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Abstract

Natural language understanding systems strug-
gle with low-resource languages, including
many dialects of high-resource ones. Dialect-
to-standard normalization attempts to tackle
this issue by transforming dialectal text so that
it can be used by standard-language tools down-
stream. In this study, we tackle this task by
introducing a new normalization method that
combines rule-based linguistically informed
transformations and large language models
(LLMs) with targeted few-shot prompting,
without requiring any parallel data. We imple-
ment our method for Greek dialects and apply
it on a dataset of regional proverbs, evaluating
the outputs using human annotators. We then
use this dataset to conduct downstream experi-
ments, finding that previous results regarding
these proverbs relied solely on superficial lin-
guistic information, including orthographic arti-
facts, while new observations can still be made
through the remaining semantics.!

1 Introduction

Natural language processing has long struggled
with lower-resource language varieties, including
geographic varieties of higher-resource standard-
ized ones (Joshi et al., 2025). According to mem-
bers of such language communities, who are usu-
ally also speakers of the equivalent standard, natu-
ral language understanding (NLU) of dialectal text
is much more important than language generation
(NLG) into the local variety (Blaschke et al., 2024).

This variation in demand highlights the signifi-
cance of transforming dialectal text into a standard
variety while maintaining as much of the original
meaning as possible, which is known as dialect-to-
standard normalization. That is because by improv-
ing our methods in this area we will be able to apply
modern NLU techniques to a vast array of formerly

'We publicly release all code and datasets produced for
this work: https://github.com/andhmak/rule_dialnorm

Source Dialectal Sentence
src: Ou Oede L ou yeltovac.
/u theos ki u jitonas/
God and the neighbour.

Baseline Normalization
—: O0te 0 Bede, olte o yeitovac. X
/dte o theds, ute o jitonas/
Neither God nor the neighbour.
Proposed Rule-Enhanced Method
— O Beb¢ xau o yeltovac. v
/o theos ke o jitonas/
God and the neighbour.

Figure 1: Predictable phonological changes (/o/—/u/)
in Northern Greek dialects make the definite article “o0”
appear closer to Standard “oUte” (Nite/, neither). We
combine LL.Ms with rule-based normalization to better
understand dialectal sentences.

neglected varieties through models trained on data
of their related standard languages.

In this work, we introduce a novel method for
normalizing dialectal data into a standard variety.
Our proposed method first applies morphological
rules, specified based on dialect-specific linguistic
prior knowledge, and then feeds the preprocessed
input to an LLM along with dialect-specific shots.
This second step enhances the input with sentences
exhibiting those facultative dialectal features which
are not addressable only with the first step.

We implement the language-specific parts of this
procedure for a set of Greek dialects represented in
a large dataset of regional proverbs. An example of
our method compared to simple prompting for one
of the proverbs in our dataset is shown in Figure 1.
We then experiment with two different LLMs and
ablate the rule-based step, using human annotators.
We thus produce a new normalized dataset in Stan-
dard Modern Greek, which we use in downstream
tasks: first, we replicate prior research using the
newly-standardized proverbs to ascertain whether
the previous results depended on the semantics or
on the now-removed linguistic peculiarities of each
variety and its transcription method.
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Additionally, we conduct further experiments
showcasing the usability of our dataset for obtain-
ing semantic, non-dialectally-colored insights into
a set of originally dialectal texts.

In short, we make the following contributions:

* We propose a new method for normalizing di-
alectal speech, using a pipeline of rule-based
transformations followed by an LLM with a few
dialect-specific examples.

* As a proof-of-concept, we implement the linguis-
tic rules for Greek dialects and run our pipeline
on a dataset of Greek proverbs, producing a nor-
malized dataset of regional proverbs,validated
using human annotations.

* We show that previous observations into the orig-
inal dataset could have been influenced by di-
alectal linguistic features, which disappear in the
standardized text, while new, mainly semantic-
based insights are possible.

2 Related Work

Previous work has been carried out in the area of
dialect normalization, targeting specific varieties
(Abdul-Mageed et al., 2023; Partanen et al., 2019;
Scherrer and Ljubesi¢, 2016), as well as more gen-
eralized approaches (Kuparinen et al., 2023).

Recently, pretrained multilingual LLMs have
proven useful in such tasks, especially when fine-
tuned on parallel dialectal-standard data (Ibn Alam
and Anastasopoulos, 2025). These kinds of paral-
lel datasets are in some way or another required in
all these past techniques in order to train special-
ized models. In contrast, our technique eliminates
this requirement by leveraging LLMSs’ tendency to
treat unseen dialectal features as noise, combined
with the exploitation of linguistic knowledge of the
dialects in question and as few as three parallel
sentences for few-shot prompting. This makes our
approach viable even for use cases such as the one
we explore where there are practically no parallel
text data available.

Pavlopoulos et al. (2024) introduced a machine-
actionable dataset of Greek proverbs, compris-
ing over 100,000 proverb variants, each origi-
nating from one of 134 unique locations across
Greece. An exploration of the spatial distribution of
proverbs showed that the most widespread proverbs
come from the mainland while the least come pri-
marily from the islands. Using the latter, then,
they showed that text geolocation/geocoding (Hovy
and Purschke, 2018; Han et al., 2016; Chakravarthi

et al., 2021; Ramponi and Casula, 2023) can be ac-
curate for specific locations, and that conventional
machine learning algorithms operating on stylistic
features outperformed transfer learning. We argue,
however, that relying on the superficial linguistic
features of the original (non-normalized) text, in-
stead of semantic ones, makes it hard to determine
shared semantics or any (possibly deeper) cultural
connections across different regions.

3 Methodology

Our normalization method consists of two steps.
First, we preprocess our inputs using a rule-based
procedure. Then, we pass the previous step’s output
to an LLM with few-shot prompting.

Part 1: Rule-based normalization (RBN) RBN
is achieved by string replacements of specific char-
acter sequences according to the linguistic features
of each dialect compared to the standard. We di-
vide the Greek dialects into three groups, following
established literature (Trudgill, 2003): Northern,
Southern and Pontic, according to their features,
and use different transformation rules for each
group. The dialects’ specific distribution among
these groups is described in Appendix A, and in-
dicative examples of string replacements are in
Appendix B. The amount of linguistic knowledge
required is roughly what would be present in a
dialect’s comparative grammar, in our case amount-
ing to 14 string replacement rules.

Part 2: Few-shot prompting Our prompts are
designed to guide the model to perform our desired
task while also providing the LLM with the nec-
essary linguistic information, which is otherwise
difficult to encode using rules. First, we include
the name of the region our text is sourced from (es-
pecially helpful if the model has seen relevant data
during pre-training). Second, we provide instruc-
tions to only change the dialect, so that it conforms
with the standard, without affecting the style of the
text. Otherwise, we notice that LLMs tend to view
dialectal features as signs of informality, and there-
fore produce overly formal text when not explicitly
directed not to. Similarly, they seem to replace
vocabulary existing in both the dialect and the stan-
dard with alternatives. Hence, we also instruct for
lexical terms to only be replaced when they are
absent from the standard. Finally, we provide a few
examples of the task being performed successfully,
specifically selected to display dialectal features
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not encoded in the previous step. The full prompt
used per dialectal group is provided in Appendix C.

4 Normalization Experiments

Dataset We perform our experiments on the
dataset provided by Pavlopoulos et al. (2024),
specifically on the balanced corpus, containing 500
proverbs from each geographic location, which was
also used for their experiments.

Models For the LLM-based part of our
normalization method, we use GPT-40
(gpt-40-2024-11-20|; OpenAIl et al., 2024)
as well as the Llama 3.1-70B (Grattafiori et al.,
2024). Overall we explore four different setups:

1. GPT 3s+RBN uses GPT-40 and follows the entire
pipeline as described in Section 3;

2. GPT 3s only uses the 3-shot prompting method,
using a different prompt according to the group
of the input dialect, skipping RBN;

3. Llama 3s+RBN uses Llama 3 and also follows
the entire pipeline; and

4. Llama 9s uses Llama 3 and skips both RBN
and the division into dialectal groups, providing
all three parallel examples of all three dialectal
groups in every prompt.

Human evaluation We employed three native
Greek speakers to evaluate a subset of the normal-
ized proverb dataset. For each sentence, normal-
ized with each of the four setups, they were in-
structed to provide a score from 1 to 5 on two axes.
One was “form”, referring to how well the normal-
ized sentence was stripped of its dialectal features
and rendered into fluent Standard Modern Greek.
The other was “meaning”, referring to how well
the original meaning of the dialectal sentence, in-
cluding its style, was preserved in the normalized
one. For each of these two axes, they were also
asked to choose the best normalized sentence out
of the four, with ties only allowed in case of iden-
tical output strings. We derived various statistical
measures guaranteeing the reliability of the anno-
tations, inter-annotator agreement, and statistical
significance. Table 1 depicts the high Intraclass
Correlation Coefficients (ICC) calculated on the
annotations for each model on both axes, and more
detailed results can be found in Appendix D.

Results Table 2, on the left, depicts the aver-
age human evaluation from 1 (worst) to 5 (best),
based on form and meaning. The percentage each
setup was assessed by human evaluators as the

Model Form ICC Meaning ICC
GPT 3s+RBM 0.884 0.783
GPT 3s 0.934 0.893
Llama 3s+RBN 0.790 0.910
Llama 9s 0.888 0.875

Table 1: ICC for “form” and “meaning” ratings per
model. Values closer to 1 indicate better correlation.

Normalization Percentage
Quality (out of 5) Best (%)
Model Form Meaning Form Meaning
GPT 3s+RBN 4.68 4.62 88.3 91.5
GPT 3s 4.46 4.26 66.8 68.6
Llama 3s+RBN 3.1 3 16.7 13.5
Llama 9s 2.52 2.34 9.3 9.7

Table 2: Average human evaluation, from 1 to 5 (best),
regarding the form and meaning of the output per setup.
GPT 3s+RBN is the best (left) and its output is the
preferred normalization about 90% of the time (right).

best (for form and meaning) is shown on the right.
GPT 3s+RBN was the best in form and meaning,
followed by GPT 3s, Llama 3s+RBN and Llama 9s.
Differences among models are more prominent
when explicitly asking for a preferred output.

5 Downstream tasks

5.1 Text Geocoding/Geolocation

We replicated the experiments of Pavlopoulos et al.
(2024), by using their corpus but normalizing it
with our best performing approach (GPT 3s+RBN).
This includes training models for: (a) predicting the
region label for each proverb without providing any
further geographic information; and (b) for predict-
ing the geographic coordinates using regression,
after providing each region’s exact location. After
removing any non-semantic and dialectal informa-
tion (i.e., normalizing), we find that geolocation
methods fail. This finding verifies the hypothesis
of Pavlopoulos et al. (2024) about predictions being
based on linguistic information.

In the classification geolocation task, using the
non-normalized data, the best model reaches an av-
erage F; score of 0.33, with that of specific regions
being as high as 0.81. Using normalized data, how-
ever, the best model reaches only 0.13 (see Table 3),
with no region going above 0.35.

In the regression geolocation task, performance
decreased less, going from an average root mean
square error of 2.9 to 3.2 (see Table 4). The full
results can be found in Appendix H.
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Semantic or superficial? Compared to the re-
sults of the non-normalized analysis, models
trained on our normalized data rely more on seman-
tic, rather than on superficial linguistic features,
such as transcription conventions. For instance, the
top four terms guiding the best geolocation model
(trained on non-normalized data) Southwards com-
prise different transcriptions of the conjunction xou
(kai, and). That is, they are phonologically affected
by the Southern phenomenon of velar palataliza-
tion. However, when the same model is trained on
the normalized version, it utilizes mainly semanti-
cally meaningful content words.

Model Dialectal F; Normalized F,
Logistic Regression 0.29 0.12
SVM 0.33 0.13
K Nearest Neighbors 0.23 0.11
Random Forest 0.25 0.13

Table 3: Average F; per model for region (label) pre-
diction, using the original dialectal dataset and our nor-
malized one. Classification is harder after removing
superficial linguistic information.

Model Dial Avg RMSE Norm Avg RMSE
ElasticNet 2.93 3.25
K Nearest Neighbors 3.16 3.24
Linear Regression 297 3.32
Random Forest 2.98 3.20
ERT 2.99 3.23

Table 4: Average root mean square error (RMSE) per
model for coordinate regression, using the original di-
alectal dataset and our normalized one. Regression is
harder after removing superficial linguistic information,
but not as much as classification.

5.2 Region Clustering

Using GreeKBERT, a monolingual encoder-only
model for Standard Modern Greek (Koutsikakis
et al., 2020), we construct a dense representation
for each proverb by averaging the embeddings of its
tokens. We then average the representations of all
proverbs for each region to create representations
of the regions themselves, and perform clustering
of the regions. As input, we use both the original
corpus provided in our dataset, as well as the nor-
malized one. No geolocation data is provided; only
the text of the proverbs from each region.

Using K-means and the Silhouette method, we
find the best results in both dataset versions are ob-
tained for £ = 2. The outputs of other algorithms,

including of K-means for different values of K, can
be found in Appendix G. The output of the algo-
rithm using the two versions of the data is shown
in Figure 2. Based on these depictions, we con-
sider that the results are far more meaningful when
the data are normalized first. Using the original
dialectal data, Pontus and Cyprus, two distant and
unrelated regions, are put together in one cluster,
and everything else is clustered together. With our
normalized version, one cluster consists of islands
and coastal regions, and the other of mainland ones.
The few outliers, such as Skyros and Lesbos, are
not random either. Despite being islands, they ap-
pear in the “mainland” cluster, but they are also
the only islands in our dataset that have historically
had significant connections with the Northern main-
land. Overall, while there is no clearly discernible
geographic information in the PCA plot produced
using the dialectal data, the normalized one seems
to have roughly put Western and Northern regions
on the top and left, while Eastern and Southern
ones are on the bottom and right. This implies
that we can now uncover geographic information
through the semantic similarity of proverbs.

5.3 Cardinal direction driving words

We also fine-tune GreekBERT (see Appendix I) to
predict geographic coordinates (as in §5.1, achiev-
ing a mean absolute error of 1.59). To analyze
which tokens guide this model towards each cardi-
nal direction, we iterate over the dataset and mask
each token in every proverb, averaging the change
in the predicted coordinates, in a method similar to
input erasure (Pavlopoulos et al., 2021). We find
meaningful results, such as the words for “cold”
and “winter” being among the most influential ones
in pushing the prediction to the North, which has a
significantly colder climate.

6 Discussion and Future Work

Our experimental results show that our full setup
outclasses all tested baselines in terms of both
form normalization and meaning conservation, but
also independently achieves performance similar to
an ideal human expert (who would have achieved
scores close to the 5-point mark). This, along with
the results achieved in downstream tasks, indicates
that our approach can be used in various contexts
for dialectal NLU as an upstream method.

When it comes to the downstream experiments,
we hypothesize that the difference in performance
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Figure 2: k-means clustering with normalized data pro-
duces more reasonable clusters (full size in App. F).

between the old and new ones has to do with the
different methods of dialectal transcription used for
each region. Even though they appear to offer very
clear signals for recognizing each area specifically,
they obfuscate existing dialectal and cultural sim-
ilarities. Therefore, when using normalized data,
it is impossible to pinpoint exactly the area where
a specific proverb originates from, as they are of-
ten widely shared. Conversely, it is much easier to
categorize the regions themselves, as by removing
the layer of transcription, which previously cre-
ated unrelated “islands” for each specific region,
interregional parallels can be detected.

Our method adds little additional overhead, mon-
etary or temporal, to the baseline of simply using an
LLM for the task, as RBN can be executed within
seconds for our entire dataset on a consumer CPU.

Based on feedback from our annotators, we no-
tice that the main failure case is sentences contain-
ing dialectal vocabulary without a clear cognate in
Standard Modern Greek. Since such rare vocabu-

lary does not appear in any of the LLMs’ training
data with sufficient frequency so that its meaning
can be learned, and morphological rules cannot
address purely lexical divergence from the stan-
dard, the model is left to infer the meaning from
the surrounding context.

Future Work  We believe that it would be worth-
while to create comprehensive dictionaries of di-
alectal terms which do not appear in the standard,
especially for varieties that are overall relatively
close linguistically to a higher-resource language,
in cases where they do not already exist (as is the
case for most Greek dialects).

Given that our results indicate that this is the
main issue currently complicating automatic pro-
cessing for these dialects, at least when it comes
to their understanding, such a resource could be a
crucial tool in finally extending coverage to many
underserved linguistic communities.

Limitations

We acknowledge that since the evaluators do not
have native knowledge of all Greek dialects, they
may have missed some of the subtle meanings of
the proverbs whose translations they were evalu-
ating. The sentences are, however, mostly under-
standable by all Greek speakers, and much of the
normalization consisted of conforming to standard
spelling.

Moreover, as mentioned above, our method may
produce sub-par results in cases where rare dialec-
tal vocabulary with no cognate in the standard is
used.

Ethics Statement

The very nature of the dialect-to-standard normal-
ization task means that at least some sociolinguistic
signals will be erased from the input, which risks
contributing to the global decline in linguistic di-
versity. We do not consider this to be a significant
additional risk, as our method is intended for Nat-
ural Language Understanding specifically. LLMs
cannot on their own, using current architectures,
learn such low-resource varieties, and dialectal text
given to them in the form of prompts is already
being stripped of much of its form and meaning by
the model’s internal processing. Our method is not
intended for Natural Language Generation, which
is to say, it would not cause a model to produce
normalized instead of dialectal text, but it would
help it better understand the dialect, which research
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indicates is the desire of the majority of dialectal
speakers.

We have obtained permission from all annotators
to publish the data they produced in the context of
this paper. The annotators were volunteers, and
no monetary compensation was provided for their
involvement.

The content of the Greek Proverb Atlas Dataset
is available under a CC BY-NC-ND 4.0 license, in
csv format. Its usage in this project is therefore
consistent with its intended use. All models we
use come with permissive licenses, at least when it
comes to research.
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A Dialect Groups
A.1 Northern

This includes: Macedonia, Thrace, Eastern Thrace,
Skyros, Epirus, Ioannina, Asia Minor, Aetolia, Eu-
boea and Lesbos.

A.2 Southern

This includes: Amorgos, Arcadia, Achaea, Ionian
Islands, Thesprotia, Karpathos, Cephalonia, Crete,
Cyprus, Laconia, Naxos and Rhodes.

A.3 Pontus

This includes Pontus, a very divergent dialect
which doesn’t share many features with the oth-
ers.

B Major Changes per Dialect Group

Below is one major example of the changes our
scripts make for each group:

B.1 Northern

A major characteristic of Northern dialects is
“Northern vocalism’, which raises standard mid
vowels (/o/, /e/) to high vowels (/u/, /i/) in un-
stressed positions, while original high vowels dis-
appear under the same circumstances. Completely
undoing this rule is difficult, as it is facultative and
therefore not reversible. However, there are certain
patterns, such as the word /u/ followed by another
ending in unstressed /-us/, which are almost guar-
anteed to be the result of this rule, and are therefore
safe to reverse to /o/ and /-os/ at this stage.

B.2 Southern

A feature of Southern dialects is the palatalization
of velars, especially /k/, before vowels (/e/, /i/).
The resulting palatal is represented differently in
each dialect due to the decisions of each transcriber
who happened to collect data from each region.
Similarly to above, it is difficult to know which
palatal was original or resulted from this rule, so
the process is not completely reversible, but we
revert it in specific cases where it is almost certain.

B.3 Pontus

Pontic Greek uses /do/ in place of Standard Mod-
ern Greek /ti/ (meaning “what”), while in other
dialects this usually represents a voiced version of
the definite article.

C Full Prompt Templates

We used the following three prompt templates, one
for each group of Greek dialects. “<place>" is re-
placed by the area label, while “<text>" is replaced
by the source dialectal proverb.
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C.1 Northern

‘Given a Greek sentence from <place>.
Translate it to standard Greek. Keep the
same style, do not make it more official.

Use words with the same etymology if
and only if they exist in standard Greek,
otherwise use different words. Show just

the translation and nothing else.

For example:
<place>: I'lda poupidipa, voupd
XOLPOOUUEY
Standard Greek: I'ida Qwpidpa, oupd
HOPOWUEVT
<place>: Mt mrjpt, oL whpt, Touv THEL
TOu ToUTAY’

Standard Greek: Me nipe, oe mrpe,
TOV TPE TO TOTAUL

<place>: T yduot Tou xépatou
Standard Greek: Tou ydunce to
AEQOTO
<place>: <text>
Standard Greek:’

C.2 Southern

‘Given a Greek sentence from <place>.
Translate it to standard Greek. Keep the
same style, do not make it more official.
Use words with the same etymology if
and only if they exist in standard Greek,
otherwise use different words. Show just

the translation and nothing else.

For example:

<place>: KaAid V' 1o Soxovixt, mopd
70 Baciiix

Standard Greek: KohOtepa elvon o
dtaxovixt, mopd To Bactiixt
<place>: Tdyel n ypou oto Aoioud tln
o Ywpel xou oTo Gvelpd T
Standard Greek: Td “yet 1 yplo oTOV
hoyilopo Tne To BAETEL Xou GTO OVELRO
™me
<place>: Twv Peeviynv to Toudxid
TPV TEWVIGOUY HOELOEUXOLY
Standard Greek: Twv gpovipwy to
ToUdLd TTELY TEVACOUY Uy ELREVOUY
<place>: <proverb>

Standard Greek:’

C.3 Pontus

‘Given a Greek sentence from [16vtoc.
Translate it to standard Greek. Keep the
same style, do not make it more official.
Use words with the same etymology if
and only if they exist in standard Greek,
otherwise use different words. Show just

the translation and nothing else.

For example:
[TovTog: Totog BAAN To Yép'v at’ ‘¢ oo
HEN xou xu heby” Tor Sy Tuda T
Standard Greek: IToloc Bdlel 1o yépl

TOU 070 UEN xaL OEV YAElpEL TaL
08y TUAG TOU

[Tovtog: Kidv moddvng x parddvelc

Standard Greek: Av dev nadaivelc dev
wordalvelg

IT6vtoc: O véov Yordv motdpuy etvou!

Standard Greek: O véog 9oh6 motdu
elvou!

[I6vtoc: <proverb>

Standard Greek:’

D Detailed Annotation Statistics

D.1 Pearson Correlations

We report the average pairwise Pearson Correlation
for the ratings of the outputs of each model among
the three annotators.

Numbers closer to 1 indicate better correlation.

D.1.1 Form

Model Pearson

GPT 3s+RBN 0.733

GPT 3s 0.822
Llama 3s+RBN 0.601
Llama 9s 0.787

Table 5: Average Pearson Correlation for each model.
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D.1.2 Meaning

Model Pearson
GPT 3s+RBN 0.646
GPT 3s 0.731
Llama 3s+RBN 0.821
Llama 9s 0.762

Table 6: Average Pearson Correlation for each model.

D.2 Intraclass Correlation Coefficients

We specifically report the ICC (2,k) statistic, cal-
culated for the average of ratings provided by a set
of annotators, where the annotators are treated as
random effects under a two-way random effects
model. This is because we use the average of their
evaluations in our analyses instead of any specific
individual rating, while our annotators are used as
representatives of the Greek-speaking population,
and we are interested in their evaluations as part of
this group.

Numbers closer to 1 indicate better correlation,
with 0.75 to 0.9 generally considered good, and
higher than 0.90 excellent (Koo and Li, 2016).

D.2.1 Form
Model ICC F dfidf2 p CI95%
GPT 3s+RBN 0.884 8.819 26 52 2.24 x 107! [0.78, 0.94]

GPT 3s

Llama 9s

0.934 14.700 26 52 6.77 x 1076 [0.87, 0.97]
Llama 3s+RBN0.790 5.201 26 52 2.24 x 10~7 [0.60, 0.90]
0.888 11.264 26 52 1.79 x 10712 [0.76, 0.95]

Table 7: ICC (2,k) and the associated F-statistic, numer-
ator (df1) and denominator (df2) degrees of freedom,
p-value (for the possibility of the true ICC being 0) and
95% confidence interval for the form ratings of each
model.

D.2.2 Meaning

Model ICC F dftdf2 p CI95%
GPT 3s+RBN 0.783 4.667 26 52 1.00x107° [0.59, 0.89]
GPT 3s 0.893 9.065 26 52 1.32x10 ! [0.80, 0.95]

Llama 3s+RBN 0.910 12.133 26 52 3.90x10 % [0.83, 0.96]
Llama 9s 0.875 9.679 26 52 3.71x107'2[0.75, 0.94]

Table 8: ICC (2,k) and the associated F-statistic, numer-
ator (df1) and denominator (df2) degrees of freedom,
p-value (for the possibility of the true ICC being 0) and
95% confidence interval for the meaning ratings of each
model.

D.3 Paired T-Tests for Statistical Significance

We report on the statistical significance of each
model’s score being higher than the following in
the sequence in which they were ranked.

P-values < 0.05 are typically considered statisti-
cally significant.

D.3.1 Form

Model t-statistic p-value

GPT (3s+RBN - 3s) 2.083 0.041
GPT 3s - Llama 3s+RBN 9.385 1.9 x 10~
Llama (3s+RBN - 9s) 3.295 0.001

Table 9: Statistical significance of each model’s form-
score being higher than the following in the sequence in
which they were ranked. All p-values are < 0.05.

D.3.2 Meaning

Model t-statistic p-value

GPT (3s+RBN - 3s) 3.202 0.002
GPT 3s - Llama 3s+RBN 7.157 3.9 x 10710
Llama (3s+RBN - 9s) 3.373 0.001

Table 10: Statistical significance of each model’s
meaning-score being higher than the following in the
sequence in which they were ranked. All p-values are
< 0.05.

E Demographic details of the annotators

Out of our three annotators, two were native speak-
ers of Standard Modern Greek and the Cretan di-
alect, while the other was a native speaker of Stan-
dard Modern Greek and Northern Greek. The con-
tents of our dataset are generally understandable to
all Greek speakers.
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F Results of K-means for 2 clusters (full
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Figure 3: K-means clustering for 2 clusters using nor-

malized data
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H Detailed Results of Downstream Tasks

Model precision recall f1-score support

Epirus 0.17 0.17 0.17 23

Aetolia 038 0.58 0.46 24

Amorgos 0.13 0.18 0.15 22

Eastern Thrace 0.16 021 0.18 24

Arcadia 0.20 0.16 0.18 31

Achaea 0.39 022 0.28 32

Ionian Islands 0.35 0.65 0.45 23

Euboea 0.06 0.05 0.05 20 Model precision recall fl1-score support

Thesprotia 0.05 0.05 0.05 22 Epirus 0.08 0.09 0.09 23

Thrace 025 016 020 25  petolia 0.16 012 014 24

Ioannina 0.29 021 0.24 29 Amorgos 0.16 010 0.12 29

Karpathos 040 029 0.33 28 Eastern Thrace 0.14 0.14 014 22

Cephalonia 0.14 0.11 0.12 27 Arcadia 0.10 0.07 008 78

Crete 035 027 030 30 achaea 013 007 010 27

Cyprus 072075 073 24 1onian Islands 024 033 028 30

Lesbos 0.42 0.62 0.50 24 Euboea 0.14 012 0.13 24

Laconia 012007 009 27  Thesprotia 013 017 015 24

Macedonia 0.37 026 0.30 27T Thrace 0.16 010 0.12 31

Asia Minor 0.00 0.00 0.00 18 Ioannina 0.08 0.06 0.07 32

Naxos 031 046 037 24 arpathos 018 012 015 24

Pontus 0.75 0.79 0.77 19 Corfu 0.08 0.04 0.05 27

Rhodes 0.26 0.23 0.24 22 Crete 0.06 0.07 0.07 27

Skyros 0.45 0.60 0.51 30 Cyprus 0.04 0.06 0.05 18

accuracy 0.31 575 Lesbos 032 043 0.37 23

macro avg 029 031 029 575 Laconia 0.07  0.04 0.05 24

weighted avg 030 031 029 575 Macedonia 0.00  0.00 0.00 20
Asia Minor 0.04 0.05 0.04 22

Table 11: Location classification with logistic regression Naxos 0.00  0.00 0.00 19
with dialectal data Pontus 0.24 030 0.26 30

Rhodes 0.15 023 0.18 22
Skyros 0.10 0.16 0.12 25
accuracy 0.13 575
macro avg 0.12 0.13 0.12 575

weighted avg 0.13 0.13 0.12 575

Table 12: Location classification with logistic regression
using normalized data
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Model

precision recall f1-score support Model

precision recall fl1-score support

Epirus 0.09 0.09 0.09 23 Epirus 0.05 0.04 0.05 23
Aetolia 0.42 046 0.44 24 Aetolia 0.24 0.17 0.20 24
Amorgos 0.26 032 0.29 22 Amorgos 0.11 0.07 0.08 29
Eastern Thrace 0.19 025 0.22 24 Eastern Thrace 0.08 0.09 0.09 22
Arcadia 0.11 0.10 0.10 31 Arcadia 0.09 0.07 0.08 28
Achaea 0.31 0.25 0.28 32 Achaea 0.26 0.19 0.22 27
Ionian Islands 047 0.70 0.56 23 Ionian Islands 0.24 0.20 0.22 30
Euboea 0.06 0.05 0.05 20  Euboea 0.15 0.17 0.16 24
Thesprotia 0.11 0.09 0.10 22  Thesprotia 0.16 025 0.19 24
Thrace 0.26 0.20 0.23 25  Thrace 0.05 0.03 0.04 31
Ioannina 0.26 0.17 0.21 29  Ioannina 0.11 0.06  0.08 32
Karpathos 0.42 0.39 041 28 Karpathos 0.19 0.17 0.18 24
Corfu 0.25 022 024 27  Corfu 0.16 0.11  0.13 27
Crete 0.36 033 034 30 Crete 0.04 0.04 0.04 27
Cyprus 0.70 096 0.81 24 Cyprus 0.06 0.06 0.06 18
Lesbos 0.45 0.54 049 24 Lesbos 0.32 039 0.35 23
Laconia 0.10 0.07 0.09 27 Laconia 0.11 0.08 0.10 24
Macedonia 0.35 0.30 0.32 27  Macedonia 0.00 0.00 0.00 20
Asia Minor 0.20 0.11 0.14 18  Asia Minor 0.00 0.00 0.00 22
Naxos 0.44 0.58 0.50 24 Naxos 0.06 0.11  0.07 19
Pontus 0.73 0.84 0.78 19  Pontus 0.28 0.33  0.30 30
Rhodes 0.28 032 0.30 22 Rhodes 0.14 0.23  0.17 22
Skyros 0.54 0.63 0.58 30  Skyros 0.12 0.16 0.14 25
accuracy 0.34 575 accuracy 0.13 575
macro avg 0.32 035 0.33 575 macro avg 0.13 0.13 0.13 575
weighted avg 0.32 034 0.33 575 weighted avg 0.13 0.13 0.13 575

Table 13: Location classification with SVM using di-

alectal data

malized data
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Model

precision recall f1-score support Model

precision recall fl1-score support

Epirus 0.05 0.04 0.05 23 Epirus 0.06 0.09 0.07 23
Aetolia 0.26 0.29 0.27 24 Aetolia 0.18 0.12 0.15 24
Amorgos 0.19 0.27 0.22 22 Amorgos 0.08 0.07  0.08 29
Eastern Thrace 0.14 021 0.17 24 Eastern Thrace 0.06 0.09 0.07 22
Arcadia 0.14 0.13 0.13 31 Arcadia 0.15 0.11  0.12 28
Achaea 0.21 0.19 0.20 32  Achaea 0.12 0.07 0.09 27
Ionian Islands 0.28 0.57 0.38 23 Ionian Islands 0.36 0.13 0.20 30
Euboea 0.06 0.05 0.05 20  Euboea 0.12 0.17 0.14 24
Thesprotia 0.06 0.05 0.05 22  Thesprotia 0.23 029 0.25 24
Thrace 0.27 0.16 0.20 25  Thrace 0.04 0.03 0.03 31
Ioannina 0.13 0.07 0.09 29  Ioannina 0.11 0.09 0.10 32
Karpathos 0.38 021 0.27 28 Karpathos 0.18 0.17 0.17 24
Corfu 0.18 0.19 0.18 27  Corfu 0.04 0.04 0.04 27
Crete 0.24 0.20 0.22 30 Crete 0.12 0.11  0.12 27
Cyprus 0.53 0.71  0.61 24 Cyprus 0.06 0.06 0.06 18
Lesbos 0.38 046 042 24 Lesbos 0.19 026 0.22 23
Laconia 0.12 0.11  0.12 27 Laconia 0.00 0.00 0.00 24
Macedonia 0.24 0.15 0.18 27  Macedonia 0.06 0.05 0.05 20
Asia Minor 0.00 0.00 0.00 18  Asia Minor 0.00 0.00 0.00 22
Naxos 0.25 0.29 0.27 24 Naxos 0.06 0.11  0.07 19
Pontus 0.57 0.68 0.62 19  Pontus 0.25 0.20 0.22 30
Rhodes 0.21 0.18 0.20 22 Rhodes 0.20 0.27 0.23 22
Skyros 0.52 0.50 0.51 30  Skyros 0.09 0.08  0.08 25
accuracy 0.25 575 accuracy 0.11 575
macro avg 0.23 0.25 0.23 575 macro avg 0.12 0.11  0.11 575
weighted avg 0.24 025 0.23 575 weighted avg 0.12 0.11 0.11 575

Table 15: Location classification with KNN using di-

alectal data

malized data
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Model precision recall f1-score support Model precision recall fl1-score support

Epirus 0.07 0.04 0.05 23 Epirus 0.06 0.09 0.07 23
Aetolia 0.33 071 045 24 Aetolia 0.07 0.04 0.05 24
Amorgos 0.08 0.14 0.10 22 Amorgos 0.31 0.14 0.19 29
Eastern Thrace 0.15 021 0.17 24 Eastern Thrace 0.15 0.14 0.14 22
Arcadia 0.18 0.16 0.17 31 Arcadia 0.04 0.04 0.04 28
Achaea 0.48 038 042 32 Achaea 0.30 0.22 0.26 27
Ionian Islands 0.24 022 0.23 23 Ionian Islands 0.24 030 0.27 30
Euboea 0.00 0.00 0.00 20  Euboea 0.11 0.12 0.12 24
Thesprotia 0.13 0.14 0.13 22  Thesprotia 0.18 0.17 0.17 24
Thrace 0.43 0.24 0.31 25  Thrace 0.10 0.06  0.08 31
Ioannina 0.10 0.07 0.08 29  Ioannina 0.12 0.06  0.08 32
Karpathos 0.58 025 0.35 28 Karpathos 0.15 0.12 0.14 24
Corfu 0.21 022 0.21 27  Corfu 0.07 0.04 0.05 27
Crete 0.33 0.17 0.22 30 Crete 0.00 0.00 0.00 27
Cyprus 0.55 0.88  0.68 24 Cyprus 0.03 0.06 0.04 18
Lesbos 0.43 0.62 0.51 24 Lesbos 0.35 035 0.35 23
Laconia 0.09 0.07 0.08 27 Laconia 0.00 0.00 0.00 24
Macedonia 0.11 0.04 0.06 27  Macedonia 0.06 0.10 0.07 20
Asia Minor 0.00 0.00 0.00 18  Asia Minor 0.03 0.05 0.04 22
Naxos 0.35 0.38 0.36 24 Naxos 0.05 0.05 0.05 19
Pontus 0.40 0.74 0.52 19  Pontus 0.27 040 0.32 30
Rhodes 0.19 0.23 0.21 22 Rhodes 0.17 032 0.22 22
Skyros 0.43 0.67 0.53 30  Skyros 0.12 0.16 0.14 25
accuracy 0.29 575 accuracy 0.13 575
macro avg 0.25 028 0.25 575 macro avg 0.13 0.13 0.13 575

weighted avg 0.26 0.29 0.26 575 weighted avg 0.13 0.13 0.13 575

Table 17: Location classification with Random Forest Table 18: Location classification with Random Forest
using dialectal data using normalized data
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Model lat MAE lon MAE lat MSE lon MSE

ElasticNet 1.37 2.77 2.94 14.31
K Nearest Neighbors 1.47 3.13 3.34 16.65
Linear Regression 1.38 2.80 3.00 14.70
Random Forest 1.43 2.82 3.16 14.63
Extremely Randomized Trees 1.43 2.84 3.15 14.68

Table 19: Geolocation regression using dialectal data

Model lat MAE lon MAE lat MSE lon MSE
ElasticNet 1.51 2.98 3.40 17.68
K Nearest Neighbors 1.55 2.96 3.57 17.47
Linear Regression 1.54 3.08 3.57 18.44
Random Forest 1.51 2.90 342 17.18
Extremely Randomized Trees 1.52 2.92 3.47 17.40
GreekBERT 1.35 1.83 2.76 5.57

Table 20: Geolocation regression using normalized data

I GreekBERT Fine-Tuning
Hyperparameters

We add a 30% dropout and a single linear layer
as a regressor on top of the Greek BERT model
and train it on 80% of out data, keeping 10% as a
validation set for early stopping after 2 epochs of
non-improvement, for a maximum of 15 epochs.
We then test it on the remaining 10% of our data.
We use mean squared error as the loss function,
AdamW as the optimizer, 2 x 107> as the learning
rate and a batch size of 32.
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