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Abstract

Understanding historical and cultural artifacts
demands human expertise and advanced com-
putational techniques, yet the process remains
complex and time-intensive. While large mul-
timodal models offer promising support, their
evaluation and improvement require a standard-
ized benchmark. To address this, we intro-
duce TimeTravel, a benchmark of 10,250 expert-
verified samples spanning 266 distinct cultures
across 10 major historical regions. Designed
for AI-driven analysis of manuscripts, artworks,
inscriptions, and archaeological discoveries,
TimeTravel provides a structured dataset and
robust evaluation framework to assess AI mod-
els’ capabilities in classification, interpretation,
and historical comprehension. By integrating
AI with historical research, TimeTravel fosters
AI-powered tools for historians, archaeologists,
researchers, and cultural tourists to extract valu-
able insights while ensuring technology con-
tributes meaningfully to historical discovery
and cultural heritage preservation. We evaluate
contemporary AI models on TimeTravel, high-
lighting their strengths and identifying areas for
improvement. Our goal is to establish AI as a
reliable partner in preserving cultural heritage,
ensuring that technological advancements con-
tribute meaningfully to historical discovery. We
release the TimeTravel dataset1 and evaluation
suite2 as open-source resources for culturally
and historically informed research.

1 Introduction
In recent years, Large Multimodal Models (LMMs)
have made significant strides in visual reasoning,

1https://huggingface.co/datasets/MBZUAI/TimeTravel
2https://github.com/mbzuai-oryx/TimeTravel
†Equal contribution.

Figure 1: TimeTravel Taxonomy categorizes artifacts
from 10 major civilizations, representing diverse histori-
cal and prehistoric periods. It encompasses 266 distinct
cultures and over 10k manually verified historical ar-
tifact samples, providing a structured framework for
comprehensive AI-driven analysis.

perception, and multimodal understanding. Mod-
els such as GPT-4V (OpenAI, 2024) and LLaVA
(Liu et al., 2023) have excelled in image caption-
ing, visual question answering (VQA), and com-
plex visual reasoning, driving the development of
benchmarks (Chiu et al., 2024; Nayak et al., 2024;
Alwajih et al., 2024) to assess their capabilities.
These benchmarks predominantly focus on modern
objects, cultural landmarks, and textual sources, ex-
tending multimodal AI applications to domains such
as medical imaging, remote sensing, and real-world
scene understanding (Ghaboura et al., 2025). How-
ever, a critical gap remains: LMMs fail to address
the historical dimension of visual data, particularly
artifacts that have shaped human civilization.
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Figure 2: TimeTravel Samples. The figure shows diverse cultural representations from various regions across the globe. These
examples span multiple artifact categories, including coins, accessories, tools, and statues from ancient civilizations. Each
artifact is accompanied by a detailed description, providing valuable contextual and historical insights. Additional TimeTravel
examples can be found in the Appendix (Figure 7 and Figure 8).

Historical artifacts, from ancient manuscripts
and inscriptions to architectural ruins and cultural
symbols, offer invaluable insights into the evolution
of societies, artistic expression, and technological
advancements. These artifacts preserve cultural
heritage and serve as primary sources for under-
standing belief systems, trade networks, and socio-
political structures of past civilizations. However,
interpreting them requires deep contextual knowl-
edge, which current LMMs struggle to achieve,
particularly in non-English and non-Western his-
torical contexts. While some models have been
extended to low-resource languages to bridge cul-
tural gaps (Heakl et al., 2025), they lack systematic
capabilities to analyze artifacts from diverse civ-
ilizations. This limitation highlights the urgent
need for a specialized benchmark that evaluates the
ability of AI to process and understand historical
artifacts with cultural and temporal awareness.
To address this challenge, we introduce TimeTravel,
an open-source comprehensive benchmark (see
Table 1) for evaluating LMM performance in his-
torical artifact analysis across diverse civilizations.
TimeTravel encompasses several major ancient and
prehistoric civilizations across 10 distinct regions,
spanning 266 cultural groups. It offers a structured
taxonomy tailored for machine-assisted historical re-
search (see Figure 1). Unlike existing benchmarks
that focus on generic object recognition, Time-
Travel prioritizes historical knowledge, contextual
reasoning, and cultural preservation, making it a
pioneering effort in multimodal computational eval-
uation. The benchmark consists of over 10k curated
samples, each accompanied by high-quality images
of manuscripts, inscriptions, sculptures, paintings,
and archaeological discoveries. These samples
assess key aspects of multimodal understanding,
including visual perception, contextual reasoning,
and cross-civilizational knowledge. Having been

thoroughly verified by historians and archaeologists,
the dataset ensures accuracy, cultural relevance,
and historical integrity. By evaluating both closed-
and open-source LMMs on TimeTravel, we aim
to identify their strengths and limitations in han-
dling historically significant artifacts, paving the
way for intelligent models that contribute meaning-
fully to cultural heritage preservation and historical
analysis.

Domain British MMMU Oracle- Ithaca Kao HUST- TimeTravel
Museum MNIST Kore OBS (ours)

Hist. Artifact Recog. ✓ ✗ ✗ ✗ ✓ ✗ ✓

Geographic Region ✓ ✗ ✗ ✓ ✓ ✗ ✓

Ancient Artifacts ✓ ✗ ✗ ✗ ✗ ✗ ✓

Contextual History ✗ ✗ ✗ ✗ ✗ ✗ ✓

Image-Text Pairs ✓ ✓ ✗ ✗ ✓ ✓ ✓

Open-Source ✗ ✓ ✓ ✗ ✓ ✓ ✓

Table 1: The comparison of datasets and benchmarks for his-
torical and cultural artifacts, evaluating features like artifact
recognition, geographic coverage, multimodal understand-
ing, and metadata inclusion with existing data such as British
Museum (Tully, 2020), MMMU (Yue et al., 2024), Oracle-
MNIST (Wang and Deng, 2022), Ithaca (Assael et al., 2022),
KaoKore (Tian et al., 2020), HUST-OBS (Wang et al., 2024).
TimeTravel stands out as the most comprehensive benchmark,
uniquely integrating multimodal data, historical context, and
a dedicated focus on ancient artifacts to support AI-driven
cultural heritage research.

2 The TimeTravel Dataset

2.1 Data Collection
Our research is based on a well-structured and
carefully curated dataset sourced from museum
collections, which houses an extensive collection of
artifacts from diverse civilizations. From this vast
repository, we compiled a dataset encompassing
266 cultural groups, allowing the analysis of cul-
tural, technological, and social developments over
a broad historical timeline.

To ensure the integrity of our benchmark, we fol-
lowed a systematic data collection process. We first
identified key civilizations and historical periods
relevant to our study, then collaborated closely with
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Figure 3: TimeTravel Data Pipeline. A structured workflow that collects image and text data from museum websites, cleans
metadata, and integrates it with visual content. The GPT-4o model generates detailed, context-aware descriptions, which are
refined by experts for accuracy before forming the TimeTravel Benchmark.

experts to validate the authenticity and complete-
ness of each record. The resulting dataset comprises
10,250 carefully curated samples (see Fig 2). Each
entry, ranging from artifacts and inscriptions to
ancient manuscripts, was meticulously verified by
historians and archaeologists, ensuring precision
and reliability. By incorporating data from multiple
civilizations, our benchmark provides a diverse and
comprehensive perspective, avoiding the limitations
of a single historical narrative while preserving the
historical context for in-depth analysis. This ap-
proach enables the study of significant patterns in
the evolution of human societies. Further details
on data composition and distribution are provided
in the Appendix (Sec C).

2.2 Image-Text pair Generation
The dataset features a diverse range of historical ob-
jects, ensuring comprehensive documentation and
contextual understanding. However, many meta-
data fields, such as title, iconography, and date,
were missing or incomplete. To address this, we
used GPT-4o to generate detailed textual descrip-
tions with context-sensitive information based on
the available metadata (see Figure 5 and 6). To
further enhance usability, we structured these de-
scriptions into image-text pairs, ensuring that each
artifact is not only visually documented but also
enriched with contextual and cultural insights. By
improving multimodal model compatibility and
supporting digital archiving, this approach strength-
ens research in cultural heritage preservation while
bridging gaps in existing records. More samples
are presented in the Appendix (Sec. E).

2.3 Data Filtering and Verification
To guarantee the accuracy and reliability of our
dataset, we implemented a rigorous data filtering

and verification process (Figure 3). This process
combined manual expert validation with automated
techniques to eliminate inconsistencies, fill in miss-
ing details where possible, and authenticate histor-
ical records. During data cleaning, we addressed
missing or incomplete metadata, such as titles, dates,
and iconography, by cross-referencing museum
archives, academic sources, and expert insights.
Unavailable key information was transparently doc-
umented. Additionally, automated checks identi-
fied formatting inconsistencies, metadata mapping
errors, and numerical anomalies, ensuring a struc-
tured and standardized dataset. For verification, we
collaborated with historians, archaeologists, and
museum curators to review each artifact’s descrip-
tion, cultural attribution, and historical significance.
Expert validation ensured that generated textual
descriptions were accurate, contextually relevant,
and aligned with historical records. This rigorous
process enhances the dataset’s credibility, making it
a valuable resource for historical research, machine
learning, and cultural heritage preservation while
ensuring reliable insights into human history. More
details on annotation and verification process can
be found in the Appendix (Sec. D).

3 TimeTravel Benchmark Evaluation

Evaluation Metric: To assess the quality, accuracy
and relevance of our generated textual descriptions,
we employed a combination of traditional and ad-
vanced metrics. BLEU (Papineni et al., 2002) and
ROUGE-L (Lin, 2004) evaluate linguistic fluency
and structural similarity, ensuring syntactic align-
ment with reference texts. METEOR (Banerjee
and Lavie, 2005) enhances this by incorporating
synonym matching and paraphrasing, improving
the adaptability to human variations. SPICE (An-
derson et al., 2016) assesses semantic accuracy
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Model BLEU METEOR ROUGE-L SPICE BERTScore LLM-Judge
Cl

os
ed

GPT-4o-0806 (OpenAI, 2024) 0.0190 0.2399 0.1740 0.0960 0.8482 0.3007
Gemini-2.0-Flash (Reid et al., 2024) 0.0120 0.2424 0.1470 0.0650 0.8180 0.2726
Gemini-1.5-Pro (Reid et al., 2024) 0.0110 0.2469 0.1570 0.0770 0.8311 0.2303
GPT-4o-mini-0718 (OpenAI, 2024) 0.0150 0.2664 0.1690 0.0930 0.8432 0.2500

O
pe

n Llama-3.2-Vision-Inst (Meta AI, 2024) 0.0100 0.2069 0.1610 0.0590 0.8152 0.1226
Qwen-2.5-VL (Team, 2025) 0.0140 0.2649 0.1630 0.0770 0.8379 0.1749
Llava-Next (Liu et al., 2024) 0.0120 0.2353 0.1620 0.0650 0.8357 0.1156

Table 2: Performance comparison of various closed and open-source models on our proposed TimeTravel benchmark.

Model India Roman China British Iran Iraq Japan Central Greece Egypt
Empire Isles America

Cl
os

ed

GPT-4o-0806 0.2376 0.4486 0.2455 0.1862 0.3552 0.3560 0.2223 0.3187 0.2756 0.3665
Gemini-2.0-Flash 0.1876 0.3521 0.2447 0.1671 0.3409 0.3190 0.2123 0.2966 0.2369 0.3849
Gemini-1.5-Pro 0.1407 0.2871 0.2372 0.1713 0.3078 0.2640 0.1727 0.2385 0.2042 0.2822
GPT-4o-mini-0718 0.2308 0.3636 0.2151 0.1874 0.3072 0.2656 0.2131 0.3147 0.2070 0.2552

O
pe

n Llama-3.2-Vision-Inst 0.0722 0.1429 0.1195 0.0779 0.1984 0.1107 0.1059 0.1549 0.1311 0.1131
Qwen-2.5-VL 0.0859 0.1664 0.2149 0.1190 0.2344 0.2127 0.1607 0.2125 0.1417 0.2315
Llava-Next 0.0796 0.1062 0.1332 0.1141 0.1624 0.1039 0.1129 0.1799 0.1220 0.0662

Table 3: Analysis of LLM-Judge evaluation of various models in describing archaeological artifacts across civilizations from
different geographical locations.

Model India Roman China British Iran Iraq Japan Central Greece Egypt
Empire Isles America

Cl
os

ed

GPT-4o-0806 0.2566 0.2713 0.2324 0.2175 0.2486 0.2428 0.2269 0.2384 0.2441 0.2567
Gemini-2.0-Flash 0.2494 0.2644 0.2203 0.2202 0.2471 0.2413 0.2239 0.2251 0.2526 0.2605
Gemini-1.5-Pro 0.2596 0.2635 0.2219 0.2237 0.2547 0.2516 0.2247 0.2253 0.2569 0.2656
GPT-4o-mini-0718 0.2762 0.2731 0.2570 0.2531 0.2660 0.2640 0.2611 0.2741 0.2649 0.2742

O
pe

n Llama-3.2-Vision-Inst 0.2116 0.2264 0.1894 0.1930 0.2132 0.2083 0.1955 0.2000 0.2139 0.2181
Qwen-2.5-VL 0.2742 0.2845 0.2520 0.2456 0.2638 0.2621 0.2547 0.2659 0.2695 0.2731
Llava-Next 0.2487 0.2512 0.2181 0.2189 0.2409 0.2344 0.2208 0.2247 0.2411 0.2440

Table 4: Analysis of METEOR Evaluation of various models in describing archaeological artifacts across civilizations
from different geographical regions.

through scene graph analysis, preserving object
relationships and cultural context. Furthermore,
BERTScore (Zhang et al., 2019) offers a deep
learning-based evaluation of semantic similarity,
capturing contextual meaning beyond simple word
overlap. LLM-Judge further enhances assessment
by evaluating coherence, factual accuracy, and con-
textual appropriateness.

Results and Analysis: Our evaluation of closed-
and open-source models in the TimeTravel dataset
highlights clear disparities in their ability to produce
historically rich descriptions (see Table 2). Among
closed-source models, GPT-4o-0806 consistently
led in most metrics, BLEU (0.0190), ROUGE-L
(0.1740), SPICE (0.0960), BERTScore (0.8482),
and LLM-Judge (0.3007), demonstrating strong
semantic fidelity, structural precision, and con-
textual relevance. Its METEOR score (0.2399),
although not the highest, reflects competent lexical
variation. GPT-4o-mini-0718 achieved the best
METEOR score (0.2664) and performed competi-
tively in ROUGE-L (0.1690), BERTScore (0.8432),
and SPICE (0.0930), indicating its strength in
producing more fluent and lexically diverse de-

scriptions. Gemini-2.0-Flash and Gemini-1.5-Pro,
while achieving moderate performance across all
metrics, demonstrated weaker lexical alignment
(BLEU: 0.0120, 0.0110) and object-level alignment
(SPICE: 0.0650, 0.0770), suggesting limitations in
capturing fine-grained detail and historical speci-
ficity. Among open models, Qwen-2.5-VL was
the top performer, leading in METEOR (0.2649),
BLEU (0.0140), SPICE (0.0770), and showing
strong alignment in BERTScore (0.8379) and LLM-
Judge (0.1749), suggesting a robust balance be-
tween fluency and historical accuracy. In contrast,
Llama-3.2-Vision-Inst and Llava-Next recorded
lower scores, especially in SPICE (0.0590 and
0.0650) and LLM-Judge (0.1226 and 0.1156), high-
lighting difficulties in generating contextually rich
and semantically faithful descriptions.

Table 3 presents the LLM-Judge evaluation of
models to describe archaeological artifacts between
civilizations in different geographic regions. GPT-
4o-0806 consistently ranked highest in nearly all
regions, with top scores in India, the Roman Empire,
China, Iran, Iraq, the British Isles, Japan, Central
America, and Greece, reflecting a strong contextual
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understanding. Gemini-2.0-Flash followed as the
second-best performer in most areas, including Iran,
Iraq, China, and Central America, and achieved
the highest score in Egypt. Among open-source
models, Qwen-2.5-VL led the group in Iran, Iraq,
and Egypt, although the performance gap between
closed and open models remained substantial in
generating historically accurate descriptions.

In addition, Table 4 presents an analysis of the
METEOR scores, which evaluates the performance
of the model in describing archaeological artifacts
from different civilizations and regions. GPT-4o-
mini-0718 and Qwen-2.5-VL consistently achieve
the highest scores in most regions, with GPT-4o-
mini-0718 leading in India, China, Central America,
the British Isles, Iran, Iraq, Japan, and Egypt, while
Qwen-2.5-VL performs best in the Roman Empire
and Greece.

Overall, closed-source models outperform open-
source models in generating context-aware descrip-
tions, but ongoing improvements in open-source
models highlight opportunities for fine-tuning and
dataset expansion. These findings will guide further
model enhancements, advancing AI-driven histori-
cal analysis and cultural heritage preservation.

4 Conclusion

We present the TimeTravel dataset, a curated collec-
tion of historical artifacts from 10 cultural regions,
extensively curated by domain experts. We de-
veloped a rigorous data collection, filtering, and
verification process to ensure accuracy and com-
pleteness. Using GPT-4o, we generated detailed
textual descriptions, making the dataset more ac-
cessible and valuable for computational histori-
cal research. Our evaluation, using BLEU, ME-
TEOR, ROUGE-L, SPICE, BERTScore, and LLM-
as-Judge, showed that closed-source models out-
performed open-source alternatives, although open
models are rapidly improving. Our analysis high-
lights the potential of LMMs in bridging historical
records gaps while maintaining academic integrity.
Using AI-driven methodologies, this work lays the
foundation for advancing cultural heritage preser-
vation and enhancing digital humanities research,
thereby ensuring greater accessibility and precision
in historical documentation.

5 Limitations and Societal Impact

While this research demonstrates the potential of
LMMs to enhance historical documentation, the

quality of the descriptions generated depends on
the completeness and precision of the input data.
In cases where historical records are fragmented
or ambiguous, synthetic text may lack full contex-
tual depth. Furthermore, biases present in training
data can influence how models interpret and de-
scribe cultural artifacts, necessitating continuous
evaluation and expert validation to ensure historical
accuracy and cultural sensitivity. Despite these
challenges, this research contributes to the preser-
vation of cultural heritage, educational accessibility,
and AI-driven humanities research. By digitizing
and enriching historical records, it enables broader
public engagement with history, supports museum
digitization efforts, and provides a foundation for fu-
ture advancements in AI-assisted historical analysis,
bridging the gap between technology and human
expertise in understanding our collective past.
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A Appendix
In this appendix, we present supporting materials
for our research, including related work, dataset
statistics with regional coverage, annotation and
verification details, and examples of archaeological
samples from diverse cultures and time periods,
accompanied by cross-model qualitative compar-
isons. The related work section contextualizes
our contributions within ongoing efforts in AI-
driven historical text generation. The data section
highlights the balanced regional distribution of the
samples. The annotation and verification process
details the steps taken to ensure sample accuracy
and historical integrity. Finally, we include qual-
itative examples illustrating the performance of
both open- and closed-source models on selected
artifacts.

B Related Work
Recent years have seen significant progress in study-
ing cultural representation in AI, particularly in
behavioral patterns, food, landmarks, and histor-
ical knowledge. However, most works focus on
misalignment and biases in AI models or modern
cultural trends, rather than positioning artifacts
within their historical context and era across an-
cient civilizations. Meanwhile, studies on cultural
inclusion in LLMs highlight the challenges of cap-
turing the contextual and multifaceted nature of
culture, emphasizing the limitations of text-based
models in highlighting underrepresented cultures
and the need for more robust evaluation methods
(Adilazuarda et al., 2024).

Research on cultural influences in AI has in-
creasingly focused on biases and misalignment in
language models, particularly how they reflect and
perpetuate dominant cultural norms. Early research
on cultural biases in LLMs revealed their align-
ment with Western norms, particularly in moral
reasoning, historical narratives, and societal val-
ues. Ramezani et al. (2023) analyze how mono-
lingual English language models tend to reflect
Western moral norms more strongly than diverse
cultural perspectives, limiting their applicability
in cross-cultural ethical contexts (Ramezani and
Xu, 2023). Tao et al. (2024) further highlight the
overrepresentation of Anglo-American and Protes-
tant European values in AI-generated content, often
underrepresenting non-Western traditions and be-
lief systems (Tao et al., 2024). Similarly, Bu et
al. (2025) explore value misalignment in cultural

heritage-related text generation, warning of his-
torical inaccuracies, cultural identity erosion, and
oversimplification of complex narratives, with 65%
of the generated content showing significant mis-
alignment (Bu et al., 2025).

To mitigate these biases, several approaches have
been proposed. AlKhamissi et al. (2024) introduce
Anthropological Prompting, a method that encour-
ages LLMs to reason like cultural anthropologists by
incorporating both emic (insider) and etic (outsider)
perspectives (AlKhamissi et al., 2024). Similarly,
Li et al. (2024) propose CultureLLM, a fine-tuning
approach designed to integrate cultural knowledge
into LLMs, particularly for low-resource cultures
(Li et al., 2024). While these techniques improve
cultural alignment, their focus remains on modern
cultural settings, leaving gaps in historical artifact
contextualization across different time periods.

With the rise of Vision-Language Models
(VLMs), cultural research has expanded into multi-
modal AI, revealing persistent patterns of bias. Liu
et al. (2025) introduce CultureVLM to improve
cultural understanding in VLMs by addressing lim-
itations in recognizing non-Western symbols, ar-
tifacts, and gestures (Liu et al., 2025). They also
present CultureVerse, a large-scale dataset evaluat-
ing cultural reasoning, though it primarily focuses
on modern traditions and daily life. Similarly,
Romero et al. (2024) develop CVQA, a multilin-
gual VQA benchmark showing that state-of-the-art
VLMs struggle with culturally grounded reason-
ing in non-Western settings (Romero et al., 2024).
Extending this direction, ALM-Bench evaluates
LMMs across 100 culturally and linguistically di-
verse languages, offering a large-scale framework
for assessing multimodal inclusion (Vayani et al.,
2024). Despite these contributions, most datasets
focus on present-day cultures; even when historical
artifacts appear, they are often framed through mod-
ern national lenses rather than within their original
civilizations and time periods. This indicates a
significant gap in the representation of artifacts in
their authentic temporal and cultural contexts.

Efforts to bridge AI research with historical stud-
ies have led to the development of Historical Large
Language Models (HLLMs), trained on historical
texts to simulate past societies’ psychology and
value systems (Varnum et al., 2024). These models
aim to provide insight into long-term cultural evolu-
tion, but their reliance on text-only representations
limits their application in multimodal historical
studies. Similarly, Assael et al. (2022) introduce
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Ithaca, a deep learning model designed to assist
historians in restoring, geographically attributing,
and dating ancient Greek inscriptions, significantly
improving accuracy over traditional methods (As-
sael et al., 2022). While these works contribute to
historical AI, they primarily focus on text-based re-
construction rather than multimodal representations
of historical artifacts across civilizations.

TimeTravel fills this gap by providing an open-
source dataset of over 10k historical artifacts span-
ning 10 ancient world regions, both prehistoric
and historic, offering the first benchmark to eval-
uate LMMs on temporal-cultural understanding,
supported by expert verification. Unlike prior
datasets focused on contemporary cultural knowl-
edge, TimeTravel enables models to contextualize
artifacts within their historical era, ensuring a more
accurate representation of civilizations and their
material culture. Supported by domain special-
ists, the dataset enhances reliability and authentic-
ity, mitigating potential biases and inaccuracies in
model-generated interpretations. By integrating
both textual and multimodal perspectives, Time-
Travel advances historical-cultural research, en-
abling systems to better understand and reason
about artifacts within their original context.

C TimeTravel Samples Regional
Distribution

Figure 4 illustrates the balanced regional distribu-
tion of dataset samples based on archaeological
provenance. Greece holds the largest share at 18%,
followed by multiple regions, including the Roman
Empire, China, British Isles, Egypt, Iraq, and Iran,
each at 10%. Japan (9%), India (8%), and Central
America (5%) contribute smaller yet significant por-
tions. Overall, the dataset ensures diverse cultural
representation without dominance by any single
region.

Tables 5 to 14 present further details about
sample counts categorized by region of discovery,
section, and cultural affiliation.
The covered areas in our study are ordered as
follows:
Table 5 → “China”; Table 6→ “Central America”;
Table 7 → “Iran”; Table 8 → “India”; Table 9
→ “British Isles”; Table 10 → “Roman Empire”,
Table 11 → “Greece”; Table 12 → “Iraq”,
Tab. 13 →“Japan”, and Table 14 → “Egypt”.

Figure 4: Regional distribution of dataset samples based
on their archaeological provenance. Greece holds the
largest share at 18%, with a balance-like distribution
over regions.

D Annotation and Verification Process
The TimeTravel dataset underwent a rigorous
human-in-the-loop annotation and verification
pipeline to ensure high-quality, culturally grounded
content:

- Initial Descriptions: GPT-4o (version 0806)
was used to generate initial draft descriptions
based on expert-curated metadata from mu-
seum websites. These drafts served solely as
a starting point for further expert refinement.

- Expert Annotation: Ten expert annotators,
specializing in history and archaeology, were
organized into 5 pairs. Each pair annotated
approximately 2,500 artifacts over a two-week
period.

- Senior Review: Two senior controller annota-
tors manually reviewed the full dataset across
three dimensions: (1) informational accuracy
and adequacy; (2) linguistic clarity; and (3)
overall coherence.

- Consensus-Based Acceptance: Approxi-
mately 35% of samples were accepted directly
when both annotators approved. The remain-
ing 65% were revised or re-annotated based
on expert feedback or via re-annotation using
GPT-4o suggestions, which were subsequently
validated and finalized by human experts.

- Final Ground Truth: All dataset entries
included in the benchmark reflect human-
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verified and expert-edited descriptions, en-
suring the ground truth is not based on raw
model output.

- Evaluation Fairness: The same version of
GPT-4o used in the initial draft generation
was also evaluated in the finalized data set.
This ensured a consistent and fair comparison
between all models.

E TimeTravel Benchmark Examples
Figures 5 to 8 present examples from the TimeTravel
dataset. Figure 5 and 6 present artifact samples from
India and Central America (Maya) with its descrip-
tions. Figure 7 highlights the cultural and material
diversity of the dataset in historical periods and
regions, while Figure 8 compares model-generated
outputs.

Place China
Section Tang Dynasty
Culture Samples
Tang Dynasty; Sui Dynasty 1
Tang Dynasty; Ming Dynasty 3
Tang Dynasty; Ming Dynasty; Jin Dynasty; Yuan Dynasty 1
Tang Dynasty; Song Dynasty 1
Song Dynasty; Tang Dynasty 1
Liao Dynasty; Tang Dynasty 2
Tang Dynasty; Northern Wei Dynasty 1
Six Dynasties; Tang Dynasty 5
Tang Dynasty 1
Northern Qi Dynasty; Sui Dynasty; Tang Dynasty 1
Tang Dynasty; Liao Dynasty 3
Six Dynasties; Sui Dynasty; Tang Dynasty 1
Tang Dynasty; Five Dynasties; Northern Song Dynasty 381
Five Dynasties; Tang Dynasty 4
Tang Dynasty 628
Sui Dynasty; Tang Dynasty 5
Total 1039

Table 5: Culture Sample Counts from China (Tang
Dynasty Section).

Place Central America
Section Maya
Culture Samples
Classic Maya; Classic 3
Classic Maya; Late Preclassic Maya 64
Formative (Pre-Classic); Early Classic Maya 8
Late Classic Maya 23
Olmec; Maya 1
Classic Maya 275
Preclassic Maya 10
Classic Maya; Late Classic 2
Classic Maya; Olmec 1
Preclassic Maya; Classic Maya 2
Maya 95
Late Classic Maya; Late Classic 4
Total 488

Table 6: Culture Sample Counts from Central America
(Maya Section).

Place Iran
Section Persian
Culture Samples
Inju Dynasty 3
Middle Islamic; Seljuq Dynasty; Persian 1
Safavid Dynasty; Mughal Dynasty 1
Persian; Islamic 11
Persian; Late Islamic 3
Samanid Dynasty 27
Safavid Dynasty 395
Timurid Dynasty; Islamic 1
Safavid Dynasty; Post-Medieval 1
Mughal Dynasty; Persian 1
Ilkhanid Dynasty; Persian 3
Turkman Dynasty 3
Early Sasanian; Safavid Dynasty 1
Islamic; Safavid Dynasty 1
Ilkhanid Dynasty 192
Middle Islamic; Persian 6
Islamic; Qajar Dynasty 2
Persian; Safavid Dynasty 1
Safavid Dynasty; Persian; Islamic 2
Mughal Dynasty; Safavid Dynasty 1
Qajar Dynasty 193
Safavid Dynasty; Islamic 4
Persian; Mughal Dynasty 1
Islamic; Persian 2
Timurid Dynasty 35
Persian 108
Total 999

Table 7: Culture Sample Counts from Iran (Persian
Section).

Place India
Section Mohenjo-Daro
Culture Sample Count
Indus Valley Civil. 114

Section Mauryan
Culture Sample Count
Mauryan 17

Section Gupta Dynasty
Culture Sample Count
Gupta 737
Total 868

Table 8: Culture Sample Counts from India.

Place British Isles
Section Viking
Culture Samples
Viking; Carolingian; Late Anglo-Saxon 1
Viking; Early Anglo-Saxon; Mid. Anglo-Saxon 1
Middle Anglo-Saxon Viking; Anglo-Saxon 1
Celtic; Viking 14
Viking; Late Anglo-Saxon 19
Viking; Finno-Ugrian 1
Anglo-Viking 52
Viking 895
Carolingian; Viking 1
Viking; Medieval 1
Late Anglo-Saxon; Viking 1
Viking; Celtic 26
Total 1013

Table 9: Culture Sample Counts from the British Isles
(Viking Section).

Place Roman Empire
Section Roman
Culture Samples
Roman Imperial 610
Roman 3
Roman Provincial 436
Total 1049

Table 10: Culture Sample Counts from the Roman
Empire.
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Place Greece
Section Greek
Culture Sample Culture Sample
Greek; Hellenistic; Roman Imperial 4 Hellenistic; Roman Imperial 2
Attic 806 Middle Corinthian 5
Corinthian 41 East Greek; Classical Greek 1
Attic; Classical Greek 47 Transitional Corinthian 1
Middle Corinthian; Late Corinthian; Archaic Greek 7 Classical Greek; Attic 2
Proto-Corinthian 4 Classical Greek; Attic; Archaic Greek 1
Orientalising Period 14 East Greek Archaic II; Archaic Greek 1
Archaic Greek; Classical Greek 1 Attic; Western Greek 1
Archaic Greek 40 East Greek 23
Late Corinthian; Archaic Greek 11 Attic; Archaic Greek 318
Western Greek; Hellenistic 1 Attic; Archaic Greek; Classical Greek 12
Early Corinthian 8 Attic; Classical Greek; Archaic Greek 3
Laconian; Archaic Greek 10 Archaic Greek; East Greek 2
Classical Greek; Corinthian; Hellenistic 1 Rhodian 3
Late Helladic IIIB 2 Greek; Classical Greek 2
Transitional Corinthian; Archaic Greek 1 Early Corinthian; Archaic Greek 3
East Greek; Hellenistic 2 Middle Corinthian; Archaic Greek 11
Late Geometric IIA; Attic 1 East Greek; Orientalising Period 1
Archaic Greek; Attic 8 Late Minoan I; Late Minoan II 1
Late Minoan I 2 Archaic Greek; East Greek; North Ionian 1
Paestan 1 East Greek; Archaic Greek 237
Early Corinthian; Middle Corinthian; Archaic Greek 1 Greek; Hellenistic 2
Archaic Greek; East Dorian 1 Greek 3
Hellenistic 110 Western Greek 5
East Greek; Archaic Greek; Classical Greek 1 Roman; Hellenistic 3
East Dorian; Archaic Greek 2 Classical Greek 38
East Greek; East Dorian; Archaic Greek 11 Boeotian 25
Geometric Greek; Early Proto-Attic 1 Hellenistic; Classical Greek 2
East Greek; South Ionian 1 Geometric Greek 8
Greek; Classical Greek; Hellenistic 5 Hellenistic; Roman 4
Total 1869

Table 11: Culture Sample Counts from Greece (Greek Section).

Place Iraq
Section Mesopotamian
Culture Samples Culture Samples
Neo-Assyrian; Late Babylonian 9 Late Babylonian; Assyrian 1
Elamite; Third Dynasty Of Ur 1 Early Dynastic (Middle East) 1
Old Assyrian; Early Bronze Age III 1 Late Uruk 26
Isin-Larsa 3 Neo-Assyrian 406
Uruk 3 Late Uruk; Chalcolithic 1
Middle Babylonian; Neo-Babylonian Dynasty 1 Old Babylonian; Cypriot 1
Late Babylonian 20 Babylonian; Neo-Assyrian 1
Neo-Assyrian; Babylonian 1 Assyrian; Late Babylonian 2
Jemdet Nasr; Proto-Elamite 1 Halaf 38
Assyrian 7 Middle Assyrian 11
Jemdet Nasr 27 Third Dynasty Of Ur; Ubaid 1
Old Babylonian 41 Kassite 4
Babylonian 3 Neo-Babylonian Dynasty 2
Babylonian; Akkadian 1 Old Assyrian 2
Old Babylonian; Third Dynasty Of Ur 1 Ubaid 15
Early Dynastic (Middle East); Akkadian 2 Early Dynastic II 2
Isin-Larsa; Old Babylonian 1 Jemdet Nasr; Akkadian 1
Old Babylonian; Assyrian 1 Akkadian 102
Early Dynastic III; Akkadian 10 Old Babylonian; Old Assyrian 1
Isin-Larsa; Old Babylonian; Kassite 1 Uruk; Jemdet Nasr 3
Early Dynastic II; Early Dynastic III 1 Early Dynastic III 81
Mesopotamian 1 Late Babylonian; Neo-Assyrian 3
Assyrian; Ubaid 1 Third Dynasty Of Ur; Old Babylonian 2
Third Dynasty Of Ur 137 Neo-Assyrian; Phoenician 2
Middle Babylonian 11 Lagash II 1
Third Dynasty Of Ur; Isin-Larsa 4
Total 1000

Table 12: Culture Sample Counts from Iraq (Mesopotamian Section).
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Place Japan
Section Japanese
Culture Samples
Momoyama Period 6
Genroku Era; Hoei Era 1
Asuka Period 1
Muromachi Period; Momoyama Period 2
Late Kofun; Nara Period 1
Nara Period 12
Middle Kofun 13
Yayoi Period 5
Middle Kofun; Late Kofun 34
Edo Period; Kamakura Period 1
Oei Era 2
Kyowa Era; Oei Era 1
Edo Period; Momoyama Period 1
Jomon Period 16
Kyowa Era 1
Bunka Era 1
Bun’An Era; Bunsei Era 1
Muromachi Period 40
Asuka Period; Nara Period 1
Heian Period 9
Muromachi Period; Momoyama Period; Edo
Period

1

Muromachi Period; Buddhist 1
Meĳi Era 1
Hakuho Period 1
Showa Era 13
Early Kofun; Middle Kofun 26
Nanbokucho Period 2
Kofun Period; Edo Period 1
Edo Period 24
Kamakura Period; Meĳi Era 1
Kofun Period 419
Early Kofun 7
Wado Era 1
Late Kofun 179
Kofun Period; Asuka Period 5
Kamakura Period 26
Nara Period; Edo Period 1
Kofun Period; Nara Period 1
Kamakura Period; Muromachi Period 9
Heian Period; Kamakura Period 1
Total 869

Table 13: Culture Sample Counts from Japan (Japanese
Section).

Place Egypt
Section Ancient Egyptian
Culture Samples
6𝑡ℎ Dynasty 1
Late Cypriot; 18𝑡ℎ Dynasty 1
26𝑡ℎ Dynasty; Archaic Greek; Punic 1
Late Period; 30𝑡ℎ Dynasty 1
30𝑡ℎ Dynasty; Ptolemaic 15
22𝑛𝑑 Dynasty 69
18𝑡ℎ Dynasty; 19𝑡ℎ Dynasty 2
New Kingdom; 19𝑡ℎ Dynasty; 20𝑡ℎ
Dynasty

1

12𝑡ℎ Dynasty 1
26𝑡ℎ Dynasty; Archaic Greek; East
Greek; Hellenistic

1

New Kingdom 21
Late Predynastic; 1𝑠𝑡 Dynasty 2
25𝑡ℎ Dynasty 7
30𝑡ℎ Dynasty 128
Middle Kingdom 1
Late Period 96
18𝑡ℎ Dynasty; 21St Dynasty 1
21𝑠𝑡 Dynasty 171
19𝑡ℎ Dynasty; 20𝑡ℎ Dynasty 3
20𝑡ℎ Dynasty; 21St Dynasty 2
26𝑡ℎ Dynasty 257
19𝑡ℎ Dynasty 40
18𝑡ℎ Dynasty 95
1𝑠𝑡 Dynasty 7
Ramesside 21
23𝑟𝑑 Dynasty 1
22𝑛𝑑 Dynasty; 23R𝑟𝑑 Dynasty 3
26𝑡ℎ Dynasty; 27𝑡ℎ Dynasty 1
20𝑡ℎ Dynasty 25
Late Period; 26𝑡ℎ Dynasty 3
25𝑡ℎ Dynasty; Kushite 1
26𝑡ℎ Dynasty; Punic; Archaic Greek 1
27𝑡ℎ Dynasty 13
25𝑡ℎ Dynasty; 26𝑡ℎ Dynasty 1
Third Intermediate 47
Late Period; Archaic Greek 2
Late Period; Ptolemaic 5
29𝑡ℎ Dynasty 1
New Kingdom; Third Intermediate 1
Ancient Egypt 5
26𝑡ℎ Dynasty; 30𝑡ℎ Dynasty 1
Total 1056

Table 14: Culture Sample Counts from Egypt (Ancient
Egyptian Section).
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{
"id": 4621,
"Image ": "https :// media.britishmuseum.

org/media/Repository/Documents /2014
_11/5_17/
e572b5a1_adcb_4691_871c_a3da0123a3fa
/preview_01222265_001.jpg",

"Description ": "Silver coin.; Bust of
Skandagupta , facing to the right ,
wearing a decorated cap and collar
.; Peacock , with outspread wings
and tail , standing facing with head
to left. Surrounded by a border of
dots.",

"Production date": "456 -467 (about)",
"Find spot": null ,
"Materials ": "silver",
Technique ": null ,
"Inscription ": "Inscription type:

inscription Inscription position:
reverse Inscription language:
Sanskrit Inscription script: Brahmi
",

"Subjects ": "king/queen; peacock",
"Assoc name": "Named in inscription &

portrayed: Skandagupta",
"Culture ": "Gupta",
"Section ": "Gupta dynasty",
"Place ": "India"

}

for this artifact , we generated a
description such as:

{
"description ": "This silver coin from the

Gupta dynasty , produced approximately
between 456 -467 CE , features a
distinguished portrait of Skandagupta
on the obverse. Wearing an ornate cap
and collar , Skandagupta is depicted
facing right , encapsulating the regal
aesthetic of the period. The reverse
displays a majestic peacock , wings and
tail fully spread , elegantly poised

with its head turned to the left ,
bordered by a circle of dots adding to
the coin ’s decorative appeal. An

inscription in Sanskrit , using the
Brahmi script , adorns the reverse ,
providing linguistic and cultural
context. This artifact , emblematic of
Gupta artistry and power , underscores
the dynastic symbolism and reverence
for nature characteristic of this era
in Indian history ."

}

Figure 5: This entry represents a silver coin from the
Gupta dynastyfrom India, featuring a distinguished portrait
of Skandagupta on the obverse. GPT-4o generated a detailed,
context-aware description based on the available metadata,
highlighting its craftsmanship, ceremonial significance, and
cultural context.

{

"id": 7443,
"Image ": "https :// media.britishmuseum.

org/media/Repository/Documents /2015
_9/4_10/
b0f2152e_0ab5_4585_a7ca_a50900a611e8
/preview_1997_q_1879__a_.jpg",

"Description ": "Votive object in the
form of polished piece of jade with
six holes drilled in it.",

"Production date": null ,
"Find spot": "Excavated/Findspot: Tzimin

Kax (?); Excavated/Findspot:
Hatzcap Ceel (?); Excavated/
Findspot: Cahal Pichik (?)",

"Materials ": "jade",
"Technique ": "polished; drilled",
"Inscription ": null ,
"Subjects ": null ,
"Assoc name": null ,
"Culture ": "Classic Maya; Late

Preclassic Maya",
"Section ": "Maya",
"Place ": "Central America"

}
for this artifact , we generated a

description such as:
{
"description ": "This votive object , crafted

by the Classic and Late Preclassic
Maya cultures , is a testament to the
artistry and spiritual practices of
ancient Central America. Made from
polished jade , a material revered for
its symbolic and aesthetic value , this
artifact features six precision -

drilled holes , showcasing the
sophisticated techniques employed by
the Maya artisans. Although specific
inscription details are absent , the
object ’s polished surface and drilled
holes suggest it may have had
ceremonial or religious significance.
Unearthed at find spots such as Tzimin
Kax , Hatzcap Ceel , and Cahal Pichik ,

this piece provides valuable insights
into the ritualistic and cultural
engagements of the Maya civilization ."

}

Figure 6: This particular entry represents a polished jade vo-
tive object from the Classic and Late Preclassic Maya features
six precision-drilled holes, reflecting advanced craftsmanship
and likely ceremonial significance. Unearthed at sites like
Tzimin Kax, it offers insight into Maya rituals.
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Figure 7: Cultural and material diversity of TimeTravel dataset samples across civilizations and historical periods.
The dataset includes artifacts from Ancient Egypt, Greece, Mesopotamia, China, and Japan, spanning prehistoric to
medieval times. A wide range of materials, including ceramics, metals, and stone, highlights artistic, technological,
and societal influences, ensuring a comprehensive representation of historical craftsmanship and cultural heritage.
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Figure 8: Cross-model comparison of generated descriptions for TimeTravel dataset samples, highlighting variations
in detail and accuracy. It illustrates differences in descriptive depth across open- and closed-source models,
emphasizing the diversity in interpretative approaches and alignment with the ground truth.
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