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Abstract

Although Transformers-based architectures ex-
cel at processing textual information, their
naive adaptation for tabular data often involves
flattening the table structure. This simplifi-
cation can lead to the loss of essential inter-
dependencies between rows, columns, and
cells, while also posing scalability challenges
for large tables. To address these issues, prior
works have explored special tokens, structured
embeddings, and sparse attention patterns. In
this paper, we conduct a comprehensive analy-
sis of tabular encoding techniques, which high-
lights the crucial role of attention sparsity in
preserving structural information of tables. We
also introduce a set of novel sparse attention
mask designs for tabular data, that not only
enhance computational efficiency but also pre-
serve structural integrity, leading to better over-
all performance.

1 Introduction

Tabular data is a common data format (Cafarella
et al., 2008), with many downstream tasks such as
table question answering (Nan et al., 2022) or table
fact verification (Chen et al., 2019). Tables present
unique challenges to the research community due
to their structured format in rows and columns,
the heterogeneous nature of the data inside each
cell, as well as the vast diversity of tables a model
can encounter. In the last few years, transformer
models have become the dominant approach for
modeling this format.

However, most works flatten a table into a se-
quence of tokens treating it as a linear text (Lu
et al., 2024). This approach introduces critical lim-
itations for the preservation of crucial structural
features. Additionally, the quadratic complexity
of the self-attention mechanism in transformers
makes processing large tables computationally ex-
pensive (Tay et al., 2022). Furthermore, it has been
shown (Xie et al., 2022) that a variety of these
approaches suffer from over-fitting issues.
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Several approaches have been proposed to ad-
dress these challenges. One approach consists in
introducing special tokens to explicitly mark rows
and columns, as proposed in models like TAPEX
and OmniTab (Liu et al., 2021; Jiang et al., 2022).
Other approaches propose to capture structural re-
lationships between table elements by using struc-
tural embeddings (Herzig et al., 2020; Wang et al.,
2021) or biasing attention (Yang et al., 2022).

Despite these advancements, limited research
has explored how incorporating prior structural in-
formation affects the generalization performance
of table processing models. We argue that sparse
attention mechanisms, which have been used to
manage table size in models like MATE (Eisensch-
los et al., 2021), offer an untapped opportunity to
leverage structural information. While MATE pri-
marily focuses on managing table size, we propose
extending sparse attention patterns to encode struc-
tural relationships within tables, enhancing both
scalability and generalization capabilities.

In this paper, we systematically evaluate com-
binations of existing methods for preserving ta-
ble structure and introduce new sparse attention
masks specifically tailored to tabular data, as well
as new modules designed to retain structural infor-
mation. Our contributions are threefold:

* Comprehensive Evaluation: We systemati-
cally assess all existing table encoding tech-
niques from the literature, as well as our newly
introduced methods, across multiple dimen-
sions of generalization.

* Structural Encoding Guidelines: Based on
our findings, we provide practical recom-
mendations for encoding table structure in
transformer-based models. Specifically, we
show that 1.) Incorporating at least one form
of absolute structural encoding enables mod-
els to learn table-specific rules, leading to
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improved generalization. 2.) Sparse atten-
tion masks, which selectively allow attention
between specific table cells, significantly en-
hance generalization performance.

¢ A Novel Sparse Attention Mask for En-
hanced Efficiency: We demonstrate that our
proposed sparse attention masks, when in-
tegrated with optimized self-attention mech-
anisms, achieve significant computational
speedups. These masks play a crucial role
in scaling transformer-based models to effi-
ciently handle large tables.

2 Related Work

2.1 Table models limitations

Current table processing models exhibit several key
limitations that make them challenging to deploy
in real-world applications.

Generalization Issue: First, table models do not
generalize well. As noted in (Xie et al., 2022),
table question-answering are easily perturbed by
simple structural modifications, such as row or
column permutations. In response to these chal-
lenges, new datasets focusing on robustness have
emerged (Zhou et al., 2024; Zhao et al., 2023).
These datasets introduce other perturbations to ta-
ble structures, further exposing the severe general-
ization limitations of state-of-the-art models, but
do not explain the causes.

Table Size Issue: The quadratic complexity of
the self-attention mechanism in transformers poses
a significant limitation when dealing with large
inputs (Tay et al., 2022; Ye et al., 2023). Mod-
els struggle to process large tables efficiently and
tables must be truncated, leading to sub-optimal
performance. (Ye et al., 2023) further emphasizes
these challenges, showcasing the difficulties trans-
formers face when handling extensive table data.
Research from (Patnaik et al., 2024) proposes ad-
dressing this problem by weighting relevant parts
of the table related to the answer, but this solution
requires a complex pipeline with two interacting
models. Another solution, sparse attention, as pro-
posed in MATE (Eisenschlos et al., 2021), allows
handling of larger tables. Their work however did
not explore many sparsity patterns and their inter-
action with other factors.

LLM Problems: The above observations can
be extended to Large Language Models (LLMs).
(Sui et al., 2024) demonstrates that even billion-
parameter LLMs struggle with simple tasks, such

as counting rows in large tables. Additionally, find-
ings from (Liu et al., 2024) show that structural
variations in tables containing the same content can
lead to a significant drop in model performance,
particularly in symbolic reasoning tasks. Our ap-
proach can assist recent advances in LLMs, which,
although typically based on decoder-only architec-
tures, are beginning to integrate a table-specific
encoder (Zha et al., 2023).

2.2 Leveraging table structure

Numerous methods have been developed to pre-
serve the inherent structure of tables. The predomi-
nant approach in the literature involves linearizing
and concatenating the table with the query, while at-
tempting to retain its structural information (Dong
et al., 2022).

Input Token Structure: A widely used method
introduces special tokens to signal the table struc-
ture (Liu et al., 2021; Jiang et al., 2022; Lin et al.,
2020). The idea behind this approach is to preserve
the table’s structural information by adding special
tokens to delimit columns, rows, and cells. These
tokens allow the model to infer which cells corre-
spond to specific rows or columns.

Structured Embeddings: Another approach in-
volves incorporating specific segment embeddings
to help models access and manipulate table struc-
ture information. (Shi et al., 2022; Herzig et al.,
2020; Wang et al., 2021) propose to use column and
row-specific embeddings to encode the position of
each token within the table. (Wang et al., 2021) ex-
tends this approach with tree-based embeddings to
capture hierarchical relationships within the table’s
structure, including multiple headers.

Bias Attention: (Zayats et al., 2021; Yang et al.,
2022) propose biasing the attention mechanism to
incorporate prior knowledge about table structure
directly into the model’s attention layers.

Sparse Attention: The use of attention masks, that
consider the structure of tables, has been proposed
in (Eisenschlos et al., 2021). Masking attention be-
tween tokens of different columns or rows allows
to integrate table structure by architecture design.
This was however introduced in (Eisenschlos et al.,
2021) for computational efficiency purposes only.
In this paper, we break down all the methods dis-
cussed in this section into individual components
and systematically assess their interactions.
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Figure 1: Overview of the encoding pipeline (blue) along with the different steps where table-specific information

can be injected (red)

2.3 Generalization experiments

The generalization capabilities of transformers
have been a topic of sustained interest within the
research community (Hupkes et al., 2023). We list
below the different challenges.

Structural Generalization examines how well a
model adapts when changing its input structure.
Previous works, such as (Saparina and Lapata,
2024), have focused on how small variations affect
performance. However, few studies have extended
this to larger tables as we do in this work.
Compositional Generalization refers to the ability
to recombine known elements to handle new inputs.
While there has been substantial work in logical
problem domains (Dziri et al., 2024; Zhang et al.,
2022), how to handle data tables remains under-
explored. To the extent of our knowledge, the only
work on tables regarding compositional generaliza-
tion is that of (Rai et al., 2023), who introduces
improved tokenization strategies for tables.
Robustness of Generalization: Robustness, par-
ticularly in response to adversarial perturbations, is
a critical area of study in table question-answering.
(Zhao et al., 2023; Chang et al., 2023) have devel-
oped datasets to test specific robustness properties.
In this work, we extend these efforts by systemati-
cally analyzing model sensitivity to cell repetition.

3 Models and Structural Encoding
Components

In this section, we first present our backbone mod-
els before specifying various independent methods
to encode data tables (Figure 1).

3.1 Backbone

We adopt BART (Lewis, 2019) as the baseline
model for our experiments. Following (Liu et al.,
2021), (Jiang et al., 2022) who proved that BART
can obtain very strong results on table benchmarks.
We follow standard table linearization strategies,
by concatenating rows sequentially, with the query
pre-pended. To the best of our knowledge, this
remains the only linearization approach proposed
in the literature. Besides the methods described
below, we modify BART using a Segment Embed-
ding (Devlin, 2018) that distinguishes the question
from the rest of the sequence (i.e., the table). For an
illustrative example, refer to Figure 9 (in appendix).
All models share this common structure ensuring a
fair and consistent comparison across models.

3.2 Special Tokens (T)

Special tokens can be introduced in the lineariza-
tion to encode structural information in the input
sequence. We experiment with three types: TO (no
tokens), T1 (Row Indexed - Cell Tokens), and a
novel variant T2 (Row - Column - Cell Tokens).
T1, used in models like TAPEX (Liu et al., 2021),
marks each start of row with [ROW n], where n is
the row number, and each new cell by a cell sepa-
rator [CELL]. T2 is proposed to explore the need
for absolute markers of row numbers, which can
hinder generalization abilities regarding permuta-
tion invariance. It also introduces a column special
token [COL], which can be leveraged by structural
masks described below.
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3.3 Structural Embeddings (E)

An alternative to using special tokens is to add
structural Embeddings to different segments of
the input. In this paper, we compare EO (No
Structural Embeddings) with E1 (Row Column
Embeddings), which corresponds to the Structural
Embeddings introduced in TAPAS (Herzig
et al., 2020). In the latter, each token embedding
X; is augmented with structural ones, such as:
Xi=X; + Eiow(ri) + Ecol(ci), where Eigy,, and
FE. are learnable embeddings specific to the
row and column indices, allowing the model to
differentiate between cells based on their position.

3.4 Cell/Table Positional Embedding (PE)

We also explore two distinct approaches for
positional embedding:

Table Positional Embedding (TPE): the standard
approach used in transformers like BART (Lewis,
2019), applying a global sequence of positional
embeddings across the entire input sequence.

Cell Positional Embedding (CPE): is a table-
specific method where the positional embeddings
index resets after each cell (Eisenschlos et al.,
2021; Yang et al., 2022)

Note that throughout this paper, we consistently
distinguish between absolute methods, which as-
sign fixed positional values to tokens based on their
location in the input (TPE, E1, T1) and relative
methods, which remain independent of row and
column order (the rest).

3.5 Bias Attention (B)

We use a set of learnable biases B, added to
classical transformer’s attention scores (before
the softmax operation), to incorporate relational
information from the table in contextual encoding.
We use the code from TableFormer (Yang et al.,
2022) for the bias creation, where the attention
bias B; ; for the attention of 7 onto j depends on
the relationship between tokens ¢ and j (i.e. cell to
column header, etc.). More details about attention
biases are given in appendix (sectionB.1). We note
B1 for the presence of Bias and BO the absence.

3.6 Sparse Masking in Attention (M)

We also experiment the use of sparse attention
masks to restrict transformer’s attention between

components of the table, depending on its struc-
ture. This is done by adding a mask M to all at-
tention scores, before the softmax function, with
M; ; = —oo if the attention between ¢ and j is
masked. We propose six different sparse masks,
ranging from M1 (the least sparse, corresponding
to MATE) to M6 (the most sparse), with MO rep-
resenting the case where no sparse attention is ap-
plied. Some of these sparse masks necessitate the
structural tokens T2 (section 3.2). These masks are
marked with * to differentiate them from the others.
Full details of our mask schemes can be found in
Table 1, and a more visual example is provided in
appendix (Figure 8).

Attention M1 | M2 | M3 | M4* | M5* | M6*
G © Wk X | X | X | X | X | X
4 < g X | X | X| X | X | X
Wre ks £ Wet e k! X X X

Wy ek <> Wy K/ X X X

Wy 4> Wy ek X X X
We 4 Wy ks X X X
Wre ¢ Wy ek X X X
W <> Wr ek X X X

Table 1: Summary of allowed attention (<) patterns
for different sparse masks. We denote ¢; a query token,
Wy @ token at position k in the cell located row r
/ column c. Then, w; . <> w, c indicates that at-
tention is not masked between tokens within the same
column across different rows. Additionally, for T2, w.,
Wy, Wr,c and wr denote the column ¢, row r, cell (r, ¢)
and table tokens respectively.

4 Experimental Setup

In addition to the real-world datasets introduced
later, we use synthetic data for a more fine-grained
impact analysis of the encoding factors. These
synthetic datasets are designed to assess the gen-
eralization capabilities of the models by evaluat-
ing their robustness to missing values, structural
changes, compositional generalization of queries,
and resilience to correlation between cell contents
often found in real world datasets (referred to as
mixability in the following).

4.1 Synthetic Data Generation

A dataset 7 corresponds to a set of triplets
(T,Q, A), where T is a table, ¢ is an SQL query,
and A is the target answer.

Table Generation: Each table T is a matrix, N.L
rows and NCT(;Z columns, both uniformly sampled

from U(6, 8) for each sample. Each cell (7, ¢) in
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T' is a sequence of tokens wy. ., resulting from
the tokenization of a random integer, sampled from
UV)with vV ={0,1,...,999}.

Query Generation: SQL queries are based on 10
common patterns from SQUALL (Shi et al., 2020),
focusing on simple selection tasks, that are instanti-
ated according to contents of data they are applied
on. We use the Fuzzingbook library' to generate
a set of variations from each SQL query template.
For details about the SQL templates used, please
refer to the appendix (section B.2). It is worth not-
ing that SQL is a natural choice for studying Table
Question Answering due to the structured align-
ment between text and SQL queries (Wang et al.,
2019).

4.2 Disturbances from In-Domain Data

Structural Generalization: To evaluate the
model’s robustness to structural changes, we test
its performance on tables of varying sizes, both
larger and smaller than those seen during train-
ing. The model is tested on tables with dimen-
sions outside the training range, i.e. N1, N1 €
{4,5,9,10, 11, 12}.

Consistency Robustness: Token repetitions make
the task harder since the model cannot rely on the
token semantic. In our experiments on consistency
robustness, we select a random word vg from our
vocabulary v € V. For each cell, we replace its
content with vg with a probability . We use either
R = 0.2 or R = 0.4 (with uniform probability).
Compositional Generalization: During training,
we use an ensemble of 10 SQL templates (see Sec-
tion B.2 in appendix). These templates include ba-
sic patterns such as SELECT cx FROM table WHERE
cy IN ... or SELECT cx FROM table LIMIT k
To evaluate compositional generalization, we use
queries that combine these known components in
new ways, such as SELECT cx FROM table WHERE
cy IN ... LIMIT k. This setup allows us to assess
the model’s ability to generalize to more complex
queries by combining simpler ones.

Mixability Robustness: We use a parameter S €
[0, 1] to control how deterministic the table content
generation is. With §' = 1, a cell content if fully
determined by the previous cells in the row, while
for S = 0, we use a random generation (same table
generation process as in the training set). We detail
the generation procedure in appendix (Section B.3).

"https://github.com/uds-se/fuzzingbook

4.3 Real Datasets and Evaluation

Finally, we use the following real-world datasets
in our experiments. WikiTableQuestions (WTQ)
(Pasupat and Liang, 2015) is a challenging bench-
mark for table question answering, as it includes
numerical reasoning questions, tables with miss-
ing values, and noisy columns containing a mix
of text and numerical cells. WikiSQL (WSQL)
(Zhong et al., 2017) is another table-based ques-
tion answering dataset, where we use the provided
SQL supervision to train models, mapping tables
and questions to execution results. This dataset is
considered to be simpler than WikiTableQuestions,
as it more closely follows structured SQL queries.

4.4 Training pipeline

We initialize our models using pre-trained BART
weights (Lewis, 2019). Our SQL execution proce-
dure serves as a common technique for intermedi-
ate pre-training on tabular data (Liu et al., 2021).
For our training procedure on artificial datasets, we
run up to 200k steps with an early stopping pa-
tience of 15 to ensure convergence, as suggested
by (Csordas et al., 2021). We use a batch size
of 8, a context length of 512, and a learning rate
of 3 x 107°. For fine-tuning on real datasets, we
adopt the same hyperparameters as described in
(Liu et al., 2021).

5 Experiments

We evaluate our models using denotation accuracy
(DA) on both real and synthetic datasets. Denota-
tion accuracy measures correctness by comparing
ground-truth and predicted outputs, considering a
prediction correct if the sets of values match, i.e.
irrespective of order.

5.1 ANOVA Decomposition of Structural
Factors in Tabular Encoding

We use ANOVA to evaluate the impact of structural
components (Table 2).

Main Effects: Positional Embeddings (PE), and
Tabular Structure Embeddings (E) significantly af-
fect model performance (and have a strong inter-
action PE x E). Positional embeddings exhibit the
strongest effect (n> € [0.18,0.27]), where TPE
consistently outperforms CPE. Tabular structure
embeddings also improves accuracy (E1 > EO,
n* € [0.15,0.30]). In contrast, sparse tokens (T),
Bias (B) and mask (M) — when considered inde-
pendently — exhibit no significant impact on model
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performance. These results indicate that absolute
table encoding methods, such as TPE and RCE,
are critical for table-based question answering, as
models struggle to generalize with purely relative
encodings. We hypothesize that without CPE or
TPE, the decoder struggles to locate relevant infor-
mation.

Interaction Effects: Mask M has a strong effect
on performance when combined with specific po-
sitional PE or structural embeddings E. For ex-
ample, TPE consistently outperforms CPE when
using masks (e.g., T2 with a mask). Furthermore,
there is a notable interaction between PE and E
(n? €[0.19,0.26)).

Non-significant Factors: Special tokens (T) and
Bias (B) do not significantly impact performance,
either alone or in interactions (except Bias with
Mask; see Appendix C.4). This suggests that to-
ken structure encoding is less critical compared
to sparsity mechanisms or positional embeddings,
aligning with prior work emphasizing the role of
better structure-aware representations.

Table 2: ANOVA results showing the effect sizes (n?)
and p-values for each factor on performance across dif-
ferent tasks (In Domain, Structure, Consistency, Com-
positional, and Mixability). Significant effects are indi-
cated with bold text if (p < 0.05).

Factor In Domain Structure Consistency Compositional

n? (p-value) n? (p-value) 7? (p-value) n? (p-value)
T 0.00 0.00 0.00 0.00
M 0.04 0.07 0.01 0.00
PE 0.19 0.27 0.19 0.26
B 0.01 0.01 0.00 0.00
E 0.20 0.15 0.30 0.26
™ 0.00 0.01 0.01 0.02
TxPE 0.00 0.00 0.00 0.01
TxB 0.00 0.00 0.00 0.00
TxE 0.00 0.00 0.00 0.00
MxPE 0.08 0.05 0.07 0.04
MxB 0.02 0.04 0.02 0.01
MxE 0.09 0.04 0.07 0.04
PExB 0.01 0.00 0.00 0.00
PExE 0.19 0.21 0.18 0.26
BxE 0.01 0.01 0.01 0.00

5.2 Impact of Structural Encoding:
Performance Differences Across Models

We analyze further key ANOVA findings by focus-
ing on the most significant factors (Figure 2). The
figure illustrates performance differences between
two treatments of a factor (e.g., PE), while keep-
ing other factors (e.g., T, E, M, B) constant. First,
sparse masking M1 consistently improves perfor-

M1 - MO

TPE - CPE El - EO

“ﬁ

00 01 02 03 04 05

M1 - MO

mom

00 02 04 06 08 00 02 04 06 00 02 04 06 08
M1 - MO TPE - CPE El - EO

Compositional

.

00 01 02 03 04 05
TPE - CPE

Consistency
p—

Structure

Figure 2: Denotation Accuracy differences between
two structural encoding components (left — right) while
keeping all other factors unchanged.

mance over MO. This supports the hypothesis that
restricting cell attention in table encoding mitigates
spurious correlations and enhances generalization.
Second, absolute encoding generally yields better
generalization than relative encoding (TPE > CPE
and E1 > E0). Although counterintuitive, since
relative encodings should help capturing table in-
variance (e.g. swapping two rows or columns), this
is likely due to the task nature, where SQL query
interactions with table during question answering
require absolute embeddings to capture rule-based
relationships effectively. We conduct the same ex-
periments for tokens and bias, with results provided
in Appendix C.5.

5.3 Validating Structural Encoding Insights:
Consistency Across Synthetic and
Real-World Data

To validate our findings on real-world data, we
evaluated the WikiSQL dataset, testing 120 model
configurations (see Table 3).

Performance of M1: Overall, the M1 mask outper-
forms the baseline (MO0) across all configurations,
demonstrating that introducing a sparse mask sig-
nificantly enhances generalization. More experi-
ments on M1 can be find in Appendix C.2.
Performance of Other Masks: While M1 offers a
good trade-off between sparsity and performance,
other masks such as M5* or M3, despite being
significantly sparser (see Figure 8 in the appendix),
still outperform MO by a wide margin and achieve
comparable performance to M1. Notably, these
masks are at least twice as sparse as M1, with M6
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having 99% of its attention masked.

Absolute vs. Relative Encoding: Some configu-
rations failed to converge due to overfitting, partic-
ularly when absolute information is absent (CPE,
E0). Without absolute positional cues, the model
struggles to differentiate cells, leading to poor gen-
eralization. This aligns with our ANOVA analysis
on synthetic data — see Appendix figure C.3 for
more details.

5.4 M3: An Efficient Sparse Attention Mask
for Faster and Improved Performance

In this section, we focus on M3 which has a very
good performance overall, along with a high spar-
sity level, and study its impact on model efficiency.
For this experiment, we use FlexAttention and
FlashAttention (FA2) (Dao et al., 2022), both op-
timized for sparse matrix operations. FlexAtten-
tion, a PyTorch module specifically designed for
efficient sparse attention computation, performs op-
timally with block-based sparse attention masks,
aligning well with the structure of M3 (see Figure 8
in appendix). The results are presented in Figure 3.
The cumulative distribution of WikiTableQuestions
(blue curve) reveals that many tables exceed 1024
tokens, the common limit in fine-tuned models, re-
stricting encoding to 80% of WikiTableQuestions.
Sparse masks mitigate this limitation. We assessed
Forward and Backward Speedup using M3 across
sequence lengths of 1024, 2048, 4096, 8192, and
16,384 tokens. Speedup is computed as the ratio
of the accelerated masked attention (either Flex or
Flash) to the standard PyTorch Sdpa attention. Up
to 4096 tokens, FA2 is the most efficient, achiev-
ing a 2x speedup over standard attention at 2048
tokens. For longer sequences, FlexAttention reach
a 50x forward speedup and (16 x for backward)
when encoding tables of 16,384 tokens.

Having established M3 computational efficiency,
we now evaluate its empirical performance on syn-
thetic and real datasets, comparing against litera-
ture baselines and our own implementations (see
Table 4). From Table 4, we observe that the M3
mask performs well on the ALL dataset, which
represents the average results across all our syn-
thetic datasets, and remains competitive on Wik-
iSQL. This highlights its effectiveness as a candi-
date for ultra-sparse table encoding. Additionally,
compared to existing models, our M3 implemen-
tation maintains strong performance while offer-
ing significant computational advantages, making
it a promising solution for scalable table-based

1.0 7 7 ; : 196 6384/
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Figure 3: Cumulative Distribution of Sequence Lengths
and Relative Computation Speedup: The primary y-
axis (left) represents the cumulative distribution of se-
quence lengths in log scale, while the secondary y-axis
(right) shows the relative computation speedup for Flex-
Attention and FlashAttention2 across different sequence
lengths in x-axis.

question-answering tasks.

5.5 Enhancing Generalization with Sparse
Attention: The Impact of Non-Random
Table Structures

We have identified key factors for encoding tables,
and now we explore another critical element for
generalization, namely table structure determin-
1ism. In datasets from the literature, the number of
unique tables is relatively low. For instance, Wik-
iTableQuestions contains only 2k unique tables in
a training set of 11k examples. To investigate the
impact of deterministic table structures, we com-
pared model performance when trained on either
fully deterministic or randomized data.

Figure 4 compares the performance of two mod-
els, TAPAS and TAPAS+M1, across varying lev-
els of mixability level (section 4.2). The top row
shows TAPAS results, while the bottom row dis-
plays TAPAS+M1 results. Both models are trained
on data with maximum mixability (S=1) and a re-
stricted number of rows and columns, and tested
on datasets with decreasing mixability (0.8 to 0)
and larger tables.

We observe that TAPAS exhibits significant
overfitting, with performance declining both “In
Domain” (outlined in red) and “Out of Domain’
(larger tables). In contrast, the TAPAS+M1 model
(bottom row) demonstrates resilience to these shifts.
Even at lower mixability levels, TAPAS+M1 main-
tains high and stable accuracy, indicating that the
sparse mask (M1) helps mitigate overfitting and

bl
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Table 3: This table summarizes all possible model combinations from the literature (T, E, PE, M, B) as well as our
proposed configurations (M2, ..., M6, and T2) evaluated on the WikiSQL dataset.

PE El T MO M1 M2 M3 M4+ M5* M6*
BO Bl BO Bl BO Bl BO Bl BO Bl BO Bl BO Bl
T2 | 26.1 386 813 81.6 302 297 580 563 299 299 614 575 292 288
EO TI1|261 266 823 815 300 30.0 57.1 54.7
CPE TO | 22.7 23.1 79.6 76.8 29.8 295 365 344
T2 | 7577 73.0 82.1 81.6 785 776 81.8 812 792 786 819 812 293 29.6
El T1]79.0 79.0 822 &8l.5 785 78.0 824 &8l.4
TO | 29.8 288 79.2 783 772 780 71.0 66.2
T2 | 794 796 82.0 82.0 789 782 787 79.1 80.1 800 79.0 785 805 804
EO T1]795 79.6 819 824 793 788 792 795
TPE TO | 70.6 71.4 825 825 793 789 753 739
T2 | 794 793 822 823 78.6 780 798 794 805 805 79.7 793 804 79.8
El T1]79.6 79.7 819 813 79.0 785 79.1 799
TO | 774 775 826 826 792 79.1 772 768

PAS -

S=1

TAPAS - 5=0.8

TAPAS - S=0.4

Table 4: Comparison of Model Performance on the
Synthetic dataset. "ALL" represents the average score
across Structure, Compositionality, and Robustness,

alongside WikiSQL test data.

Model ALL WSQL
Literature Models
MATE (Eisenschlos et al., 2021)  79.2 82.6
TableFormer (Yang et al., 2022) 23.1 60.5
TAPAS (Herzig et al., 2020) 77.4 78.0
TAPEX (Liu et al., 2021) 79.5 74.7
Our models
T2 MO TPE B El 79.3 78.5
T2 M3 TPE B El 79.4 80.3

improves generalization to out-of-domain data.

6 Conclusion and Recommendations

We conducted a comprehensive analysis of encod-
ing techniques for data tables, highlighting the im-
portance of sparse attention and absolute positional
encoding in model generalization. Our study sys-
tematically evaluated table encoding components,
as well as their interactions, providing insights
for improving table representation in Transformer-
based architectures.

Our findings show that sparse attention masks
reduce spurious correlations and enhance structural
representation. In particular, we propose the mask
M3 that achieves a good efficiency-effectiveness
trade-off. Additionally, we show that absolute po-
sitional encoding (TPE, E1) is essential, as models
relying solely on relative encoding struggle with
generalization. Beyond accuracy, sparse masks like
M3 achieve up to 50x forward and 16x backward
speedup for large tables, enabling efficient scaling
for real-world applications.

9 10

IN Domain’

5 6
Columns. Col

56 7 8 9 1011 12 7 8 9 101 12
lumns. lumns

TAPAS+M1 - S=1 TAPAS+M1 - S=0.4

10112
D

7 8 45 67 8 9101112 4 5 6 7 8 91011 12
Columns Columns. Columns

Figure 4: Results for TAPAS and TAPAS+M1 under
varying Mixability levels (S). All models have been
trained on data with S=1, where the transition matrix
for table creation is fully deterministic, and tested on
increasingly challenging similarity levels, down to S=0,
where the transition matrix is uniformly random. For
this experiment, we exclusively used the “SELECT cx
WHERE cy = vy” template SQL query.

Overall, our work provides a foundation for ef-
ficient and scalable transformers for information
extraction from tables of data. High-quality en-
codings have proven essential when integrating
these representations into LLMs, particularly in
domains like visually rich document understand-
ing (Ma et al., 2024; Lee et al., 2023). Future
works will investigate how to leverage our findings
in decoder-only LLM architectures.

2396



7 Limitations

Our study highlights the effectiveness of abso-
lute table encoding for generalization in question-
answering tasks. While relative encoding is of-
ten expected to enhance generalization, current
approaches may not fully capture rule-based re-
lationships in SQL queries. This opens an exciting
direction for future work to develop improved rel-
ative encoding mechanisms that better integrate
structural rules.

Additionally, while our experiments primarily
rely on synthetic datasets, we include prelimi-
nary evaluations on real-world data (WTQ and
WSQL). Expanding real-world benchmarks will
further strengthen our findings and enhance appli-
cability across diverse scenarios.

Lastly, our analysis focuses on the BART model
as a baseline. Extending this work to other encoder-
decoder architectures and decoder-only models
presents an exciting opportunity for future research,
potentially extending the impact of our approach.
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A Reproductibility statement

All experiments in this paper were conducted us-
ing publicly available datasets and open-source li-
braries, including (Pasupat and Liang, 2015; Shi
et al., 2020; Zhong et al., 2017). Detailed descrip-
tions of model architectures, hyperparameters, and
training configurations are provided in the section
4.4. To implement our experiments, we used the
transformer library (Wolf, 2019). The code will be
published upon publication. All experiments were
conducted on work stations with 0GB NVIDIA
A100, 16 or 32GB NVIDIA V100 SXM2-HBM2
GPUs.

B Methodology Details

B.1 TableFormer Bias

In TABLEFORMER, attention biases are designed
to handle various table-text structural relationships,
using 13 types of biases to capture row, column,
header, and sentence relationships in tabular data.
These biases include mechanisms for recogniz-
ing same row and column information, linking
cells to their respective headers, and incorporating
sentence-to-cell grounding to enhance the under-
standing of tables in context. Each bias type is then
associated with a learnable scalar. For more details,
see (Yang et al., 2022).

B.2 SQL Query for training.

The following SQL query templates were used to
generate synthetic data for our experiments. Each
template includes various possible choices for con-
ditions, making them versatile and applicable to
different table structures:

Values
T1
Input Token Structures T2

TO

MO
M1
M2
M3
M4
M5
M6
TPE
CPE
Bias
No Bias
El

EO

Parameter

Mask Sparsity Levels

Positional Embeddings

Encoding Structure Bias

Tabular Structure Embeddings

Table 5: Overview of the experimental parameters used
in our study. These include input token structures, mask
sparsity levels, positional embeddings, encoding struc-
ture biases, and tabular structure embeddings.

Table 6: State-of-the-art models and structural encoding
methods.

Model T El PE B M
MATE TO E1 CPE BO Ml
TableFormer TO EO CPE BO MO
TAPAS TO E1 TPE BO MO
TAPEX Tl EO TPE BO MO

e SELECT cx WHERE cy =|!= vy AND|OR cz
=|!= vz AND|OR cw =|!= vw AND|OR cl
=|!= vl

e SELECT cx WHERE cy =|!= vy AND|OR cz
=|!= vz AND|OR cw =|!= vw

e SELECT cx WHERE cy =|!= vy AND|OR cz
=|!= vz

* SELECT cx WHERE cy =|!= vy

e SELECT cx

* SELECT cx LIMIT k, where k € {1,2,3}
e SELECT cx WHERE cy = (SELECT cy WHERE
cy = vy)
e SELECT cx WHERE cy IN (vy | vy, vy |
vy, vy, vy)
B.3 Generating tables for mixability

To generate tables where cell content is more or
less determined by the previous cells in the row,
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Figure 5: This figure highlights the differences between
two structural encoding components while keeping all
other factors unchanged.

we use two base transition matrices: a determinis-
tic transition matrix M9®" and a uniform matrix
M where transitions are equally probable. The
transition matrix for our experiments is a weighted
combination of these two matrices:

Mtransi - 9. Mdeter + (1 _ S) . Munif

During training, we set S = 1 for structured tables,
while during testing, we use S = 0 to introduce
randomness, simulating real-world data variability.

C Additional Results

C.1 Performance Differences Across Models

We report in Figure 5 the effect of special tokens
(T) and bias (B) on the three synthetic datasets.

C.2 Mask Sparsity Effects

Based on the ANOVA results and the strong sig-
nificance of mask sparsity on accuracy variation,
we selected compositions of factors from the litera-
ture to evaluate against the sparse mask M1, across
both generated and real-world datasets (WikiSQL,
WikiTableQuestions). M1 was tested individually
because it had previously demonstrated the best
overall performance in evaluations. As shown in
Table 7, the results demonstrate that adding the M1

mask leads to substantial performance improve-
ments in both in-domain, out-of-domain general-
ization tasks and real-world-datasets.

Across all out-domain data (Structure, Robust-
ness, Compositional, Mixability), the addition of
the M1 mask yields significant gains, with improve-
ments reaching over 10%. For example, the TO/M1
model outperforms the TO/MO model by 9.7 points
in robustness and 5.6 points in compositional gen-
eralization. This indicates that sparse masks help
the models generalize better.

For real datasets, the sparse mask again improves
performance. The TO/M1 model achieves 46.8%
on WikiSQL, compared to 34.6% for the TO/MO
model, representing a significant 12.2-point gain.
This underscores the practical benefit of sparse
masks in real-world applications, where data distri-
butions can be more variable and noisy.

Overall, this experiment highlights the critical
role of mask-based sparsity (M1) in improving
model performance across a wide range of tasks
and datasets. The results not only confirm the hy-
pothesis that sparse masks enhance generalization
but also show that these gains extend across both
synthetic and real-world datasets, making them a
valuable addition to existing models in the litera-
ture.

C.3 Alignment Between Synthetic and Real
Data:

Figure 6 assesses consistency across datasets. Red
markers indicate perfect agreement, with standard-
ized means comparing encoding effects across syn-
thetic and real data. A strong correlation confirms
alignment, except for M6, where extreme sparsity
prevents the model from recognizing table vocabu-
lary, degrading performance.

C.4 Bias and Sparse Masks.

As the ANOVA results show (see Table 2), the in-
teraction between bias and mask has a significant
effect on structure. To analyze this interaction ef-
fect, we average the bias and mask results across
interaction configurations, as shown in Table 8. We
observe that the models that benefit the most from
the addition of bias are those using no mask (MO).
For all other masks, adding bias has only a minor
effect.

T
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Table 7: Comparison of model performance on generalization test sets, highlighting the effect of mask M1 across
both in-domain and out-of-domain tasks (Structure (Struc), Mixability (Mixab), Consistency (Consi), Compositional
(Comp) and real datasets (WTQ, WSQL). Models with mask M1 generally show improved accuracy, particularly in
robustness and compositional generalization, compared to models without the mask (MO0). This demonstrates the
impact of mask-based sparsity on handling diverse data distributions.

Model InDomain Mixab Consi Comp Struct | WSQL WTQ
TO0/MO/TPE/B0/E1apas 99.8 98.9 76.3  62.8 66.3 84.8 34.6
T0/M1/TPE/B0/E1 99.9 98.8 884 628 76.0 87.6 46.8
T1/MO/TPE/B0/EOapex 98.4 98.9 713 629 66.3 87.1 52.4
T1/M1/TPE/BO/E0 99.8 99.1 90.2  62.6 71.5 86.0 51.4
TO0/MO/TPE/B1/EObietormer 99.9 98.5 80.2 627 78.0 83.3 424
TO/M1/TPE/B1/E0 99.8 99.2 86.2 62.4 81.1 86.9 46.5
1.0{ o Structural Encoding fp': ever, using standard positional embeddings (TPE)
7=~ ldeal Agreement 0 demonstrates better performance on the structure
0.8 15 o and compositional datasets, showing that table in-
g s o1 formation can be injected by with other factors
506 e BO oT2g7 such as masking and bias.
o M2 //’ M4
2 ° <70
§ 0.4 /// ° 100 I - = — = - =
s EO -~
’ 0.2 ’ M Hlj'l
.CPE /,/ 80
/’/ M6
0.0 ° 60 B % % - % -
0.0 0.2 0.4 0.6 0.8 1.0

Real World Dataset (WikiSQL)

Figure 6: This figure highlights the agreement between
our "structure" synthetic dataset (x-axis) and the real-
world WikiSQL dataset (y-axis) — with normalized
(max) metrics, and using the mean over all experiments
with a given table encoding component. The diagonal
red line represents the ideal agreement where identical
results are obtained on both datasets.

C.5 Impact of Structure Embeddings

We tested the combined effect of structure em-
bedding and positional encoding across multiple
datasets, as shown in Figure 7. The results clearly
demonstrate that models using CPE without E1
struggle to converge — most probably because there
is no more absolute positioning information. How-

Table 8: Performance (Structured generalization) with
and without Bias for different sparsity levels.

BO BI

Sparsity | Mean | Var | Mean | Var

MO 59.1 | 0.019 | 69.6 | 0.004
Ml 75.5 | 0.001 | 75.7 | 0.001
M2 714 | 0.002 | 70.6 | 0.003
M3 67.5 | 0.000 | 66.9 | 0.001
M4* 714 | 0.008 | 72.8 | 0.002
M5* 75.6 | 0.000 | 74.2 | 0.000
M6™ 71.5 | 0.000 | 72.0 | 0.001

40 L

Denotation Accuracy (%)

Datasets
B In Domain
3 Structure
B Consistency

20 I

TI I Compositional
[0 Mixability
0
+(3‘° +/3<° +(3<° +/\Q%
S <& <& <

Positional Encoding x Structure Embeddings

Figure 7: Impact of Positional Encoding (CPE, TPE)
in Combination with Structure Embeddings (RCE,
NRCE).

D Sparse Mask Details

2401



Encoded

Encoded

Encoded

E

Encoded

Mo ¥

what

what

Encoded

Mg %

Encoded

Encoded

Encoded

Encoded

Encoded

Figure 8: Visualization of sparse masks ranging from MO (no sparsity) to M6* (high sparsity) for T2 structural
token. As the mask sparsity level increases from MO to M6, the sparsity of the mask increase. Masks marked with a
red star *, such as M6*, indicate that they are only applicable to special tokens corresponding to Row-Column Cells

Structural token Row Indexed - Cell Tokens (RIC)
col o | 1cC2 Ic3
Ve ~
[ROW] 1 :name I alice I bob
Special Tokens > [— What ? [COL] : ¢_11¢21 ¢3 [ROW] 1 : name | alice | bob
row 2 : age | 25130 [ROW] 3 : city | new york | los
angeles
R 2 i 12! |
Original Table [ROW) age s o
\
c1 c2 c3 [ROW] 3 1city I new york I los angeles
Name Alice Bob
Structural token ROW - Column - Cell Tokens (RCC)

Age 25 2 I [coL] [coL] [coL

[ROW] 1C1 1C_2 Ic3 -
City New York Los Angeles (

i |ttt What 2 Il [COL] [COL] [COL] [ROW] I ¢_11¢21 c3 [ROW] |
I [ROW] I name I alice I bob ") name | alice | bob [ROW] | age | 25 | 30 [ROW] | city | new|
Special Tokens : york I los angeles
\
[ROW] | age 125 130 .
[ROW] | city I new york I los angeles

\

Figure 9: This figure illustrates two strategies for incorporating special tokens: T2 (Row-Column-Cell Tokens) and
T1 (Row Indexed-Cell Tokens). In both approaches, special tokens are first added to the table, and then the table is
flattened by concatenating each row sequentially.
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