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Abstract

Large Language Models (LLMs) are primarily
designed for batch processing. Existing meth-
ods for adapting LLMs to streaming rely either
on expensive re-encoding or specialized archi-
tectures with limited scalability. This work
identifies three key mismatches in adapting
batch-oriented LLMs to streaming: (1) input-
attention, (2) output-attention, and (3) position-
ID mismatches. While it is commonly assumed
that the latter two mismatches require frequent
re-encoding, our analysis reveals that only the
input-attention mismatch significantly impacts
performance, indicating re-encoding outputs
is largely unnecessary. To better understand
this discrepancy with the common assumption,
we provide the first comprehensive analysis
of the impact of position encoding on LLMs
in streaming, showing that preserving relative
positions within source and target contexts is
more critical than maintaining absolute order.
Motivated by the above analysis, we introduce
a group position encoding paradigm built on
batch architectures to enhance consistency be-
tween streaming and batch modes. Extensive
experiments on cross-lingual and cross-modal
tasks demonstrate that our method outperforms
existing approaches. Our method requires no
architectural modifications, exhibits strong gen-
eralization in both streaming and batch modes.
The code is available at repository https://
github.com/EIT-NLP/StreaminglLLM.

1 Introduction

Large language models (LLMs) have revolution-
ized a multitude of tasks (Zhang et al., 2023b; Liu
et al., 2024; Chu et al., 2023; Kojima et al., 2022;
Kocmi and Federmann, 2023). However, research
on LLMs has largely focused on batch-processing,
where the entire input is processed at once (Zhao
et al., 2023). In contrast, human cognition oper-
ates incrementally, interpreting information as it ar-
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Figure 1: Two streaming paradigms of LLMs: (a) Batch-
streaming simulates batch-processing, while interleaved-
streaming encodes streaming data in arrival order. (a-1)
Input-Attention Mismatch: Whether the source tokens
can attend to the target tokens. (a-2) Output-Attention
Mismatch: Whether the target tokens can attend to the
new source token. (a-3) Position-ID Mismatch: Whether
the position IDs reflect the actual token order. (b) Batch-
streaming relies on (b-1) KV cache re-encoding and
(b-2) position re-encoding to simulate batch-processing.

rives—a capability essential for real-time decision-
making, interactive dialogue, and other latency-
sensitive applications (Gonzalez et al., 2003; Alt-
mann and Mirkovié, 2009). Bridging this gap be-
tween batch-oriented LLMs and streaming-aware
processing is vital for unlocking their potential in
dynamic, real-world scenarios.

A naive strategy to adapt LLMs for streaming
involves iteratively re-encoding both new inputs
and prior outputs with each incoming data segment
(Agostinelli et al., 2024; Wang et al., 2024; Guo
et al., 2024b; Koshkin et al., 2024), as illustrated in
Figure 1(b). While this batch-streaming paradigm
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preserves compatibility with batch-processing ar-
chitectures, it introduces prohibitive computational
costs. Existing efforts to optimize LLMs for stream-
ing data typically fall into two categories: (1) Di-
rectly encoding streaming data in arrival order
(Du et al., 2024; Yang et al., 2024), an interleaved-
streaming paradigm, which introduces structural
mismatches with batch-processing setups used in
pre-training and degrades performance; (2) Design-
ing entirely new architectures tailored to the stream-
ing mode (Guo et al., 2024a; Tsunoo et al., 2024;
Chen et al., 2024), which is costly, lacks scalability,
and fails to fully leverage pre-trained LLM capabil-
ities. Furthermore, existing methods lack rigorous
analysis of the fundamental discrepancies between
batch and streaming processing modes.

This work tackles these limitations by identi-
fying three key mismatches in adapting batch-
oriented LLMs to streaming, as shown in Figure 1:

* Input-Attention Mismatch:Batch-streaming
confines input tokens to attending only prior
inputs, whereas interleaved-streaming permits
attention to previously decoded outputs.

Output-Attention Mismatch:Batch-streaming
allows decoded output tokens to attending to all
received input tokens by KV cache re-encoding,
while interleaved-streaming mode limits each
output token’s attention to the subset of inputs
available at decoding time.

Position-ID Mismatch: Batch-streaming re-
lies on position re-encoding, assigning contigu-
ous position IDs to inputs followed by outputs,
whereas interleaved-streaming processes alter-
nate between inputs and outputs incrementally,
resulting in discontinuous positional ids that dis-
rupt sequential coherence.

Building on the identification of these mis-
matches, we systematically studied their effects
on LLM performance. Our analysis revealed that
input-attention mismatch does affect streaming
model performance. In contrast, output-attention
and position-ID mismatches have negligible effects.
A common assumption is that streaming models re-
quire re-encoding of previously generated content
to mitigate token position inconsistencies arising
from the incremental nature of streaming setting
(Raffel et al., 2024; Guo et al., 2024a; He et al.,
2024), as shown in Figure 1(b). However, our em-
pirical findings do not support this hypothesis. In-
stead, we observe that re-encoding the output is not

necessary !. This discrepancy with the common as-
sumption raises a fundamental question: How does
position encoding impact LLMs in streaming
scenarios? And how should we design appropri-
ate position encoding for streaming LLMs?

Existing research on positional encoding in
LLMs has largely focused on static scenarios
(Likhomanenko et al., 2021; Haviv et al., 2022;
Kazemnejad et al., 2024), while its role in stream-
ing scenarios remains underexplored. We con-
ducted a more in-depth analysis to further explore
the impact of position encoding on streaming mod-
els. Experimental results reveal that the abso-
lute positional order of tokens has a negligible
effect on model performance in streaming tasks.
However, maintaining the internal relative order
within the source and target sequences is signif-
icantly more important. Based on the findings,
we propose a grouped position encoding stream-
ing paradigm built on batch architectures(group-
streaming), which groups input and output position
ids to enable more consistent processing with the
batch model. This strategy is not only computa-
tionally efficient but also generalizable across dif-
ferent tasks and model architectures. We validated
its effectiveness on cross-lingual (machine transla-
tion) and cross-modal (automatic speech recogni-
tion) tasks, demonstrating that it significantly out-
performs existing solutions, including LLMs with
more complex streaming-optimized architectures.

The main contributions of this study can be sum-
marized as: (1) We systematically analyze the mis-
matches between batch and streaming processing
in LLMs, providing deep insights into key factors
affecting their adaptation to streaming. Contrary
to mainstream assumptions, our experiments re-
veal that position disorder is not the primary factor
affecting LLM streaming performance. (2) We
conduct the first comprehensive study on the im-
pact of position encoding in streaming scenarios,
demonstrating that absolute positional order is un-
necessary, while maintaining relative order within
source and target contexts is more critical. (3) We
introduce a group streaming paradigm for stream-
ing LLMs. This method imposes no architectural
constraints on batch-processing LLMs, allowing
seamless application to any pre-trained LLM while
ensuring high scalability and adaptability to various
real-world streaming tasks.

'We clarify that re-encoding the target tokens is solely for
refining the generation of the latest token without altering
previously generated content.
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2 Streaming-Batch Mismatches

LLMs are pre-trained in a batch-processing
paradigm, where the entire input sequence X =
[1,...,xy,] is processed simultaneously to gener-
ate the output sequence Y = [y1,...,Ym]. This
paradigm assumes full input availability, allow-
ing both self-attention and cross-attention mech-
anisms to operate over complete sequences. In
contrast, streaming tasks require incremental pro-
cessing, where inputs and outputs arrive and are
processed in an interleaved manner over time. At
any time step ¢, the model only has access to
a partial input sequence X; = [z1,...,x] and
generates a corresponding partial output sequence
Yy = [y1,...,yr]. This shift from batch to
streaming introduces three key mismatches:

Input-Attention Mismatch In batch-streaming
mode, self-attention enforces a strict ordering,
where each input token x; can only attend to prior
inputs X ;. This is typically expressed as:

h; = SelfAttention(z;, X ;), €))

where h; is the hidden representation of z;. How-
ever, in interleaved-streaming mode, as outputs are
generated incrementally, previously decoded out-
puts Y . become available and are included in the
attention context:

pinterleaved _ GelfAttention(zi, X«; U Y <pr). (2)

This disrupts the model’s pre-trained assumptions,
as input tokens in batch mode never attend to out-
put, potentially leading to degraded performance.

Output-Attention Mismatch In the batch-
streaming mode, each generated output token yj
can attend to all input tokens X by KV cache re-
encoding:

hy, = CrossAttention(yy, X) E<j, 3

where y; is the latest generated output token. How-
ever, in interleaved-streaming mode, output tokens
can only attend to the subset of inputs X; received
up to the current step:

hijmerlea"ed = CrossAttention(y;, X<¢). (4)

This temporal constraint means that the hidden
representation of each decoded token is computed
based only on the partial input sequence available
at the time, which may lead to inconsistencies com-
pared to batch-mode processing.

Position-ID Mismatch In batch-streaming, to-
kens receive contiguous position IDs by position
re-encoding, so that for an input sequence X; and
output sequence Y, we have:

p(xl) =1, p(yj> =1+, )
ensuring that the relative positional differences,
p(t;) — p(t;), accurately reflect the true token or-
der and guide the positional embedding function
g(p(t)) to generate coherent embeddings. For
interleaved-streaming, however, inputs and outputs
are interleaved (e.g., 1, Y1, 2, Y2, . . .) while still
being assigned continuous IDs from 1 to n 4+ m.
This misrepresents the true temporal gaps between
tokens; the relative differences p(t;) — p(t;) no
longer mirror the actual sequence structure.

3 Impact Analysis of Mismatches

Applying batch-trained LLMs to streaming mode
introduces structural mismatches. Existing re-
search has not systematically analyzed the nature
of these mismatches between streaming and batch-
processing. We employ a stepwise ablation ap-
proach to systematically isolate each mismatch and
assess its impact on streaming task performance.

Setup This section analyzes the impact of the
three mismatches using the streaming text transla-
tion task with wait-k reading & writing policy (Ma
et al., 2019). All experiments are conducted on
the IWSLT-17 dataset (Cettolo et al., 2017), cover-
ing two cross-lingual translation tasks: En-Fr and
En-De. We use Gemma2-2B-Instruct model (Team
et al., 2024) and Phi3-Mini-Instruct model (Abdin
et al., 2024) with 3.8B parameters for all experi-
ments, evaluating model performance using BLEU
scores. (Post, 2018).

Effects of Input-Attention Mismatch The
interleaved-streaming mode, which exhibits all
three mismatches, serves as our baseline for com-
parison. The batch-streaming mode eliminates
input-attention mismatch by preventing source
tokens from attending to generated target to-
kens. Building on this, we apply the same posi-
tional encoding as interleaved-streaming within
the batch-streaming framework. Notably, without
KV cache and position embedding re-encoding, the
batch-streaming approach still retains both output-
attention mismatch and position-ID mismatch.
Table 1 shows that eliminating the input-
attention mismatch improves BLEU scores across
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Dataset Mode Gemma2-2B-Instruct (wait-k)
1 3 5 7 Max. Imp.
Interleaved-streaming 30.9310.08 37.6740.11 39.1240.09 39.65+0.07
Enpy | Batch-streaming (No re.) 33.13i0‘09”-2°‘ 39.294¢.06 %2 40.66@‘10“'5[4 40.82i0‘09“'1i 12.20
Batch-streaming (Pos re.) | 33.1940.07'%% 39.4310.13™% 40.7810.08'"'% 40.8940.07'°% 10.14
Batch-streaming (All re.) | 33.47+0.10'"%% 39.6210.08 " 40911011 %% 41.0140.00'%'%  10.28
Interleaved-streaming 20.44+0.06 26.86+0.10 29.13+0.08 29.90+0.07
EnDe | Batch-streaming (Nore.) 21.9710.04' %% 28.3040.07'1* 30.5210.06 % 31.3610.05 ¢ 11.53
Batch-streaming (Pos re.) | 22.0610.03'"% 28.3810.05 "% 30.6310.04"""" 31.4540.05'%%  10.11
Batch-streaming (Allre.) | 22.2540.05 'Y 28.6110.06 "% 30.7710.07 *'* 31.5640.06 "'  10.23
Dataset Mode Phi3-Mini-Instruct (wait-k)
1 3 5 7 Max. Imp.
Interleaved-streaming 29.03+0.10 36.5410.14 38.4240.13 39.27+0.09
EnFr Batch-streaming (No re.) 30.96i0,10“9§ 38.4240.08 % 39.8040.07 142 40.93i0,1ﬁ"6§ 11.93
Batch-streaming (Pos re.) | 31.0810.06'"'? 38.5110.08 %% 39.87+0.12'%%" 40.96+0.05'%%  10.12
Batch-streaming (Allre.) | 31.2140.00'"%° 38.6710.13 "% 39.9810.11 %" 41.0540.07'"%  10.20
Interleaved-streaming 20.74+0.05 27.4640.14 29.56+0.10 30.67+0.06
En.De | Batch-streaming (No re.) 22214008 %7 28.8540.11 1137 30.8810.05 2 31.92i0_07“%5 11.47
Batch-streaming (Pos re.) | 22.28+0.06'"%" 28.8710.00 "% 30.9110.11'%% 31.9540.13'%  10.07
Batch-streaming (Allte.) | 22.4540.07'0'7 28.9810.07 % 31.0110.07'"'" 32.0340.07 "%  10.17

Table 1: The BLEU performance variations reflect the stepwise elimination of mismatches between batch processing
and streaming. Interleaved-streaming represents the presence of all three mismatches. Batch-streaming (No re.)
corresponds to batch-streaming with interleaved position encoding, where the input-attention mismatch is eliminated.
Batch-streaming (Pos re.) further removes the position-ID mismatch through position re-encoding. Finally, Batch-
streaming (All re.) eliminates the output-attention mismatch by re-encoding the KV cache.

different wait-k strategies, with a maximum in-
crease of 2.20 on the En-Fr translation task and
1.53 on the En-De translation task. This indicates
that processing streaming data in an interleaved
streaming manner with a batch-pretrained model
leads to performance degradation.

Effects of Position-ID Mismatch Re-encoding
can address the remaining two mismatches. We fur-
ther decompose re-encoding into two components:
KV cache re-encoding and position embedding re-
encoding. The former enables target tokens to at-
tend to the most recently available tokens, thereby
resolving the output-attention mismatch. The lat-
ter corrects the position-ID mismatch by adjusting
position embeddings to align with the streaming
paradigm. Expanding on this, the batch-streaming
paradigm with position embedding re-encoding fur-
ther resolves the position-ID mismatch while still
retaining output-attention mismatch.

Table 1 shows that position embeddings re-
encoding does not lead to significant performance
improvements, with a maximum gain of only 0.14
on the En-Fr and En-De translation tasks. This
suggests that position-ID mismatch is not a pri-

mary factor affecting streaming task performance,
challenging previous claims regarding the role of
positional encoding in streaming models.

Effects of Output-Attention Mismatch The
KV cache re-encoding can address the remain-
ing output-attention mismatch. On the setting of
the former, incorporating both KV cache and posi-
tion embedding re-encoding into batch-streaming
paradigm eliminates all mismatches, making it
closely resemble the batch-processing setting.
Table 1 shows that re-encoding previously gen-
erated tokens also does not significantly improve
model performance. Although re-encoding allows
target tokens to attend to the most recent input con-
text, the inherent constraints of streaming tasks
prevent already generated outputs from being mod-
ified. As a result, re-encoding does not alter the
fundamental partial information nature of stream-
ing tasks; instead, its primary effect is to correct
the generation path of subsequent tokens. However,
experimental results indicate that this correction is
not a decisive factor in performance improvement.
Our experiments demonstrate that input-
attention mismatch significantly impacts streaming
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Model ‘

En-Fr (Wait-k)

En-De (Wait-k)

Position setting ‘

| |1 3 5 7 1 3 5 7
Remove all pos. 27.11 3498 3754 38.02 | 19.01 2593 27.71 28.87
Remove source pos. | 2835 36.12 3842 39.03 | 19.63 26.82 28.08 29.36
Gemma2-2B-Instruct
Remove target pos. | 29.14 36.83 39.01 39.62 | 1991 27.01 2859 29.51
Retain all pos. 3323 3939 4076 4092 | 2235 28.88 30.84 3147
Remove all pos. 2673 3485 3731 3792 | 18.86 25.87 2779 29.01
Phi3-Mini-Instruct Remove source pos. | 27.98 3596  38.17 3895 | 1947 26.78 2819 29.54
(3.8B) Remove target pos. 28.84 3658 39.04 3946 | 19.83 2695 28.64 29.78
Retain all pos. 3096 3845 39.89 40,57 | 2221 28.86 30.92 31.94

Table 2: Effect of source and target position removal on streaming LL.Ms performance. We simulate position
removal by assigning a constant position ID of 0 to all tokens instead of removing the positional embeddings.

translation performance, highlighting the per-
formance gains of using a batch-processing
architecture for streaming tasks.”> On the other
hand, contrary to existing studies (Raffel et al.,
2024; Guo et al., 2024a; He et al., 2024),
position-ID mismatch is not the primary reason for
re-encoding, and interleaved positional encoding
achieves performance comparable to continuous
position encoding in batch processing. To investi-
gate the discrepancy between our findings with the
common assumption, we conduct a comprehensive
analysis of how position encoding impacts LLMs
in streaming scenarios.

4 Impact Analysis of Position Encoding

The above analysis suggests that positional mis-
matches do not significantly impact the perfor-
mance of streaming tasks. To further elucidate this
phenomenon, this section provides a detailed inves-
tigation into the impact of positional encoding on
the performance of LLMs in streaming scenarios.

4.1 Is Position Encoding Necessary for
Streaming Tasks?

Building upon the experimental setup from the pre-
vious section, we further investigate the necessity
of positional encoding in streaming tasks by sep-
arately removing global positional encoding and
target-side positional encoding. Table 2 presents
the BLEU scores on the En-Fr and En-De stream-
ing translation tasks after removing position encod-
ings at different locations. We simulate position
removal by assigning a constant position ID of 0 to
all tokens instead of removing the positional encod-
ing module. For the setting of position-retaining,

2We provide the detailed training process for different
settings in the Appendix B.3.

we apply interleaved positional encoding as illus-
trated in previous section. The table reveals that
removing positional information from either the
source or target side results in a clear performance
degradation, with the maximum drop exceeding
10%. In contrast, when both source and target po-
sitional information are removed, the model main-
tains roughly 80% of its BLEU score compared to
the fully position-retaining setting.

This finding aligns with previous studies sug-
gesting that LLMs can still learn certain positional
information even without explicit positional encod-
ing (Haviv et al., 2022). However, it is important
to emphasize that positional encoding remains rele-
vant for streaming tasks, particularly on the target
side. Notably, the absence of target-side positional
encoding leads to a measurable performance de-
cline, highlighting its role in maintaining effective
token generation in streaming scenarios.

4.2 Group Position Encoding Is An Option for
Streaming Tasks

Given that positional encoding is necessary and in-
terleaved positional encoding has minimal impact
on streaming task performance, one might ques-
tion whether streaming problems can be modeled
using interleaved positional encoding and batch-
streaming mode. However, this is not an optimal
choice, as interleaved positional encoding lacks
direct generalizability to batch processing.

In real-world scenarios, the target sequence is
not available in advance, making it impossible to
predefine source positions. This limitation hinders
the generalization of streaming models to offline
settings. To address this issue, we propose a group
position encoding based on batch-streaming frame-
work for streaming LLMs as shown in Figure 2,
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‘ Wait-k ‘

En-Fr (Target start id ¢)

En-De (Target start id ¢)

Model

| | 0 05 128 256 512 A | 0 05 128 25 512 A
5 4076 40.76 40.70 40.57 40.68 0.19|30.84 30.84 30.90 30.80 30.95 0.I5
7 4092 4092 40.85 4091 4092 0.07|3147 3147 3144 3157 31.67 0.23

Gemma2-2B-Instruct
9 |4091 4091 4090 40.88 4097 0.09|31.73 31.73 31.87 3191 31.88 0.8
11 [41.10 41.10 41.14 4096 41.05 0.8 |31.95 31.95 31.98 31.95 31.89 0.09
5 [39.89 39.89 3991 40.06 39.87 0.9 3092 3092 30.76 30.81 30.86 0.I6
Phi3-Mini-Instruct 7 4057 4057 4053 4072 4071 0.19|31.94 31.94 31.78 31.84 31.78 0.16
(3.8B) 9 4131 4131 4124 4135 4144 0203218 3218 32.10 3221 32.09 0.2
11 [41.92 4192 4203 41.94 4193 0.1 3226 3226 32.23 3233 3228 0.10
5 [40.11 4011 40.10 39.93 39.92 0.79]30.33 3033 3021 3037 30.34 0.16
7 4030 4030 4032 4035 4031 0.03|31.23 3123 3118 31.16 31.25 0.09

LLama3.1-8B-Instruct
9 |40.15 40.15 4032 4034 4035 0.20|31.80 31.80 31.83 31.76 31.89 0.I3
11 4053 40.53 4047 40.58 40.63 0.16 |32.04 32.04 3198 32.07 32.08 0.10

Table 3: Performance comparison of different models with various wait-k policies and target start IDs. A represents
the range of variation in BLEU scores when the start id of target token takes different values. We use bold to indicate

the smallest variation and underline to represent the largest variation.

Large Language Model (Group-Streaming)

Source Target

Target Source

(U ¢ (o
New source token ~3¢— Blocked attention
New target token
# Frozen token [0] [1] Position ids

Source token

Target token ~— Attendable attention

History Future

Figure 2: Framework of our Group-streaming LLMs.
(Left) Positional grouping of source and target tokens in
the streaming LLM, avoiding re-encoding. The group
start ID ¢ is a hyperparameter. (Right) The attention
mask matrix during the training ensures that target to-
kens can only attend to locally available inputs.

where source and target tokens are independently
assigned positional encodings, ensuring only mono-
tonic continuity within each group. Specifically, in
our proposed approach, the source position encod-
ing remains consistent with batch processing mode,
starting from 0. In contrast, the target position
begins from a predefined starting value ¢.

This approach makes it feasible to prefill source
position encodings even without target information
and naturally extends to batch processing. In fact,
interleaved position encoding can be viewed as
a special case of group position encoding, with
the distinction that the interleaved mode uses non-
uniform positional intervals.

4.3 What is the Impact of Group Position
Offset on Model Performance?

This section provides a detailed discussion on the
impact of target position offset ¢.

Setup We evaluate the impact of grouped posi-
tional encoding on text translation and automatic
speech recognition tasks. For text translation, we
use the IWSLT-17 dataset, focusing on En-Fr and
En-De translation tasks, with models including
Gemma?2-2B-Instruct (Team et al., 2024), Phi3-
Mini-Instruct (Abdin et al., 2024), and LLaMA3.1-
8B-Instruct (Dubey et al., 2024). For ASR, we use
the LibriSpeech dataset (Panayotov et al., 2015),
with Phi3 as the selected model. Translation perfor-
mance is assessed using BLEU scores, while ASR
performance is evaluated based on WER (Radford
et al., 2023). Detailed experimental settings and
hyperparameters are provided in the appendix.

Results The streaming text translation task re-
sults in Table 3 and streaming ASR task in Table 4
indicate that varying the initial offset of the target-
side group position encoding within a reasonable
range does not significantly affect the performance
of LLMs in streaming scenarios. This suggests that
the model is highly robust to the choice of initial
group position offset. Specifically, when the offset
is set to 0, the source and target positions are fully
overlap, whereas an offset of 0.5 results in com-
plete separation. Despite this contrast, both settings
yield comparable performance, suggesting that po-
sitional overlap appears to have limited impact on
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Wait-k ‘ Speech-Text (Target start id ¢)

‘ 0 256 512 1024 2048 A
1 6.02 6.05 604 6.07 6.17  0.15
3 412 410 409 4.08 419 011
5 352 358 355 359 3.61  0.09
7 333 333 338 341 345  0.12

Table 4: Performance of Phi3 with various wait-k poli-
cies and target start IDs. A represents the range of
variation in WER scores when the start id of target to-
ken takes different values.

the effectiveness of group position encoding.

4.4 Why Group Position Encoding Works?

The RoPE encodes relative position informa-
tion via rotation matrices R applied to each
token’s query and key: ¢ = R(n)g, and
kl = R(n)k,, where n denotes the position
ID. Then the dot product attention score can
be written as Attn(n,cache) = > . ¢/ Tk;" =
Sian R Rk = ST aiR(n — i)k,
where S is the token length of source input and
gn 1s query of a target token. The relative position
can be writtenas A = n — i = ¢ + j — i, where
j denotes the index of the target token and ¢ rep-
resents the position offset between the first token
of the target and that of the source. We split the
above dot-product attention into two parts: target-
to-target and target-to-source computations:
J
Attn(n,cache) = Z GFR(j — i)k
i=0
S
+> arR(¢+j — D)k (6)

=0

The relative position 7 — ¢ in the first target-to-
target term remains consistent across both RoPE
and group position encoding. For cross-segment
attention in target-to-source, the difference of rel-
ative position between RoPE and group position
encoding is determined by the position offset ¢. In
original RoPE, ¢ equals the length of the source
sequence and varies with input length, whereas in
group position encoding, ¢ is predefined as a fixed
constant. LLMs are capable of easily learning and
internalizing the semantics of the relative offset by
fine-tuning. Once the model has correctly under-
stood the meaning of ¢ as a position shift, it can
accurately capture and assign position relationships
across segments, without requiring explicit differ-

entiation between source and target token IDs.?

LLMs can learn the position offset ¢ through
simple fine-tuning, so typical values of ¢ do not sig-
nificantly impact performance. However, when ¢
becomes extremely large, it may lead to discrepan-
cies with the model’s pretraining distribution due to
the limited context length used during pretraining.
Therefore, a reasonable range for ¢ should ensure
that the maximum relative distance between the
last target token and the first source token remains
within the model’s pretraining context length.*

We recommend using a relatively small ¢, ide-
ally below the input sentence length, to keep rel-
ative position gaps closer to the pretraining dis-
tribution, which may facilitate faster convergence
and better performance. Notably, when ¢ = 0,
the target starting token is positioned closer to the
source starting token and farther from the source
ending token. This configuration better reflects the
sequential input arrival pattern in streaming scenar-
ios, leading to more stable learning dynamics and
enhanced model alignment.

4.5 Visualization of Streaming Attention

Taking text translation as an example, we visualize
the extent to which each target token attends to past
source information during inference. Notably, we
normalize the attention weights column-wise (i.e.,
across each source token) to the range [0, 1]. This
normalization offers two key benefits: (1) it miti-
gates the influence of tokens with inherently large
absolute attention values and highlights the relative
importance of attention distribution, making atten-
tion strength more interpretable; and (2) it provides
a clearer view of how each source token distributes
its attention across different target tokens.

As shown in Figure 3, under the batch setting,
source tokens distribute their attention uniformly
across all target tokens, reflecting a globally con-
strained behavior. In other words, each target token
tends to attend equally to the same source token.
In contrast, with group position encoding, source
tokens tend to assign more attention to target to-
kens with similar positional indices. That is, source
tokens are less likely to attend to future target to-
kens. This observation supports our earlier finding
that re-encoding previously generated target tokens
offers limited performance gain in streaming tasks
under group position encoding.

3The detailed analysis can be found in Appendix D.
*We provide additional experiments to demonstrate the
potential edge in Appendix D.3.
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Figure 3: An example of the attention distribution of
target tokens, where the attention values of each target
token are normalized to emphasize the relative focus.
The sample is from IWSLT-17 En-Fr dataset. >

Moreover, the results in Figure 3 indicate that
employing group position encoding in the batch-
processing setting shifts the target tokens’ attention
to the source context along the diagonal direction
when the offset ¢ = 0. This adjustment encour-
ages target tokens to focus more on the currently
available input, making the model’s behavior more
aligned with the requirements of streaming tasks.

5 Discussion

Why LLMs? We apply the proposed group-
streaming approach to mainstream large language
models and compare its performance against other
decoder-only streaming models to highlight its ad-
vantages. To demonstrate the effectiveness of our
method, we evaluate it on the En-Fr and En-De
translation tasks from the IWSLT-17 dataset, as

5Note that the attention values have been normalized. The
values do not represent the actual magnitude of attention.

well as the ASR task from the Librispeech dataset.
The baselines for text translation include Simul-
Mask (Raffel et al., 2024) and DST (Guo et al.,
2024a), while the baselines for ASR include CAAT
(Liu et al., 2021) and Wav2Vec-S (Fu et al., 2024).

As shown in Figure 4, the vertical axis repre-
sents task-specific performance metrics—BLEU
for translation and WER for ASR—while the hor-
izontal axis indicates the model’s average latency
(AL and LAAL), measured by the number of
waited words in translation and the waiting time in
ASR. The results show that group-streaming LLMs
consistently outperform specialized decoder-only
baselines, typically achieving higher accuracy un-
der the same latency conditions.

Generalization We extend our group position en-
coding to batch processing. The first bar in Figure 5
represents the model that is specifically trained for
batch processing using the original RoPE. Subse-
quently, we applied group position encoding to the
batch processing scenario and fine-tuned the model.
The results demonstrate that applying group posi-
tion encoding introduces no performance degrada-
tion for batch processing, confirming its compati-
bility and generalization across both streaming and
batch processing settings.

6 Related Work

Streaming Language and Speech Transformers
A typical implementation of Transformer-based
streaming tasks adopts an incremental encoding
strategy on the encoder side and an incremental
decoding strategy on the decoder side (Ma et al.,
2021, 2023; Zhang and Feng, 2023). With the
rise of large language models, researchers have be-
gun exploring how to adapt decoder-only architec-
tures for streaming tasks. Among these approaches,
batch-streaming models based on prompt struc-
tures attempt to approximate offline batch process-
ing by re-encoding tokens during streaming infer-
ence (Agostinelli et al., 2024; Guo et al., 2024b;
Koshkin et al., 2024; Wang et al., 2024). Some
studies suggest that position confusion in stream-
ing environments is a key factor necessitating re-
encoding in LLMs (Guo et al., 2024a; Raffel et al.,
2024). To address this issue, one line of research
focuses on modifying the decoder-only architec-
ture to enhance its adaptability to streaming tasks
(Guo et al., 2024a; Tsunoo et al., 2024; Chen et al.,
2024), while another emphasizes optimizing po-
sitional encoding—such as the ALIBI positional
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Figure 4: The performance comparison between group position streaming LLMs with other decoder-only models.
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Figure 5: The BLEU performance of batch-processing
translation task on IWSLT-17 En-Fr dataset.

encoding—to mitigate the effects of incremental
position shifts during streaming decoding (Raffel
et al., 2024). In contrast to simulated batch process-
ing, an interleaved-streaming paradigm (Du et al.,
2024; Yang et al., 2024) that adheres to temporal
order has been explored, wherein input and output
tokens are interleaved and encoded sequentially.
While significant progress has been made in de-
veloping streaming models, existing studies lack a
rigorous analysis of the fundamental differences be-
tween batch processing and streaming paradigms.

Position Encoding in Transformers Position
encoding (Raffel et al., 2020; Press et al., 2022;
Su et al., 2024) is a crucial component of Trans-
former models (Vaswani, 2017), designed to break
the permutation-invariant nature of self-attention
mechanisms. Recent studies have demonstrated
that decoder-only Transformer models can still cap-
ture positional information even in the absence of
explicit positional encoding (Shen et al., 2018).
A plausible explanation is that causal attention
masks enforce position-dependent token interac-
tions, implicitly encoding positional information
(Haviv et al., 2022; Tsai et al., 2019). Related re-

search has shown that in tasks such as speech mod-
eling (Likhomanenko et al., 2021) and language
modeling (Haviv et al., 2022), decoder-only Trans-
formers without positional encoding can achieve
performance comparable to standard decoder-based
Transformers. Furthermore, other studies (Kazem-
nejad et al., 2024; Ruoss et al., 2023) have indi-
cated that the generalization ability of Transformers
without positional encoding does not degrade sig-
nificantly when handling varying context lengths.
While significant progress has been made in under-
standing positional encoding in LLMs, existing re-
search has primarily focused on static scenarios. In
contrast, the role of positional encoding in stream-
ing scenarios remains underexplored, where the
dynamic modeling of positional information may
follow different patterns and exert distinct effects.

7 Conclusion

This work provides a systematic analysis of the mis-
matches that arise in adapting batch-trained LLMs
to streaming tasks. We identify input-attention
mismatch as the primary bottleneck, while output-
attention and position-ID mismatches have negligi-
ble impact, challenging the prevailing assumption
that position inconsistencies necessitate frequent
re-encoding. To clarify this, we conduct the first
in-depth analysis of position encoding in streaming
settings, showing that preserving strict absolute po-
sitions is unnecessary; instead, maintaining relative
token order within source and target contexts is
more critical. Building on the insights, we propose
the group streaming paradigm, a simple yet effec-
tive strategy that bridges the gap between stream-
ing and batch modes without requiring re-encoding.
The approach is model-agnostic and generalizable,
achieving strong performance across both cross-
lingual and cross-modal streaming tasks.
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Limitations

This paper primarily focuses on exploring the opti-
mal paradigm for streaming models and, therefore,
does not delve into different waiting policies. The
conclusions drawn in this study have only been
validated under the wait-k policy. Additionally,
our study is confined to streaming tasks in the text
and audio modalities, with video streaming left for
future investigation.
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A Different Paradigms on Streaming Tasks

The main text introduces three approaches for applying LLMs to streaming tasks: batch-streaming,
interleaved-streaming, and group-streaming. Among them, batch-streaming maximally simulates the
batch-processing paradigm in offline scenarios through re-encoding, with the only difference being the
availability of local information in a streaming setting. Figure 1 illustrates different paradigms of LLM
data processing using ASR as an example.
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Figure 1: An ASR example for illustration of different paradigms for LLMs processing.

We clarify that re-encoding refers to reprocessing all previously generated target tokens after each new
source context is read, before generating the next target token. This is solely for optimizing the generation
of the latest token without altering previously output content. We exclude scenarios where re-encoding
continuously adjusts already output content, as the final alignment after reading the entire input would be
equivalent to batch processing. In this context, re-encoding clearly holds positive value.

B Model Details
B.1 Model Structure

Streaming Text LLM The group-streaming model, as previously introduced, is designed to enforce
a strict attention constraint where historically generated tokens are prevented from attending to newly
received source tokens, ensuring a clear separation between past and present information. Additionally, the
model maintains independent positional encoding for both source and target tokens, preserving structural
integrity while facilitating effective streaming processing.

Streaming Speech LLM  Figure 2 illustrates the structure of the streaming ASR model proposed in this
paper. The model consists of a streaming audio encoder, an MLP projector, and our Group Positional
Encoding-based Streaming LLM.

The streaming audio encoder is a variant of Wav2vec2 (Baevski et al., 2020), with the following
key modifications: (1) Positional Encoding Adjustment: We replace the convPE in Wav2vec2 with
a causal convolution-based positional encoding (causal ConvPE) to enforce directional constraints on
the information flow. (2) Structural Optimization: The Transformer Encoder in Wav2vec? is replaced
with a Transformer Decoder to ensure global unidirectional information constraints, thereby enhancing
incremental encoding capability. We refer to this modified model as Wav2vec2-Streaming. While
it shares some similarities with Wav2vec-S (Fu et al., 2024), the latter employs absolute sinusoidal
positional encoding, whereas Wav2vec2-Stream retains causal convolution to improve temporal modeling.
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Figure 2: Illustration of our Group-streaming speech Large Language Model, where the group-streaming LLM and
the streaming audio encoder are connected through an MLP projector.

Additionally, we have modified Wav2vec2 within the HuggingFace Transformers framework® to enable
seamless interoperability with existing LLMs. Our code and pretrained weights will be open-sourced for
research and application purposes.

Wav2vec2-Stream processes audio data sampled at 16 kHz, where each segment consists of 400
samples, with an 80-sample overlap between consecutive segments. This results in an embedding vector
for the LLM approximately every 20 ms, ensuring a fine-grained temporal resolution for streaming speech
recognition. Similar to (Chen et al., 2021; Dong et al., 2022) et al., we adopt a fixed-interval audio
segmentation approach combined with the wait-k strategy for streaming tasks. In our setup, the time
interval is set to 400 ms, ensuring a structured and controlled latency for real-time processing.

Unlike discrete encoding models (Zhang et al., 2023a; Zhan et al., 2024), which require expanding the
LLM vocabulary to support speech-text multimodality, we propose a continuous encoding-based speech
LLM. In this framework, the output features of the streaming audio encoder are mapped to the LLM space
through an MLP projection layer, enabling end-to-end speech understanding and generation. This design
is inspired by LLaVA (Liu et al., 2024) but has been specifically optimized for streaming speech tasks.

B.2 Data Format

In this paper, all the large language models we selected are instruction-tuned versions. To fully leverage
their instruction-following capabilities, we strictly adhere to the instruction format used during their
pretraining phase. Additionally, we design the data format, as shown in Figure 3 and Figure 4, to align
with the specific requirements of our tasks.

B.3 Training Method

Training Method of Different Streaming Paradigms The main text analyzes the impact of different
LLM paradigms on streaming tasks, covering training and evaluation methods for interleaved-streaming,
batch-streaming, and group-streaming. This section provides a detailed explanation of the masking matrix
design for different streaming paradigms and introduces the corresponding training methods. We explain
these training paradigms in the context of the wait-k reading/writing policy (Ma et al., 2019).

Figure 5 illustrates the attention mask under different training methods, indicating the input order,
position IDs, and whether a token is included in the loss calculation. Figure 5 (a) represents the standard
LLM causal mask matrix, which enables batch-processing training in offline scenarios using shifted
loss computation. Figure 5 (b) also employs a causal mask matrix, but the model’s input consists of an
interleaved sequence of source and target tokens, with position IDs assigned sequentially. Notably, each
word may correspond to multiple tokens, where the first token is generated from the source, while the

®https://huggingface.co/facebook/wav2vec2-large-960h-1v60-self
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Prompt: '<bos><start_of turn>userTranslate the following English paragraph to German\n'
Input: 'Just in the last two days, we got the new temperature records in January.<end_of turn>'

Output: '<start of turn>Erst in den letzten beiden Tagen hatten wir neue Januar-Temperaturrekorde.<end_of turn>'

Prompt: '<|system[>Translate the following English paragraph to German:<|end>'
Input: '<|user|>Just in the last two days, we got the new temperature records in January.<|end>'

Output: '<|assistant>Erst in den letzten beiden Tagen hatten wir neue Januar-Temperaturrekorde.<|end|>'

Prompt: '<|begin_of_text[><|start_header_id[>system<|end_header_id[>Translate the following English paragraph to German:<|eot_id[>'
Input: '<|start_header_id|>user<|end header_id|>Just in the last two days, we got the new temperature records in January.<|eot_id[>'

Output: '<|start _header_id[>assistant<|end_header_id[>Erst in den letzten beiden Tagen hatten wir neue Januar-Temperaturrekorde.<|eot_id|>'

Figure 3: Data format of text translation task. An example of translation from English to German.

Prompt: '<bos><start of turn>userTranscribe the following English audio to English text\n'
Input: 'SPEECH<end of turn>'

Output: '<start of turn>Just in the last two days, we got the new temperature records in January.<end of turn>'

Prompt: '<|system[>Transcribe the following English audio to English text:<|end|>'
Input: '<user>SPEECH<|end|>'

Output: '<[assistant[>Just in the last two days, we got the new temperature records in January.<|end|>'

Prompt: '<|begin_of text|><|start _header_id|>system<|end header_id[>Transcribe the following English audio to English text:<|eot_id|>'
Input: '<|start_header_id|[>user<|end_header_id>SPEECH<|eot_id[>'

Output: '<|start header id|>assistant<|end header id[>Just in the last two days, we got the new temperature records in January.<|eot id[>'

Figure 4: Data format of ASR task, where the ’'SPEECH” is the audio embedding for input.

remaining tokens are generated from the target. During loss computation, only positions that contribute to
target token generation are considered. Figure 5 (c) depicts the batch-streaming mask matrix, which is
structurally akin to (Raffel et al., 2024). It maintains the batch-processing input format while adopting
interleaved-streaming position encoding, preventing source tokens from attending to target tokens to
eliminate input-attention mismatch and ensure streaming consistency.

Figures 5 (d), (e), and (f) represent three different re-encoding scenarios, all of which share the same
mask matrix. The core assumption of re-encoding is that as new content is continuously read at the source
end, both the historical KV cache and position embedding must be updated accordingly to ensure accurate
next-token prediction. Therefore, the training phase should reflect this dynamic updating mechanism.
However, existing approaches employ either a causal-mask or prefix-to-prefix training methods (Raffel
et al., 2024), leading to a mismatch between training and inference. Specifically, causal-masked training
is inherently offline and fails to capture the continuous update of content. While prefix-to-prefix training
partially simulates this process, the target token is always the most recent one at each step. As more
content is read, its behavior increasingly resembles an offline setting. In streaming scenarios, however,
previously generated content cannot be modified, making this approach inadequate for capturing the true
nature of re-encoding. To address this discrepancy, the mask matrix design in Figures 5 (d), (e), and
(f) ensures consistency between the training and inference processes, effectively aligning the training
paradigm with real-world inference dynamics.

Training Method of Streaming ASR Model Due to the lack of a large-scale pre-trained streaming
audio encoder, our modified streaming version of Wav2vec?2 requires a step-by-step training approach.
We adopt a four-stage training strategy to effectively train our proposed speech large language model,
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Figure 5: Attention mask matrix of different paradigms.

ensuring a smooth adaptation to streaming scenarios:

1. Stage 1: Pre-training for Feature Alignment. In the first stage, we focus on establishing a robust
feature alignment between the streaming audio encoder and the LLM. We begin by freezing both
Wav2vec2 and the LLLM and train the MLP projector using a batch-processing task. The goal is to
learn a stable feature transformation that maps the continuous speech representations from Wav2vec2
into a space that aligns with the LLM’s token embedding space. This step is crucial for minimizing
the modality gap between speech and text representations, ensuring that the LLM can effectively
process speech-derived embeddings in later stages.

2. Stage 2: Streaming Adaptation of Wav2vec2. We replace Wav2vec2’s ConvPE with the causal ver-
sion used in Wav2vec2-Streaming, enabling directional constraints suitable for streaming processing.
In this stage, we jointly train Wav2vec2-Streaming and the projector, allowing the model to adapt to
incremental encoding while maintaining alignment with the LLM’s input space.

3. Stage 3: Streaming Adaptation of Wav2vec2. We replace Wav2vec2’s transformer encoder with the
transformer decoder from Wav2vec2-Streaming. This modification ensures that the model adheres to
global unidirectional constraints. We then continue joint training of Wav2vec2-Streaming and the
projector, improving the encoder’s ability to generate high-quality speech embeddings in real-time.

4. Stage 4: Fine-tuning the LLM for Streaming ASR. In the final stage, we freeze both Wav2vec2-
Streaming and the projector, and fine-tune the LLM on a streaming ASR task. This step refines the
LLM’s ability to generate accurate text outputs from streaming speech representations, optimizing
its instruction-following capabilities while maintaining low-latency processing.

C Experiments Details

C.1 Hyperparameters

When verifying grouped position encoding, the model parameters are configured as shown in Table 1.
Notably, re-encoding introduces quadratic complexity, increasing the computational cost and resource
requirements for both model training and inference. For the mismatch validation experiment, we reduce
both the batch size and learning rate by half.
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Text to Text ASR, Stage 1  ASR, Stage 2 to 4

Hyperparameter .\ a2, Phi3, LLama3.1) (Phi3) (Phi3)
Precision bfloat16 bfloat16 bfloat16
Learning Rate 2e-4 2e-4 2e-4
LR Scheduler Linear Linear Linear
Optimizer AdamW AdamW AdamW
Warmup steps 500 1000 5000
Lora rank 32 64 64
Epochs 2 4 4
Batch size 64 32 64
Wait-k 1,3,5,7,9,11 1,3,5,7,9 1,3,5,7,9

Table 1: Fine-tuning hyperparameters of LLMs in this paper.

C.2 Decoding Strategy

The decoding process for streaming LLM is detailed in Algorithm 1.

Algorithm 1 Streaming decoding with wait-k policy

Input: Source length list S, target length list 7', wait-k policy k.

22:

. Initialize source KV cache S.,cpe, target KV cache T,,.pe, and past token KV cache P.,.p. as None.
Initialize action=read, is_finished=false, and index = 0.
Initialize next_token as the target prompt tokens, and initialize generated tokens for this round

token_list as an empty list.
while is_finished is false do:

if action is read:

Separate Pcache to Scache and Tcache-

Read prompt and k + index words, and save hidden state to source KV cache S.qcpe-
Merge Scache and Tcache to Pcache-

Set action=write.

Set index = index + 1.

elif action is write:

Separate Prache 10 Scache and Teqche-
Calculate and save hidden state to target KV cache Ti.,cne-
Merge Scache and Teqche 10 Pegcpe-
Project next_token as Q, and calculate attention output with KV cache P, ,pe.
Predict and update the next_token based on greedy decoding.
if next_token is the end symbol:

Set is_finished as true.
Add next_token to token_list.
if token_list forms a complete word:

Print the word.

Set action as read, reset token_list as an empty list.

23: end while
24: Return: The predict words.

D More Details about Group Position

D.1 Relative Distance of Group Position

Let the source tokens be X = [z, z1,...,2z)—1] and target tokens be Y = [yo, y1,...,yn—1], Where
the position IDs are pos, = [0,1,...,M — 1] and pos, = [¢,¢ + 1,...,¢ + N — 1], respectively. In
batch-processing mode, the starting position ID on the target side is given by ¢ = M. In batch-streaming
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Figure 6: Relative distance matrix of batch-processing mode and group-streaming mode.

mode, the starting position ID on the target side is given by ¢ = 0.
Define the rotary matrix as R(m) = diag(Ri(m), Ra(m), ..., Rg/2(m)), where m is the position id,
d is the model dimension, and

cos(mb;) —sin(mb;)

Ri(m) = sin(m#;)  cos(mb;)

. 6; = 100002/, (1)

For the original rotary position embedding (RoPE) (Su et al., 2024), positional information is incorpo-
rated into each token’s Query (q) and Key (k) through a rotation matrix. This process can be expressed as
g, = R(n)qn and k], = R(m)k,,, where n and m denote the respective position IDs. Then, the attention
mechanism in RoPE incorporates the rotationally transformed queries and keys, leading to the attention
score computation as follows:

Attention(n,m) = qTTLTk,’;l = ¢’ RT(n)R(m)km = ¢L R(m — n)kp,. 2)

For any two positions n and m within the sequence, their position encoding depends solely on R(m—n),
meaning it is determined by their relative distance m — n. When k,,, and ¢,, both belong to either source
tokens or target tokens, the relative distance is given by A = m — n. In this case, the positional encoding
results in batch-processing and batch-streaming remain identical. When k,,, and ¢,, belong to source
tokens and target tokens, respectively, the relative distance is given by A = ¢ + j — m, where j denotes
the position of g, as the j-th token on the target side. In this case, the positional encoding results in
batch-processing and batch-streaming depend on ¢.

For batch processing, ¢ = M — 1 indicates that the target tokens are farther from the source starting
token and closer to the source ending token. In contrast, for batch-streaming, » = 0 means the target

23514



starting token is closer to the source starting token and farther from the source ending token. This
aligns with the sequential information arrival order in streaming scenarios, making it more suitable for
capturing relative positional changes in streaming settings.

Figure 6 illustrates the variation in relative distances under batch-processing and batch-streaming
settings. In batch-processing mode, which is typically used in offline scenarios, position IDs are assigned
sequentially. Tokens near the diagonal exhibit local positional relationships with smaller relative distances,
whereas tokens farther from the diagonal have increasingly larger relative distances, reflecting their
positional separation. In batch-streaming mode, the relative positional relationships among tokens within
the source and target sequences remain unchanged. However, the relative distance between target and
source tokens is influenced by the parameter ¢, shifting accordingly as ¢ increases. Taking ¢ = 0 as an
example, in a streaming scenario, the target token with position ID O first interacts with the source token
at position ID 0, resulting in a relative distance of 0. This alignment effectively models the sequential
nature of data accumulation in streaming settings, ensuring that the position encoding adapts dynamically
to the progressive arrival of information.

D.2  Why Group Position Avoids Confusion

Research by (Shen et al., 2018; Haviv et al., 2022; Tsai et al., 2019) have shown that decoder-only models
can learn implicit positional information. In decoder-only architectures, source tokens and target tokens
attend to different contexts. As a result, even if their position IDs overlap, the model can still distinguish
between source and target based on the content they attend to. As shown in Equation 3:

Attention(n, cache) Z q’"Tk " Z qTRT i)k; = Z qTR (1—n)

Zi:o qnsR(i —n)ki,, Gn, 1S source,
- 3)
M-1 .
Yico qntR(z —n)k;, + ZZ 0 qm R(i —n)ki,, qn, s target.

In both cases, the query token has an ID of n, but since it attends to different content, the model can still
distinguish between the source and the target.

D.3 Potential Edge of Group Position

The model can learn the position offset ¢ through simple fine-tuning, so typical values of ¢ do not
significantly impact performance. However, when ¢ becomes extremely large, it may lead to discrepancies
with the model’s pretraining distribution due to the limited context length used during pretraining.
Therefore, a reasonable range for ¢ should ensure that the maximum relative distance, specifically,
between the last target token and the first source token, does not exceed the model’s pretraining context
length. For example, Gemma2-2B-Instruct was pretrained with a context length of 8k, which suggests
that the maximum suitable value of ¢ is around 6k, as shown in Table 2.

Model Wait-k m=0 m=512 m=4k m=5k m=6k m=7k m=8k m=10k m=50k

5 40.76  40.68  40.70 40.51 40.21 3983 39.73 39.52 39.37

Gemma2-2B-Instruct (8K
emma nstruct BK) g 4001 4080 4085 4081 4073 4001 3997 3978 39.56

Table 2: BLEU performance of Gemma2-2B-Instruct (8k) under different memory sizes m and wait-k settings.

E Full Results of Text Translation Task

This section provides additional results to validate the impact of different initial position IDs on the
target side in streaming translation tasks. The results cover three different large language models and two
different translation tasks. The full results of the text translation task are shown in Table 3, which includes
the accuracy metric BLEU and the latency metric LAAL.
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Dataset ‘ Wait-k ‘ Gemma2-2b-Instruct (Target start id ¢)

\ \ 0 0.5 128 256 512 A
5 4076 (521) 4076 (521)  40.70(521)  40.57(5.20)  40.68(5.21)  0.19(0.01)
En-Fr 7 4092(7.18)  4092(7.18)  40.85(7.17) 4091 (7.18)  40.92(7.18)  0.07 (0.01)
9 4091 (9.14) 4091 (9.14)  4090(9.13)  4088(9.13)  41.01(9.13)  0.09 (0.01)
11| 41.10(11.09)  41.10(11.09)  41.14(11.09)  40.96 (11.09)  41.05(11.09)  0.18 (0.00)
5 30.84 (4.62) 3084 (4.62)  3090(4.63) 3080 (4.62)  30.95(456)  0.15(0.07)
EnDe 7 3147(6.63)  3147(6.63)  3144(6.63)  31.57(6.63)  31.67(6.59)  0.23(0.04)

9 31.73 (8.66) 31.73 (8.66) 31.87 (8.65) 31.91 (8.65) 31.88 (8.65) 0.18 (0.01)
11 31.95(10.70)  31.95(10.70)  31.98 (10.69) 31.95(10.69)  31.89 (10.69) 0.09 (0.01)

Dataset | Wait-k Phi3-mini-Instruct (Target start id ¢)

\ 0 0.5 128 256 512 A
5 39.89(545)  39.89(545)  39.91(544)  40.06(5.41)  39.87(5.44)  0.19(0.03)
EnFr 7 4057(7.38)  4057(7.38)  4053(7.37)  40.72(7.39)  40.71(7.39)  0.19(0.02)
9 4131(928)  4131(9.28)  41.04(9.29)  4135(9.27)  41.44(927)  0.20(0.02)
11| 41.92(11.17)  41.92(11.17) 4203 (11.17) 4194 (11.17) 4193 (11.17)  0.11(0.00)
5 30.92 (465  30.92(4.65  30.76 (4.64)  30.81(4.65)  30.86 (4.65)  0.16 (0.01)
EnDe 7 31.94(6.65  31.94(6.65  31.78(6.64)  31.84(6.64)  31.78(6.64)  0.16 (0.01)

9 32.18 (8.69) 32.18 (8.69) 32.10 (8.68) 32.21 (8.69) 32.09 (8.68) 0.12 (0.01)
11 32.26 (10.71)  32.26 (10.71)  32.23 (10.73) 32.23(10.73)  32.28 (10.73) 0.10 (0.02)

Dataset | Wait-k LLaMA3.1-8b-Instruct (Target start id ¢)

\ 0 0.5 128 256 512 A
5 40.11(523)  40.11(523)  40.10(522)  39.93(523)  39.92(523)  0.19(0.01)
En_Fr 7 4030(7.19)  4030(7.19)  4032(7.19)  40.35(720)  40.31(7.19)  0.03(0.01)
9 40.15(9.17)  40.15(9.17)  4032(9.16)  40.34(9.17)  40.35(9.17)  0.20 (0.01)
11 4053 (11.11) 4053 (11.11) 4047 (11.11)  40.58 (11.11)  40.63 (11.10)  0.16 (0.01)
5 3033(458)  3033(458)  3021(457)  30.37(458)  30.34(458)  0.16(0.01)
En_De 7 31.23(6.54)  31.23(654)  3L18(654)  31.16(6.54)  3125(6.53)  0.09 (0.01)
9 31.80(8.63)  31.80(8.63)  31.83(8.63)  31.76(8.62)  31.89(8.62)  0.13(0.01)

11 32.04 (10.56)  32.04 (10.56)  31.98 (10.55) 32.07 (10.56)  32.08 (10.56)  0.10 (0.00)

Table 3: Performance comparison of different models with various wait-k policies and target start IDs. A represents
the range of variation in BLEU scores and LAAL scores when the start id of target token takes different values. We
use bold to indicate the smallest variation. Underline represents the largest variation.

F Model Efficiency

This section compares the computational cost and throughput between re-encoding and our grouped-
streaming approach. We conduct a case study on the En—Fr streaming translation task using a filtered
subset of the dataset that contains 7.3k sentence-level examples with controlled lengths, amounting to
approximately 32k tokens.All experiments are conducted using the Phi-3 Mini Instruct model. Table 4
summarizes the inference time and throughput under different Wait-k settings, highlighting the drastic
efficiency gains brought by removing re-encoding.

The results in the figure show that the proposed grouped-streaming paradigm eliminates the need for
re-encoding, resulting in significant throughput improvements: over 5 x speedup under the wait-9 setting
and more than 11 X speedup under wait-5 setting, compared to the re-encoding baseline.

Wait-k Inference mode Time consumption Throughput

5 with re-encoding 59.54 h 1.79 tokens/s
without re-encoding 438 h 1 92.6% 20.24 tokens/s x 11.3

9 with re-encoding 28.87h 3.70 tokens/s
without re-encoding 4.04 h 1 86.1% 21.93 tokens/s x 5.9

Table 4: Comparison of inference efficiency under different Wait-k values and re-encoding modes.
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G Visualization
G.1 Attention Distribution

Figure 7 illustrates the absolute values of the attention matrix, representing the attention magnitude of
target tokens to both the input and output. In the left figure, the most attended column corresponds to the
attention sink (Xiao et al., 2024), whereas in the right figure, the attention sink has been removed. The
absolute attention map highlights each token’s attention to historical tokens but makes it difficult to assess
how different tokens distribute their attention toward a specific token. To better emphasize the distribution
of target tokens’ attention toward a given token, we normalize the attention map along columns and apply
a gamma transformation to enhance and amplify the relationships. Mathematically, given an attention
matrix A, where A; ; represents the attention weight from token j to token ¢, we normalize each column

as follows: o A;j —ming{A; ;}
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Figure 7: The absolute values of the attention matrix, with the left figure incorporating the attention sink, while the
right figure depicts the matrix after the removal of the attention sink.
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G.2 Example of Streaming Decoding
Figure 8 is an example of streaming reading and decoding process.

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two'

Output: '<start_of_turn>Erst'

Input: '<bos><start of turn>userTranslate the following English paragraph to German\nJust in the last two days,'

Output: '<start of turn>Erstin'

Input: '<bos><start of turn>userTranslate the following English paragraph to German\nJust in the last two days, we'

Output: '<start_of turn>Erst in den'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got'
Output: '<start_of turn>Erst in den letzten'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got the'
Output: '<start_of turn>Erst in den letzten beiden'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got the new'
Output: '<start_of turn>Erst in den letzten beiden Tagen'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got the new temperature’
Output: '<start of turn>Erst in den letzten beiden Tagen hatten'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got the new temperature
records'

Output: 'start_of turn>Erst in den letzten beiden Tagen hatten neue'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got the new temperature
records in'

Output: '<start_of turn>Erst in den letzten beiden Tagen hatten neue Januar-'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got the new temperature
records in January'

Output: 'start_of turn>Erst in den letzten beiden Tagen hatten neue Januar-Temperaturrekorde'

Input: '<bos><start_of turn>userTranslate the following English paragraph to German\nJust in the last two days, we got the new temperature
records in January.<end_of_turn>'

Output: 'start_of turn>Erst in den letzten beiden Tagen hatten neue Januar-Temperaturrekorde.<end_of _turn>'

Figure 8: An example on wait-5 reading/writing policy. The bold indicate the most recently content.
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