HG-InsightLog: Context Priortization and Reduction for Question
Answering with Non-Natural Language Construct Log Data

Supriya Bajpai® Athira Gopal

Chandrakant Harjpal

Niraj Kumar

Fujitsu Research India, Bengaluru, India
supriya.bajpai@fujitsu.com, athira.gopal@fujitsu.com,
chandrakant.harjpal@fujitsu.com, niraj.s.kumar@fujitsu.com

Abstract

Modern IT systems generate vast amounts of
log data, which pose challenges for Large Lan-
guage Models (LLMs) due to their large size,
irrelevant entries, and non-Natural Language
(non-NL) construct (e.g., domain-specific jar-
gon, error codes, file paths, and abbreviations).
Traditional methods like Retrieval-Augmented
Generation (RAG) and GraphRAG fail to pre-
serve temporal sequences, handle non-NL for
context and entities extraction, and dynamically
prioritize query-relevant context. To address
these limitations, we propose HG-InsightLog, a
novel framework that constructs a multi-entity
temporal hypergraph representing log attribute-
value pair as nodes and connecting them with
hyperedges, capturing critical connections in
the data. HG-InsightLog introduces a multi-
step query personalization mechanism enhanc-
ing the Personalized PageRank algorithm to
rank hyperedges based on query relevance and
contextual centrality to priortize critical connec-
tions. Top ranked hyperedges are extracted and
converted back into log formats preserving tem-
poral order and reducing context. Experimental
results across multiple datasets demonstrate its
superiority over existing methods, enhancing
factual, causal, and analytical reasoning. Our
approach enables smaller LLMs like LLaMA-
8B to perform effective log-based QA. Being
model-agnostic and training-free, it scales with
evolving open-source LLMs without relying on
proprietary systems.

1 Introduction

Log files are crucial for monitoring, diagnostics,
and root cause analysis (RCA) in IT systems, cap-
turing events, operations, and errors (He et al.,
2022). However, their sheer volume—sometimes
reaching up to 50 GB per hour—makes man-
ual analysis overwhelming and renders traditional
machine learning methods ineffective for effi-
cient question answering (QA) (Chen et al., 2024;

*Corresponding author: supriya.bajpai @fujitsu.com

Ahmed et al., 2023).

LLMs like GPT-3.5, GPT-4 (Achiam et al., 2023),
and Llama (Touvron et al., 2023) excel in QA tasks
with Natural Language (NL) data (Lewis et al.,
2020; Erkan and Radev, 2004; Mihalcea and Tarau,
2004) but face two major challenges (long tem-
poral context (see Table 7) and non-NL construct
data) when applied to complex log analysis QA.
For example, consider the query: Given journal
logs having a software error (e.g., SWERR), ex-
plain it’s root cause.

To find the root cause, LLMs need to process all pre-
ceding logs sequentially, requiring a long-context
capability while preserving the sequence of events
over time (Ahmed et al., 2023) (A brief excerpt of
the logs is shown in Figure 4, and a case study il-
lustrating the problem in more detail is provided in
Table 8, both in the Appendix.) Additionally, they
must recognize the relationships between various
logs or errors, which necessitates structuring the
data as a graph to correctly capture the origin of
the error. However, LLMs encounter significant
challenges when structuring log data as a graph.
While they excel at extracting entities and rela-
tionships from NL data due to their training on
vast unstructured textual datasets with clear linguis-
tic structures, grammar, and context, they strug-
gle with log data, which is semi-structured hav-
ing non-NL construct. Logs contain numeric val-
ues, timestamps, error, device, and software codes,
and domain-specific jargon, making relationships
implicit rather than explicit (see Figure 4). Ad-
ditionally, LLLMs are not trained on system logs
or execution traces, their ability to generalize in
this domain is limited (Chen et al., 2023). Several
LLM-based approaches exist, but they face signif-
icant limitations for QA with long context non-
NL construct data. Retrieval-Augmented Genera-
tion (RAG) (Lewis et al., 2020) and Long-context
RAG (LC-RAG) (Jin et al., 2024) loose context
as well as temporal sequences due to chunking,

23679

Findings of the Association for Computational Linguistics: ACL 2025, pages 23679-23695
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Query: Is there a SWERR) in the
log file? If yes, find it's root cause...

Log line 1
Log line 2

Log line 3 RAG Method

Port
Log line 5
Low memory
Log line 7
SWERR Error: Invalid port LLM
Log line 8
Log line 9
Log line 10

Missed entities,
unclear
relationships and
lost temporal
sequence

Graph-RAG . incomplete
lextracted entit
Method 5

—_— e
Ranked '
o (o hyperedges *
.
Our Method

o

No answer:
LLM Context length x
exceeded

Low memory

Logine 7
Retrieved chunk | SWERR Errr: nvald port Answer: Low
—> LM —
memory

5
iapot ——> LM —> Answer: Log line 3 x

Answer: Port
Low memory LM ——> unconnected /

Figure 1: HG-InsightLog QA Case Study: This figure presents a complex log analysis-type question from
Journal log dataset, used to compare our approach against the Baseline LLM, RAG and Graph-RAG methods. It
demonstrates the accurate prediction of our method in identifying "Port unconnected" as the root cause of SWERR.

which is essential for task such as RCA. They also
perform poorly on global queries where vital in-
formation is spread across large number of mul-
tiple chunks. GraphRAG (Edge et al., 2024) and
HOLMES (Panda et al., 2024) are designed for
global and multihop answering respectively, but are
resource-intensive, requiring all data to be passed
to the LLM for entity and relationship extraction,
increasing token usage and processing time. It also
demands extensive prompt engineering to convert
data into a graph. Additionally, GraphRAG strug-
gles with non-NL data, as NL-trained LLMs fail
to extract accurate entities and relationships, lead-
ing to incomplete or incorrect knowledge graphs.
It also lacks the ability to preserve temporal se-
quences, which is critical for tasks like RCA. Other
approaches, such as LexRank (Erkan and Radev,
2004) and Personalized PageRank (PPR) (Brin,
1998) identifies query focused central sentences
but fails with complex relationships and temporal
sequences in logs. Both depend on graph construc-
tion, which is challenging due to unclear event
interactions (entities-relationships) in log data.

To overcome these challenges, we introduce HG-
InsightLog, a novel framework for QA with semi-
structured non-NL construct log data that trans-
forms log data into a multi-entity hypergraph rep-
resentation, encoding all the log attribute-value
pairs as nodes and connecting them with hy-
peredges to capture the multi-dimensional com-
plex relationships. Unlike traditional GraphRAG,
HG-InsightLog addresses key challenges effec-
tively. Additionally, the framework prioritizes

query-specific context through an enhanced multi-
step Personalized PageRank algorithm which en-
hances flexibility and adaptability of the algorithm.
The algorithm dynamically ranks hyperedges based
on multi-step query relevance and structural central-
ity to focus on critical information. HG-InsightLog
also preserves temporal sequence of critical hy-
peredges ensuring causality is retained, which is
critical for RCA. Additionally, we demonstrate
these improvements using the smaller Llama3.1
8B model, showcasing its efficiency in complex
reasoning and QA tasks without larger LLMs. A
case study on the Journal log dataset is provided in
Figure 1 (see Table 8 and Figure 4 in Appendix for
details). To the best of our knowledge, our work
is the first to construct a hyper-KG for non-natural
constructs and semi-structured log data and utilize
it for global and reasoning-based QA tasks.

The main contributions of this paper are as follows:

e Scalable QA framework for non-NL con-
struct data: A novel QA framework for log
data with non-NL constructs, employing a
novel approach for constructing multi-entity
temporal hypergraphs. It handles large size
log files efficiently, making it suitable for real-
world log data analysis.

* Temporal sequence preservation: HG-
InsightLog preserves the temporal order of
the hyperedges, essential for RCA

* Multi-step query-specific context prioritiza-
tion: A novel mechanism to dynamically rank
and priortize the most critical connections in

23680

the data by enhancing Personalized PageRank
algorithm with multi-step query personaliza-
tion.

By leveraging the efficiency and capabilities of
Llama3.1 8B, this work sets a benchmark for
resource-efficient, accurate, and query-adaptive log
data analysis.

2 Related Work

LLMs for log analysis - LLMs have been ex-
plored for log analysis, particularly for parsing and
anomaly detection. LILAC (Jiang et al., 2024)
applies LLMs for log parsing, converting unstruc-
tured logs into structured formats. LogBERT (Guo
et al., 2021) employs self-supervised learning to
predict masked keys in normal log sequences, aid-
ing anomaly detection. RCA-focused methods
Chen et al. (Chen et al., 2023) use LLMs to summa-
rize cloud incidents and predict root causes, though
they rely on incident-level data rather than raw logs.
Retrieval-Augmented Generation (RAG) and
Limitations: To answer questions from log files,
LLMs must retrieve information from log files,
address global questions on large log files be-
yond their context length and maintain temporal
sequence. RAG (Lewis et al., 2020) and Long-
context RAG (Jin et al., 2024) allows LLMs to
fetch and use external information by segmenting
it into chunks, presenting only relevant ones based
on the query. However, this disrupts the global
context and temporal structure crucial in log files.
Graph-Based Methods and Temporal Con-
straints: Graph-RAG (Edge et al.,, 2024),
HOLMES (Panda et al., 2024), HippoRAG (Gutier-
rez et al., 2024) and Arigraph (Anokhin et al.,
2024), LightRAG (Guo et al., 2024) are graph-
based methods that aim to solve the challenges
of RAG. Graph-RAG addresses global questions
by combining community-level summaries, lever-
aging the LLM’s ability to extract an entity knowl-
edge graph. However, iterating over community
summaries for global question answering further
amplifies the resource demands. HOLMES, on
the other hand, is designed for multi-hop question
answering, utilizing a context-aware knowledge
graph distilled to contain only query-relevant in-
formation. HippoRAG leverages a graph-based
memory structure where stored knowledge is orga-
nized as a dynamically growing graph, and retrieval
is enhanced using Personalized PageRank to prior-
itize relevant context for LLMs. In all the above

graph-based approaches constructing examples for
entities and relationship extraction is challenging
for log data and requiring extensive prompt engi-
neering and often resulting in the omission of infor-
mation not explicitly covered in the prompts. Fur-
thermore, all these approaches except LightRAG
are resource-intensive, as it necessitates passing all
data to the LLM for entity and relationship extrac-
tion, leading to increased token usage and process-
ing time. LightRAG, GraphRAG, HippoRAG and
HOLMES does not preserve the temporal context,
which is crucial for causality analysis.

Extractive Summarization and Ranking Algo-
rithms: Graph-based ranking models like PageR-
ank(Brin and Page, 1998), LexRank (Erkan and
Radev, 2004), and TextRank (Erkan and Radev,
2004) are effective for summarization but lack
query-specific adaptability. They rely on global
textual similarities rather than dynamically prior-
itizing context based on the query, making them
unsuitable for RCA tasks requiring causal and tem-
poral consistency.

Gap in Existing Work: Despite these advances,
no existing method fully addresses the challenge of
complex log-based QA while preserving global
context, prioritizing query-relevant information,
and maintaining temporal integrity. Our pro-
posed approach bridges this gap by leveraging a
hypergraph-based structure to dynamically rank
and retrieve log segments, enabling efficient,
training-free, zero-shot RCA.

3 Methodology

The key idea of our method is to create a hyper-
graph representation of the entire large log file and
rank the hyperedges based on the user query and
node centrality. We then extract the top-p hyper-
edges while preserving the temporal sequence and
convert them back into the original log structure.
This approach reduces the context size while pre-
serving the temporal sequence of the logs and pri-
oritizing critical information. Figure 2 provides an
overview of our approach. We begin with a brief
overview of the problem in Section 3.1, followed
by a detailed explanation of our method in Sections
3.2-3.6.

3.1 Problem Statement

In this work, we address the challenge of question
answering (QA) with large log files in a zero-shot
setting. This approach assumes no prior domain-

23681

specific labeled data, making the problem both
complex and practically valuable. Furthermore,
we operate in a training-free environment, relying
on the reasoning abilities of LLMs. The goal is to
extract an answer A, to a NL query ¢ from a given
log file L where A, requires deducing the answer
from a vast, non-NL log file.

3.2 Proposed Method (HG-InsightLog)

The overview of HG-InsightLog is provided in Fig-
ure 2. First, we construct a multi-entity relationship
hypergraph from the log data, representing each log
attribute as a distinct node and connecting all nodes
of alog entry via a hyperedge. Nodes can be shared
across multiple hyperedges. Next, the hyperedges
are ranked for query and context based prioriti-
zation using a multi-step personalization mecha-
nism that dynamically integrates importance vec-
tors from two subsets of seed nodes, weighted by a
tunable parameter for flexibility. Finally, we reduce
context size by selecting the top-k hyperedges and
converting them back into the original log format
while preserving temporal order. This serves as
context for LLM-based answer generation. The
methodology consists of: (i) Hypergraph Construc-
tion, (ii) Seed Node Extraction, (iii) Hyperedge
Ranking, and (iv) Ranked Context & Prompt Cre-
ation for LLM.

3.3 Hypergraph Construction

LLMs often struggle to extract meaningful entities
and relationships from complex, non-natural lan-
guage (non-NL) log data because they are primar-
ily built for processing natural language. Log files
usually don’t follow the rules of natural language
— they lack grammar, structure, clear meanings,
named entities, and obvious relationships. Instead,
they often include vague or unclear connections
between elements.

To overcome this limitation, we propose a method
that constructs a multi-dimensional hypergraph
specifically designed for log data. Our approach
ensures that no entity or relationship is missed by
considering every individual piece of information
as a node/entity in log entries—even if they span
multiple lines. All the nodes/entities of a log entry
is connected by a hyperedge.

We illustrate this with two example log entries from
the journal dataset (provided in Figure 4):

Oct 30 00:35:36 interface:*xxsystemd[1]
Starting Journal Socket

Oct 30 00:35:36 interface:**xxsystemd[329]

systemd-journald. socket: Failed to
connect . . .

From these log entries, we extract structured
pieces of information such as date, time, compo-
nent/interface, and message. Each piece is treated
as an attribute-value pair, which becomes a node
in the hypergraph.

For example, from the first log line we extract:

* Date: Oct 30
e Time: 00:35:36
e Interface: **xxx*xsystemd[1]

* Message: Starting Journal Socket

Each of these is a node/entity. The combination of
nodes extracted from a single log entry becomes a
hyperedge. So, the first log line forms the hyper-

edge:
(Date: Oct 30, Time: 00:35:36,
Interface: *xx*xxsystemd[1], Message:

Starting Journal Socket)
The second log line forms another hyperedge:

(Date: Oct 30, Time: 00:35:36,
Interface: **xxx*xsystemd[329], Message:
systemd-journald. socket: Failed to
connect .. .)

Here, the dimensions (also called attributes) in-
clude Date, Time, Interface/Component, and
Message. Each node is attribute-value pair, and
each log entry connecting the nodes, forms a hy-
peredge. For more details see Appendix A.4 and
Figure 5.

Let V = {vy,vs,...,vn} be the set of all unique
nodes, where each node represents a distinct
attribute-value pair extracted from the whole log
file. These nodes encapsulate structured informa-
tion such as timestamps, components, and message
content. The total number of unique nodes is de-
noted by N = |V|. For a log file containing 7'
entries, each log entry ¢;, where i € {1,2,...,T},
is transformed into a hyperedge e; C V' that con-
nects all attribute-value pairs present in that entry.
The complete set of hyperedges is represented as
E = {ej,e9,...,er}, where each hyperedge cor-
responds to one log entry. The resulting hypergraph
is denoted by H = (V, E), where V is the set of
nodes and F is the set of hyperedges. Particular
node may appear in multiple hyperedges, reflect-
ing shared nodes across different log entries. The
size of each hyperedge |e;| corresponds to the num-
ber of attributes present in the associated log entry.

23682

Nodes &
Hyperedges
Creation

Log file >

Multi-dimensional
Hypergraph
Creation

REDUCED &
ENHANCED
CONTEXT

All Unique
Nodes

§

Seed

Query Nodes

Nodes Seed Node
Extraction

Query

Hyperedges
Ranking

Convert the
hyperedges back to ——»{ LLM
logs structure Top-p

Extract Top-p

by similarity scores and
select top-k nodes as seed

Rank all the éique nodes

Rank all the nodes and
hyperedges by using multi-

Ranked logs
Hyperedges l
without disturbing

the hyperedge

sequence Answer

nodes stage personalized page

rank algorithm

Figure 2: Model Overview: The figure provides an overview of the HG-InsightLog methodology. (i) Each attribute
of a log is represented as a dimension and each attribute (e.g. *Date’) and its corresponding value (e.g. *Oct 30°) is
made a node and all the nodes in a log is connected by a hyperedge. Example node: "Date: Oct 30’ and hyperedge:
(’Date: Oct 30’, *Time: 00:35:36’, ’interface: ******gystemd[1]’, 'message: Starting Journal Socket’) (ii) The above
process is repeated for all the logs in the file to create a big multi-dimensional hypergraph (iii) The hypergraphs
are ranked with multi-step PPR algorithm utilizing seed nodes and hypergraph structure. (iv) top-p hyperedges
are selected and converted back to original log format. (v) These logs are send to LLM as improved and reduced

context for answer generation.

This formulation ensures that the hypergraph com-
prehensively captures the structural and semantic
relationships inherent in the log data.

3.4 Extracting seed nodes from the query

Seed nodes, represented by V,, where
Vo C V, are extracted using the set of
unique nodes V' and query nodes V. Top-n
nodes are extracted using semantic similar-
ity. This is done by using a pre-trained model
(sentence-transformers/all-mpnet-base-v2)
to encode both the query and the set of unique
nodes into dense vector embeddings. These
embeddings represent the semantic meaning of the
text. Once the query and unique nodes descriptions
are encoded, cosine similarity is computed
between the query vector and each node vector to
measure how closely related they are in terms of
meaning. The function then sorts the nodes based
on their similarity scores in descending order. The
top-n most similar nodes (V;) are retrieved.

3.5 Multi-step Query and centrality
dependent hyperedge ranking

We extend the existing Personalized PageRank
(PPR) (Brin, 1998; Haveliwala, 2002) by introduc-
ing a multi-step personalization mechanism that dy-
namically integrates importance vectors from two
subsets of seed nodes, weighted by a tunable pa-
rameter. Unlike standard PPR, which typically uses
a single personalized vector, this method leverages
similarity-based seed node selection to dynamically
integrate top k and next top (n-k) similar nodes, en-

hancing flexibility and adaptability. This extended
PPR is used to rank the nodes which is then used
to rank hyperedges.
The multi-step personalized PageRank (PPR) for
nodes within the hypergraph is computed as fol-
lows:

P(t) = Oézzlp(t_l) + (1 - a>Pvect0r7 (D

rank — rank
where, ngk € RV X! represents the multi-step Per-
sonalized PageRank vector at iteration ¢. It denotes
the probability distribution over the nodes after ¢
steps of the random walk. The term Pyecior € RYV*!
is the personalization vector, which remains fixed
throughout the computation and biases the ran-
dom walk towards specific nodes. The iterative
update combines two components: a random walk
weighted by o € [0,1] and a teleportation step
weighted by 1 — «, ensuring that the algorithm
converges to a steady-state probability distribution
influenced by both the graph structure and the per-
sonalization vector. A[i, j] is the transition proba-
bility matrix, which represents the probability of
transitioning from node v; to node v;, accounting
for their co-occurrence in the hypergraph.

The node-specific personalization Plyecior 1S de-
signed to reflect the personalization preferences of
the nodes, and is refined to incorporate multi-steps
of seed nodes.

Pvector - /BPtOp—k + (1 - /6>Pnext—top7 (2)

where, 3Pop-k and (1 —) Pyext-top are the per-
sonalization vectors derived from the top-k seed

23683

nodes, and the next n — k seed nodes such that,
Popx € RV*1 and Prext-top € RN*1 3 ¢ [0,1]
serves as a tunable parameter that modulates the
relative influence of top-k seed nodes personaliza-
tion and next-top n-k seed nodes personalization.
The u'" node of vector Piop-k can be expressed as:

1/k, ifueV,
Ptop—k(u) = { / o)

0, otherwise

where V, . C V, is the set of top-k seed nodes.

0, otherwise

ifu € Vq,n—k

Pnext-top (u) = { 4

where V,, ,_, C V, is the set of the next n — &
seed nodes. The adjacency matrix A € RV*N
for the hypergraph H is constructed, where, each
entry Ali, j] represents the weighted relationship
between node v; and node v; based on their co-
occurrence in the hyperedges. Specifically, two
nodes v; and v; are adjacent if they both belong
to at least one hyperedge e, € FE. The weight
of Ali, 7] is defined as the sum of co-occurrences
between nodes v; and v; across all hyperedges,
normalized by the size of the hyperedge:

.. 0(v; € eg) - 0(v; € e
A[Z,]] _ Z (?) (J)
. x|

LEE
where 0(v; € eg) is 1 if node v; is in hyperedge ey,
otherwise it is 0, and |ey| is the size (cardinality) of
hyperedge ej.. For the diagonal entries of the ma-
trix, representing a node’s self-contribution across
all hyperedges, we define:

Z 5(@2 S €k)‘

Ali, i) = ~
ekEE k

The adjacency matrix A is sparse, as nodes are only
connected if they co-occur in at least one hyper-
edge. A is normalized to create transition probabil-
ity matrix A[i, j] defined as:
Ar: - A i?]
A[Zvj]: n [A]/{?’
Zk:l [Z7]
which represents the probability of transitioning
from node v; to node v;, accounting for their co-
occurrence in the hypergraph.
The Pk is estimated by iterating until conver-
gence is achieved, as determined by the condition:
t t—1
1P = P | < €. 5)

ank ~ * rank

Top-k seed nodes ®uo

Next-top n-k seed nodes

o ®us
o
o

o | @us L 1%

@iy i¢

Figure 3: The figure illustrates a multi-entity hyper-
graph where nodes, labeled as "u", are connected by
hyperedges, denoted as "e". Top-k and Next-top n-k
seed nodes are shown in blue and green respectively.

where € is a predefined threshold for convergence,
and || - || denotes the norm.

Hyperedge Weight Calculation and Ranking:
The final step computes the hyperedge weights
w(e;) based on the multi-step Personalized PageR-
ank scores of the constituent nodes. Each hyper-
edge weight is the sum of the weights of its nodes
U € e;, expressed as:

wle:) = Y Pank(u), (6)

uee;

where Pk (u) represents the multi-step PPR of
node u, which captures the node’s significance
within the local structure of the hypergraph. Fi-
nally, the top-p hyperedges are extracted out of T’
hyperedges and used for context creation.

3.6 Creating Prompt with Ranked Context for
LLM

To create the prompt for the LLM, the top-p hyper-
edges are extracted while preserving the original
sequence. These hyperedges are then converted
back into the original log format, as LLMs strug-
gle with structured lists or tuples. This process
ensures optimal information retrieval by retaining
only the critical logs, removing irrelevant ones, and
preserving the temporal sequence.

4 Experimental Setup

4.1 Evaluation Details

Datasets: We conduct QA experiments on two
public log datasets: OpenSSH dataset (Zhu et al.,
2023), Zookeeper dataset (Zhu et al., 2023) and
one private Journal log dataset. For more details,
refer to Appendix A.1.

QA Dataset Generation: Due to the lack of a

23684

Table 1: Performance comparison between Our method (HG-InsightLog) with other State-of-the-art methods.

Pperr, Reprr and Fpgpryr represent precision, Recall

and F1-score respectively

Model Question Category | RAG (Llama3.1-8B) | LC-RAG (Llama3.1-8B) | HOLMES (GPT-40) | GraphRAG (GPT-40) | Our (Llama3.1-8B) |
| Peerr Rperr Feerr | Peerr Rpprr Fperr | Peerr Rperr Feerr | Peerr Rpeprr Fperr | Peerr Rperr Faegr |
Zookeeper | Fact-based 0.7168 0.8443 0.7733 | 0.6906 0.8230 0.7490 | 0.3978 0.4487 0.4217 | 0.4714 03801 0.4209 | 0.8873 0.9294 0.9072
Analytical Reasoning | 0.7961 0.8466 0.8185 | 0.8165 0.8453 0.8290 | 0.3501 0.3246 0.3369 | 0.3854 0.3167 0.3477 | 0.8764 0.8506 0.8628
Causal Reasoning 0.7518 0.8187 0.7813 | 0.7712 0.8271 0.7982 | 0.3764 0.4035 0.3895 | 0.3369 0.3018 0.3183 | 0.8653 0.8415 0.8527
Decision-based 0.6996 0.8461 0.7624 | 0.7076 ~ 0.8482 0.7715 | 0.4521 0.4604 0.4562 | 0.3645 0.3243 0.3432 | 0.8434 0.8817 0.8613
Summarization 0.7147 0.8274 0.7656 | 0.7091 0.8532 0.7745 | 0.3008 0.3377 0.3182 | 0.3340 0.3091 0.3211 | 0.8252 0.8505 0.8370
Temporal Reasoning | 0.7188 0.8714 0.7852 | 0.7408 0.8586 0.7930 | 0.3219 0.3334 03275 | 0.3517 0.3324 0.3418 | 0.8255 0.8889 0.8555
Anomaly Detection 0.7297 0.8619 0.7876 | 0.7422 0.8544 0.7923 | 04207 03195 03632 | 0.3922 0.3471 0.3683 | 0.8225 0.8809 0.8503
OpenSSH | Fact-based 0.6666 0.7835 0.7184 | 0.6532 0.8121 0.7240 | 0.3821 0.4253 0.4025 | 0.4499 0.3689 0.4054 | 0.8099 0.8547 0.8332
Analytical Reasoning | 0.8033 0.8105 0.8033 | 0.8146 0.8253 0.8199 | 0.3552 0.3355 0.3451 | 0.3738 0.3126 0.3405 | 0.8731 0.8572 0.8643
Causal Reasoning 0.7291 0.8220 0.7702 | 0.7462 0.8331 0.7873 | 0.3658 0.3902 03776 | 0.3461 0.3172 0.3310 | 0.8683 0.8550 0.8729
Decision-based 0.6879 0.7993 0.7372 | 0.6961 0.8224 0.7540 | 04673 04751 04712 | 03741 0.3462 0.3596 | 0.8579 0.8823 0.8693
Summarization 0.7060 0.8084 0.7530 | 0.6899 0.8486 0.7611 | 0.2932 0.3254 0.3085 | 0.3212 0.2932 0.3066 | 0.8058 0.8637 0.8331
Temporal Reasoning | 0.7818 0.8216 0.7960 | 0.7748 0.8337 0.8032 | 0.3353 0.3423 0.3388 | 0.3643 0.3452 0.3545 | 0.8417 0.8625 0.8510
Anomaly Detection 0.6911 0.7965 0.7376 | 0.7061 0.8249 0.7609 | 0.4118 03152 03571 | 0.3822 0.3354 0.3573 | 0.8504 0.8671 0.8577

Table 2: Performance comparison of our method using GPT-40 and Mistral-7B, with RAG (GPT-40) as a baseline.

‘ extbfModel ‘ extbfQuestion Category ‘ RAG (GPT-40)] Our (GPT-40) Our (Mistral-7B) ‘
| Peerr BRperr Fperr | PBerr Rperr Feerr | Peerr REBerrT FBERT |

Zookeeper Fact-based 0.9009 0.9234 09113 0.9249 0.9498 0.9375 0.9016 0.9379 0.9190

Analytical Reasoning 0.8733 0.8493 0.8608 0.8753 0.8462 0.8607 0.8709 0.8543 0.8620

Causal Reasoning 0.8723 0.8465 0.8589 0.8812 0.8529 0.8676 0.8846 0.8526 0.8679

Decision-based 0.8456 0.8943 0.8686 0.8624 0.9121 0.8871 0.8601 0.8901 0.8738

Summarization 0.8735 0.8270 0.8493 0.8798 0.8367 0.8579 0.8714 0.8229 0.8460

Temporal Reasoning 0.8285 0.8840 0.8549 0.8357 0.9210 0.8772 0.8435 0.8976 0.8694

Anomaly Detection 0.8210 0.8825 0.8502 0.8432 0.9086 0.8753 0.8339 0.8914 0.8613

OpenSSH Fact-based 0.8456 0.8487 0.8457 0.8447 0.8728 0.8578 0.8304 0.8607 0.8446

Analytical Reasoning 0.8733 0.8429 0.8575 0.8818 0.8574 0.8690 0.8478 0.8592 0.8530

Causal Reasoning 0.8591 0.8401 0.8492 0.8626 0.8549 0.8584 0.8301 0.8573 0.8431

Decision-based 0.8631 0.8869 0.8742 0.8752 0.8834 0.8784 0.8351 0.8734 0.8534

Summarization 0.8810 0.8077 0.8422 0.9055 0.8298 0.8656 0.8774 0.8552 0.8657

Temporal Reasoning 0.8297 0.8577 0.8427 0.8360 0.8634 0.8489 0.8160 0.8550 0.8347

Anomaly Detection 0.8411 0.8629 0.8508 0.8772 0.8760 0.8759 0.8316 0.8649 0.8473

Table 3: Performance comparison of RAG, LC-RAG,
and our method with Llama3.1-8B and GPT-40 as LLM
on three datasets using complex log analysis questions
and human evaluation(see Appendix A.3).

Methods Journal OpenSSH Zookeeper
RAG (Llama) 0.7024 0.68 0.475
LC-RAG (Llama) 0.7362 0.7481 0.5123
Our (Llama) 0.9848 0.9771 0.95
RAG (GPT-40) 0.7532 0.7856 0.6328
Our (GPT-40) 0.9908 0.9898 0.9811

publicly available question-answering benchmark
for log data, we generated 8427 QA pairs using
GPT-40 across three datasets: OpenSSH (7317
pairs), Zookeeper (1,080 pairs), and Journal (30
pairs). Unlike (Chen et al., 2024), which summa-
rizes cloud incidents, our approach processes raw
logs directly. Unlike (Edge et al., 2024), which
focuses on multi-hop reasoning in graph-based
summarization, our method ensures temporal, rela-
tional, and causal consistency for RCA.

QA Categorization: The questions were catego-
rized in two broad categories: (i) Local chunk de-
pendent (ii) Complex log analysis questions (which
require a comprehensive view (global) of the data.
The chunk-dependent QA pairs are categorized in
seven categories (i) factual-based (ii) Analytical

Table 4: Comparison of average input tokens to LLM
and time (sec) required for single query.

Method RAG LC-RAG Graph-RAG HOLMES Ours
55.8K 112K 2.51IM 251IM 11.2K
165.0 952 4437.5 39425 756

Tokens

Time

Reasoning (iii) Causal Reasoning (iv) Decision-
based (v) Summarization (vi) Temporal Reasoning
(vii) Anomaly Detection. Factual, decision-based,
temporal, and anomaly detection questions have
single-word answers, while others have up to 30
words. Complex log questions allow up to 50-word
answers with 50-100 word justifications. See Ap-
pendix for details.

Baselines & Metrics: We compare against (i) RAG
(i) LC-RAG (iii) HOLMES (iv) Graph-RAG, and
three LLLMs: (i) Llama3.1-8B (ii) Mistral-7B (iii)
GPT-40. Accuracy is measured using (Pggrr),
Recall (Rggrr), F1-Score (Fggrr) (Zhang et al.,
2019), and human evaluation (based on relevance,
clarity, accuracy, completeness, depth, and concise-
ness) (see Appendix A.3).

4.2 Implementation Details

All experiments were conducted on a computing
system with the following specifications: In-

23685

Table 5: Ablation Study: F1 Scores (Fpgrr) for different question categories on the Zookeeper dataset using

Our(Llama3.1-8B). v = present, X = ablated.

Configuration
(Graph / Rank / Multi-step)

Fact-based Analytical Causal Decision Summarization Temporal Anomaly

XXX 0.7710 0.8052
X1/ 1/ 0.8040 0.8493
VIVIX 0.8811 0.8447
Iiviv 0.9072 0.8628

0.7631
0.8164
0.8485
0.8527

0.7736 0.7468 0.7237 0.7781
0.8228 0.7988 0.8137 0.8208
0.8539 0.8265 0.8449 0.8441
0.8613 0.8370 0.8555 0.8503

Table 6: Sensitivity Analysis: F1 Scores (Fpggrr) reported by varying seed nodes (Top-k and Next-top) on the

Zookeeper dataset using Our(Llama3.1-8B).

Seed nodes (Top-k / Next-top) Fact-based Analytical Causal Decision Summarization Temporal Anomaly
Top-20 / Next-0 0.8720 0.8557 0.8456 0.8522 0.8370 0.8521 0.8495
Top-15 / Next-15 0.8870 0.8597 0.8321 0.8561 0.8418 0.8504 0.8540
Top-10 / Next-15 0.8970 0.8559 0.8376 0.8572 0.8433 0.8522 0.8510
Top-5 / Next-0 0.8811 0.8447 0.8485 0.8539 0.8265 0.8449 0.8441
Top-5 / Next-15 0.9072 0.8628 0.8527 0.8613 0.8451 0.8555 0.8503
Top-5 / Next-25 0.9086 0.8620 0.8474 0.8553 0.8387 0.8572 0.8465
Top-5 / Next-35 0.9067 0.8621 0.8423 0.8532 0.8428 0.8591 0.8483

tel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz,
256GB RAM, Nvidia A30 GPU, Python 3.10,
and Ubuntu OS 22.04.3. The hyperparameters
used are: a = 0.85, B = 0.6, £k = 5, n = 20,
top-p = 200 hyperedges, and ¢ = 1075, with
initial P/=0(u) uniformly set to 1/N. The
OpenSSH and Zookeeper logs contain 638,947
and 74,273 entries, respectively. Logs were
split into chunks of 7' = 50,000 lines for
experiments, with all questions based on these
chunked files. The embedding model used is
sentence-transformers/all-mpnet-base-v2.
For Journal logs, full files were used, with
chunk sizes varying from 20,000 to 80,000
logs/lines. RAG baselines used 7' = 50,000
logs per file, chunked into 200-line segments.
LC-RAG, Graph-RAG, and HOLMES used 50-line
chunks. Retrievd top-5 chunks. RAG(GPT-40),
Our(GPT-40), and Our(Mistral) experiments were
conducted on 700-question subsets for Zookeeper
and OpenSSH.

S Results and Analysis

We evaluate HG-InsightLog’s performance across
key aspects of log-based QA: (1) Questioning an-
swering capability (a) w.r.t automatic metrics (b)
w.r.t human & semantic metrics (2) Performance
w.r.t. different levels of question complexity (3)
Input token count and time taken

Performance analysis and comparison: We as-

sess performance across diverse question types and
reasoning categories. Tables 1 and Table 2 com-
pare our method against baselines using Precision
(PBERT), Recall (RBERT)’ and F1 score (FBERT)-
HG-InsightLog consistently outperforms all base-
lines across question complexities, achieving sig-
nificant F1-score improvements. GraphRAG and
HOLMES perform poorly because they rely on
LLMs to extract entities and relationships for build-
ing a knowledge graph (KG). LLMs struggle to
accurately extract this information and construct
a complete and precise graph from non-NL (Non-
NL) data. Since the KG serves as the input for gen-
erating answers, any inaccuracies or missing infor-
mation in the graph prevent the LLMs from provid-
ing correct responses. Graph-RAG and HOLMES
were unable to identify entities or relationships
when using less advanced LLMs like Llama 3.1-
8B, due to hallucinations, often returning empty
lists, making graph construction impossible and ter-
minating further steps. Therefore, graph creation
was not possible with Llama 8B as LLM, so we
used GPT-40 as base LLM for Graph-RAG and
HOLMES experiments.

RAG and LC-RAG also show lower performance
compared to our method. For fact-based QA, HG-
InsightLog significantly improves F1 scores by
leveraging query-specific personalization and se-
mantic similarity, particularly for straightforward
factual queries. Decision-based QA benefits from

23686

its ability to maintain temporal order and incorpo-
rate key indicators, enabling precise log segment
extraction for decision-making. For causal and
temporal reasoning tasks, our hypergraph struc-
ture effectively preserves event relationships via
hyperedges, enhancing contextual understanding.
In summarization, HG-Insightlog prioritizes cru-
cial nodes and hyperedges while maintaining tem-
poral consistency, reducing context size without
losing key information.

To evaluate generalizability, we tested our
method using different LLMs (GPT-4o0, Llama,
and Mistral). There is a significant perfor-
mance gap observed between RAG(GPT-40), and
RAG(Llama8B), as GPT-4o, has strong reasoning
abilities, which can perform reasoning to arrive
at the correct answer, given the correct retrieved
chunks which may contain additional irrelevant
information. However, if the same retrieved in-
formation is given to an LLM with weaker rea-
soning skills, like Llama, it may fail to reason,
leading to incorrect or misleading results. This
is where the InsightL.og approach improves accu-
racy. Unlike standard RAG, InsightLog retrieves
information by establishing causal, temporal and
structural relationships beforehand. This allows
even models with limited reasoning capabilities,
like Llama, to correctly produce accurate responses.
As a result, the accuracy of Our(LLlama) becomes
comparable to Our(GPT-40), which is significantly
higher than RAG(Llama). Our approach demon-
strates how higher-quality structured context en-
ables a smaller model (LLaMA-8B) to compete
with or even surpass larger models like GPT-4o.
HG-InsightLog is a robust, flexible, and model-
agnostic framework that strengthens community-
driven models like LLaMA3.1-8B, allowing them
to handle complex tasks without depending on pro-
prietary solutions. As open-source LLMs continue
to advance, HG-InsightLog is designed to evolve
alongside them, ensuring long-term adaptability
and relevance.

Performance comparison on complex log analy-
sis questions: HG-InsightLog outperforms other
methods on complex log analysis tasks (Table 3)
by constructing a multi-entity hypergraph and ex-
tracting query-relevant logs. This approach enables
a global dataset view by linking attributes across
timesteps, capturing intricate relationships. The
multi-step personalization mechanism enhances
reasoning by dynamically prioritizing hyperedges
based on query relevance, ensuring retrieval of

only the most relevant information. The results
show substantial performance gains over RAG and
LC-RAG on human evaluation metrics (see Ap-
pendix A.3). P, R, and F-scores are excluded due
to long responses and their inability to assess rele-
vance, clarity, accuracy, completeness, depth, and
conciseness, which are crucial for evaluating com-
plex log analysis responses.

Input token count and time: In QA with LLMs
like GPT-4, irrelevant information raises costs,
while in models like Llama, it increases inference
time. Efficient data filtering enhances performance,
speed, and cost-effectiveness. Table 4 shows a
significant token count reduction compared to base-
lines.

Sensitivity and Ablation study: Table 5 presents
our ablation study results. Since the graph is in-
tegral to our ranking and PageRank algorithms,
therefore, ranking cannot function without it. We
conduct experiments under various best possible
settings: (i) No Graph & No Ranking: Embed each
line, perform a similarity search, extract one line,
and pass it to the LLM. (ii) No Graph with Rank-
ing: Embed each line, perform a similarity search,
extract the top 200 lines (ranked by their similar-
ity), and pass them to the LLM. (iii) Graph without
Multi-Step Ranking: Construct the graph, rank it
without the multi-step component, and extract 200
lines in temporal order. (iv) Full Method (Ours):
Includes all components.

Table 6 presents the results of the sensitivity anal-
ysis, which analyzes the impact of varying top-k
and next-top nodes.

6 Conclusion

We present HG-InsightLog, a novel hypergraph-
based framework for efficient LLM-driven QA
on large, non-natural log data. By constructing
a multi-entity hypergraph and leveraging an en-
hanced hyperedge ranking mechanism, our method
effectively reduces context size, preserves temporal
structure, and prioritizes query-relevant informa-
tion. Experimental results across multiple datasets
demonstrate superior performance over baselines
in factual, causal, and analytical reasoning tasks.
Our approach ensures scalable, training-free QA
while maintaining causal coherence, making it a
robust solution for log-based analysis. Future work
will explore integrating domain-specific retrieval
and adaptive fine-tuning to enhance performance
on a wide varieties of proprietary log datasets.

23687

Limitations

The limitations of our method are:

1. Dependence on LLM pretrained knowledge:
Our method relies on the pretrained knowledge
of the underlying LLM to interpret the provided
ranked log text using it’s internal knowledge. Fu-
ture work may lie in connecting private documen-
tation to the method or fine-tuning LLM to address
this limitations.

2. Scalability with very large continuous log
files: A limitation of our approach is scalability
with very large continuous log files. While hyper-
graph construction is linear in complexity—each
log line is processed once to extract attribute-value
pairs and form a hyperedge—the resulting graph
can grow too large for a single machine to handle.
As the graph size exceeds a certain threshold, ef-
ficient scaling of hypergraph construction across
large log datasets necessitates the use of distributed
or parallel processing and computing resources.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Toufique Ahmed, Supriyo Ghosh, Chetan Bansal,
Thomas Zimmermann, Xuchao Zhang, and Saravan
Rajmohan. 2023. Recommending root-cause and
mitigation steps for cloud incidents using large lan-
guage models. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 1737-1749. IEEE.

Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry
Evseev, Mikhail Burtsev, and Evgeny Burnaev. 2024.
Arigraph: Learning knowledge graph world models
with episodic memory for llm agents. arXiv preprint
arXiv:2407.04363.

Sergey Brin. 1998. The pagerank citation ranking:
bringing order to the web. Proceedings of ASIS, 1998,
98:161-172.

Sergey Brin and Lawrence Page. 1998. The anatomy of
a large-scale hypertextual web search engine. Com-
puter networks and ISDN systems, 30(1-7):107-117.

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang,
Xin Gao, Liu Shi, Yunjie Cao, Xuedong Gao, Hao
Fan, Ming Wen, et al. 2023. Empowering practical
root cause analysis by large language models for
cloud incidents. arXiv preprint arXiv:2305.15778.

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang,
Xin Gao, Liu Shi, Yunjie Cao, Xuedong Gao, Hao

Fan, Ming Wen, et al. 2024. Automatic root cause
analysis via large language models for cloud inci-
dents. In Proceedings of the Nineteenth European
Conference on Computer Systems, pages 674—688.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Giines Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-

marization. Journal of artificial intelligence research,
22:457-479.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021.
Logbert: Log anomaly detection via bert. In 2021
international joint conference on neural networks
(IJCNN), pages 1-8. IEEE.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao
Huang. 2024. Lightrag: Simple and fast retrieval-
augmented generation.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michi-
hiro Yasunaga, and Yu Su. 2024. HippoRAG: Neu-
robiologically inspired long-term memory for large
language models. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Taher H Haveliwala. 2002. Topic-sensitive pagerank.
In Proceedings of the 11th international conference
on World Wide Web, pages 517-526.

Shilin He, Xu Zhang, Pinjia He, Yong Xu, Liqun Li,
Yu Kang, Minghua Ma, Yining Wei, Yingnong Dang,
Saravanakumar Rajmohan, et al. 2022. An empirical
study of log analysis at microsoft. In Proceedings of
the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 1465-1476.

Shaohan Huang, Yi Liu, Carol Fung, Jiaxing Qi, Hai-
long Yang, and Zhongzhi Luan. 2023. Logqa: Ques-
tion answering in unstructured logs. arXiv preprint
arXiv:2303.11715.

Shaohan Huang, Yi Liu, Jiaxing Qi, Jing Shang, Zhi-
wen Xiao, Carol Fung, Zhihui Wu, Hailong Yang,
Zhongzhi Luan, and Depei Qian. 2024. Gloss: Guid-
ing large language models to answer questions from
system logs. In 2024 IEEE International Conference
on Software Analysis, Evolution and Reengineering
(SANER), pages 91-101. IEEE.

Zhihan Jiang, Jinyang Liu, Zhuangbin Chen, Yichen Li,
Junjie Huang, Yintong Huo, Pinjia He, Jiazhen Gu,
and Michael R Lyu. 2024. Lilac: Log parsing using
llms with adaptive parsing cache. Proceedings of the
ACM on Software Engineering, 1(FSE):137-160.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O
Arik. 2024. Long-context llms meet rag: Overcom-
ing challenges for long inputs in rag. arXiv preprint
arXiv:2410.05983.

23688

https://openreview.net/forum?id=hkujvAPVsg
https://openreview.net/forum?id=hkujvAPVsg
https://openreview.net/forum?id=hkujvAPVsg

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404—411.

Pranoy Panda, Ankush Agarwal, Chaitanya Devagup-
tapu, Manohar Kaul, et al. 2024. Holmes:
Hyper-relational knowledge graphs for multi-hop
question answering using llms. arXiv preprint
arXiv:2406.06027.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, and
Michael R Lyu. 2023. Loghub: A large collection
of system log datasets for ai-driven log analytics. In
2023 IEEE 34th International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 355—
366. IEEE.

A Appendix
A.1 Dataset details:

The datasets used in our experiments are two public
log datasets: OpenSSH dataset (Zhu et al., 2023),
Zookeeper dataset (Zhu et al., 2023) and one pri-
vate Journal logs dataset.

1. OpenSSH Dataset (Zhu et al.,
2023):0penSSH is a widely used tool
for secure remote login via the SSH protocol.
The dataset used in our experiments was
collected from an OpenSSH server set up in
our lab. Over a period of 28 days, logs were
gathered to form the dataset.

2. ZooKeeper (Zhu et al., 2023): It is a cen-
tralized service that manages configuration
data, naming, distributed synchronization, and
group services. The log dataset used in this
study was gathered by collecting logs from
the ZooKeeper service in our lab environment,
which consists of 32 machines and spans a
period of 26.7 days.

Table 7: Statistics of a single journal log file.

Statistic Value
Total log lines 74349
Total tokens 4079723
Average lines per second 37.32
Average tokens per second | 2048
Average Lines per minute | 2239.42
Average Tokens per minute | 122883

3. Journal log Dataset: Journal files are sys-
tem logs used to record events and messages
generated by the system, kernel, and various
services on Linux-based systems. Journal log
files were collected from company’s internal
systems which is private due to security rea-
sons. The dataset consists of 6 big size log
files collected on different days with log dura-
tion ranging from 12 minutes to 33 minutes.
The statistics from one of the file is given in
Table 7.

A.2 Case study

This case study analyzes a log file containing a Soft-
ware Error (SWERR) (Fig. 4) to identify its root
cause using three different methods: RAG, Graph-
RAG, and HG-InsightLog (Table 8). Sensitive in-
formation in both the log snippet and responses is
masked as ****** due to dataset confidentiality.
The SWERR error includes the failure message:
"Application Info: Invalid Port, port=25." To de-
termine its root cause, it is necessary to identify
related errors and failures within the log file. How-
ever, a standard LLM struggles with large log files
due to context length limitations.

RAG Method: This approach splits the log file
into smaller chunks and provides the chunk con-
taining the SWERR error to the LLM. However,
since logs are generated rapidly (thousands of lines
per minute), the root cause may appear minutes
before the SWERR error, making it inaccessible
within a single chunk or not correctly retrieved
across multiple chunks. In this case, the root cause
occurs at 00:35:36, but RAG is limited to logs from
00:35:38, preventing accurate identification.
Graph-RAG Method: This method extracts re-
lationships from the LLM using predefined exam-
ples in the prompt. However, due to LLMs be-
ing primarily trained on natural language, they
fail to accurately capture relationships in log
files—especially those not explicitly mentioned in

23689

the prompt. Furthermore, Graph-RAG only es-
tablishes connections between closely occurring
log lines and does not link distant events. For ex-
ample, extracted relationships like (SWERR, con-
tains, Invalid port, Port=25) and (SWERR, con-
tains,Ks_SWERR_only) lack connections to ear-
lier logs. During querying, Graph-RAG searches
for related nodes but fails to establish a link with
the actual root cause, leading to an inconclusive re-
sponse: "Can’t determine the root cause with given
information."

HG-InsightLog Method: Our method scans the
entire log file to identify related errors and failures
associated with the SWERR error. It successfully
retrieves logs from the large size having a global
view beyond the chunk size limit of RAG and the
context length restriction of LLMs. For exam-
ple, the failure message "systemd-journald.socket:
Failed to connect stdout to the journal socket, ig-
noring: No such file or directory" is crucial for
root cause analysis but remains inaccessible to the
RAG and Graph-RAG methods. HG-InsightLog,
however, identifies it by creating a temporal and
structural (via nodes and hyperedges) connection
in error nodes, port issues, and socket failures. By
providing both the SWERR error and related failure
logs to the LLM, HG-InsightLog enables accurate
root cause identification, proving to be the most
effective method for this analysis.

Case study 2: Let’s consider another question: A
system failure occurred at 03:15:42. Identify the
earliest sign of this failure from any component in
the system logs, even if it occurred hours or days
earlier, and explain how it contributed to the final
failure.

Why All Other Algorithms Will Fail:

1. Traditional RAG Will Fail:

Reason: RAG retrieves information based on chun-
ked retrieval, but since the root cause could be far
apart from the failure event, RAG won’t retrieve
relevant logs unless they exist in the same chunk.
Failure Mode: Will only retrieve logs immedi-
ately before or after 03:15:42, missing critical early
warning signs.

2. GraphRAG Will Fail:

Reason: GraphRAG builds entity-relationship
graphs, but logs often contain no explicit entity
relations connecting long-term system-wide depen-
dencies.

Failure Mode: The early warning signs may be in
a different subsystem or involve indirectly related
attributes, which GraphRAG won’t link properly.

3. Personalized PageRank and LexRank Will
Fail:

Reason: These algorithms rank logs based on simi-
larity and importance, but they lack the ability to
model temporal causality. Failure Mode: They will
rank recent logs higher, overlooking the earliest
indicators of failure.

4. Standard Log Summarization Will Fail:
Reason: Summarization techniques focus on the
most frequent or central events rather than tracing
low-frequency anomalies. Failure Mode: The earli-
est weak signal may be a rare, infrequent log entry
that standard summarization will discard.

Why HG-InsightLog Succeeds:

Temporal Sequence is Preserved: Unlike RAG,
it does not disrupt log order and allows retrieval of
distant historical logs that contributed to failure.
Multi-Step Query-Based Ranking: Unlike
GraphRAG, it prioritizes logs based on query-
specific causal relevance, not just static entity con-
nections.

Hypergraph Captures Complex Relations: Un-
like PageRank, it identifies weak signals even if
they are buried in logs far apart in time.

Anomaly Detection & Contextual Reduction:
Unlike summarization methods, it preserves rare
but critical logs instead of discarding them due to
low frequency.

Few more example questions for complex log
analysis:

1. What trends can be identified from the frequency
of different types of login errors (e.g., permission
denied, command not found)?

2. How did multiple independent warnings in differ-
ent system components correlate to the final system
failure?

A.3 Evaluation by Domain Experts

In the evaluation of the complex log analysis cat-
egory questions, human evaluators, who were do-
main experts played a key role since the dataset
lacked predefined questions and correct answers.
They were responsible for creating questions and
assessing the accuracy of the system’s predicted an-
swers. The evaluation process worked as follows:
Expert evaluators were given access to the log
files, the questions, and the predicted answers.
Their main task was to evalutate the predicted an-
swer and provide scores. The evaluators assessed
the responses to the question based on six key
matrices: relevance, clarity, accuracy, complete-
ness, conciseness and analytical depth. Each met-

23690

Oct 30 00:35:36 ** systemd[1]: Starting Journal Socket...

systemd[1]: Listening on udev Control Socket
** systemd[1]: Listening on udev Kernel Socket.

Oct 30 00: ** systemd[1]: Listening on User Database Manager Socket.
Oct 30 00:35:36 ****** systemd[1]: Listening on Journal Socket

Oct 30 @0:

Oct 30 00: systemd[1]: Mounting POSIX Message Queue File System..
oct 30 ee: systemd[1]: Mounting Kernel Debug File System..

Oct 30 00:
Oct 30 00:35:36

systemd[1]: Mounting Kernel Trace File System...

#x++x% systemd[1]: Starting Load Kernel Module configfs..
##ree systemd[1]: Starting Load Kernel Module drm..

Oct 30 00:35: systemd[1]: Starting Load Kernel Module fuse..
Oct 30 00:35:36 ****** systemd[1]: Starting RPC Bind...

Oct 36 ©0:35:38 **#*** esalbase[458]: portType=0SC2 no rate

Oct 36 09:35:38 ***++* esalbase[458]: GetDuplex:10l

Oct 30 00:35:38 ****+* esalbase[458]: portType=0SC2 no duplex

Oct 38 00:35:38 ****** esalbase[458]: portType=0SC2 defaultVlan=4600
Oct 30 00:35:38 ****+* esalbase[458]:

portType=0SC2 unknown port access

systemd[329]: systemd-journald.socket: Failed to connect stdout to the journal socket, ignoring: No such file or directory

systemd[1]: Huge Pages File System was skipped because of a failed condition check (ConditionPathExists=/sys/kernel/mm/hugepages).

systemd[1]: Starting Create List of Static Device Nodes...

Oct 30 00:35:38 ****+* esalbase[458]: SettingNotFoundException:MAIN.portType.0SC2.memberVlansnot found
Oct 30 00:35:38 ****+* systemd[1]: Starting Pkt Handler App startup service file...

Oct 30 00:35:38 *¥¥¥ *¥¥x*=GUERR[***]: Start:

Sequence Number: **
Level: KS_SWERR_ONLY
TID: esalbase(®)
PID: esalbase(@xlca)
PPID: systemd(@x1)
Core: ¢

L PO —
Stack Trace:

/usr/lib/libswerr.so.8(_ZN12SwerrContext1@init_earlyEv+@x90)[@x14bef4eb8550]
/usr/lib/1libswerr.so.8(_ZN12SwerrContext4initEv+@x9)[@x14befdebbbf9]

/usr/lib/1libswerr.so.@

(_ZNSSwerrC1ENS_1@SwerrLevelERKNSt7__cxx1112basic_stringIcStllchar_traitsIcESalcEEEiS8_PK12SwerrContext+0x16f)[0x14bofdebbd7f]
/usr/bin/esalbase(_ZN18EsalBoardFramework11IsPortvalidEj+exle3) [@x556f1d73ab73]
/usr/bin/esalbase(_ZN18EsalBoardFrameworkl4HandlePortProvE9InterfaceRK15PortProvMessage+0x3c4)

[ex556F1d74e3d4]

/usr/bin/esalbase(_ZN13EsalStaticCfglaConfigurePortsEv+@xob) [0x556F1d6e977b]
/usr/bin/esalbase(_ZN18EsalBoardFramework9BoardInitEv+6x45)[@x556f1d73a355]
/usr/bin/esalbase(_Z12esalBaseMainv+0x1lc)[@x556F1d6cc39c]
/usr/bin/esalbase(main+ex9) [@x556f1d6c7129]

/1ib/1ibc.so.6(+0x2d57b) [6x14b0F451657b]
/1ib/libc.s0.6(__libc_start_main+6x80)[@x14befa516630]
/usr/bin/esalbase(_start+6x25)[@x556f1d6c7185]

Application Info:
Invalid Port, port=**

Oct 30 00:35:38 ****** pktHandler[498]: Libconfig::openAndRead status open path /usr/local/fnc/pkthandler/62_6_6@_o@/pktHandler.cfg
Oct 30 00:35:38 ****+* pktHandler[498]: Libconfig::openAndRead /usr/local/fnc/pkthandler/@2_0@_oe_ee/pktHandler.cfg
Oct 30 00:35:38 ****** pktHandler[498]: GetRxFilters:116 mac=FF:FF:FF:FF:FF:FF macMask=FF:FF:FF:FF:FF:FF vlan=2003 vlanMask=4095

Figure 4: Excerpt from the journal log file showing: (a) log entries related to the root cause of the SWERR, and (b)
log entries containing the SWERR event itself. A large number of intermediate log lines between (a) and (b) have
been omitted for brevity. The snippet includes only the information necessary to support the case study analysis.

ric was scored on a scale of O to 1, with the aim
of providing a comprehensive evaluation of the an-
swers. The evaluators carefully considered whether
the response directly addressed the question (rele-
vance), whether the answer was easy to understand
and well-organized (clarity), the correctness of the
claims made (accuracy), whether the answer fully
explored the topic (completeness), the reasoning
behind the answer (analytical depth), and whether
the answer was concise (succinct and free of unnec-
essary information while still being complete). For
each response, a final score out of 6 was assigned,
and the final score for each response was calculated
by the dividing the total score of a response by 6.
Finally, the average score of all the responses was
reported.

A.4 Example multi-dimensional hypergraph

To understand how we represent the hyperedges
in the hypergraph, we demonstrate it by using
an example taken from the journal dataset. Us-
ing Figure 4 and Figure 5, we demonstrate how
the dimensions, Nodes, hyperedges in a hyper-
graph looks like. Dimensions are date, time, in-

terface/componets, and message. For example,
first hyperedge is represented as (’Date: Oct 30,
"Time: 00:35:36°, ’interface:******gystemd[1]’,
message: Starting Jornal Socket’). Similarly, sec-
ond hyperedge is represented as (’Date: Oct 30°,
"Time: 00:35:36’, ’interface:******gystemd[329]’,
"message: systemd-journald.socket: Failed to con-
nect ...’) and so on. Here, 'Date: Oct 30,
"Time: 00:35:36°, ’interface:******gystemd[1]’,
’message: Starting Jornal Socket’ are nodes. All the
hyperedges collectively form a multi-dimensional
hypergraph.

A.5 Dataset Generation

Question-answer pair generation using log files was
done by LogAQ(Huang et al., 2023) but the ques-
tions type were restricted to only data extraction
from chunks. (Huang et al., 2024) gave an algo-
rithm to generate questions from log files in three
stages - generate questions by giving raw log file
to LLM and asking to generate 5 questions, second
stage generate answers and in third stage questions
are filtered based on pre-determined rules like an-
swer length, unclear answer((e.g., “I don’t know”

23691

Table 8: Case study: Comparison of response provided by the RAG Method, Graph-RAG and Our Method on
complex log analysis question on Journal dataset.

Query: From the Given log with software errors (e.g., SWERR) in the journal log, explain the root cause of this error.

Prompt used: Analyze the provided journal log file containing SWERR ie, software error logs. For the first occurrence of an SWERR log in the file (1) Determine
the root cause of this SWERR log (i.e., explain what caused it to occur). (2) Review all preceding logs in sequential order and assess whether this SWERR is caused
or influenced by any prior errors. Also, pinpoint the first error in the log file that could have resulted in this SWERR.

RAG Method:

1. The root cause of this SWERR appears to be related to a failure in the ‘IsPortValid()‘ function within the ‘EsalBoardFramework*. The stack trace suggests that
during the initialization sequence of the board framework, a validation check on ports was performed, which did not pass, triggering the SWERR logging mechanism.

The core issue could be due to:
- An invalid port configuration or status at the time of invocation.
- Software logic errors in the function responsible for validating ports.

2. Reviewing Preceding Logs for Influences on SWERR:

Examining the logs preceding the earliest SWERR log indicated:
Oct 30 00:35:38 **xxxx systemd-logind[444]: New seat seat@.

This log does not indicate any errors or issues that could influence the SWERR as it simply states that a new seat (session) has been created.

Additionally, no other errors were present in the logs prior to the SWERR, such as hardware failures, port failures, or configuration issues. The log entries leading up
to the SWERR involve the configuration and initialization of various components, indicating a standard operation rather than a problematic event.

Conclusion:

The first error in the log file that could potentially have resulted in the SWERR is tied to the port validation function ‘IsPortValid()‘, which indicates that there
may have been issues with the hardware or software configuration of the ports. However, no explicit prior errors are noted to directly influence this SWERR event,
suggesting the issue is self-contained within the port validation logic.

Graph-RAG method: -

Entities and relationship extracted examples: (SWERR, contains, Invalid port, Port=25) ,(SWERR, contains,Ks_SWERR _only), (Esalbase[458], references,
Porttype=0Osc2 Unknown Port Access), (Pkthandler[498], references, Libconfig)

Response: I'm sorry, but with the provided information, I can’t determine the root cause of the software error in the journal log. Please provide more specific details
or context about the error entries in the log.

Our Method:

1. The root cause of the first SWERR log is that the systemd-journald.socket failed to connect stdout to the journal socket due to the journal socket being absent (error
message: "No such file or directory").

2. Prior to this SWERR, several logs were focused on standard output types being updated from syslog to journal and setting up various slices, watching sockets, and
listening units by systemd, along with starting some services and mounting filesystems. But none of these specifically caused or influenced the SWERR related to
systemd-journald.socket directly.

The first error in the log file with time information that could have resulted in this SWERR is:

Date: Oct 30 | Time: ©00:35:36 | interface: xx*xx | Message: systemd[329]: systemd-journald.socket: Failed to connect stdout to the
journal socket, ignoring: No such file or directory

NodeM or “no information”). This approach doesn’t have
control on kind of questions created as well as re-

stricting answer length to 7 excludes question cate-
gories like analytical reasoning and summarization.
We generated two sets of questions for Zookeeper
and OpenSSH datasets - Local chunk dependent

e e questions and Complex log analysis questions. For

TR Singo Log I Journal dataset we only generated Complex log
Level: KS_SWERR_ONLY entry Hyperedge e

vl P, pori25 based questions.
K / A.5.1 Chunk based questions

Figure 5: This figure presents a segment of system We used GPT-4o to generate question and answers

log entries on the left, while the right side illustrates for different categories and complexity levels, each
a corresponding log entry using a node and hyperedge .o qyiring distinct analysis to arrive at answers. The

representation. . . .
P categories of question generated are as follows with

23692

/om 30 00:35:36 **systemd]1]:Starting Journal Socket...

Oct 30 00:35:36 **systemd[1]: Starting RPC Bind...
Oct 30 00:35:38 ** esalbase[458]: portType=0SC2 no rate

Oct 30 00:35:38 ** esalbase[458): GetDuplex:101

Oct 30 00:35:38 ** esalbase[458]: portType=0SC2 no duplex
Oct 30 00:35:38 ** esalbase[458]: portType=OSC2 defaultVian
Oct 30 00:35:38 ** esalbase[458]: portType=OSC2 unknown port
Oct 30 00:35:38 ** esalbase[458]: SettingNotFound..

their descriptions and challenges:

1. Fact-based: Questions that extract key infor-
mation data such as events, values, or occur-
rences. These questions are challenging due
to inconsistent log entries, huge log size.

2. Analytical Reasoning: Questions that require
interpreting patterns or relationships in the
log data to derive insights or conclusions. An-
swers are restricted to 30 words. These ques-
tions are challenging due to irrelevant and
repetitive entries in log data, sparse connec-
tions present difficulties in finding patterns.

3. Causal Reasoning: Questions that identify po-
tential causes or triggers for specific events
or trends found in the logs. Answer are maxi-
mum 30 words. These questions are challeng-
ing as it requires inferring context information
for events to answer such questions.

4. Decision-based: Questions on decisions that
requires judgment and inference from the log
data. These questions are challenging as it
requires combining information from multiple
log entries spread across time.

5. Summarization: Questions on summarizing
information from the logs. Answer is gen-
erated on less than 50 words. Challenges -
Important events are sparsely distributed.

6. Temporal Reasoning: Questions based on
Temporal Reasoning task to Understand the
sequence and timing of events and patterns
found in the logs. These questions are chal-
lenging as it requires understanding gaps or
inconsistencies in the sequence of events.

7. Anomaly Detection: Questions that Detect
outliers or unusual behaviors found in the logs.
These questions are challenging as it requires
understanding of normal behavior to detect
rare events.

We created chunks of log file based on times-
tamps from the log files. For both Zookeeper
and OpenSSH we took 1 hour time duration as
chunks. For zookeeper 150 chunks were used and
for OpenSSH 50 chunks were used. For each chunk
3 questions were created for each of the 7 cate-
gory. We manually verified the question-answer
pairs correctness from the chunks and re-created
the questions if pair was incorrect.

A.5.2 Complex log analysis questions

To analyze the global and multi-hop question an-
swering capabilities of our method on whole log
file we created questions spanning whole document.
Human experts created 30 complex questions for
each of three dataset. The questions were created
such that it’s of global nature where answer should
combine information from different places having
a global view of the file.

A.5.3 Prompt used for data generation

prompt = f"""You are provided with a segment
of data containing multiple logs from a log file.
Your objective is to perform the following tasks of
Question-Answer pair generation while adhering
strictly to the given requirements:

Requirements:

1. Ensure that all questions target local details in
the log file.

2. Ensure the questions focus on patterns, trends,
or key decision points observable in the logs.

3. For each question, provide answer that reflects
insights or conclusions derived from the log data.

Task 1: Formulate 3 questions answer based on
summarization task found in the logs. For each
question, provide a concise (maximum 50 words)
answer.

Example Question:

Q1. Summarize all major events from the logs
between 2:15 AM to 2:30 AM.

Task 2: Generate 3 question-answer pairs that
require analytical reasoning based on patterns ob-
served in the log file. Formulate questions that
demand analytical thinking and inference. Each
answer should be concise (maximum 30 words).
The questions should be based on key observations
related to user behavior, security events, or notable
system activities.

Example Question:

Q1. What recurring patterns of invalid login
attempts can be identified across the logs?

Q2: Which is the most severe error in the data?

Task 3: Formulate 3 question-answers pairs
based on Causal Reasoning task to Identify poten-
tial causes or triggers for specific events or trends
found in the logs. For each question, provide a
concise (maximum 30 words) answer.

Example Question:

Q1. Why did the SSH daemon disconnect the
connection from 75.138.16.23 after multiple failed
attempts?

23693

Table 9: Below is a comparative table highlighting how GraphRAG, HOLMES, and our algorithm (HG-InsightLog)
perform on three challenging RCA questions derived from log data. Each row shows the complex question, the
true root cause (based on multi-step, time-ordered logs), how GraphRAG and HOLMES respond (and why they
fail), and how HG-InsightLog succeeds by maintaining complete attribute-value relationships and proper temporal
sequences. All facts from the original explanation are preserved.

Question & Context

Ground-Truth Root Cause

GraphRAG (Wrong)

HOLMES (Wrong)

HG-InsightLog (Correct)

Q1: SWERR at Oct 30
00:35:38

Invalid Port errors

Invalid/unconnected ports ini-

tialized due to config errors;
caused cascading SWERRs.

Partial mention of “in-
valid port,” no full causal
chain. Misses earlier logs.

Mentions SWERR but
omits port misconfig.
Triple-based parse lacks

Traces SWERR to earlier port
config errors (25-27). Cap-
tures order and all value pairs.

(25-27) appear just context chaining.

before SWERR.

Q2: Why did Missing mslmShelf.cfg Mentions file error, but | Mentions exit and ZMQ Chains missing file — service
mslm_chassis ter- | caused PID 508 exit; ZMQ fails to link it to process error, not file cause. | exit — ZMQ error. Hyper-
minate? context terminated as a result. exit or ZMQ issue. Misses non-triple logs. graph links all by PID and
Log shows missing config time.

file then exit.

Q3: Why was 1mp0o
brought down?

Peer (port 2) disabled in
kernel log, then user log
says 1mp@@ down.

Peer (1mp@@-peer, port 2)
went offline; system shut

1mp@@ as safeguard. mented.

Cannot match “port 2” to
1mp@@. Graph too frag-

Sees two events, but fails
to connect without ex-
plicit attribute matching.

Links peer port to 1mp@@, cap-
turing full cause. Attributes re-
tained across logs.

Task 4: Create 3 question-answers pairs based
on Temporal Reasoning task to Understand the
sequence and timing of events and patterns found
in the logs. For each question, provide a concise,
one word answer.

Example Question:

Q1. What event occurred first in the log se-
quence after event XXXX?

Task 5: Create 3 decision-based question-answer
pairs based on decisions that requires judgment and
inference from the log data. For each question, pro-
vide a concise, one-word answer. The questions
should capture key observations related to user be-
havior, security events, or notable system activities.

Example Question:

Q1. Which IP made the highest number of failed
login attempts?

Task 6: Generate 3 question-answers pairs based
on Anomaly Detection task that Detect outliers or
unusual behaviors found in the logs. For each ques-
tion, provide a concise, one word answer. Example
Question: Q1. What is the most unusual activity
recorded in the logs?

Task 7: Create 3 simple, clear data extraction
based question-answer pairs and provide corre-
sponding one-word answer based on the key infor-
mation in the log file. Requirements: Local Scope:
Each question should target unique, local details in
the log file, ensuring that there is only one correct
answer across the entire dataset for each question.

Unambiguous: The questions must be designed
in a way that eliminates ambiguity. Each question
should have a clear, definitive answer based on the
log content.

One-Word Answers: Ensure that the answer to

each question is a single word derived directly from
the information within the log file.

File-chunk-specific: The questions should be
specific to the details of the current log file chunk.
This means the same question cannot be applicable
to multiple log files; the question must rely on
information unique to this specific file.

Example Question:

Q1: What is the default value for initLimit?

Note: Avoid general questions that could apply
to multiple log entries, and also don’t use times-
tamps.

For each task, respond in the following format:
[Category]

Q1: [Question] Al: [Answer]

Q2: [Question] A2: [Answer]

Q3: [Question] A3: [Answer]

Now, generate questions and answers for the
following segment of data or log file: document"""

A.6 Addressing Limitations Related to
Pretrained LLM Knowledge

As noted in the paper, the framework leverages
the pretrained knowledge of large language models
(LLMs) to interpret reduced-context logs. This re-
liance can limit performance in domains where the
LLM lacks prior exposure—such as proprietary or
highly specialized systems.

To mitigate this limitation without modifying the
framework architecture or retraining the LLM, we
propose two complementary strategies:

Fallback via Generalized Node Representations:
When domain-specific terms are not recognized
by the LLM, our multi-entity hypergraph represen-
tation groups attribute-value pairs (or entire log

23694

lines) into higher-level semantic units. This pro-
cess is embedded in the node construction logic and
does not introduce a new algorithmic component.
Instead, each node acts as a generalized representa-
tion, enabling the model to reason over structural
relationships and anomalies even in the absence of
domain-specific understanding.
Minimal Supplementary Documentation: Al-
though the LLM is not retrained, brief supporting
documentation—such as glossaries or concise sys-
tem descriptions—can be appended to the prompt.
This lightweight augmentation provides sufficient
context for the model to interpret domain-specific
terminology or abbreviations, enhancing compre-
hension while maintaining a training-free setup.
These strategies preserve the framework’s flexi-
bility and zero-shot capability while extending its
applicability to domains beyond the LLM’s original
training distribution.

23695

