relative
improvement of 17.58%, with the average score
increasing from 0.91 to 1.07. This demonstrates
that our dataset directly benefits formula derivation
reasoning.

4.4 Quality Ablation

Our dataset prioritizes quality and difficulty, which
led us to reduce the initial 2,000 automatically gen-
erated samples down to a rigorously curated set
of 100 high-quality examples. To evaluate how
quality and quantity affect fine-tuning performance,
we slightly relaxed our selection criteria (reason-
ing density), to construct larger subsets: top-100,
top-500, and a full 2k automated set. We then
conducted a comparative experiment across these
subsets.

As shown in Table 4, we can observe:
(1) LLaMA2-7B + top-100 outperforms larger
datasets: On GSM8K, it achieves higher accuracy
in both zero-shot (8.80 vs. 8.11) and 8-shot (16.98

vs. 15.09) settings compared to the top-500 and
2k sets, demonstrating that small, high-quality data
enhances reasoning more effectively than larger,
lower-quality data. (2) Full unfiltered set harms
performance: LLaMA2-7B trained on the full, un-
curated set underperforms the base model (e.g.,
GSM8K zero-shot: 5.16 vs. 7.96). In contrast, the
2k set generated by our pipeline without human
validation still improves over the base model (e.g.,
14.87 vs. 14.33), confirming the effectiveness of
our synthesis framework.

5 Conclusion

In conclusion, we present STORM-BORN, a novel
dataset designed to address the limitations of ex-
isting mathematical derivation datasets. Curated
from recent top-tier academic papers via the arXiv
repository, STORM-BORN is both nuanced and
scalable, while avoiding data contamination. Un-
like isolated steps, we capture full derivations to
preserve logical flow and encourage deep theoret-
ical reasoning. Using a human-in-loop and multi-
agent LLM framework STORM, we generate prob-
lems requiring at least three reasoning steps, en-
suring complexity and creativity. Expert evalu-
ations ensure reliable annotations. Empirical re-
sults highlight the dataset’s challenge, with ad-
vanced LLMs like GPT-o1-Pro solving fewer than
5% of the problems, compared to 95% accuracy
on GSM8K. Additionally, STORM-BORN demon-
strates strong generalization capabilities, offering a
high-difficulty evaluation benchmark for AI’s ap-
proach to mathematician-level reasoning. In this
way, STORM-BORN will be a pioneer in deriving
expert evaluation and provide a human-evaluation
and auto-evaluation template for future work.

Limitations

This study addresses an important gap in the field,
but it also faces certain limitations. Specifically,
the automated evaluation of data quality remains
challenging, as our focus on complex mathematical
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derivations rather than numerical computing makes
quality assessment difficult (a problem also noted
by Glazer et al. (2024)). Currently, we rely pri-
marily on a carefully designed multi-agent curation
pipeline and manual inspection by mathematicians.
However, with the rapid advancement and scaling
of LLMs, we believe that in the future, LLMs can
be fully employed to automate this process, itera-
tively improving and optimizing it.

Ethics Statement

The dataset construction process in this study
strictly adheres to ethical guidelines and fully com-
plies with relevant legal regulations. We obtain
publicly accessible, high-quality academic papers
and utilize a combination of multimodal models
and human evaluation feedback for data processing
and optimization, ensuring data quality and relia-
bility before generating the final dataset. The entire
data collection and processing workflow is trans-
parent and traceable, with all papers sourced from
legal and publicly available channels, guaranteeing
compliance and traceability of data. The dataset
constructed in this study is intended solely for aca-
demic research and experimental purposes, with no
involvement in commercial applications or risk of
sensitive information leakage.
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A Workload and Prompts

We invested a lot of work, energy, and time in this research. Our goal is to generate high-quality formula
derivation and question-answering. At first glance, this seems to be a simple task, but in fact it involves
extremely complex and extensive workload. Initially, we explored various technical solutions, such
as optical character recognition (OCR), but when using OCR for formula recognition and extraction,
we often encountered incomplete positioning (only part of the formula was framed out), resulting in
inaccurate formula extraction. After repeated comparisons and experiments, we finally chose the method
of multi-agent large language model (LLM) collaboration, which has consumed some time and energy.

The biggest challenge appeared in the prompt design and optimization stage. Practice has shown that
LLM will encounter a series of problems, such as identifying key data in long texts, following instructions,
and producing stable output. To solve these difficulties, we continuously refined the overall workflow and
assigned complex tasks to multiple appropriate numbers of agents (see Fig. 2) for collaborative execution.
At the same time, the prompts of each agent were modified, iterated, and verified for multiple rounds.
This process is tedious and time-consuming, and consumes a lot of energy.

Regarding manual evaluation and feedback, each paper required individuals with relevant academic
background to read, assess, and provide feedback on the generated data, which increases labor and time
costs.

For resource costs and time costs, please see Appendix B.
Thanks to this painstaking and systematic workflow, we were finally able to obtain high-quality

question-answering data. We will introduce our prompts below, hoping to provide further insight into
the complexity of this study, the extensive workload involved, and our efforts to overcome a variety of
challenges.

A.1 Math Expression Extractor Agent

We encountered many problems in the process, such as: the set of extracted mathematical expressions
omitted important items, contained unnecessary items and repeated items; the output latex format did not
meet the requirements. To solve these problems, we added new rules to the prompt and repeatedly verified
the effect in practice, and iterated continuously. Through repeated iterations in practice, these problems
were solved, which enables the MLLM to follow the instructions to extract all important mathematical
expressions (formulas, theorems, lemmas, etc.), ignore unimportant mathematical expressions (such
as intermediate expressions that appear in the derivation process, mathematical content inserted in the
paragraph), and ensure that the output expression is in the correct format.

Prompt of Math Expression Extractor

"""Read the paper, then:

1. Formula Recognition:
- Identify all mathematical formulas, theorems, lemmas, and corollaries in

the paper. Especially Numbered formulas.Retain the formula's number (if
any).

- For formulas without explicit labels (i.e., those not labeled as "theorem,
" "lemma, " or "corollary"), classify them as "formula."

- Required types of formulas to recognize:
- Numbered formulas.
- Formulas that appear on separate lines (for example, occupying a line
or multiple lines by themselves in the paper).

- Ignore:
- Formulas that appear in the middle of a paragraph without separate
lines or numbers.

- Make sure there are no duplicates in the results (duplicates refer to
formulas that are exactly the same after conversion to LaTeX. If the same
formula appears in the paper under different numbers, treat them as the
same formula).
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2. LaTeX Conversion (Convert the formulas identified in step 1 into LaTeX
format strings):

- Symbols: Convert mathematical symbols accurately.
- Subscripts and superscripts: Convert subscripts and superscripts correctly.
- Uppercase and lowercase: Preserve the original variable and constant casing.
- Formula structure: Keep the entire structure of the formula intact.
- Formula numbering: Retain the formula's number (if any).
- Italics: For italicized variables in the text, wrap them with \textit{} in

LaTeX.
- Math environment: Use `$ . . . $` for inline formulas and `$$ . . . $$` for block

(display) formulas.
- Additional conditions: Check whether the paper includes definitions or

explanations immediately following the formula (for example, "where X is
. . .") and incorporate them if present.

3. JSONL Output:
- Output all converted LaTeX strings in multi-line JSONL format so they can

be parsed line by line.
- Each line should be a JSON object whose key is the type of the formula

("formula", "lemma", "theorem", "corollary", etc.) and whose value is the
LaTeX string obtained from step 2.

- Be sure to follow the requirements in step 2!

Ensure the formulas are exactly the same as in the original text!"""

A.2 Query Draft Agent
The more difficult task also leads to more problems encountered in the process, such as the generated
questions are too rigid, the questions lack prerequisites, and only the formula reference number is output
without the original formula which emphasizes the need of Context Collector Agent and Question Refiner
Agent.

Prompt of Query Draft

"""I will provide you with a dataset extracted from this paper, in JSONL
format. Each entry is a dictionary whose keys are "formula, " "lemma, "
"theorem, " etc., representing the category of the mathematical
expression, and whose values contain a mathematical expression in LaTeX
format, extracted from the paper.

Carefully read and understand the paper's content, especially the parts
related to each formula in the JSONL. For each formula, please complete
the following steps:

---

Step 1:
Locate where the formula is first defined or fully derived in the paper, and

use the relevant context to extract all the direct necessary conditions
for deriving or proving that formula. These preconditions include, but
are not limited to:

1. Which other formulas this formula is derived from or depends on. For each
such formula, record its full content (in LaTeX format), its numbering
(if any), and its name (if any).

2. Relevant problem settings.
3. The specific meaning of symbols or variables involved in the formula.

---

Step 2:
Based on the extracted preconditions, generate a complete question that

clearly asks how to derive or prove the formula. The question should
include:
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1. The formula itself: Present the full content of this formula (in LaTeX
format). Do not only reference its number.

2. The preconditions: Explicitly integrate the preconditions extracted from
the paper into the question. List out the full contents of all the
formulas it depends on and reference them by their respective numbers or
names. Do not produce a question such as "What are the preconditions?"

The form of the question must meet the following requirements:

- If a formula is derived from one or more other formulas, you must
explicitly list the full content (in LaTeX) of these preceding formulas
and reference them by their numbers or names, and explain how the current
formula is derived from them. For example, if the paper contains Formula
3 (content: X) and Formula 4 (content: Y), and Formula 4 is derived from
Formula 3, then the generated question should be:

"Based on Formula 3: X, how can we derive Formula 4: Y?"

- If the formula is a theorem, lemma, or corollary, please generate a
question asking how to prove it, for example:

"How can we prove Lemma 1: X is true?"

Note: The question must be structured and logical, clearly showing the
derivation or proof process of the formula and explicitly reflecting the
dependency between formulas while fully presenting all related formulas.

---

Step 3:
Match each formula with its corresponding question and output the result in

multi-line JSONL format.

Each data entry should be a dictionary containing the following two key-value
pairs:

1. Formula type:
- The key is "formula, " "lemma, " "theorem, " etc.
- The value is the LaTeX content of the formula.
2. Generated question:
- The key is "query."
- The value is the complete question generated according to Step 1 and Step 2.

---

Important Notes:
1. Format Requirements:
- Ensure the output is in JSONL format, with each line corresponding to one

data entry.
2. Formula Accuracy:
- If the question contains mathematical expressions, convert them into LaTeX

format. Make sure they align with the original mathematical meaning.
Minor formatting differences can be ignored.

3. LaTeX Conversion (Converts the mathematical expressions contained in the
problem to strings in LaTeX format):

- Symbols: Convert mathematical symbols accurately.
- Subscripts and superscripts: Convert subscripts and superscripts correctly.
- Uppercase and lowercase: Preserve the original variable and constant casing.
- Formula structure: Keep the entire structure of the formula intact.
- Formula numbering: Retain the formula's number (if any).
- Italics: For italicized variables in the text, wrap them with \textit{} in

LaTeX.
- Math environment: Use `$ . . . $` for inline formulas and `$$ . . . $$` for block

(display) formulas.
4. Completeness of Preconditions:
- The question content must include all direct necessary conditions.

Particularly, indicate which other formulas the current formula is
derived from or depends on, and clearly specify the entire content,
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numbering, or name of those referenced formulas. Do not produce questions
such as "What are the preconditions?"

---

Examples:
Here are some example questions and their corresponding output formats for

reference:

- Suppose the paper contains the following formula:
{"lemma": "Lemma 1. The function $f (x)$ is continuous."}
The generated question might be:
{"query":"How can we prove Lemma 1: The function $f (x)$ is continuous. is

true?"}

- Suppose the paper contains the following formula:
{"formula": "y = mx + b"}
and it is explained that this formula is derived from y = f (x) and f (x) =

mx + b. Then the generated question might be:
{"query":"Based on the formulas: $y = f (x)$ and $f (x) = mx + b$, how can we

derive the formula: $y = mx + b$?"}

- Suppose the paper contains the following formula:
{"formula": "$$\\pi_r (y | x) = \\frac{1}{Z (x)} \\pi_{ref}(y | x) \\exp

(\\frac{1}{\\beta} r (x, y))$$"}
and it is explained that this formula is derived from Formula 3, $KL (\\pi_r

(y|x) || \\pi_{ref}(y|x)) \\leq \\epsilon$. Then the generated question
should be:

{"query":"Based on Formula 3: $KL (\\pi_r (y|x) || \\pi_{ref}(y|x)) \\leq
\\epsilon$, how can we derive Formula: $\\pi_r (y | x) = \\frac{1}{Z (x)}
\\pi_{ref}(y | x) \\exp (\\frac{1}{\\beta} r (x, y))$?"}

The dataset is as follows:\n

A.3 Answer Retriever Agent
In order to solve the problems encountered in the process, such as: the answer is not extracted from the
original text but the large model generates the answer itself, the answer retrieved in this agent may
lack the important complete proof process in the appendix, or is a summary of the answer in the original
text, the effective prompt we finally get is also relatively long with nearly 500 tokens.

Prompt of Answer Retriever

"""I will provide a JSONL-format dataset extracted from this paper. Each
piece of data in the dataset is a dictionary containing two main
key-value pairs:

1. **Formula-related keys ("formula", "lemma", "theorem", etc.)** indicating
the type of mathematical expression; the value is the LaTeX-formatted
mathematical expression extracted from the paper.

2. **query**, whose value is a question generated by a large model based on
the paper and the mathematical expression.

Please process this dataset according to the following steps and requirements.

---

### Step One:
For the "expression" and "query" in each piece of data, determine whether the

answer to that question can be found in the paper. The specific steps are
as follows:

1. **Find the first occurrence**
- Locate where the expression first appears in the paper and check the
surrounding context for relevant clues.
- If there are any references or citations, follow those as well.
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2. **Check the appendix and other sections**
- Search the paper's appendix or other relevant chapters to see if the
proof or derivation steps for that expression are provided. This may well
be the answer to the question.

3. **Confirm feasibility**
- If the paper does not include any relevant content addressing the
question, you may skip this expression and proceed to the next one.
- If the paper does indeed contain content that can answer the question,
extract the relevant content from the original text.

When extracting the answer, please note the following requirements:
- **Completeness**: The extracted answers should cover all the relevant steps

needed to solve the problem in the paper.
- **Consistency**: Include only content from the original text in the answer

(you may make minimal necessary edits for coherence, but do not change
the original meaning). Avoid adding extra content or descriptions not
found in the original text.

- **Citation handling**: If the answer cites other formulas or theorems from
the paper, also include their original content in the derivation or proof
process, rather than leaving only references or labels.

- **LaTeX conversion**: Ensure all mathematical expressions are converted to
the same LaTeX format as in the original text, including:

- Accuracy of symbols, subscripts, superscripts, and capitalization.
- Preserving the original structure and numbering (if any).
- Using \textit{} for italicized variables.
- Using $. . .$ for inline math expressions and $$. . .$$ for display math
expressions.

---

### Step Two:
Match the answers extracted in Step One with the corresponding entries in the

dataset, and add a new key-value pair to form a new data record. The
specific requirements are:

- For each original data entry, add a new key called `whole_label`, whose
value is the LaTeX-formatted answer content extracted from the paper.

- Output format must be **multi-line JSONL**, one piece of data per line:
1. The original two key-value pairs remain unchanged and must not be
modified.

2. Add the `whole_label` key as the third key-value pair.

---

### Output Requirements:
1. **Multi-line JSONL format**: One data entry per line.
2. **Accuracy of content**: Formulas must match the original text of the

paper exactly, with correct symbols, subscripts, superscripts, and
capitalization.

3. ** Content consistency ** : Only retain the original content in the answer
(you can make a small amount of necessary cohesive editing, but do not
change the original meaning), and try to avoid adding additional content
or descriptions that do not appear in the original.

---

### Note:
- Please strictly follow the above requirements to avoid omitting any key

content.
- Ensure there are no errors or incomplete parts in the output text.

---

Below is the dataset:
"""
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B Resource and Time Costs

At the outset, it is important to highlight the considerable workload entailed in our approach, with the
associated resource and time costs reflecting the extensive efforts required for its implementation.

B.1 Resource Costs
To support the multi-agent system, we subscribed to GPT-o1-Pro for a one-month period at an approximate
cost of 200 USD. For simpler tasks, such as Math Expression Extraction and Answer Filtering, we utilize
free LLMs as agents. For more complex tasks, such as Query Generation and Answer Retrieval, we rely
on the paid GPT-o1-Pro model to ensure enhanced performance and accuracy. An illustrative example is
provided below. After the Math Expression Extraction step, using GPT-o1-Pro for both Query Generation
and Answer Retrieval yielded the results shown in Appendix B.1.1. In contrast, using the gemini-2.0-flash-
exp model for the same tasks resulted in Appendix B.1.2. Furthermore, when using the query generated by
GPT-o1-Pro and applying gemini-2.0-flash-exp for Answer Retrieval, the result was Appendix B.1.3. This
comparison clearly illustrates the necessity of using more powerful models like GPT-o1-Pro for complex
tasks.

B.1.1 GPT-o1-Pro Results
Here we provide the results of GPT-o1-Pro as follows:

GPT-o1-Pro as Query Draft and Answer Retriever.

formula:

"$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{1}{\\beta} r (x, y)), $$(4)"

query:

"Based on Formula (3): $$\\max _{\\pi_{\\theta}} \\mathbb{E}_{x \\sim D, y
\\sim \\pi_{\\theta}(y|x)}[r_{\\phi}(x, y)]-\\beta D_{K
L}[\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)], $$ which enforces a
KL-constrained reward maximization, how can we derive Formula (4): $$
\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp\\Bigl
(\\tfrac{1}{\\beta} r (x, y)\\Bigr), $$ where $Z (x)$ is the partition
function ensuring $\\pi_{r}$ is a valid probability distribution?"

answer:

"In the paper's Appendix A.1 (pp. 15-16), ``Deriving the Optimum of the
KL-Constrained Reward Maximization Objective, '' the authors
write:\n\n``[We] optimize the following objective:\n$$\\max_{\\pi}\\,
\\mathbb{E}_{x\\sim D, y\\sim\\pi (y\\mid x)}\\bigl[r (x, y)\\bigr]\\;
-\\; \\beta\\, D_{\\mathrm{KL}}\\bigl[\\pi (y\\mid x)\\, \\|\\,
\\pi_{\\mathrm{ref}}(y\\mid x)\\bigr].$$\n\n. . . We now
have:\n$$\\max_{\\pi}\\, \\mathbb{E}_{x\\sim D, y\\sim \\pi (y\\mid
x)}\\bigl[r (x, y)\\; -\\; \\log\\frac{\\pi (y\\mid
x)}{\\pi_{\\mathrm{ref}}(y\\mid x)}\\bigr]\\; =\\; \\max_{\\pi}\\,
\\mathbb{E}_{x\\sim D, y\\sim \\pi (y\\mid x)} \\bigl[\\, r (x, y)\\;
-\\; \\log\\pi (y\\mid x)\\; +\\; \\log\\pi_{\\mathrm{ref}}(y\\mid
x)\\bigr].$$\n\nSince $Z (x)$ does not depend on $\\pi$, the minimum is
achieved by the policy that minimizes the first KL term. Gibbs'
inequality tells us that the KL-divergence is minimized at 0 if and only
if the two distributions are identical. Hence we have the optimal
solution:\n$$\\pi^{*}(y\\mid x)\\; =\\; \\frac{1}{Z (x)}\\,
\\pi_{\\mathrm{ref}}(y\\mid x)\\; \\exp\\Bigl (\\tfrac{1}{\\beta}\\, r
(x, y)\\Bigr), $$\nfor all $x\\in\\mathcal{D}$. This completes the
derivation.''\n\n\\(\\textit{Here, }\\; Z (x)=\\sum_{y}\\,
\\pi_{\\mathrm{ref}}(y\\mid x)\\exp\\bigl (\\tfrac{1}{\\beta}r (x,
y)\\bigr)\\; \\textit{ensures}\\; \\pi^{*}(y\\mid x)\\; \\textit{is a
valid probability distribution.}\\)\n\nevidence: Appendix A.1, pp. 15-16
of the paper"}
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B.1.2 Gemini-2.0-Flash-Exp Results
Here we provide the results of Gemini-2.0-Flash-Exp as follows:

Gemini-2.0-Flash-Exp as Query Draft and Answer Retriever, using the same formula as Ap-
pendix B.1.1. It is evident that compared to Appendix B.1.1, the query generated by gemini-2.0-
flash-exp did not fully display the formula conditions (formula 4 in Fig. 1), and the derivation
process was overly general rather than a detailed step-by-step derivation.

formula:

"$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{1}{\\beta} r (x, y)), $$(4)"

query:

"Given the RL objective in Formula (3):$$\\max _{\\pi_{\\theta}}
\\mathbb{E}_{x \\sim D, y \\sim \\pi_{\\theta}(y|x)}[r_{\\phi}(x,
y)]-\\beta D_{K L}[\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)], $$ how
can we express the optimal solution $\\pi_{r}(y | x)$ to the
KL-constrained reward maximization objective, where $Z (x)$ is the
partition function?"

answer:

"Following prior work [31, 30, 19, 15], it is straightforward to show that
the optimal solution to the KL-constrained reward maximization objective
in Eq. 3 takes the form:\n$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e
f}(y | x) \\exp (\\frac{1}{\\beta} r (x, y)), $$(4)\nwhere $$Z (x) =
\\sum_{y} \\pi_{r e f}(y | x) \\exp (\\frac{1}{\\beta} r (x, y)), $$ is
the partition function. See Appendix A.1 for a complete derivation."

B.1.3 Gemini-2.0-Flash-Exp Results
Here we provide the results of Gemini-2.0-Flash-Exp as follows:

Gemini-2.0-Flash-Exp as Answer Retriever, using the same formula and query as Appendix B.1.1.
It is evident that the result was less comprehensive and detailed than Appendix B.1.1.

formula:

"$$\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp
(\\frac{1}{\\beta} r (x, y)), $$(4)"

query:

"Based on Formula (3): $$\\max _{\\pi_{\\theta}} \\mathbb{E}_{x \\sim D, y
\\sim \\pi_{\\theta}(y|x)}[r_{\\phi}(x, y)]-\\beta D_{K
L}[\\pi_{\\theta}(y | x) || \\pi_{r e f}(y | x)], $$ which enforces a
KL-constrained reward maximization, how can we derive Formula (4): $$
\\pi_{r}(y | x)=\\frac{1}{Z (x)} \\pi_{r e f}(y | x) \\exp\\Bigl
(\\tfrac{1}{\\beta} r (x, y)\\Bigr), $$ where $Z (x)$ is the partition
function ensuring $\\pi_{r}$ is a valid probability distribution?"

answer:

"Following prior work [31, 30, 19, 15], it is straightforward to show that
the optimal solution to the KL-constrained reward maximization objective
in Eq. 3 takes the form:\n$$\\pi_{r}(y | x)=\\frac{1}{Z (x)}
\\pi_{\\textit{ref}}(y | x) \\exp (\\frac{1}{\\beta} r (x, y)), $$
(4)\nwhere $Z (x)=\\sum_{y} \\pi_{\\textit{ref}}(y | x) \\exp
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(\\frac{1}{\\beta} r (x, y))$ is the partition function. evidence:
Section A.1, Appendix"

B.2 Time Costs
On average, the processing time for each paper using the multi-agent system is approximately 20 minutes,
with variability depending on the paper’s length and the number of formulas. When utilizing GPT-o1-Pro
for more challenging tasks, the processing time can be significantly longer. Moreover, output failures
may occur, requiring multiple retries—sometimes two or even three times—leading to substantial time
costs. Additionally, issues such as the “dumbing down” of LLMs during intensive tasks can further hinder
experimental progress, creating delays in task completion. This represents a significant source of time
cost, as repeated attempts are necessary to recover from failures and ensure valid results. In addition, there
is no API for GPT-o1-Pro, so we have to use the web version. And the model can not receive pdf files, so
we can only convert the paper into page screenshots and gradually upload, which increases the labor costs
and time costs.

C Derivation Evaluation Prompt

We evaluated our method on a formula derivation test set using Deepseek-R1 with the prompt below
to assess correctness, completeness, and similarity to ground-truth proofs (each scored on a 0–2 scale).
We found that providing the ground-truth proof alongside the model’s output was crucial for accurate
comparison and reliable scoring.

Prompt of Answer Retriever

"""
You are a precise mathematical proof evaluator for proof problems. The user

will provide both a problem statement, ground truth proof and a proposed
solution.
Evaluate the solution based on the ground truth proof, score the solution
based on the following criteria:

1. **Correctness (0-2):**
- 0: Fundamentally wrong.
- 1: Partially correct with significant flaws.
- 2: Fully correct and logically sound.

2. **Completeness (0-2):**
- 0: Incomplete; key steps are missing.
- 1: Moderately complete; some steps or justifications are missing.
- 2: Fully complete; all necessary steps and justifications are present.

3. **Similarity (0-2):**
- 0: No similarity; completely different from the ground truth.
- 1: Some similarity; some steps or justifications are similar.
- 2: High similarity; all steps and justifications are identical.

Output your evaluation as a JSON object in the format:
{"correctness": <0-2>, "completeness": <0-2>, "similarity": <0-2>}

"""
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