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Abstract

Given a task in the form of a basic description
and its training examples, prompt optimization
is the problem of synthesizing the given in-
formation into a text prompt for a large lan-
guage model. Humans solve this problem by
also considering the different facets that define
a task (e.g., counter-examples, explanations,
analogies) and including them in the prompt.
However, it is unclear whether existing algo-
rithmic approaches, based on iteratively editing
a given prompt or automatically selecting a
few in-context examples, can cover the mul-
tiple facets required to solve a complex task.
In this work, we view prompt optimization
as that of learning multiple facets of a task
from a set of training examples. We exploit
structure in the prompt optimization problem
and break down a prompt into loosely coupled
semantic sections. The proposed algorithm,
UNIPROMPT, (1) clusters the input space and
uses clustered batches so that each batch likely
corresponds to a different facet of the task, and
(2) utilizes a feedback mechanism to propose
adding, editing or deleting a section, which in
turn is aggregated over a batch to capture gen-
eralizable facets. Empirical evaluation on mul-
tiple datasets and a real-world task shows that
prompts generated using UNIPROMPT obtain
higher accuracy than human-tuned prompts and
those from state-of-the-art methods. In particu-
lar, our algorithm can generate long, complex
prompts that existing methods are unable to
generate. Code for UNIPROMPT is available at
https://aka.ms/uniprompt.

1 Introduction

Given a task, choosing an input prompt is a key
part of optimizing Large Language Model’s (LLM)
performance (Kojima et al., 2024; Yang et al.,
2023). Minor changes in prompt can lead to per-
formance gains or losses, necessitating prompt en-
gineering (Liu et al., 2023). Typically, manually-
developed prompts combine task description with a

few in-context examples, along with modifiers like
chain-of-thought (Kojima et al., 2024). For greater
accuracy, human prompt engineers spend consider-
able time to identify errors with a current prompt,
consider the different facets of a task (e.g., counter-
examples, explanations, analogies) that may fix
those errors, and include them in the prompt. For
instance, for a hate speech classification task, in ad-
dition to the definition, it may be helpful to specify
the facets that lead to hate speech: the context of
conversation, identifying intent, and differentiating
hate speech from opinions or closely-related con-
cepts such as vulgarity and profanity.
To avoid the above cumbersome manual process,
recent work aims to automate the process of gener-
ating natural language prompts that are also inter-
pretable. Since language tokens are discrete, this
leads to a challenging discrete optimization prob-
lem with a combinatorial space of possible outputs.
Techniques for prompt optimization can be divided
in two categories: non-directional, e.g., random
search (Zhou et al., 2022; Zhang et al., 2023) and
genetic algorithms (Yang et al., 2023; Guo et al.,
2023), where the sampling of new input is “ran-
dom” and does not explicitly aim to reduce error
on a train set; and directional, where the sampling
of new input depends on some error measure on a
representative train sample. Recently, more com-
plex methods have been proposed in the second cat-
egory including RL (Zhang et al., 2022; Deng et al.,
2022), updating prompts using feedback from aux-
iliary LLMs (Hu et al., 2024; Pryzant et al., 2023),
and optimizing the input to a small LM that gen-
erates the prompt (Lin et al., 2024b; Chen et al.,
2024). While these techniques focus on editing
parts of a given prompt, they are developed with
the goal of obtaining a concise description of the
task. None of these focus on ensuring multiple
facets of a task are added to the prompt.
In this paper, we propose UNIPROMPT, a prompt
optimization method to cover diverse, multiple
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facets of a task and improve overall accuracy. To
simulate the manual prompt engineering process,
we propose that prompts be constructed from in-
dividual sections, where each section may corre-
spond to a different facet that humans may consider
for the task. Prompt editing proceeds at a section-
level: we can add, edit or delete a section from
the prompt. Similar to (Pryzant et al., 2023; Hu
et al., 2024), prompt edits are based on an auxil-
iary LLM’s feedback about example predictions
with the current prompt. We contribute two key
insights in this feedback-based optimization pro-
cess. First, we find that the feedback on a single
example or a randomly selected batch of examples
does not yield generalizable facet descriptions. In-
stead, we propose clustering the inputs and creating
mini-batches such that each mini-batch is sourced
from a single cluster. Second, even with clustered
batches, the feedback tends to overfit to specific
examples or their properties. To generate a prompt
edit that conveys a generalizable concept relevant
to the task, we propose generating edits at a mini-
batch level and then aggregating them at the batch
level to yield the final edit (Figure 1). While the
two insights may appear simple, we show that they
significantly improve extracting diverse task facets.

We evaluate UNIPROMPT on several bench-
marks where it consistently achieves higher accu-
racy than existing prompt optimization methods.
On Ethos, a hate speech dataset, UNIPROMPT ob-
tains 94% accuracy whereas the next best method
obtains 82%. Even though UniPrompt focuses
only on the instruction and does not include any
in-context examples, we find that its instruction-
only accuracy is often higher than methods such as
DSPy (Khattab et al., 2024) that optimize both. In
the few-shot setting, we also compare UNIPROMPT

to MedPrompt (Nori et al., 2023), a state-of-the-
art prompt composition method. We find that
UNIPROMPT, requiring only one LLM call at in-
ference time, obtains the same accuracy as Med-
Prompt that requires five calls. If we allow multiple
calls to UNIPROMPT, we obtain over 4% accuracy
gains. Finally, we also evaluate UNIPROMPT on a
real-world semantic matching task in a web search
engine. Compared to the best manual prompt, the
prompt generated from UNIPROMPT leads to over
5% increase in accuracy on the rare class and nearly
2% accuracy increase overall.

2 Related Work

Here, we highlight relevant work that are not
addressed in the manuscript otherwise. Deng
et al. (2022) present a discrete prompt optimization
method, RLPrompt, using reinforcement learning,
where a policy network learns to generate effective
prompts through reward-based training, with an
emphasis on enhancing training efficiency through
effective reward stabilization techniques. A draw-
back of such automatic prompt optimization ap-
proaches (Pryzant et al., 2023; Zhou et al., 2022;
Deng et al., 2022; Yang et al., 2023) is that the
prompts generated tend to be short, often compris-
ing only one or two sentences, which may not fully
encapsulate the complexity of the task at hand.

Another recent line of work leverages human
feedback. Automated Prompt Optimization with
Human Feedback (Lin et al., 2024a) optimizes
prompts for black-box LLMs using human prefer-
ence feedback. Besides the obvious overhead, it
might also introduce potential biases.

Prior research (Wei et al., 2023, 2024) has high-
lighted the significance of specific sections within
prompts. However, existing methods do not specif-
ically target the optimization of individual sections
and their respective contents within the prompts.
Hsieh et al. (2023) investigate the use of greedy and
genetic algorithms to edit lengthy prompts. Their
method focuses on paraphrasing one line at a time
starting from an existing prompt, compared to our
goal of learning facets of a task from scratch. An-
other orthogonal line of work explores algorithmic
selection of in-context examples (Min et al., 2022;
Gupta et al., 2023; Wu et al., 2023; Srivastava et al.,
2024; Sun et al., 2024).

3 UniPrompt: Capturing Task Facets

State-of-the-art prompt optimization methods such
as ProTeGi (Pryzant et al., 2023) and TextGrad
(Hou et al., 2023) iteratively optimize the prompt
for a given task. At a high-level, they proceed as
follows: (1) start with an initial prompt and a train-
ing dataset of ⟨question, answer⟩ pairs for the task,
(2) randomly sample from the questions wrongly
answered by the current prompt to form a batch,
(3) use an expert LLM to obtain feedback on the
random batch, (4) apply the feedback to the prompt.
This procedure is illustrated in Figure 1 [Left]. Our
work is motivated by three key observations.
1. Larger models are more amenable to prompt
optimization. We observe that the change in the
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Tell if the following is hate speech(1) 
or not(0)

... the intent behind the words, and 
the potential harm it may cause... 

Non-hate speech includes 
respectful and inclusive language 

that does not seek to demean or 
harm others...

Carefully analyze ... discriminatory, 
derogatory, or violent language ... a 
particular group, such as based on 

religion or gender... potential impact 
on the targeted individual or group ... 

justify your decision with a 
well-reasoned explanation.

include a clear definition of hate 
speech, …

["HE SHOT THE KID!?!?...", Not-Hate],
["I propose ...", Not-Hate],
["Should'¬Ä¬ôve ... them in", Not-Hate],
["Christians can get crazy ...", Hate],
["The Problem with Islam ...", Hate],

 ... impact of the statement on the targeted individual or group. 
 ... emphasize the impact of language, and encourage critical 
analysis ... determine if they qualify as hate speech.

... language that promotes hatred or discrimination towards a particular 
gender. 
... potential harm or violence implied, as well as any discriminatory or 
derogatory language used... towards a particular religious group. 

Feedbacks over mini-batches grouped
Proposed Edits

Wrong Examples clustered into 
mini-batches

        Final Prompt  (acc 0.9)

   Final Prompt  (acc 0.6)

Initial Prompt (acc 0.4)

Expert LLM

Expert 
LLM

Expert 
LLM

Correct 
Predictions

Wrong Examples

Solver 
LLM

Correct 
Predictions

Solver 
LLM ["By calling period, ...", Hate],

["Easter is the most silly ... shame", Hate],
["Christians can get crazy ...", Hate],
["The Problem with Islam ...", Hate]

["HE SHOT THE KID!?!? ...", Not-Hate],
["I propose ...", Not-Hate],
["Humiliating this ...", Not-Hate]

include examples of hate speech, 
guidance on identifying hate speech... 

include the requirement to identify 
hate speech ...

Train Examples Train Examples

Expert  LLM

Figure 1: Existing prompt optimization methods (left) versus UNIPROMPT (right) on the Ethos dataset: [Left]
State-of-the-art prompt optimization methods like ProTeGi (Pryzant et al., 2023) sample from the questions wrongly
answered by the current prompt, and use an expert LLM (e.g., GPT-4) to obtain feedback on the mistakes. This
approach tends to give very general edits or overfits to specific examples. [Right] In contrast, UNIPROMPT identifies
key task facets by: (1) clustering examples with similar task facets, and (2) employing a two-tier feedback-based
update strategy. The resulting prompt updates extract generalizable concepts from the specific examples.

objective function (i.e., loss on a validation set for
a given prompt) per change in input is relatively
more stable for larger models like GPT-4 (Figure 2)
than for GPT-3.5 (analysis in Appendix A.1).
2. Clustered-batching improves the quality of
text gradients (i.e., feedback), as against the stan-
dard random batching adopted in state-of-the-art
prompt optimization methods (Section 5.1).
3. Two-tier feedback helps learn generalizable
facets. Collecting feedback from an expert LLM
over mini-batches, and then summarizing the indi-
vidual feedback texts via a second step (Section 5.1)
helps learn generalizable task concepts in prompts.

The proposed method UNIPROMPT, in Figure
1 [Right], makes two contributions. First, we fol-
low a two-tier setup of synthesizing feedback for
a batch of training examples. We break up a batch
into mini-batches, collect feedback on each of the
mini-batches and then use a separate prompt to
aggregate the different feedback texts into a gener-
alizable concept. Second, to increase chances that
a mini-batch corresponds to a coherent facet, we
periodically (re)cluster the training data and ensure
that each mini-batch consists of examples from the
same cluster.
Algorithm 1 receives as input a one-line task de-

scription and a train set Dt of N ⟨question qi, an-
swer ai⟩ demonstrations. It extracts key concepts
or facets relevant to the task and updates prompt
sections using them, with the goal of increasing ac-
curacy on the validation set Dv. We assume access
to an “expert LLM” such as GPT-4.

3.1 Task facet learning using examples

Extracting task-relevant concepts from a set of ex-
amples to refine a prompt is a complex problem
comprising multiple steps. Given a set of incorrect
predictions, one needs to analyze what went wrong
in each prediction, form hypotheses, aggregate the
hypotheses to identify specific concepts that are
relevant for the task. Then, for each concept, one
needs to attribute which facet/section of the current
prompt needs to be edited to incorporate the con-
cept. These operations are highly model-specific
and are difficult to execute reliably. Therefore, we
exclusively rely on an expert LLM.
First, we prompt the expert LLM to diagnose mis-
takes (feedback) in each example given the answer
and chain-of-thought reasoning produced by the
solver LLM. Subsequently, we use this feedback
to generate precise edits for the prompt that may
fix the error. These individual edits are then aggre-
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gated over a mini-batch and fed back into the same
LLM, which then identifies a few major edits to be
applied to the current prompt. To aid in identifying
major edits that correspond to generalizable facets,
we propose to cluster the examples as a prepro-
cessing step and create clustered batches, such that
each cluster shares some common facet of the task.

3.1.1 Clustering for identifying facets
We explore two approaches for clustering: topic-
based clustering, and feedback-based clustering.
Topic-Based Clustering. Given a set of exam-
ples, we identify l topics spanning the entire train
set. This type of clustering is motivated by the
observation that solver LLM may make similar
mistakes on examples from the same topic. Hence,
for such examples, a common edit to the prompt
could improve predictions for all the examples. To
obtain the clusters, the expert LLM is prompted
(for prompt see Appendix A.10) to provide a broad
sub-topic ti for each question. Then the resultant
list of sub-topics {t1, t2, . . . , tN} is again clustered
into k topics {t′1, t′2, . . . , t′l} by prompting the ex-
pert LLM. Based on this clustering, each example
qi, ai is assigned a cluster t′j corresponding to ti.
Feedback-Based Clustering. Examples that re-
ceive similar feedback based on a prompt’s pre-
dictions can help identify task facets. Consider a
physics-based task where two examples from differ-
ent topics obtain the same feedback from the expert
LLM to edit the “Rules” section of the prompt to in-
clude the statement, “Draw all forces on each body
before writing the equations”. We argue that such
examples can be clustered. This type of clustering
makes the broad edit identification step easier. To
obtain the clusters, we first evaluate all training
examples against the current best prompt and store
the feedback fi from the expert LLM, correspond-
ing to each incorrectly answered example qi, ai (all
the correctly answered questions form one cluster).
We then prompt the expert LLM to cluster these
feedbacks {f1, f2, . . . , fN} into l clusters (see Ap-
pendix A.11). For each cluster, we create a batch
qi, ai corresponding to feedbacks in that cluster.

3.1.2 Obtaining generalizable prompt edits
Two-tier Feedback. To encourage generalizable
feedback from the expert LLM, we obtain feed-
back at two levels: mini-batch and batch. Given a
batch (created using clustering discussed above),
we break it up into mini-batches.
For each mini-batch m, we construct a prompt

consisting of incorrectly-answered questions in m,
the chain-of-thought produced by the solver LLM,
their incorrect predictions and the ground-truth an-
swers. We ask the expert to provide one feedback
for the mini batch (prompt is provided in Appendix
A.12). The expert can suggest the following edits:
add a section or subsection, delete a section or sub-
section, and edit a section or subsection.
Given the different edits for mini-batches within a
batch b, we invoke the expert LLM again to sum-
marize these edits into a single section update. This
combination ensures some degree of smoothness
at every update which helps stabilize training. To
make sure that the expert is able to generate gen-
eralizable edits, we additionally provide a random
set of incorrect examples that are not in the current
batch and ask it to suggest an edit based on the
existing edits that can correct the errors. As before,
the class of edits allowed is the same.
History for effective exploration. To ensure com-
prehensive, non-repetitive exploration of prompts,
we also provide the batch-level history of ed-
its (Hu et al., 2024; Yang et al., 2023) in the mini-
batch-level prompt. History H[b] is presented as
{ei, acci − acci−1} where ei is the edit proposed
at the ith update and acci is the accuracy of the
ith updated prompt (See Appendix A.12 for the
prompt).

3.1.3 Editing the prompt
Once the final set of edits is received for a batch,
we use the expert LLM to apply edits to the current
prompt (See Appendix A.13 for the prompt). An
edit is accepted only if it increases the validation
accuracy (Greedy). Alternatively, we maintain a
beam of 2 best performing prompts based on vali-
dation accuracy, apply the edit to the two prompts,
and update the beam to retain the top 2 perform-
ing prompts (Beam). To avoid overfitting on the
train examples (or adding unnecessary information
to the prompt), we employ early stopping in the
optimization process (more details in Section 4).

3.2 Prompt Initialization

We use two types of initialization: (1) task descrip-
tion, i.e., p0 has a single section titled Introduc-
tion containing the input task description. (2) fine-
tune Llama2-13B model to generate a prompt with
sections such as Introduction, Tricks, and Corner
Cases, similar to the initial prompt that a human
prompt engineer may produce. To finetune, we use
GPT-4 generated data consisting of (task descrip-
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Algorithm 1: UNIPROMPT

Input: Train set Dt, validation set Dv, initial prompt for the task p0, one-line task description T
Output: Optimized prompt P ∗ for the given task

1 C ← cluster(Dt, p0), initialize history H ← {}, and validation accuracies V ← [];
2 Initialize a beam of size 2 with the initial prompt: p1 ← p0 and p2 ← p0
3 for epoch e and each cluster c in C do
4 for each batch b ∈ batches(C) do
5 F ← []
6 for each mini-batch m ∈ mini-batches(b) do
7 Evaluate the best prompt on mini-batch: am ← LLM(m, p1)
8 Get expert feedback: f ← Feedback(T , am, H[m])
9 F .insert(f )

10 Combine feedbacks over a batch: Fb ← Combine(F )
11 Apply feedback to get updated prompts: q1 ← apply(Fb, p1); q2 ← apply(Fb, p2)
12 Update the beam: if not(p1 = p0) then p2 ← second-high-acc([p1, p2, q1, q2], b)
13 p1 ← highest-acc([p1, q1, q2], b)

14 Evaluate the best prompt on validation set: accv ← evaluate(p1, Dv)
15 V ← V .append(accv)
16 if early-stop-criteria (V ) then break
17 if recluster(e) then C ← cluster(Dt, p1)

18 return p1 as P ∗;

tion, section title, section contents) triples. Details
and examples are in Appendices A.4 and A.7.

Computational Complexity: The complexity of
clustering and of getting mini-batch and batch-level
feedbacks per epoch is O(N) expert LLM queries,
where N is the number of training examples. De-
tails are in Appendix A.3.

4 Experiments Setup

Datasets: We perform comprehensive evaluation
on five standard datasets: (1) Ethos (Mollas et al.,
2020), (2) ARC (Clark et al., 2018), (3) MedQA
(Jin et al., 2021), (4) GSM8K (Cobbe et al., 2021),
and (5) BBH (Suzgun et al., 2022). Ethos, ARC,
and MedQA contain multiple choice questions, and
GSM8K contains questions with integer answers.
BBH is a subset of 10 tasks, spanning 4 main cat-
egories, from the challenging BIG-Bench bench-
mark that requires multi-step reasoning. In addi-
tion, we also evaluate UNIPROMPT on the medical
QnA datasets used in the MedPrompt (Nori et al.,
2023) work; as well as two popular code genera-
tion datasets, HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021).
Implementation details: We set the initial prompt
p0 for each task as the one-line task description. We
use 200 examples as the train set, 200 examples

as the test set, and 100 examples as the validation
set for all the compared methods. We use GPT-
3.5-Turbo as the solver model. For Feedback and
Combine in UNIPROMPT, we use GPT-4 as the ex-
pert (see ablation in Section 5.5). We maintain a
beam size of 2. Mini-batch sizes (and batch sizes)
are constrained by the context length of GPT-4. We
find that mini-batch sizes 3 to 5 and batch sizes 5 to
7 work the best for our datasets. The temperature
of the LLMs for our method is set to 0 for repro-
ducibility. We employ early stopping at batch-level
in UNIPROMPT.
Baselines: We compare UNIPROMPT with the
following techniques and baselines: (1) Task De-
scription: prompt is the one line task description
that we use to initialize UNIPROMPT; (2) Chain-
Of-Thought (or CoT) prompting (Kojima et al.,
2024); (3) Expert Prompt: the prompt optimized
by humans taken from prior works (Nori et al.,
2023); (4) OPRO (Yang et al., 2023), that uses
LLMs for discrete optimization over text prompts;
(5) ProTeGi (Pryzant et al., 2023) that proposes
textual gradients and selects edits to prompts us-
ing bandit techniques; (6) Evoke (Hu et al., 2024)
that uses two instances of LLM, one that scores the
current prompt, and the other that edits the prompt;
(7) EvoPrompt (Guo et al., 2023) that uses genetic
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algorithms to search through the space of prompts;
(8) TextGrad (Hou et al., 2023), state-of-the-art
framework for automatic differentiation of prompts
via text; (9) DSPy (Khattab et al., 2024), a recent
programming model for optimizing LLM prompts;
and (10) MedPrompt (Nori et al., 2023), a state-
of-the-art prompt composition method.

5 Results and Analysis

We present detailed quantitative and qualitative re-
sults, along with key ablations.

5.1 Performance of UNIPROMPT

We start with the zero-shot setting, where we do
not include labeled examples in the prompt for any
of the compared methods. We report results for
two versions of our method in Table 1, which differ
in the combining strategy (from Section 3.1.3)—
beam search vs greedy.
UNIPROMPT variants significantly outperform the
baselines including CoT and the state-of-the-art
prompt optimization techniques like ProTeGi that
crucially leverage LLMs for performing iterative
prompt edits. UNIPROMPT is the best performing
method on three out of four datasets. It achieves
maximum gains on the Ethos dataset with a 18.2%
increase in accuracy over the expert prompt. Fur-
ther, we see accuracy increases of 4.0% on MedQA,
3.5% on GSM8k, and 7.6% on ARC-Challenge
datasets. We show UNIPROMPT training behavior
in Appendix A.19.
We also present comparisons to state-of-the-
art DSPy method in the few-shot setting (8
bootstrapped_demos) using two optimization set-
tings provided by their framework. The last two
rows of Table 1 show that UNIPROMPT in the zero-
shot setting convincingly outperforms DSPy in the
few-shot setting, on three out of four datasets.
Qualitative Analysis: ProTeGi and TextGrad also
adopt batching by randomly sampling from train-
ing examples where the solver LLM made mistakes.
In the early iterations of optimization, there can be
many such examples. So, do our key observations
and hypotheses (beginning of Section 3) hold em-
pirically? We give some evidence below.
1. Employing clustering to create batches (Sec-
tion 3.1): An example feedback obtained on the
Ethos dataset using UNIPROMPT is shown below:

The instruction should include..potential
harm or violence implied, as well as

any discriminatory or derogatory lan-
guage used...towards a particular reli-
gious group.

The instruction should include ...think
about the impact of the statement on the
targeted individual or group.

The instruction should...language that
prompts hatred or discrimination to-
wards a particular gender.

To contrast, we employ random batching as in the
standard prompt optimization techniques, on the
same dataset. The feedback obtained, given below,
is relevant for the task, but fails to identify specific
concepts.

The instruction should include a clear
definition of hate speech...

The instruction should include examples
of hate speech, guidance on identifying
hate speech...

The former feedback (UNIPROMPT) captures
the facet of measuring impact on the targeted entity
whereas the latter only captures religious and harm-
based aspect of hate speech. The same expert
LLM is able to identify different facets due to
clustered batches.
2. Employing two-tier feedback: In Section 3, we
argued that employing two-tier feedback strategy to
aggregate the feedback texts encourages the expert
LLM to propose edits that are generalizable. The
following feedback is received on the Ethos dataset
after the aggregation:

The instruction should...consider
whether the statement contains discrimi-
natory, derogatory, or violent language
that promotes hatred or harm towards
a particular group, such as based on
religion and gender.

We see that two-tier feedback helps in distilling
important aspects of the task implicit in the exam-
ples, rather than directly using or rephrasing the
(limited) examples.
Results on BBH: From Table 2, it is evident that
UNIPROMPT shows a significant improvement over
OPRO (that also evaluates on these tasks in their
paper) for a majority of tasks. It achieves sig-
nificantly higher accuracy in Boolean Expression
(92.37% vs. 78.74%), Date Understanding (81.96%
vs. 52.59%), and Navigate (77.16% vs. 51.74%).
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Table 1: Test accuracies (%) of the compared methods with GPT-3.5-Turbo as the solver model in the zero-shot
setting (best in bold; second best underlined). The two UNIPROMPT rows are our proposed method. We compare
with few-shot methods in the last two rows (DSPy variants); *best in bold to distinguish the few-shot setting.

Method Ethos ARC MedQA GSM8K

Task Description 76.8 79.7 52.7 59.4
Expert Prompt 74.1 78.4 53.1 78.9
Llama Prompt (Section 3.2) 74.0 89.7 52.6 79.5
CoT 72.0 79.4 50.3 76.3
OPRO 65.4 79.1 53.3 77.1
ProTeGi 76.0 78.8 52.9 77.3
Evoke 63.5 89.0 52.8 81.0
EvoPrompt 81.6 89.9 50.3 81.4
DSPy (MIPRO v2, zero-shot) 79.7 82.8 61.9 77.3
TextGrad 79.5 76.5 50.6 81.6
UNIPROMPT (Init = Task Description) + Beam 92.3 86.0 57.1 82.4
UNIPROMPT (Init = Task Description) + Greedy 93.7 90.5 55.5 82.3
DSPy (BootstrapFewShotWithRandomSearch) 86.6 87.5 *68.5 74.3
DSPy (MIPRO v2, few-shot) 84.0 86.0 62.9 79.7

Table 2: Test accuracies (%) on BBH dataset with GPT-
3.5-Turbo as the solver model

Task Init OPRO UNIPROMPT

Algo & Multi-Step Arithmetic Reasoning

Bool Exp. 83.64 78.74 92.37
Logical Ded. 29.53 38.97 39.62
Navigate 60.95 51.74 77.16

Natural Language Understanding

Snarks 67.00 67.88 74.30
Disamb. QA 53.30 57.43 67.05
Fallacies 57.60 53.14 57.90

Use of World Knowledge

Causal Judg. 54.29 57.24 59.37
Movie Rec. 58.04 77.81 71.80
Dates 74.21 52.59 81.96

Multilingual Knowledge & Reasoning

Salient Trans. 42.59 50.61 50.77

5.2 Comparison with MedPrompt

MedPrompt (Nori et al., 2023) is a recent, com-
petitive prompting technique without any training
component. It employs three key ingredients: (1)
few-shot prompting, where five relevant examples
are selected using k-nearest neighbors (kNN); (2)
CoT reasoning on the selected examples; and (3)

self-consistency and ensembling with option shuf-
fling at inference time. They evaluate on 4 medical
datasets (that none of the competing methods in
Table 1 evaluate on) using GPT-4 as the solver
model. So, we compare UNIPROMPT in the same
setting in Table 8 (in Appendix A.8). UNIPROMPT

(first row), which requires only one call at infer-
ence time, performs almost as well as MedPrompt
(last row), which requires five calls, on three out
of four datasets. As we incrementally add kNN
few-shot, CoT, and ensembling to our prompt, we
see a significant increase in accuracy of 4.35% on
average across all datasets.

5.3 Performance on generation tasks

Our evaluations so far have been on multiple-
choice QnA, math, and classification datasets. We
now evaluate UNIPROMPT on generating code
given a natural language specification. We use
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) datasets consisting of Python coding
problems. We initialize with a simple prompt, “You
are a software engineer. You are given a function
signature and a description of the function. You
have to complete the function.” We use GPT-4-
Turbo as both the solver and the expert LLM.
HumanEval does not have train or validation sets.
So, we take random 100 examples from MBPP as
train. Similarly, for MBPP, we take random 50 ex-
amples from HumanEval as train. We evaluate the
final prompts on HumanEval and MBPP test sets.
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The results are given in Table 4 (in Appendix A.8).
The metric is % of solved coding problems (evalu-
ated using the provided test cases) in the datasets.
The prompts produced by UNIPROMPT outperform
standard prompting of LLMs.

5.4 Results on a Real-world Task

The task of inferring if two search queries share
identical intent or not arises in search and recom-
mendation pipelines. It is challenging because it
requires domain knowledge (e.g., brands and prod-
uct categories), and depends on cultural and geo-
graphical biases (e.g., “cricket” in UK vs. “cricket
game” in the US). So, examples are crucial for en-
gineering a prompt that generalizes well.
We sample 200 train, 50 validation, and a separate
2527 test user queries from a real proprietary appli-
cation. More details on the dataset and the one-line
initial prompt are provided in Appendix A.5.
The prompt obtained using UNIPROMPT improves
over the best manual prompt by 5.77% on the nega-
tive (rare) class, by 0.23% on the positive class, and
by 1.86% overall on the test set. The learnt prompt
captures the following task facets: (1) recogniz-
ing variations in names and abbreviations, and how
they do not change the context; (2) recognizing
brand specificity, and how even minor variations do
change the context; and (3) recognizing the speci-
ficity of terms in queries, and how lack of specific
terms can indicate departure of intent.

5.5 Ablations

Impact of Clustering, Inclusion of History, and
Greedy Update: The results are shown in Table 6
(in Appendix A.8). We see that clustering as well
as edit history components (Section 3.1) are critical
for performance of UNIPROMPT in all the datasets.
We see a major drop of 14.8% in accuracy in the
Ethos dataset when clustering is removed, and a
4.3% drop when history component is removed. In
all the datasets except GSM8K, we find clustering
is more important than history. This can attributed
to limited variability of question types (all grade-8
arithmetic) in GSM8K than in others.
We also find that the greedy update rule (Section
3.1.3) proves to be superior or competitive com-
pared to beam search in relatively easier datasets —
where even less exploration produces good results,
greedy proves to be a more effective update rule.
On the other hand, in more complex datasets like
MedQA, greedy appears to be a bad strategy. We
also see that clustering examples based on feedback

Table 3: Impact of UNIPROMPT’s key hyperparameters

Hyperparameter Value Accuracy

Mini-batch Size
2 84.90%
5 90.36%
8 91.15%

Number of Clusters
2 85.81%
5 90.36%

10 87.82%

(“Fb Clustering”) is a better strategy than cluster-
ing based on topics, except for the Ethos dataset.
Impact of Mini-batch size and Number of
Clusters: First, we vary mini-batch size in
UNIPROMPT. The results for the ARC dataset
are shown in Table 3 (in Appendix A.8). With
an increase in mini-batch size, we observe an in-
crease in accuracy. That said, it is a hyperparame-
ter, hence there will be an optimal number for each
dataset. The mini-batch size affects the feedback
based on the wrong examples that are obtained in
each round. Next, we vary the number of clusters
in UNIPROMPT. We find that the parameter has a
clear impact on performance. We use the default
choice of 5 clusters in all our experiments, which
provides concise and generalizable feedback.
Impact of initial prompt and Expert model
capacity: In Table 7 (Appendix A.8), we find
that one-line task description initialization for
UNIPROMPT achieves the best accuracy on three
out of four datasets. On ARC, initializing with the
prompt generated by the Llama2-13B model gives
significant improvement over other initializations.
In Table 5 (Appendix A.8), we show UNIPROMPT

improves prompts for more capable solver LLMs
while using less capable expert LLMs.

6 Conclusions

We presented a method inspired by the human
prompt engineering process to generate complex
prompts from scratch that include different facets
of a task. Our algorithm provides significant im-
provements over baseline prompt generation meth-
ods on multiple standard datasets. Just like in-
context learning (Ji et al., 2024), task facet learning
could also benefit from connections to submodu-
lar optimization (Krause and Golovin, 2014). We
leave this as future work.
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7 Limitations

We provide an analysis of the impact of model
size on the amenability to prompt optimization in
Appendix A.1. However, in our evaluation, we
only use GPT-3.5 (and in some cases GPT-4) as
the solver LLM. We want to leave extensive evalu-
ations of using open-source LLMs as solver LLMs,
and perhaps even as expert LLMs, to future work.
Further, we also want to evaluate on other gener-
ative tasks, besides the code generation task we
study in the paper.
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A Appendix

A.1 When is directional text optimization
feasible?

Consider the class of sequential algorithms like
ProTeGi (Pryzant et al., 2023) and TextGrad (Hou
et al., 2023) . The objective is to improve the accu-
racy of a given (black-box) solver LLM f : X → R
that takes as input a prompt x ∈ X and outputs
the average accuracy on a validation set Dv. Since
the set of prompts is combinatorially large, we as-
sume that all prompts can be embedded in a vector
space such that distance between two prompts in
the space correspond to their semantic similarity.
The prompt optimization problem can be written
as argmaxx∈X f(x;Dv).

Previous work has shown that LLMs can
be brittle to their input: changing the prompt
slightly can create a significant difference in perfor-
mance (Zhuo et al., 2023). We want to understand
if the optimization problem is well-conditioned.
Typically, conditioning can be determined by the
Hessian. However, since f is black-box, we approx-
imate it by measuring sensitivity, or more specif-
ically, Lipschitz continuity near the optimal solu-
tion. Based on prior work on defining continuity
of neural networks (Mangal et al., 2020), we use a
probabilistic notion.

Definition 1 (Probabilistic Lipschitz Continu-
ity (Mangal et al., 2020)). Given a probability dis-
tribution over inputs X , r ≥ 0, and a distance mea-
sure d such as ℓ1 or ℓ2 norm, a function f : X → R
is (L, ϵ)-probabilistically Lipschitz with constant
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Figure 2: Estimating (probabilistic) Lipschitz constant of models (Definition 1) on (left) Ethos (middle) GSM8K
and (right) MedQA datasets for GPT-4 and GPT-3.5 models.

L ≥ 0, if

Pr
x,x′∼X

[ d(f(x), f(x′)) ≤ L · d(x,x′)

| d(x,x′) ≤ r] ≥ 1− ϵ. (1)

Note the focus on small changes in input through
the parameter r. Intuitively, the Lipschitz property
bounds the maximum change in f given a small
change in input prompt. Typically, the lower bound
of error for any sequential optimization algorithm
over f is directly proportional to the Lipschitz con-
stant L (Malherbe and Vayatis, 2017). Therefore,
for faster convergence, it is desirable to have a low
L, especially near the optimal solution.

Empirically, we estimate L by sampling task-
relevant prompts so that they are close to the opti-
mal solution. Then we make small changes to the
prompt such that the semantic meaning stays the
same and measure the change in f (See Appendix
A.2 for experimental details). We show the change
in f per change in input for GPT4 and GPT3.5
models in Figure 2 for the Ethos, GSM8K and
MedQA datasets. Assuming ϵ = 0.05, probabilis-
tic Lipschitz constant L for GPT4 is < 1, whereas
it is higher for GPT3.5. Thus, as the model sizes
increases, the probabilistic Lipschitz constant de-
creases. So, larger models are more amenable to
prompt optimization.

A.2 Details on estimation of Lipschitz
constant L

TO calculate the Lipschitz constant for a given
LLM and task, we take a human written promp and
generate it’s paraphrases using GPT-4. We prompt
GPT-4 with the following text: “You are given a
sentence, you have to generate 30 paraphrases of
the sentence, make sure that the core content of
each paraphrase is same, you can use add, sub-
tract or change words". These paraphrases are

then evaluated on the validation set Dv. For a mea-
sure of distance between two prompts, we take the
cosine similarity between the embeddings of two
prompts. We use text-ada-002 for generating the
text embeddings for prompts.

A.3 Computational Complexity
We now consider the compute complexity of
UNIPROMPT in terms of the number of expert or
solver LLM calls per epoch, stage-wise.
Clustering: First, we evaluate all the training ex-
amples using the current prompt. Second, for every
wrongly predicted example, we obtain feedback
from the expert LLM. Third, for the given set of
feedbacks, we use a single call to cluster it into
l clusters. Each of the above steps incurs O(N)
queries, so the total query complexity of the clus-
tering stage is O(N). Finally, for each example,
i.e., (question, answer) pair, we simply map it to
the l clusters (no LLM calls).
Mini-batch feedback and Batch-level aggrega-
tion: At a given epoch, we evaluate every question
in the mini-batch using the current prompt and the
solver LLM (N queries overall). Next, we obtain
one feedback over all the wrong questions in the
mini-batch m (N/|m| queries). We use one call to
aggregate these feedbacks. For prompt selection,
we evaluate 4 prompts on the batch b (2 per beam),
so O(4|b|) queries per batch. Hence overall query
complexity is N +N/|m|+ 4N + 1 or O(N).
With LLM throughput of 0.5 qps, a training + val-
idation set of 300 examples, 10 clusters, and 20
epochs, it takes under 7 hours to train.

A.4 SLM Training Details
To induce the ability of structured prompt gener-
ation in a smaller language model, we curate a
section-wise dataset of around 12,000 task-prompt
pairs. The tasks for training dataset creation were
taken from tasksource library (Sileo, 2023) that
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contains around five hundred classification tasks.
We extract the task description from tasksource-
instruct, which contains tasksource dataset recasted
with instructions. For instance, the task description
for BIG-bench Entailed Polarity task is, "Given
a fact, answer the following question with a yes
or a no". The dataset provides diverse tasks and
their short description, but not the human-generated
prompts for each task. To approximate human-
generated prompts, we use GPT-4 as a teacher
model.

By prompting GPT-4 with the task description
and section description, we ask it to generate the
contents of the section. To ensure that the generated
section-wise prompts are concise and relevant, we
prompt GPT-4 to not generate more than five lines
of content for each section. We use LLAMA2-13B
model, which we finetune using LoRA adapters as
the auxiliary LM that generates sections.

A.5 Data Set Creation of Real-World Task
We sample real user queries from a proprietary ap-
plication, rewrite them using ML models, and ask
expert judges to label the query-pairs as identical
or otherwise based on prescribed guidelines. We
use a set of 200 examples as training data, and an
additional 50 examples as validation set, to learn a
prompt using UNIPROMPT, starting from the one-
line description: Tell if query A and query B have
same intent or not. The dataset is heavily biased to-
wards positive samples, so the metric of success is
improvement in accuracy, over the best manually-
engineered prompt, on the positive and negative
classes individually. For testing, we use a separate
labelled set of 2527 examples from two geogra-
phies — one where the training data was sampled
from, and the other unseen.

A.6 Prompt to Llama2-13B for fine-tuning
### Instruction:
You are a prompt engineer, you have
to write a structured prompt.
For the given task description,
examples and section description,
write the contents of the section
that align with
section description.

### Task Description:
{data_point['task_description']}

### Section Description:

{data_point['section']}:
{section_descriptions\
[data_point['section']]}

### Response:
{data_point['prompt']}

A.7 Prompt Initialization
One line task descriptions:

1. Ethos: In this task, you have to determine
whether a given text is hate speech or not.

2. ARC: You have to solve the following science
question.

3. GSM8K: In this task, you are given a math
question. You have to solve the question.

4. MedQA: In this task, you are given a medical
question. You have to solve the question.
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A.8 Additional Results

Table 4: Performance (% solved problems) of UNIPROMPT (GPT-4-Turbo solver) on code generation datasets,
compared to GPT-4 (OpenAI et al., 2023) and newer models.

Method HumanEval MBPP

GPT-4 67.0 87.5
GPT-4-Turbo 87.1 90.9
GPT-4o 90.2 92.4
UNIPROMPT 93.8 92.5

Table 5: Ablation of LLM choices for UNIPROMPT on the Ethos dataset. ‘Init’ and ‘Final’ denote initial (i.e., task
description) and final prompt accuracies.

Expert LLM Solver LLM Init Final

GPT-3.5-T GPT-3.5-T 76.8 82.4
GPT-4 GPT-3.5-T 76.8 92.3
GPT-3.5-T GPT-4 89.8 91.4
GPT-4 GPT-4 89.8 94.3

Table 6: Ablation of design choices in UNIPROMPT with GPT-3.5-Turbo as the solver model.

Ethos ARC MedQA GSM8K
UNIPROMPT − History 88.0 84.6 55.3 80.8
UNIPROMPT − Clustering 77.5 82.0 54.1 81.5
UNIPROMPT 92.3 86.0 57.1 82.4
UNIPROMPT + Greedy 93.7 90.5 55.5 82.3
UNIPROMPT + Fb Clustering 87.2 91.2 58.3 82.5

An example of sectioned initialization prompt generated using finetuned Llama Model

Introduction:
Assume the role of a science expert and answer the given question by selecting one
of the options A, B, C or D.

1. Understand and solve science questions by selecting the best answer
from a given list of options.
2. Identify the logic behind the choices provided and make an informed decision.
3. Use contextual clues to choose the most accurate answer.
4. Be aware of the differences between science and everyday language.

Task Description:
Scientific inquiry: Science is the systematic study of
the structure and behavior of the physical and natural
world through observation and experiment. The
scientific method is a process for acquiring knowledge
that has been improved upon since its inception in the
17th century. It involves making observations,
formulating hypotheses as to their causes, and
experimenting with them to support or refute the
hypotheses.

Real-life Application:
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Table 7: Ablation on the initial prompt for UNIPROMPT (best test accuracy in bold).

Init Prompt Ethos ARC MedQA GSM8K

Expert Prompt 84.0 86.0 52.3 82.4
Llama Prompt 92.0 90.5 55.5 81.5
Task Description 92.3 86.0 57.1 82.4

Table 8: Comparison of UNIPROMPT (“Ours”) with MedPrompt, with GPT-4 as the solver model.

MedQA PubMedQA MedMCQA MMLU MG
Ours 80.9 70.3 79.2 78.0
Ours + kNN 81.0 72.2 81.4 94.0
Ours + kNN + CoT 83.9 74.7 82.6 96.0
Ours + kNN+ CoT + Ensemble 87.0 75.6 84.5 99.0
MedPrompt 80.6 71.2 79.1 98.0

1. Assisting Students in Science Classes:
In the context of science education, the ability to solve
science questions can help students to better understand and
internalize the concepts. By familiarizing themselves with
the basic principles of science, students can develop a
stronger foundation of knowledge.

2. Improving Scientific Literacy:
Scientific literacy is a critical skill in today's world,
where scientific knowledge is increasingly important. By
solving science questions, individuals can improve their
understanding of scientific concepts and be more informed
about scientific developments.

3. Scientific Questions:
In daily life, there are many questions that require
scientific knowledge to answer. For example, understanding
the science behind certain phenomena, such as why a magnet
sticks to a refrigerator door, can help us in our day-to-day
life.

4. Increased Awareness:
By answering scientific questions, we can develop a deeper
understanding of the world around us and increase our
awareness of scientific phenomena. This can help us in our
daily lives and make us more knowledgeable individuals.

Background Knowledge:
1. Understanding of the basic concepts of science and
physics, such as the difference between heat, temperature
and friction.
2. Basic knowledge of the different types of skin surfaces,
such as dry, wet, rough, smooth, etc.
3. Familiarity with the different types of magnets and their
properties.
4. Understanding of the different factors that affect the
adhesion of magnets to different surfaces.
5. Knowledge of the different types of sedimentary rocks and
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their properties.

Challenges:
1. Ambiguity in the question:

The question might be ambiguous in nature, and it can be
difficult to understand the exact meaning of the question.
In such cases, it is important to read the question
carefully and identify the key concepts or keywords. This
can help in arriving at the correct answer.

2. Scientific terms or concepts:
The question might contain scientific terms or concepts that
are unfamiliar to the user. In such cases, it is important
to understand the meaning of these terms or concepts and
their relationship with the question.

3. Difficulty in understanding the question:
Sometimes, the question might be complex or abstract, making
it difficult to understand or interpret.

4. Misleading statements or information:
The question might contain misleading or false information,
making it difficult to determine the correct answer.

5. Contradiction:
The answer can be in conflict with well-known scientific
facts or principles. In such cases, it is important to make
a careful analysis of the evidence and choose the answer
that is most consistent with the available

Simplification:
1. Identify the key elements in the question:

Ask yourself, "What is the main question in the question?"
Identify the key elements and focus on them to solve the
problem.

2. Understand the context:
Understand the context of the question and the background
knowledge you need to answer it.

3. Identify the answer choice:
Identify the answer choice that best fits the context and
background knowledge.

4. Eliminate the distractors:
Eliminate the distractors that don't fit

Tricks:
1. Read the question carefully: Understand the question and its
context. This will help in understanding the information and
concepts needed to solve the question.
2. Identify the key concepts: Identify the key concepts and
keywords in the question. This will help in understanding the
main idea and focus on the relevant information.
3. Understand the question structure: Understand the structure
of the question. This will help in identifying the appropriate
answer option and avoiding distractions.
4. Look for clues: Look for clues in the question and the
answer options
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A.8.1 Examples of training dataset

Task: super glue boolq
Task Description: With no explanation, label the following with
either False or True.
Section: description
Prompt: As a prompt engineer, your task is to create a prompt
that accurately labels statements as either True or False
without providing any explanations. The statements may involve
general knowledge, trivia, or facts about events, places,
people, or objects. Ensure you have a strong understanding of
the subject matter and write a concise and specific task
description related to the given statements.

===================================================

Task: glue qnli

Task Description: With no explanation, label A to B with either
entailment or not entailment

Section: background

Prompt: 1. Entailment means that the information in statement B
can be inferred directly from statement A.

2. Not entailment means that the information in statement B
cannot be inferred directly from statement A or is unrelated.

3. Understanding the context and relationship between the two
statements is crucial for accurate classification.

==================================================

Task: bigbench undo permutation

Task Description: In the following sentences with shuffled
words, find the correct order of word swaps to unscramble the
sentence.

Section: tricks

Prompt: 1. Identify the key words or phrases in the task to
understand the context of the sentence. Look for nouns, verbs,
and adjectives that seem related or could logically fit together.

2. Start by solving the problem step by step and focus on one
swap at a time. Breaking the problem into smaller sub-problems
will make it easier to manage.

3. To make the task more manageable, first focus on swapping the
words that are clearly out of place, such as words that should
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be at the beginning or end of the sentence.

A.9 Prompt for identifying important facets

you are given a task, along with it's description, some examples
of how to solve the task and section descriptions.
What do you think would be the most important sections to
include for the given task.
## Task
{task}
## Task Descirption
{tas_description}
## Examples
{Examples_string}
## Section Descriptions
{sections}

A.10 Clustering Type 1

You are given a science question, you need to tell which broad
topic is this question from.
Question: {train_questions_new[ij]}
Answer: {answer}
Give your answer as a single word, between <Answer></Answer>
tags like: <Answer>Thermodynmics</Answer> or
<Answer>Botany</Answer>.
Subtopic:

A.11 Clustering Type 2

You are given a set of feedbacks, you need to cluster them into
five groups based on similarity, and then provide a summary of
each group. You can use the following feedbacks to cluster: \n
{feedback}

provide each cluster explnation within the following tags:
<Cluster></Cluster>

You are given a feedback and a set of clusters, you need to tell
which cluster this feedback belongs to.

The clusters are: \n {string_of_clusters}

The feedback is: {feedback}

give your final answer as the number of the correct cluster
between <Answer></Answer> tags like: <Answer>1</Answer>.'''

A.12 Feedback Prompts

Feedback over mini-batch
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You are a teacher and you have to give feedback to your
students on their answers.

You are teaching how to solve math problems to your students.
You are given a question, it's true answer and answer given by
student. You are also given the explanations written by your
students while solving the questions.

The questions are answered wrong by the students.
You have to tell why is the solution wrong and what information
is can be added to the in the Background Knowledge part that
would have helped the student to write better explanations.

## IMPORTANT: You are also given a history of changes you made
to the background knowledge part and the change in student's
accuracy after making the change. You have to use this history
to make your feedback.

Be explicit and tell the exact information that can be added
without further modification / addition.

### IMPORTANT: Give feedback in form of instructions like add a
section, add a subsection, set the content of a section, set the
content of a subsection, delete a section or delete a subsection
in the background knowledge part.

Give very granular feedbacks, like if the student has made a
mistake in the calculation, then tell what is the mistake in the
calculation and how to correct it, if the student has made a
mistake in the concept, then tell what is the mistake in the
concept and how to correct it.

## Background Knowledge
{current_prompt}

## History
{history_string}

Now, it is your turn to give feedbacks to the students.
You can only provide a one line feedback.

========================================
Feedback over batch

You are given a set of feedbacks for some problems. The set
feedbacks for each problem separated by =========== symbol.
You have to summarize the feedbacks into a final feedback.
You are also given a set of wrong questions. You need to tell
which edit can be applied to aid the student in solving the
wrong question.

To achieve your task, try to follow the following steps;
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1. Identify the general problem that is being solved by all the
feedbacks.
2. Once you have identified the problem, try to make a new
feedback that covers most of the
feedbacks given.
Let's say the problem in the first feedback is the absence of
methods to solve linear equation and in the second feedback it
is the method to inverse a matrix.
You know that both of these problems can be caused by adding how
to solve convert a matrix into row rediced echolon form. So,
add that.
3. Try and validate your feedback. Once, you have a feedback try
to see if it covers every
feedback, if it does not cover any feedback, add that to your
new feedback.
4. See the wrong questions and try to identify what is the
problem in the question.
If the problem is not covered by your feedback, add that to your
feedback.
5. You can add specifics like examples, definitions etc make
sure that the feedback is enough to be directly added without
any modification.

You may use the following function templates-

add_section(sectioname)
add_subsection(section_name, subsection_name)
set_section_content(section_name, new_content)
set_subsection_content(section_name, subsection_name, new_content)
delete_section(section_name)
delete_subsection(section_name, subsection_name)

Your summary cannot include more than four functions.
Make sure that the content is useful,
not just a very general statement. Something specific.

Instructions:
{edits}

Wrong Questions:
{wrong_examples_string}

Summary:

A.13 Editing Prompt

You are given an input prompt and a feedback, you have to
incorporate the feedback into the input prompt and output the
final prompt.
An example of the task is given below

### Input Prompt
Introduction: In this task you have to answer the given question.
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Table 9: Analysis of the effect of length and contents on the performance of UNIPROMPT

Ethos ARC GSM8K
UNIPROMPT 93.7 90.5 82.4
ICL Prompt 63.0 86.7 76.3
Wrong ICL 70.4 87.1 78.2
Summarized Prompt 84.3 85.5 66.0

### Feedback
The background knowledge is incomplete, it does not include what
are the factors that affect the water usage and how many water
sources are there.
\\add_subsection("Background Knowledge")
\\add_subsection_content(water usage depends on the population,
climate, economic development, and availability of water
sources. There are two sources of water, surface water and
groundwater.)

### Final Prompt
Introduction: In this task you have to answer the given question.
Background Knowledge: water usage depends on the population,
climate, economic development, and availability of water
sources. There are two sources of water, surface water and
groundwater.

Only output the final prompt nothing else.

### INPUT PROMPT
{current_prompt}

### FEEDBACK
{edits}

### FINAL PROMPT

A.14 Example of prompt evolution using our method

See example in Figure 3.

A.15 Comparision of our method with existing methods

See Figure 4.

A.16 Effect of length on performance of prompt

Here we answer the question: How much does only length contribute to UNIPROMPT’s success?. To
answer this, we replace the prompt with in-context examples of the same context length and compare
the accuracies in Table 9. We also compare the case where we include only the examples that the solver
LLM gives incorrect prediction on, denoted as “Wrong ICL” row in the table. We see that there is a slight
increase in accuracy when wrong examples are included in the prompt over randomly including examples.
But, overall, UNIPROMPT performs much better than including in-context examples. This shows that
length is not the only factor contributing to UNIPROMPT’s success.
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Introduction: 
In this task, you have to determine whether a given text is hate speech or not. 0 means Non-Hate and 1 means Hate.

Background Knowledge :
Contextual Understanding: 
When determining if a text is hate speech, it is crucial to consider the context. Not all negative or critical statements are hate speech. Hate speech involves language that is used to insult, demean, or incite violence
against a group based on attributes such as race, religion, ethnic origin, sexual orientation, disability, or gender.

Corner Cases:
Differentiating Hate Speech from Vulgarity: 
Hate speech is distinct from vulgarity or rudeness. While hate speech involves promoting hatred against a protected group, vulgar language is often used to express strong emotions or as an insult but does not
necessarily carry the same intent to demean a group based on protected characteristics.
Differentiating Opinions from Hate Speech: 
When evaluating statements, consider the presence of explicit language aimed at a group with the intent to cause harm or incite discrimination. Opinions, even if controversial or unpopular, do not automatically
qualify as hate speech unless they contain elements that specifically target a group with hateful intent

Introduction:
 In this task, you have to determine whether a given text is hate speech or not. 0 means Non-Hate and 1 means Hate.

Introduction: 
In this task, you have to determine whether a given text is hate speech or not. 0 means Non-Hate and 1 means Hate.

Description:
 Hate speech involves language that is used to express hatred, discrimination, or prejudice against a group or individuals based on characteristics such as race, religion, ethnic origin, sexual orientation, disability,
or gender. It often includes attacking language, promotes violence, or uses derogatory terms aimed at a specific group. 

Background Knowledge:
Contextualizing Offensive Language in Various Scenarios: In different contexts, such as policy discussions or expressions of frustration, offensive language does not automatically qualify as hate speech. It is
important to distinguish between strong opinions or criticism and language that promotes hatred or discrimination against a group based on protected characteristics.
Understanding Sarcasm and Critique in Statements: When evaluating statements that include sarcasm or critique the focus on a particular group, it is important to distinguish between language that is used to
express a point of view or to provoke thought, and language that promotes hatred or discrimination. Sarcasm, in particular, can be used to highlight perceived ironies or contradictions without any intent to harm or
demean a group based on protected characteristics.

Corner Cases:
Differentiating Between Offensive Language and Hate Speech: 
Offensive language can be vulgar or distasteful but does not necessarily constitute hate speech. Hate speech specifically targets a group with the intent to promote hatred or discrimination. Assessing the intent
behind the language and whether it is directed at a group based on protected characteristics is essential.
Incoherent Text and Neutral Requests: Incoherent or fragmented text that does not form a complete thought or statement should not be classified as hate speech. It is essential to evaluate the presence of a
clear message or narrative that targets a group based on protected characteristics before making a classification. Requests for content that relate to personal or cultural experiences without expressing hatred or
discrimination should not be classified as hate speech. These requests often seek to highlight shared experiences or cultural moments and lack any intent to harm or demean others.

Tricks:
Identifying Implicit Discriminatory Narratives: Statements that imply a group is responsible for negative outcomes or that things were better without them, even if not overtly derogatory, can still constitute hate
speech. Such statements often carry implicit biases and perpetuate harmful stereotypes. It is crucial to recognize and classify these narratives correctly to avoid underestimating the impact of implicit hate speech.
Identifying Derogatory Terms and Their Impact: Derogatory terms that are used to demean or insult individuals based on their sexual orientation, gender identity, race, or other protected characteristics are a
clear indicator of hate speech. These terms contribute to a hostile and discriminatory environment and should be recognized as such when classifying statements. Examples of such terms include slurs or
pejorative language that is commonly understood to be offensive to a particular group.

Figure 3: Evolution of prompts through iterations of UNIPROMPT on the Ethos dataset. Starting from a simple
one-line prompt having an accuracy of 82%, UNIPROMPT adds background knowledge, corner cases, and additional
sub-sections yielding a prompt with accuracy 88%. After further iterations, our algorithm converges to a detailed,
human-like longform prompt that achieves accuracy of 92%.

Human Prompt
Let’s differentiate using step by step reasoning like a medical expert.
Our Prompt
Introduction: In this task, you are given a medical question. You have to solve the question.
Description: To solve medical questions effectively, it is important to understand various
medical conditions, their progression, and associated clinical features.
Background Knowledge: Differential Diagnosis of Subcutaneous Nodules:
When evaluating subcutaneous nodules, consider mobility, consistency, and skin adherence.
Epidermoid cysts are firm, non-tender, and the skin cannot be pinched over them. Lipomas
are soft, mobile, and have pinchable skin.
Corner Cases: Antiretroviral Therapy Complications:
Doctor should be aware of the common side effects of antiretroviral drugs, with specific
attention to the association between didanosine and pancreatitis, and the recommended management
strategies, such as replacing didanosine with lamivudine.

Figure 4: Comparison of human-written Prompt and prompt produced by UNIPROMPT on MedQA dataset.

A.17 Do diverse task facets organized as sections really help?

We want to empirically validate if all the diverse task facets that UNIPROMPT learns indeed contribute to
the performance gains that we observe in Table 1. We consider two ablations:

1) We successively remove each facet (i.e., sections) in the learnt prompt for the task and report the
performances of the prompts with fewer facets. In Figure 6, for the Ethos dataset, we see that almost every
additional facet contributes to non-trivial gains in accuracy.

2) Could we have captured the information differently and retained the performance? We do a simple
experiment – we summarize all the facets (i.e., learnt prompt) and evaluate the resulting prompt. In Figure
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OPRO optimized prompt
Start by dissecting the problem to highlight important numbers and their relations. Decide on
the necessary mathematical operations like addition, subtraction, multiplication, or division,
required for resolution. Implement these operations, keeping in mind any units or conditions.
Round off by ensuring your solution fits the context of the problem to ensure accuracy
Our Prompt
Introduction: In this task, you are given a math question. You have to solve the question.
Strategies for Word Problems:
1. Understanding Word Problems: When solving word problems, it is crucial to read each sentence
carefully and comprehend the time periods and quantities involved. Avoid incorrect multiplication
or addition by paying close attention to whether a quantity remains constant over a period or
changes. If a quantity is consistent, it does not need to be multiplied by the number of days
or weeks unless the problem specifies otherwise.
2. Calculating Averages: To calculate the average of a set of numbers, add all the numbers
together and then divide by the number of items. In word problems, ensure you have the correct
total before dividing by the number of periods, such as weeks, to find the average for each
period.
3. Understanding Past and Future Events in Word Problems: Distinguish between past and future
events by identifying the starting and ending points. To calculate the time interval between two
events, determine the direction of time from past to future and compute the interval accordingly.
This understanding is essential when dealing with problems that ask for the time since a past
event or until a future event.

Figure 5: Comparison of prompt produced by the state-of-the-art ORPO (Yang et al., 2023) and by UNIPROMPT on
the GSM8K dataset.

6 (right) (green line), we see that the summarized prompt has a significant accuracy drop.

Table 10: Sensitivity of UNIPROMPT to expert LLM prompts, on the Ethos dataset.

Expert LLM Prompt for UNIPROMPT Test Accuracy
Simple prompt for mini-batch feedback 83.5

Simple prompt for batch feedback 91.0
Detailed prompts (Appendix A.12) 93.7

A.18 Sensitivity to prompts used for expert LLMs in UNIPROMPT

The prompts used for expert LLMs in our algorithm, i.e., for clustering, feedback over batches and
mini-batches, and editing, do matter for obtaining good performance. However, note that the prompts
are task-agnostic and can be used as-is for new tasks. Moreover, prompts for clustering and editing are
very simple and involved minimal human effort. Further, to study the reliance of UNIPROMPT on the
quality of feedback prompts, we run an ablation study, where we replace the engineered prompts for
feedback at batch and mini-batch levels with simpler prompts. The results are given in Table 10 for the
Ethos dataset. We observe that the performance of UNIPROMPT depends heavily on the prompt used for
obtaining feedback at mini-batch level; whereas simplifying prompt for feedback at the batch level has
much less impact on the final accuracy.

A.19 UNIPROMPT training behavior
An example of evolution of prompts using our algorithm is given in Appendix 3. It starts with a simple
description of task and adds important facets like differentiating between hate speech and rudeness. In
contrast, ProTeGi (Pryzant et al., 2023) yields a rather terse prompt on the same dataset: “Does the
following text contain language that targets a group of people based on their religion, gender, or other
personal characteristics?”.

The training curves in Figure 6 show that our method initially performs edits on the prompt that
simultaneously increase the train as well as the validation accuracy. After about 10 or 15 iterations (each
batch update is an iteration), validation accuracy decreases while train accuracy continues increasing,
indicating overfitting; which we overcome using early stopping.
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Figure 6: Training curves for MedQA (left) and ARC (middle) datasets when UNIPROMPT is initialized with
(published) state-of-the-art prompts; (right) ablation of facets on Ethos.
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