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Abstract

In recent years, Vision-Language Mod-
els (VLMs) have shown remarkable per-
formance improvements in Vision-Language
tasks. However, their large size poses chal-
lenges for real-world applications where infer-
ence latency is a concern. To tackle this is-
sue, we propose employing Early Exit (EE)
strategies in VLMs. However, training exit
classifiers in VLMs is challenging, particu-
larly with limited labeled training data. To
address this, we introduce FREE, an adver-
sarial training approach within a GAN-based
framework. Here, each exit consists of a trans-
former layer and a classifier. The transformer
layer is adversarially trained to produce fea-
ture representations similar to the final layer,
while a feature classifier serves as the discrim-
inator. Our method focuses on performing
input-adaptive inference that increases infer-
ence speed with minimal drop in performance.
Experimental results demonstrate the effec-
tiveness of our approach in enhancing accu-
racy and model robustness by mitigating over-
thinking and the phenomenon of mid-crisis
that we highlight. We experimentally validate
that our method speeds up the inference pro-
cess by more than 1.51× while retaining com-
parable performance. The source code is avail-
able at https://github.com/Div290/
BLIPEE.

1 Introduction

Vision-language pre-training (VLP) has evolved
significantly with the emergence of sophisticated
pre-trained Vision Language Models (VLMs).
These models have consistently pushed the perfor-
mance boundaries across various vision-language
tasks. However, their demanding computational
requirements and inference latency pose chal-
lenges for real-time applications. Several models,
such as BLIP-2 (Li et al., 2023), MiniGPT (Zhu
et al., 2023) etc., leverage off-the-shelf large-scale

pre-trained models as building components with
their parameters frozen. This reduces VLMs train-
ing parameters but makes them extremely slow
during inference, as highlighted in (Bajpai and
Hanawal, 2024a) leading to higher inference time.

The use of the Language Model (LM) compo-
nent with frozen parameters not only makes VLM
susceptible to overthinking but also to another
phenomenon that we term mid-crisis (Elhoushi
et al., 2024). This phenomenon occurs when inter-
mediate layers suffer performance drops due to the
search for irrelevant features. While initial layers
capture shallow representations and syntactic in-
formation, and deep layers learn semantic-fusion
relations (Fei et al., 2022), intermediary layers
tend to capture dataset patterns that degrade their
performance, even losing the information learned
by initial layers, and the model has to regain the
lost information again in deeper layers.

We illustrate this phenomenon in the left fig-
ure of Fig. 3 and Sec. 3.1, showcasing accuracy
on the VQAv2 (visual question answering) (Das
et al., 2017) dataset across different exits when
trained with dedicated classifiers as in vanilla early
exit setup for the intermediate layers. This raises
the question: how can we mitigate mid-crisis and
overthinking to enhance the accuracy and effi-
ciency of VLMs?

We address this using Early Exit (EE) tech-
niques (Xin et al., 2020; Zhou et al., 2020; Zhu,
2021), an input-adaptive method that reduces
computational costs by bypassing certain layers
while preserving the knowledge encoded in large-
scale models. Since real-world datasets contain
both “easy” and “hard” samples, EE ensures adap-
tive computation per sample.

However, applying EE to VLMs presents chal-
lenges: (1) Exit classifiers introduce significant
overhead—e.g., a single exit for OPT2.7B (Zhang
et al., 2022a) decoder adds approximately 130M
parameters; (2) Training these exits requires sub-
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How many dogs are there?

Looks like 2.

Are they both wearing hats

One is wearing a hat, 
other i can’t tell.

What is in the photo?

A girl and a bird.

Are there other animals?

No, just the bird.

Is this a toy train?

No.

How many cars are there 
on the train?

It looks like there are 
4.

What is in the image?

There are planes 
parked and a truck.

Is anything moving?

Yes, truck is moving.

Which lights are on?

Red.

Is the sky clear?

Mostly clear with 
some clouds.

What is the bird doing?

It is eating an apple 
in a pot of dirt.

Is the apple healthy?

No, it looks rotten.

A photo of

A golden retriever 
dog laying down 
next to a pool in the 
backyard.

A photo of

A zebra standing in 
snowy field with a 
wall behind it.

A photo of

The underside of a 
plane taking off.

Figure 1: This figure provides some example outputs of FREE ViT-g OPT2.7B. The different colours show the
difficulty levels of tokens in captions. Red: Easy to predict and predicted at initial (1-12) layers. Green: Mediocre
hard, predicted at intermediary (13-24) layers. Black: Hard to predict, predicted at deeper (25-32) layers.

stantial labeled data, limiting EE adoption in zero-
shot VLMs that require minimal fine-tuning.

We propose FREE Fast and Robust Vision-
Language Models with Early Exits. This efficient
EE training framework minimizes training costs
while maintaining accuracy. Our method employs
a Generative Adversarial Network (GAN)-based
(Creswell et al., 2018) framework, leveraging the
pre-trained VLM outputs to align feature repre-
sentations between intermediate exits and the fi-
nal layer. Unlike cosine similarity, which hampers
generalization, the adversarial setup improves fea-
ture consistency, ensuring robust exit predictions.

Our method attaches exits and Feature Classi-
fiers (FCs) to intermediary layers of the decoder
of the VLM. Each exit consists of a single exit
transformer (ET) and an exit classifier (EC). The
exit transformer is a replica of the layers in the
decoder LM of the VLM. They are used as gener-
ators and feature classifiers as discriminators in a
GAN-based setup, as shown in Fig. 2. The task of
the feature classifier is to correctly classify if the
input is from the exit or final layer, and the task of
the exit transformer is to generate representations

similar to the final layer to fool the feature classi-
fier of that exit.

As the exit transformer is trained to generate
representations similar to that of the final layer,
we can use the final layer classifier at all exits as an
EC with frozen parameters, which are used to map
the outputs of the exit transformer to class proba-
bilities. As the size of ETs is significantly smaller
than that of ECs, it substantially reduces the num-
ber of parameters. In this way, a single LM layer
attached to the exits helps produce similar feature
representations and reduces the training parame-
ters by utilizing a frozen final layer classifier. By
attaching EEs, our method reduces the chances of
mid-crisis or overthinking and makes the inference
process faster. Fig. 1 shows how our method can
speed up inference while maintaining comparable
performance by using the EE methods.

Adversarial training methods are prone to
catastrophic forgetting (Kirkpatrick et al., 2017;
Ryu et al., 2022) and mode collapse, which can
hinder exit training. To address these challenges,
we propose both supervised and unsupervised
strategies. In the supervised setting, when a small
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Figure 2: This figure illustrates our model’s architecture. The Q-Former output and previous tokens pass through
the backbone. The final layer and ET outputs go to feature classifiers, refining ET to match final representations.
During inference, the final classifier is used, and confident exits generate the caption.

labeled dataset is available, we use hard labels
to stabilize training, preventing catastrophic for-
getting and avoiding local optima. In the unsu-
pervised case, when labeled data is unavailable,
we utilize soft labels from vanilla VLM or gener-
ate high-quality synthetic labels using CapFilt (Li
et al., 2022b), as employed in BLIP and BLIP-2.

Our method remains effective across different
scenarios. When a labeled dataset is available,
it is used to mitigate catastrophic forgetting and
mode collapse. If no labeled data is present, we
employ knowledge distillation to solve this issue.
When both labeled data and annotations are un-
available but computational resources are acces-
sible, we generate synthetic labels using CapFilt.
By providing solutions for all data constraints, our
approach ensures stable and effective exit training
while enhancing efficiency and generalization. In
summary, our contributions are as follows:

• We introduce an EE strategy named FREE
for VLMs to effectively mitigate inference la-
tency by reducing unnecessary computations
inherent in their large-scale architecture.

• We propose an efficient training strategy
to improve performance at EE classifiers.
FREE emulates the behaviour of the final
layer at the exits through adversarial learn-
ing. This reduces the need for labeled train-
ing datasets.

• Our model reduces the number of trainable
parameters of the exits by reutilizing the
frozen final layer classifier at the exits.

• We experiment both qualitatively (see Fig. 1
(recommended)) and quantitatively on var-
ious tasks such as image captioning, vi-
sual question-answering and visual dialogue
dataset. Our method provides inference
speed > 1.51× with comparable accuracy
than vanilla VLM inference. We show the ro-
bustness of our method in Appendix A.4.

2 Related works

We discuss the VLPs with LM components and
EE strategies related to our work below.

Vision-language Pre-training: Different
model architectures have been proposed for
specific downstream tasks in VLPs, including
dual-encoder architectures (Radford et al., 2021;
Jia et al., 2021), encoder-decoder architectures
(Cho et al., 2021; Wang et al., 2021; Chen et al.,
2022b). Various pre-training objectives have also
been introduced, such as image-text contrastive
learning (Radford et al., 2021; Yao et al., 2021;
Li et al., 2021, 2022b), the image-text matching
(Ju et al., 2021; Li et al., 2022b; Bao et al., 2021),
and masked language modeling (Li et al., 2021,
2022b; Yu et al., 2022; Wang et al., 2022b).
However, these end-to-end models are inflexible
to leverage readily available pre-trained models,
such as LLMs (Brown et al., 2020; Zhang et al.,
2022a; Chung et al., 2024).

Recent approaches in vision-language pre-
training have adopted the strategy of utilizing off-
the-shelf pre-trained models and keeping them
frozen during training. Some methods freeze only
the image encoder (Chen et al., 2020; Li et al.,
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2020; Zhang et al., 2021), and recent LiT (Zhai
et al., 2022) which uses a frozen pre-trained en-
coder for CLIP (Radford et al., 2021) pre-training,
while others freeze the language model to leverage
knowledge from language-only pre-trained mod-
els for vision-to-language generation tasks (Tsim-
poukelli et al., 2021; Alayrac et al., 2022; Chen
et al., 2022a; Mañas et al., 2022; Tiong et al.,
2022; Guo et al., 2022). The primary challenge
lies in aligning visual features with text space.
To address this challenge, techniques like Frozen
(Tsimpoukelli et al., 2021) finetune image en-
coders or insert new cross-attention layers into
language models to incorporate visual features.
BLIP-2 (Li et al., 2023) employs both frozen im-
age encoders and language models for vision-
language tasks, achieving strong performance.

Early Exits: To minimize inference latency
in deep neural networks, BranchyNet (Teerapit-
tayanon et al., 2016) introduced attaching exits
classifiers at intermediary layers. This concept
was extended by Shallow-deep (Kaya et al., 2019),
which effectively determines when to exit based
on confidence distribution at each exit classifier.
Approaches like (Huang et al., 2017; Yang et al.,
2020; Han et al., 2023) improve EEs for image
tasks by dynamically choosing different depths
for different regions of the image. Approaches
like (Phuong and Lampert, 2019) have employed
knowledge distillation for image classification.

For NLP tasks, several early exit frameworks
have emerged (Xin et al., 2020; Liu et al., 2021;
Zhou et al., 2020; Liu et al., 2020; Wang et al.,
2019, 2020; Zhu, 2021; Ji et al., 2023; Zhang et al.,
2022b; Bajpai and Hanawal, 2024b; Bajpai et al.,
2023, 2024), primarily built on the BERT back-
bone. DeeCap (Fei et al., 2022) introduces EE
for image captioning tasks, employing an imita-
tion network to replicate outputs from transformer
layers. MuE (Tang et al., 2023) applies EE to
OFA (Wang et al., 2022a), a VLM tailored for
multi-modal applications. CapEEN (Bajpai and
Hanawal, 2024a) makes the EEs robust to noise
by adapting to the exiting threshold.

The key differences in our work are: 1) We
employ adversarial training for efficient learning
of EE models. 2) Our method can work under
both supervised and unsupervised setups by utiliz-
ing the zero-shot capabilities of the VLMs, while
previous methods require a good amount of high-
quality labeled training data.

3 Methodology

We begin with a pre-trained Vision-Language
Model (VLM) comprising three key components:
a visual encoder, a projection layer, and a language
model (LM). The visual encoder processes the in-
put image, which may be a standalone image en-
coder (Wang et al., 2022a) or include an image-
grounded text encoder (e.g., Q-Former in BLIP-
2). The projection layer then transforms the visual
features to align with the LM’s input space which
is passed as an input to the decoder. As autoregres-
sive decoding requires multiple forward passes of
LM, our focus will primarily be on optimizing the
LM component for efficient inference.

We assume that LM consists of N layers, and
we attach exits to the K chosen layers. Each exit
consists of one Exit Transformer (ET) layer with
the same configuration as one LM layer and an
Exit Classifier (EC). The exit layer is such the pa-
rameters of the ET are trainable, and those of EC
are frozen. Before indulging into architectural de-
tails, we motivate our method by highlighting the
major concerns on the well-known BLIP-2 model.

3.1 Motivation

In Fig. 3, we show the VQA accuracy for various
layers on the VQAv2 dataset on the BLIP-2 model.
In the left side of the figure, we show the perfor-
mance of vanilla EE methods where just an EC is
attached to the intermediate layer output. As seen,
performance dips at the middle layers after the ini-
tial improvement. This is due to the LM compo-
nent, which is of large size and kept frozen dur-
ing training. During pre-training, BLIP-2 aligns
the features of text and images using the Q-former,
the querying transformer. However, the Q-former
provides the image-grounded text embeddings to
the LM component in such a way that it produces
high-quality predictions only at the final layer and
not the intermediary layer.

To address this, we enhance exits by incorpo-
rating a transformer layer instead of relying solely
on an EC. This layer mimics the final layer’s be-
havior, enabling intermediate exits to access deep-
level representations. By doing this, we are not di-
rectly passing the information of intermediate lay-
ers to the classifiers instead we first enhance the
information through ETs and then pass the hid-
den representations to classifiers which improves
the performance of exits. The right side of Fig. 3
demonstrates how our approach reduces mid-crisis
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Figure 3: Left: VQA accuracy on the VQAv2 dataset with BLIP-2-ViT-g-FlanT5XL showcasing mid-crisis and
overthinking. Right: Our training process improves the mid-crisis. Overthinking can then be solved using EE.

by leveraging deeper layer information. Over-
thinking is further alleviated by performing infer-
ence through EEs using thresholds.

Previous EE methods that attach a trainable
classifier at exits introduce substantial parameter
overhead, given the large vocabulary size. For in-
stance, a single classifier added to BLIP-2 with
OPT2.7B contributes 130M trainable parameters,
and 7 exits would scale this up to 900M parame-
ters. In contrast, our method only trains the LM
layer at each exit, adding 63M parameters per
exit and 588M for 7 exits—reducing the trainable
parameters by approximately 52% (see Appendix
D.1). This efficiency is achieved by using the fi-
nal layer classifier and training only the LM layer.
These issues also translate to other VLMs such as
MiniGPT (Zhu et al., 2023) and InstructBLIP (Dai
et al., 2024) due to similar architectures.
We next discuss our method which consists of two
parts: 1) backbone finetuning and 2) exit training.

3.2 Backbone finetuning
The backbone is fine-tuned using the cross-
entropy loss between the predicted token and the
ground truth token. The loss function for fine-
tuning could be formulated as:

L(I) =
T∑

t=1

logPN (y∗t |y∗1:t−1, I) (1)

where I denotes the input image, y∗1:T is the true
caption and T is the caption length. PN denote
the probability output from the final layer. In this
step, the backbone learns to produce high-quality
features at the final layer and a classifier CN to
map the feature representations at the final layer
to class probabilities. Note that CN is part of the
backbone. Once the fine-tuning is complete, we
freeze the parameters of the backbone. This is
done to maintain the optimality of the backbone.

3.3 Exits training

After fine-tuning the backbone, we attach K exits
to the LM component of the VLM. We denote the
set of exit indices by [K]. At each exit, we use
a feature classifier Di that discriminates the fea-
ture representations of the transformer layer of the
ith exit from that of the final layer. Specifically,
it provides a score to an input feature representa-
tion, whether it is from the final layer. We have a
separate feature classifier for every exit as feature
representations at different exits can differ.

In our setup, the feature classifier acts as a dis-
criminator, and the exit transformer layer as a gen-
erator; the goal of the transformer layer is to gen-
erate feature representations similar to that of the
final layer. We train them alternately as in the orig-
inal GAN framework. This training problem can
be set up as an unconstrained optimization prob-
lem. Let Ei denote the transformer layer in the ith
exit. The feature classifier loss for an exit i ∈ [K]
and an input image I could be formulated as:

Lfc
i (hit, h

N
t | y∗1:t−1, I) = −logDi(h

N
t | y∗1:t−1, I)

−log(1−Di(Ei(h
i
t | y∗1:t, I)))

where hit is the feature (hidden) representation at
ith layer and hNt is the feature representation at
the final layer of the LM for the tth token in the
sentence. The overall loss across all exits could be
written as Lfc =

∑
i∈[K] L

fc
i . It simultaneously

updates the feature classifiers across all the exits.
The generator loss for the transformer layer in

ith exit could be formulated as:

Lgen
i (hit|y∗1:t−1, I) = −logDi(Ei(h

i
t|y∗1:t−1, I)))

However, because the weights of the transformer
layer of the exits are untied from the original back-
bone, they can face the issue of catastrophic for-
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getting or mode collapse. To circumvent these is-
sues, we utilize the small labeled dataset to fine-
tune the backbone. It guides the model to correct
the learning trajectory and not let it get stuck to
the local minima. The labeled data not only re-
moves the issue of catastrophic forgetting but also
helps in reducing overthinking as exits mimic the
final layer and learn from the hard labels. The loss
could be written as:

LCE
i (I, y∗1:t−1) = logPi(y

∗
t |y∗1:t−1, I) (2)

where Pi denotes the probability score at the ith
exit. The loss at exit i will be Li = LCE

i + Lgen
i .

The overall loss for exits training will be L =∑
i∈[K] Li. After this step, the backbone is learned

with attached exits.

3.4 Unsupervised setup

Recall from the previous section that labeled data
was utilized to reduce the issue of catastrophic
forgetting and mode collapse. As the VLMs has
good zero-shot performance, we can utilize it to
either distill the knowledge at the final layer or
create a small set of pseudo labels to fulfill the re-
quirements of the labeled dataset. We provide two
methods for unsupervised learning.

Using Knowledge Distillation: In this case, we
can directly utilize the soft labels from the final
layer to distill the knowledge to the exits. The
knowledge distillation loss for the ith layer could
be formulated as:

LKL
i = KL(pit, p

N
t ) (3)

where pit = CN (Ei(h
i
t|y∗1:t−1, I)), pNt =

CN (hNt |y∗1:t−1, I) and KL is the KL-divergence

loss defined as KL(pit, p
N
t ) =

∑
v∈V pit log

pit
pNt

where V is the vocabulary. We can train the exits
by replacing the LCE

i by LKL
i . Then the overall

loss for exit i is Li = LKL
i + Lgen

i .
This method also utilizes the zero-shot capabil-

ities of the VLMs model. However, this method
has a slightly lower performance than the Cap-
Filt method proposed next, still, it comes with
lower computational cost and has comparable per-
formance to vanilla VLM inference.

Using CapFilt: CapFilt (Li et al., 2022b, 2023)
is a method that is used in both the original BLIP
and BLIP-2 models to generate high-quality syn-
thetic captions. We use similar ideas to generate
the labeled dataset. In this step, a sample is passed

through the BLIP-2 model, which then provides
us with 10 possible captions for the given sam-
ples. We then use the CLIP ViT-L/14 model to
rank the synthetic captions based on the image-
text similarity produced by the CLIP model. We
then keep the top-2 captions and keep them as syn-
thetic captions that can be later utilized for train-
ing the exits by treating the synthetic captions as
true captions. Creating synthetic captions using
the CapFilt is more accurate but computationally
heavy (Li et al., 2022b). Hence it is recommended
when the computational resources are available.

3.5 Inference

We perform captioning in an autoregressive man-
ner. This entails making a token-by-token predic-
tion for a given image, where the layer at which the
token is predicted is determined by the confidence
score Si = maxv∈V CN (Ei(h

i
t|y1:t−1, I))(v)

where V is the vocabulary. The input to the de-
coder is processed sequentially through the de-
coder layers until the confidence score Si is greater
than a predefined threshold value α. The inference
starts with the begin of the sentence token and the
next token is predicted either at the exits or at the
final layer. The inference process stops when the
end of the sentence token is predicted either at in-
termediary layers or at the final layer. Note that if
the prediction confidence is below α for all the ex-
its, then the sample is predicted at the final layer,
irrespective of the confidence in the prediction.

4 Experiments

Dataset and Metric: We evaluate the perfor-
mance of our method using the COCO (Lin
et al., 2014) and NoCaps dataset (Agrawal et al.,
2019) for image captioning. For Visual Question-
answering tasks, we utilize the VQAv2 (Goyal
et al., 2017), OK-VQA (Marino et al., 2019) and
GQA (Hudson and Manning, 2019) datasets. For
visual dialogue, we use the VisDial (Das et al.,
2017) dataset. We report key metrics includ-
ing BLEU-4 (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), CIDEr (Vedantam
et al., 2015) and SPICE (Anderson et al., 2016)
scores for captioning. For VQA tasks, we report
the VQA accuracy and for the Visual Dialog, we
use the Mean Reciprocal Rank (MRR) (Dai et al.,
2024). To effectively consider the speedup, we
define the speedup as inverse of the fraction of
parameters used for inference on average. The
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NoCaps Zero-shot

Models #Train
Params in-domain near-domain out-domain full-dataset Spd

C S C S C S C S
Vin VL 345M 102.9 14 94.8 13.7 88.1 11.9 95.1 13.2 -
BLIP 446M 114.9 15.2 110.6 14.6 114.8 14.3 112.8 14.7 -
SimVLM 1.4B 113.7 14.9 110.6 14.2 114.6 14.4 112.1 14.3 -
BLIP-2 ViT O2.7B 1.1B 123.0 15.8 117.8 15.4 123.2 15.0 119.6 15.4 1.07×
BLIP-2 ViT FT5XL 1.1B 123.7 16.3 120.2 15.9 124.8 15.1 121.6 15.8 1.00×

Early Exit models
DeeBLIP 1.8B 115.2 15.3 111.5 14.7 115.4 14.5 112.4 14.5 1.41×
PABEE-BLIP 1.8B 117.7 15.4 114.2 14.8 117.6 14.7 112.9 14.6 1.29×
LeeBLIP 1.8B 119.4 15.5 115.8 14.8 120.1 14.9 116.3 15.1 1.38×
MuE 1.8B 118.1 15.4 115.3 14.8 118.7 14.8 114.8 14.9 1.44×
FREE ViT O2.7B 1.5B 122.7 15.7 118.1 15.5 123.9 15.1 119.9 15.6 1.63×
FREE ViT FT5XL 1.4B 124.3 16.5 120.0 15.9 125.5 15.4 122.7 16.1 1.51×

Table 1: Results on the Nocaps dataset during zero-shot transfer when the model is trained on the COCO dataset
across various domains. Spd is the speedup achieved by the model. O2.7B is OPT2.7B and FT5XL is FlanT5XL.

Models #Train
Params

VQAv2
train

VQAv2
test Spd

Without Exits
ALBEF 314M 72.3 71.5 -
BLIP 385M 73.9 72.1 -
OFA 930M 75.7 75.6 -
Flamingo80B 10.6B 77.9 78.1 -
BLIP-2 V-O 1.2B 78.3 78.5 1.07×
BLIP-2 V-F 1.2B 78.8 78.7 1.00×

Early Exit models (on BLIP-2)
DeeBLIP 1.9B 75.4 75.9 1.52×
PABEE-BLIP 1.9B 77.4 77.1 1.39×
LeeBLIP 1.9B 78.1 77.8 1.65×
FREE-V-O 1.6B 78.7 79.0 1.77×
FREE-V-F 1.5B 78.9 79.1 1.71×

Table 2: Results of semi-supervised application of our
model to Visual-Question Answering tasks.

speedup is formulated as:

Speedup =
Total parameters

Average number of parameters used

where the average number of parameters could be
written as 1

M

∑M
I=1

∑NI
i=1wi × (i+ k)× p where

p denotes the number of parameters in one layer
of the LM component, NI denotes the number of
predicted words in the caption for the image I ,
M denotes the total number of input images and
k = 1 is the number of LM layers in the exit. To-
tal parameters denote the total number of param-
eters in the backbone. The baseline for compar-
ing speedup for BLIP-2 models is BLIP-2 ViT-g
FlanT5XL. We only compare the speedup of early
exiting methods and the BLIP-2 variants. In the
Appendix B and Table 5 and 8, we show the re-
sults of the MiniGPT (Zhu et al., 2023) model and
in Appendix C and Table 7, we show the results on
the InstructBLIP (Liu et al., 2024) model.

Training: In our setup for BLIP-2, we uti-
lize two variations of the BLIP-2 model with

the same image encoder (ViT-g/14 (Dosovitskiy
et al., 2020)) and frozen LLMs that are OPT-
2.7B (Zhang et al., 2022a) and FlanT5-XL (Chung
et al., 2024). We use the LAVIS (Li et al., 2022a)
library for implementation, training and evalua-
tion. For training, we use the validation split of
the datasets. We use 80% of validation split for
training and the remaining 20% for development.

We use labels of the validation dataset when the
task is semi-supervised, else we just use the sam-
ples without labels. First, the backbone is fine-
tuned for 10 epochs with a starting learning rate
of 1e-5, which decays by 0.5 every 3 epochs. The
backbone weights are then frozen post-fine-tuning
and exits are attached to the backbone. We train
exit weights for a further 3 epochs. We employ
the Adam (Kingma and Ba, 2014) optimizer and a
batch size of 16. Similar to Bajpai and Hanawal
(2024c), we use a feature classifier, with one hid-
den linear layer with a hidden state of size 3072
and a LeakyReLU activation function.

For the unsupervised tasks, we train the model
for 5 epochs on the validation dataset (without la-
bels) with knowledge distillation from the final
layer. Optimizers and learning rates are kept the
same as given above. Note that in CapFilt we ap-
ply the CapFilt method on the validation dataset
(without labels) and generate synthetic labels. Af-
ter this, we perform a similar procedure by treat-
ing the synthetic labels as the true labels as done
for the semi-supervised tasks. We do not finetune
the backbone in an unsupervised setup.

Inference: Inference is conducted with a
batch size of 1. We provide the results on the
test dataset. For image captioning, we use a
prompt as ‘a photo of’. The threshold is cho-
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sen as the best-performing threshold from the set
{0.5, 0.6, 0.7, 0.8, 0.9, 1.0} on the held-out split of
the validation dataset. More details on the hyper-
parameter setting can be found in Table 10 and in
the Appendix A.2 with the values of hyperparame-
ters. All experiments were performed with a com-
bination consisting of two NVIDIA RTX A6000
and four NVIDIA GeForce RTX 3080 Ti GPUs.

Baselines: We establish baseline models for
performance evaluation, including vanilla BLIP-2
inference. Additionally, we compare with multi-
modal models VinVL (Zhang et al., 2021), AL-
BEF (Li et al., 2021), SimVLM (Wang et al.,
2021), OFA (Wang et al., 2022a), and Flamingo
(Alayrac et al., 2022). We also assess state-
of-the-art early exit methods originally proposed
for the BERT backbone, such as DeeBERT (Xin
et al., 2020), PABEE (Zhou et al., 2020), and Lee-
BERT (Zhu, 2021), adapted to the BLIP-2 back-
bone as DeeBLIP, PABEE-BLIP, and LeeBLIP, re-
spectively. DeeBLIP uses confidence-based exit-
ing, PABEE-BLIP employs patience-based exit-
ing, and LeeBLIP combines knowledge distilla-
tion from the final layer with hard label learning.
Furthermore, we apply the MuE (Tang et al., 2023)
early exiting method to the BLIP-2 backbone, us-
ing exits from the better-performing BLIP-2 vari-
ant for our baselines.

5 Results

Visual Question Answering: We provide re-
sults on unsupervised (see table 3) as well as semi-
supervised setups (see table 2). We observe that
our method outperforms all early exit methods
in terms of accuracy and speedup even with less
number of trainable parameters. We even outper-
form the vanilla BLIP-2 inference due to over-
thinking in the BLIP-2 backbone which is miti-
gated by our input-adaptive inference. We also
provide results on an unsupervised visual dialogue
dataset where the task is similar to VQA but there
is an additional context before the question i.e. a
dialogue history between the user and the model.

Image Captioning: We provide results of
semi-supervised and unsupervised setup in table
1 and 4 respectively. We clearly outperform the
existing models in terms of both accuracy as well
as speedup. For the NoCaps dataset, the model
is fine-tuned on the COCO dataset. The speedup
for NoCaps dataset is lower as there is a domain
change from the training which lowers the confi-

dence in prediction taking more samples to deeper
exits for inference.

We observe performance improvement over
previous baselines as we attached exits to the
BLIP-2 model and by performing input-adaptive
inference, we perform better than the BLIP-2
model, and as BLIP-2 outperforms other models,
FREE also outperforms others. For the early ex-
iting baselines on BLIP-2, we outperform them
as we have an additional component in the exits
rather than just a linear classifier which helps in
better performance of exits in terms of both perfor-
mance and speedup. Note that there is a decrease
in accuracy when we are in an unsupervised setup,
as our model mimics the final layer hence some
amount of overthinking still remains. Still, we are
comparable to the BLIP-2 inference. On the other
hand, the labeled dataset in semi-supervised tasks
helps the model learn the hardness of the incom-
ing sample. This helps the model to overcome the
overthinking issue.

We have utilized two versions of the BLIP-
2 model that have decoder as FlanT5XL and
OPT2.7B. We observe that the speedup in BLIP-2
with OPT2.7B was higher as there are more layers
in this hence they are more susceptible to over-
thinking issues. The speedup for VQA tasks was
higher as these tasks are simpler than image cap-
tioning tasks. We have not reported the speedup
of the models other than the variants of BLIP-2 as
they have different types of architectures. In terms
of speedup, our objective is to make BLIP-2 faster.

In table 9, we have shown the result of using
the CapFilt method to generate synthetic captions
in the absence of the labeled dataset. We have re-
ported the CIDEr score over the NoCaps dataset.
We can observe that the model has improved upon
the performance using CapFilt and the speedup
has significantly increased. This effect is due to
the good quality captions that help the exits learn
better, hence it outputs more samples early in-
creasing the speedup as compared to knowledge
distillation.

6 Conclusion

In this study, we introduced a novel inference tech-
nique FREE, which leverages adversarial training
of exits alongside the zero-shot capabilities of the
VLMs. By employing FREE, we effectively re-
duce the dependency on a vast amount of labeled
training data typically required for exit training.

23606



Model #Total
params

VisDial
test

VQAv2
train test

OK-VQA
test

GQA
test

VizWiz
test Speed

Without exits
Flamingo3B 3.2B - 53.2 49.4 41.5 - 28.9 1.28×
Flamingo9B 9.3B - 55.7 51.8 44.7 - 28.8 0.44×
Flamingo80B 80B - 59.1 56.2 50.4 - 31.5 0.05×
BLIP-2 ViT-g OPT2.7B 3.8B 34.1 54.6 52.0 31.2 34.2 27.0 1.07×
BLIP-2 ViT-g OPT6.7B 7.8B 37.5 55.9 53.7 36.1 36.4 27.2 0.52×
BLIP-2 ViT-g FlanT5XL 4.1B 45.9 64.9 62.5 40.6 44.5 29.8 1.00×

Early Exit models (on BLIP-2 ViT-g FlanT5XL)
DeeBLIP 4.7B 33.4 41.3 42.8 23.4 27.8 20.1 1.39×
PABEE-BLIP 4.7B 35.7 49.6 51.3 31.2 34.3 23.6 1.31×
LeeBLIP 4.7B 39.1 57.7 57.1 37.1 39.7 26.4 1.29×
MuE 4.7B 36.6 55.4 53.6 33.7 37.1 24.7 1.36×
FREE ViT-g OPT2.7B 4.3B 32.3 55.5 53.4 35.6 44.7 26.8 1.51×
FREE ViT-g FlanT5XL 4.5B 45.5 64.5 62.1 40.3 44.0 29.5 1.45×

Table 3: Results of the unsupervised Visual-Question Answering and VisDial dataset. For VQA tasks, we report
the VQA accuracy and for the visual dialogue, we report the Mean Reciprocal Rank(MRR).

Models COCO Karpathy test
B@4 C S M Spd

OFA 37.5 130.3 25.2 31.1 -
Flamingo 38.5 134.1 24.1 27.8 -
SimVLM 38.6 138.3 24.8 29.8 -
BLIP-2-V-O 41.7 139.8 25.5 30.5 1.07×
BLIP-2-V-F 40.4 141.5 25.2 29.1 1.00×

Early Exit models
DeeBLIP 32.8 115.1 20.9 25.3 1.65×
PABEE-BLIP 34.2 119.8 21.4 26.2 1.45×
LeeBLIP 37.4 132.0 22.8 27.6 1.59×
MuE 37.9 137.5 23.6 28.5 1.41×
FREE-V-O 41.9 142.5 25.2 30.8 1.75×

Table 4: Results of semi-supervised training on the
Karpathy test split of the COCO dataset.

Our approach involves adversarially training ex-
its to generate representations similar to those of
the final layer, thereby minimizing the need for
extensive labeled data. Moreover, our exit de-
sign reduces the number of trainable parameters,
resulting in lower computational costs. Experi-
mental results demonstrate that our method sig-
nificantly enhances inference speed while yielding
high-quality outputs.

7 Limitations

For attaching exits to a large model such as BLIP-
2, the crucial part is to decide where to attach ex-
its within a given budget, i.e., what could be the
best places for an exit in the LM component of
the backbone without exceeding a certain amount
of parameters. We answered that question by ex-
plaining the mid-crisis. However, the placements
of exits with given budget criteria still remain
unexplored, which can make these models even
faster within computational boundaries.
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A Appendix

A.1 Ablation Study

Qualitative analysis: In Figure 1, we provide
some examples of the output provided by the
FREE model. The figure shows how the early exit
models increase the speedup by predicting easier
tokens earlier. For instance, the image in the last
row and last column of the figure is an example
of an easy sample where the tokens are predicted
at initial layers. Similarly, for the image with a ze-
bra, it can easily predict the easier token such as ‘A
zebra standing in a snowy field’ at the initial lay-
ers while the part of the image that is not easy to
predict ‘with a wall behind’ is predicted at deeper
layers and predicting a high-quality caption over-
all while speeding up inference using the easiness
of sample as well as token.

Also note that the common tokens are mostly
predicted from the initial layers while the rare to-
kens are predicted from the deeper layers. This ob-
servation suggests that the tokens that occur more
number of times are considered as easy by the
model while the token that have rare appearances
are the ones treated as hard.

A.2 Accuracy vs speedup

In figure 4b, we show the accuracy vs speedup
curve which could be obtained by changing the
threshold parameter α. As we decrease the thresh-
old parameter, samples exit from the initial layers
even with less confidence, in this way all the sam-
ples are more prone to be incorrect decreasing the
accuracy but as the threshold is decreased more
samples exit from the initial layers and increase
the speedup. One key observation is as we start de-
creasing the threshold, we observe that sometimes
the performance even increases, this is the effect
of overthinking, where some samples are correctly
predicted at initial layers and might become wrong
as they reach the final layer. We have also plotted
the curves for other exiting methods and observed
that our method has better stability as compared to
other early exiting methods.

A.3 Importance of different components

In figure 4a, we show the importance of differ-
ent components of our method. We observe that
there is a huge performance drop if we remove
the knowledge distillation or cross-entropy loss
from the overall loss function. This occurs due
to catastrophic forgetting or mode collapse where
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Model COCO Karpathy test split Speed
BLEU4 CIDEr S M

MiniGPT 38.6 133.9 24.2 30.8 1.00×
DeeMini 31.4 107.0 20.1 25.9 1.42×
PABEE-Mini 33.5 117.3 20.9 27.3 1.40×
LeeMini 37.3 126.8 22.8 29.1 1.49×
MuE 37.8 129.5 23.2 29.7 1.52×
FREE 38.3 132.2 23.9 30.5 1.67×

Table 5: Results of MiniGPT-4 model on the COCO Karpathy test split.
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Figure 4: Left: BLEU-1 score for COCO with model BLIP-2-ViT-L-OPT2.7B with different components. Right:
Speedup vs BLEU-4 curve for COCO dataset with ViT-L-OPT2.7B.

Noise BLEU-4 METEOR CIDEr Speed
σ = 0.0

BLIP-2 40.4 29.1 141.5 1.00×
BLIPEE 40.5 29.1 142 1.77×

σ = 0.5
BLIP-2 38.6 28 137.9 1.00×
BLIPEE 39.8 28.8 139.5 1.64×

σ = 1.0
BLIP-2 35.3 26.4 130.8 1.00×
BLIPEE 36.7 27.9 134.2 1.59×

σ = 2.0
BLIP-2 28.6 20.5 112.6 1.00×
BLIPEE 31.1 22.7 120.8 1.45×

Table 6: Results on BLIP-2 and FREE on COCO
dataset when some level of noise σ is added into the
images during inference phase.

the model gets stuck into local minima. On the
other hand, if we remove the adversarial training
part, there is again a performance drop, as we only
train the classifier but we are not mapping the fea-
ture representations of the final layer and the exits
hence exits only have low-level features which is
insufficient to make correct predictions, hence re-
sulting in a performance drop.

A.4 Robustness of FREE

In table 6, we provide results to prove the robust-
ness of FREE. To obtain these results, we perform
inference on images with Gaussian noise σ added
to it. The higher the value of σ, the more noise is

present in the image. Observe from the table that
when the level of noise is increased in the image
the performance of the BLIP-2 model is affected.
However, the impact of the noise is smaller for
FREE.

The reason for the smaller impact of noise on
FREE is that FREE uses outputs from multiple
exits and performs inference only when a classifier
is confident enough. This makes it robust to noise
present during the inference phase.

B Results on MiniGPT

In Table 5 and 8, we show the results of FREE on
the MiniGPT backbone. First note that the perfor-
mance of MiniGPT is not as good as the BLIP-2
model. The reason is stated in the Appendix of
the MiniGPT-4 paper as the number of training pa-
rameters of the model is significantly lower than
the full BLIP-2 model. However, it has a better
performance over long sequence generation tasks.
We use the Llama (Touvron et al., 2023) model in
its decoder.

From the results, we observe that our method
can be well generalized over MiniGPT as the re-
sults are similar to the BLIP-2 backbone. Note that
during fine-tuning MiniGPT, we have used sim-
ilar hyperparameters as used to train BLIP-2 as
the overall architecture of MiniGPT is similar to
BLIP-2 except for the number of training param-
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Model COCO Karpathy test split Speed
BLEU4 CIDEr S M

InstructBLIP 42.6 140.5 24.3 31.2 1.00×
DeeIB 35.2 123.7 20.8 26.8 1.39×
PABEE-IB 36.5 126.3 21.7 28.0 1.35×
LeeIB 38.0 132.8 22.9 29.9 1.47×
MuE 39.4 136.2 23.4 30.6 1.42×
FREE 42.1 138.9 23.8 31.0 1.58×

Table 7: Results of InstructBLIP model on the COCO Karpathy test split.

Model VQA OKVQA GQA Speed
MiniGPT 68.6 65.2 41.9 1.00×
DeeMini 59.8 59.1 35.7 1.53×
PABEE-Mini 61.4 60.8 36.9 1.49×
LeeMini 65.7 63.2 39.0 1.61×
MuE 67.8 64.6 39.9 1.59×
FREE 68.2 65.1 41.6 1.63×

Table 8: Results on MiniGPT for Visual Question An-
swering tasks.

eters. Note that the baselines are similar to those
given in the main body with DeeBERT replaced as
DeeMini, PABEE as PABEE-Mini, and LeeBERT
as LeeMini. All the hyperparameters were kept
the same for all the baselines with their approach
applied.

C Results on InstructBLIP

InstructBLIP is an upgraded version of the BLIP-
2 model where the underlying architecture is same
but the difference is with the instruction given to
generate the output. InstructBLIP can perform
better than BLIP-2 over long sequence generation
tasks however takes a slight hit on the performance
of the image captioning tasks. The hyperparame-
ters for fine-tuning InstructBLIP were the same as
for BLIP-2.

However, the behavior of our method applied to
this model is the same as it shows minimal per-
formance drop as compared to other EE methods
while keeping the speedup better than them. This
is the result of the access to deeper level knowl-
edge as our method tries to mimic the behavior of
the final layers at the exits. Also, we have used
only the validation split to train the exits which
makes our method less resource-heavy. Note that
the baselines are similar to those given in the main
body with DeeBERT replaced as DeeIB, PABEE
as PABEE-IB, and LeeBERT as LeeIB. All the hy-
perparameters were kept the same for all the base-
lines with their approach applied.

Note that both MiniGPT and InstructBLIP share
same architectural details as BLIP-2 model with

different training strategies, hence we do not ex-
plicitly explain the architectural details. Also the
training and inference procedure with hyperpa-
rameters is similar to the BLIP-2 model.

D Analysis on computational cost

Training stage: In our method, the fine-tuning
stage is similar to vanilla fine-tuning of the back-
bone. After this step, we have additional param-
eters that are used at the exits consisting of one
transformer layer similar to the decoder of the
model. While other methods use a classifier at
all the exits, note that due to huge size of the
vocabulary the classifier size is very large even
larger than one transformer layer. Due to this our
method has lesser number of training parameters.
Now as we train in a GAN-based setup, we al-
ternatively train the exit transformer layer, where
it is trained to generate similar representations as
the final layer. The generator is the exit trans-
former layer and a separate feature classifier is
also added with a job to discriminate if the fea-
tures are from the final layer or exit layer. The
full training procedure along with fine-tuning
takes approximately 26 hours to complete on a
setup of 6 GPUs with 4 NVIDIA RTX 3090 and
2 NVIDIA RTX A6000 GPUs while on a simi-
lar setup training of vanilla BLIP-2 training re-
quires 18 hours of training.

Inference: While we have a heavy training
setup, post deployment the inference process is
very simple and fast. Once the image has been
passed through the image encoder as well as the
query generator. After this step the query embed-
ding are passed through decoder after the projec-
tion layer. Then the decoder generates the text au-
toregressively. The next token is generated at one
of the attached exits where the input to the decoder
is processed sequentially at the exits. If an exit is
confident on its prediction, it stops the inference
process by assigning the token generated by it as
the next predicted token by the model. This im-
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Model No Caps Zero-shot
in-domain near-domain out-domain full-dataset Spd

w/o CapFilt 122.3 118.9 123.1 120.7 1.45×
Capfilt 123.5 120.4 124.7 122.0 1.77×

Table 9: Difference between CapFilt and Knowledge distillation method for an unsupervised setup.

LLM OPT FlanT5
Exit Config [3, 6, 9, 12, 24, 27, 30] [3, 5, 7, 9, 12, 20, 22]

AdamW beta [0.9, 0.999] [0.9, 0.999]
Threshold 0.8 0.8

Inference beam size 5 5
Warmup Steps 500 500

Table 10: More hyperparameter details of FREE on different LM component in the BLIP-2 model. Note that the
thresholds are chosen from the set {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

Dataset Layer 3 Layer 6 Layer 9 Layer 12 Layer 24 Layer 27 Layer 30

VQA-v2 0.02 0.07 0.13 0.09 0.15 0.18 0.17
Ok-VQA 0.03 0.09 0.11 0.09 0.13 0.15 0.18
VizWiz 0.01 0.06 0.09 0.08 0.11 0.17 0.22

Table 11: Fraction of samples exiting from different layers of the backbone across various datasets.

Component Parameters per Layer Total Parameters(32-layers)

Transformer Layer ∼62.8M ∼2.01B
Layer Norms & Embeddings - ∼560M
LM Head - ∼128.7M

Total - 2.7B

Table 12: OPT-2.7B Parameter Breakdown
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proves the speed benefits of the full model where
not all tokens are processed till the final layer. We
observed that more common tokens usually exit at
earlier exits while rare tokens are processed deeper
into the backbone. As formation of sentence re-
quire a large number of common tokens such as
‘the’, ‘and’, etc., the early exits makes the gener-
ation process significantly faster. The fraction of
token exited from different layers is given in Ta-
ble 11. The inference time over the Karpathy
test split of the COCO dataset was 7 minutes of
wall clock time approximately while for vanilla
BLIP-2, it was approximately 11 minutes. This
also proves the importance of exits.

In summary, during training, we have additional
exits as compared to vanilla BLIP-2 model as well
as feature classifiers at the exits. The feature clas-
sifiers are dropped during inference and are not
further required. While the attached exits help the
model to make adaptive predictions by perform-
ing inference using some fraction of layers from
the full model based on the input sample and to-
ken complexity.

D.1 OPT-2.7B Architecture
OPT-2.7B is a decoder-only transformer model
with 2.7 billion parameters. Each transformer
layer consists of multi-head self-attention, a feed-
forward network (FFN), and layer normalization.
The detailed architecture is as follows:

• Hidden Size (dmodel): 2560

• Number of Layers: 32

• Attention Heads: 32

• FFN Inner Size: 4× dmodel = 10240

• LM Head Size: 2560 × 50272 ≈ 128.7M
parameters

The total parameter breakdown is summarized
in Table 12. Now if we use classical exit setup, that
uses independent exit classifiers for attaching ex-
its it adds 128.7M parameters at every exit. While
in our setup, we attach exit transformers and exit
classifiers at intermediate layers where the exit
classifier have shared weights as final layer clas-
sifier and is frozen. Since the exit transformer is a
replica of transformer layer of the model, its adds
only 62.8M parameters. This reduces the training
parameter size by 52%.
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