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Abstract
Large Language Model (LLM)-based agents
have significantly impacted Task-Oriented Di-
alog Systems (TODS) but continue to face
notable performance challenges, especially in
zero-shot scenarios. While prior work has
noted this performance gap, the behavioral fac-
tors driving the performance gap remain under-
explored. This study proposes a comprehensive
evaluation framework to quantify the behavior
gap between AI agents and human experts, fo-
cusing on discrepancies in dialog acts, tool us-
age, and knowledge utilization. Our findings
reveal that this behavior gap is a critical factor
negatively impacting the performance of LLM
agents. Notably, as task complexity increases,
the behavior gap widens (correlation: 0.963),
leading to a degradation of agent performance
on complex task-oriented dialogs. For the most
complex task in our study, even the GPT-4o-
based agent exhibits low alignment with human
behavior, with low F1 scores for dialog acts
(0.464), excessive and often misaligned tool
usage with a F1 score of 0.139, and ineffective
usage of external knowledge. Reducing such
behavior gaps leads to significant performance
improvement (24.3% on average). This study
highlights the importance of comprehensive be-
havioral evaluations and improved alignment
strategies to enhance the effectiveness of LLM-
based TODS in handling complex tasks. 1

1 Introduction

In recent years, advancements in artificial intel-
ligence, particularly in Large Language Models
(LLMs) (Brown et al., 2020; Ouyang et al., 2022;
Achiam et al., 2023; Touvron et al., 2023; Team
et al., 2023; Bai et al., 2023; Jiang et al., 2023;
Elizabeth et al., 2024; Guo et al., 2025), and LLM-
based agents (Wang et al., 2024; Xi et al., 2025;
Yao et al., 2022), have garnered significant atten-
tion for Task-Oriented Dialog Systems (TODS).

1The code will be released at https://github.com/
intuit-ai-research/behavior-gap.

While LLM agents have the promise of eliminating
complex modular designs in traditional TODS (Xu
et al., 2024), recent studies, however, have shown
that LLM agents, particularly in zero-shot sce-
narios, struggle to perform optimally (Elizabeth
et al., 2024; Heck et al., 2023; Zhang et al., 2023a;
Hudeček and Dušek, 2023).

Though several studies have identified this per-
formance gap, there is limited work investigating
the behavioral causes. By considering three spe-
cific dialog acts, Shaikh et al. (2024) found that
LLMs generate language with significantly less
grounding compared to humans. However, this is
not necessarily the only source of the behavior
gap—the discrepancies between LLM agents and
human experts. A comprehensive study of the be-
havior gap is necessary. This involves not only
identifying the dimensions along which these dis-
crepancies occur but also understanding the factors
that may affect this gap, such as task complexity
and the choice of LLMs. Additionally, it is impor-
tant to quantify the impact of these discrepancies
on agent performance.

In this study, we propose a comprehensive eval-
uation framework to measure the behavior gap
across three key behavioral dimensions. One di-
mension is dialog acts, traditionally used to rep-
resent an utterance at the level of illocutionary
force (Austin, 1975; Stolcke et al., 2000; Mezza
et al., 2018); The second dimension is tool us-
age, and the third is external knowledge usage,
both included due to their crucial role in modern
LLM agents (Qin et al., 2024; Lewis et al., 2020;
Zhang et al., 2022). Our framework operates in a
teacher-forcing setting (Williams and Zipser, 1989)
to avoid dependence on user simulators, which may
introduce additional discrepancies, and could be
implementation-specific.

Our analysis reveals significant behavioral gaps
between LLM agents and human experts across
three tasks of varying complexity levels. Specifi-
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cally, LLMs exhibit misalignment in dialog acts,
excessive but often incorrect tool usage, and ineffi-
cient representation of external knowledge. These
gaps become especially pronounced as we move
from relatively simple slot-filling tasks to more
complex ones, particularly in the Product Cus-
tomer Support (PCS) dataset. PCS is a new TOD
dataset studied in this work that captures real-world
customer-human expert interactions. Furthermore,
our analysis reveals that the behavior gap negatively
impacts LLM agent performance, and reducing this
gap leads to statistically significant improvements.

In summary, our contributions are as follows:

• We propose an evaluation framework to com-
prehensively quantify the behavior gap be-
tween human experts and LLM agents. This
framework identifies discrepancies across
three key behavioral dimensions: dialog acts,
tool usage, and external knowledge usage.

• Using this framework, we uncover key in-
sights regarding LLM agent behavior: (a)
LLM agents differ significantly from humans
in their choice of dialog acts and tool usage
across models and tasks; (b) these gaps widen
as task complexity increases or as the model
size decreases; and (c) LLM agents tend to
copy external knowledge verbatim rather than
synthesizing it as humans do.

• We demonstrate that the behavior gap is
both statistically correlated with task perfor-
mance and a critical factor limiting perfor-
mance—reducing this gap directly improves
LLM agent performance, particularly in com-
plex tasks.

2 Related Work

LLM Agents for TODS Xu et al. (2024) intro-
duced AutoTOD, a zero-shot autonomous TOD
agent that eliminates the complex modular com-
ponents of traditional systems, relying solely on
instruction-following LLMs. Elizabeth et al. (2024)
introduced a ReAct-based LLM agent for TODS.
Dong et al. (2025) proposed ProTOD, which incor-
porates a passive-to-proactive policy planner to en-
hance system capabilities. Zhang et al. (2023a) em-
phasized the integration of domain-specific knowl-
edge, such as schemas, to enhance system per-
formance. Additionally, Gupta et al. (2024) pre-
sented DARD, a multi-agent framework that de-
ploys domain-specific agents and LLMs of varying

sizes to handle diverse tasks effectively. While
these agent-centric works demonstrate promising
ways to eliminate traditional TODS pipelines, our
study complements them by showing that such
architectures still exhibit a measurable "behavior
gap" from human experts. We introduce a frame-
work for quantifying that gap across dialog acts,
tool use, and knowledge usage.

Behavior and Performance Evaluation FED
(Mehri and Eskenazi, 2020) provides an evalua-
tion framework for assessing fine-grained dialog
quality using DialoGPT (Zhang et al., 2020). How-
ever, since DialoGPT is trained on Reddit data, its
applicability to TODS is limited. Recent advance-
ments have explored LLM-as-a-judge approaches
(Zheng et al., 2023; Liu et al., 2023) as alterna-
tive evaluation methods for dialog and other com-
plex language generation tasks that are tradition-
ally difficult to assess. Despite these efforts, few
studies have focused on the behavioral analysis
of LLM agents. One notable study (Shaikh et al.,
2024) found that LLMs exhibit less conversational
grounding compared to humans. However, conver-
sational grounding is only one of several factors
contributing to the behavior gap. We build on these
works by introducing a comprehensive behavior-
centric analysis that spans dialog acts, tool selec-
tion, and knowledge grounding, providing deeper
insight into how specific behavioral gaps influence
overall TOD agent performance.

3 Method

In this work, we introduce a comprehensive frame-
work designed to systematically analyze the be-
havior gap between LLM-based agents and human
experts. This framework includes:

1. Metrics to quantify the behavior gap across
dialog acts, tool usage, and knowledge inte-
gration (Section 3.3).

2. Teacher-forcing approach for controlled eval-
uation (Section 3.4).

3. Performance measures that reveal the relation-
ship between the behavior gap and agent per-
formance (Section 3.4).

4. Task complexity measurement with two com-
plementary metrics (Section 3.5).

Using this framework, we evaluated the behav-
ior and performance of LLM agents (Section 3.2)
across three tasks of varying complexity (Sec-
tion 3.1).
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MultiWOZ SpokenWOZ PCS
Chats 1000 987 53
Turns/Chat 14.7 35.6 120.2
Words/Turn 13.4 11.0 11.8
Valid Slots 24 36 ∞
Valid Tools 8 9 4

Table 1: Key statistics of the test datasets

3.1 Datasets

To study the relationship between task complexity,
behavior, and task performance, we selected three
TOD datasets: MultiWOZ (Budzianowski et al.,
2018), SpokenWOZ (Si et al., 2024), and PCS, a
product customer support dataset.

The MultiWOZ dataset (Budzianowski et al.,
2018) is a widely used benchmark for evaluating
TOD systems, consisting of human-human writ-
ten dialogs in multiple domains. SpokenWOZ (Si
et al., 2024) builds upon MultiWOZ by introducing
human-to-human spoken conversations.

The Product Customer Support (PCS) dataset is
a private dataset and represents the most complex
scenario in our study. It consists of real-world tran-
scribed spoken conversations between customers
and human expert agents in a customer support
setting. These dialogs involve tasks that require
multi-step reasoning, such as troubleshooting, and
display a variety of intents and actions from both
the agent and user. A snippet from a sample con-
versation is demonstrated in Table 2.

These datasets were chosen to represent an in-
creasing amount of complexity, defined by factors
such as the average number of dialog turns and the
variety of intents and actions (see Section 3.5 and
Fig. 1 for a quantitative measure of their complex-
ity). This progression in complexity allows us to
systematically evaluate how behavior gap scales
with task difficulty and how it impacts the overall
task performance. Key statistics of these datasets
are presented in Table 1. See Appendix for addi-
tional details.

3.2 LLM Agent Design and Implementation

We employed a Zero-shot agent with access to
external tools. The Zero-shot agent operates in a
multi-turn dialog setting, where it processes user
inputs, reasons about the task requirements, and
invokes appropriate tools to achieve task objec-
tives. The agent does not rely on task-specific
fine-tuning. It leverages pre-trained language mod-
els for natural language understanding and reason-

ing. In this work, we employed three state-of-the-
art pretrained language model: GPT-4o (Hurst
et al., 2024) (gpt-4o-2024-05-13), GPT-3.5
Turbo (gpt-35-turbo-0125), and LLaMA-3.3-
70B-Instruct (Dubey et al., 2024)2.

3.2.1 Tools
For each dataset, we tailored the agent’s tool set and
system prompt to align with the specific require-
ments of the task. Below, we describe the available
tools for each task (see Appendix for details).

MultiWOZ. For the MultiWOZ task, the
agent was equipped with tools to allow
information retrieval from the MultiWOZ
database (Budzianowski et al., 2018) and booking
across five domains: BookHotel, BookTaxi,
BookRestaurant, BookTrain, FindHotels,
FindRestaurants, FindAttractions, and
FindTrains.

SpokenWOZ. The SpokenWOZ task builds
upon MultiWOZ, incorporating all the MultiWOZ
tools along with an additional BookParking tool
for the agent.

PCS. For this dataset, the agent was equipped
with four specialized tools, based on human tool
usage patterns, that allowed the agent to look
up external knowledge base and simulate screen
share, customer information look up, and escalation
or transfer to other departments: ScreenShare,
KnowledgeLookup, CustomerInfoLookup, and
EscalateOrTransfer.

3.2.2 Planning and Reasoning
Inspired from Elizabeth et al. (2024); Zhao et al.
(2024), we employed the ReAct framework (Yao
et al., 2022), which combines Chain of Thought
style reasoning and acting capabilities. This frame-
work is designed to handle complex task-oriented
dialogs by utilizing natural language understand-
ing, reasoning, and action execution. The agent
was implemented using LangGraph (LangChain
Inc., 2024).

3.3 Behavior Evaluation

To systematically analyze and compare the behav-
ior of LLM agents and human experts, we con-
ducted a detailed turn-by-turn analysis of their re-
sponses. The analysis focused on three key aspects:
the dialog acts present in each response, the tools

2License: https://github.com/meta-llama/llama3
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invoked during the conversation, and the use of ex-
ternal knowledge to address user queries. These are
among the basic elements that affect the multi-turn
dialog strategy.

3.3.1 Dialog Acts
We employed two well-known frame-
works (Budzianowski et al., 2018; Mezza
et al., 2018) to annotate the turn-by-turn dialog
acts present in each response:

• Task-specific WOZ Framework: This di-
alog act taxonomy has been widely used
to analyze dialog acts in tasks such as
MultiWOZ, SpokenWOZ, and similar TOD
datasets (Budzianowski et al., 2018; Si et al.,
2024; Rastogi et al., 2020).. Hereafter, we
will refer to this framework as the "WOZ"
framework. It comprehensively captures all
the key conversational scenarios across mul-
tiple domains present in these tasks. Specifi-
cally, we considered 10 dialog act types intro-
duced in Budzianowski et al. 2018: inform,
request, select, recommend, nooffer,
offerbook, book, nobook, greet, and
reqmore (see Appendix for details).

• Task-independent ISO framework: This
framework provides a task-independent and
comprehensive dialog act taxonomy (Mezza
et al., 2018; Bunt et al., 2012) grounded
in the Dynamic Interpretation Theory (DIT)
for dialogs (Bunt, 2012). Following Mezza
et al. (2018), the dialog act types in-
cluded in this framework were: set_q,
prop_q, choice_q, other_q, inform,
commissives, directives, salutation,
apology, thanking, and feedback. These
acts were designed to capture all key conver-
sational scenarios for open-domain human-
machine conversations (Mezza et al., 2018;
Bunt et al., 2012).

These two frameworks combined allowed us to
systematically evaluate the dialog acts for both
LLM agents and human experts across tasks. We
used the WOZ framework to evaluate the Multi-
WOZ and SpokenWOZ tasks, since this framework
was designed to cover all possible scenarios in these
two tasks. However, we adopted the more flexible
ISO framework for the open-ended PCS task.

LLM-Based Dialog Act Classifiers. To analyze
the responses based on the above frameworks, we

employed two GPT-4o-based few-shot classifiers
for the two (WOZ and ISO) frameworks, respec-
tively. Given the user input and the corresponding
system response, the output of the classifiers con-
sisted of a list of predicted dialog act types present
in the system response. To annotate an entire dia-
log, each set of turns (the user input and the corre-
sponding system response) were processed one at
a time. See Appendix for details on the classifiers.

Both classifiers were validated against
ground-truth annotations from the Multi-
WOZ (Budzianowski et al., 2020) dataset for the
WOZ framework and the DialogBank (Bunt et al.,
2019) dataset for the ISO framework. Dialog act
classification being a multi-label classification task
where each turn can carry multiple labels (dialog
act types), was evaluated using the micro-F1 score.
This metric was chosen because it aggregates true
positives, false positives, and false negatives across
all labels—offering a robust performance measure
that mitigates class imbalance. The WOZ and ISO
classifiers achieved overall micro-F1 score of 0.771
and 0.745, respectively. Both classifiers performed
significantly better than chance3, demonstrating
their reliability.

3.3.2 Tool Usage
To compare tool usage patterns between the LLM
agent and the human expert, we developed a GPT-
4o-based few-shot tool classifier. The classifier was
designed to annotate tools used in human expert re-
sponses, as ground-truth tool usage for LLM agents
was already available. Since each task involved a
unique set of tools, we created task-specific clas-
sifiers tailored for each of the three tasks: Multi-
WOZ, SpokenWOZ, and PCS. Additional details
are provided in the Appendix.

The ground-truth tool usage from LLM agent
responses was used to validate the three classifiers.
Like dialog act classification, this task is a multi-
label classification problem, and we used the micro-
F1 score for evaluation. The MultiWOZ, Spo-
kenWOZ, and PCS classifiers achieved micro-F1
scores of 0.893, 0.898, and 0.748, respectively. All
classifiers performed significantly above chance4,

3A random classifier achieved a micro-F1 score of 0.27 and
0.09 for the WOZ and ISO dialog act validation, respectively,
which is substantially lower than our classifiers’ scores of
0.771 and 0.745.

4A random classifier achieved a micro-F1 score of 0.19,
0.13, and 0.33 for the MultiWOZ, SpokenWOZ, and PCS tool
validation, respectively, which is substantially lower than our
classifiers’ scores of 0.893, 0.898, and 0.748.
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confirming their reliability.

3.3.3 External Knowledge Usage
To compare how LLM agents and human experts
utilize retrieved external knowledge, we focused
on turns where both agents and humans used tools
designed to specifically access external knowl-
edge: the search tools for querying the MultiWOZ
database in the MultiWOZ and SpokenWOZ tasks,
and the knowledge lookup tool for the PCS task.
We employed two metrics to analyze the retrieved
knowledge usage:

1. ROUGE-1 Precision: Measures how much
of the generated response was directly copied
from the retrieved knowledge.

2. Compression Ratio: Measures the efficiency
of condensing retrieved knowledge into the
response, defined as:

Compression ratio = 1− Response length
Knowledge length

.

where length is measured by the number of
words. We assumed that human experts re-
trieved the same external knowledge as LLM
agents, so the knowledge length was identical
for both 5.

3.4 Performance Analysis

To systematically evaluate the effectiveness of
LLM agents in TODS, we developed a framework
comprising two key components: a teacher-forcing
evaluation approach to compare LLM and human
behavior in identical contexts, and an LLM-based
evaluator to assess response quality across multiple
dimensions.

The Teacher-Forcing Approach. Existing
TODS studies often employ a user simulator (Li
et al., 2016, 2017; Guo et al., 2018) to evaluate
the final performance of an LLM agent. User
simulators, while useful, may fail to capture
the nuanced nature of human behavior. This
failure can cause errors that can compound across
multiple turns, potentially amplifying errors in
performance evaluation. To address this, we
adopt a teacher-forcing (Williams and Zipser,
1989) evaluation approach. Originally referring to

5For MultiWOZ and SpokenWOZ tasks, this assumption
is reasonable as the external knowledge is strictly limited to
the MultiWOZ database. For the PCS task, it remains valid
since both human experts and LLM agents have access to the
same KnowledgeLookup tool.

feeding ground-truth outputs back into a model
during training, we adapt this concept by providing
the previous conversation between the human
user and human expert as context. Assuming
the list {a0, u0, a1, u1, . . . , an, un} represents
the utterances between the human expert (ai)
and human user (ui) in time order, we feed
{a0, u0, a1, u1, . . . , ut−1} as the context to the
LLM agent to obtain the generated response gt,
to be compared with the human agent response
at. This allows us to directly compare the LLM
agent’s behavior with that of the human expert in
the same context.

Performance Evaluator. We implemented an
evaluator using GPT-4o to assess the agent per-
formance at the turn level. The evaluator received
the user input, the conversation history up to the
given turn, and the corresponding agent’s response.
It rated the agent’s response across four key as-
pects: dialog coherence (Coherence; Venkatesh
et al. (2018)), information detail and precision
(Specificity; Adiwardana et al. (2020)), under-
standing user needs (Effectiveness; Braggaar et al.
(2024)) and user satisfaction (Satisfaction; Feng
et al. (2023)). Each metric was scored on a scale
of 1 to 5, where 1 indicated a completely inade-
quate or incorrect response, and 5 represented a
high-quality response meeting all criteria.

In the absence of ground-truth turn-level per-
formance scores, we validated the evaluator by
comparing aggregated dialog-level scores for
each metric against ground-truth dialog success
rates (Nekvinda and Dušek, 2021) on the Multi-
WOZ task. Dialogs with a success rate of 1 scored
significantly higher (p < 0.05) across all metrics
compared to those with a success rate of 0, demon-
strating that the LLM-based evaluator is relatively
reliable at assessing agent performance (see Ap-
pendix for details).

3.5 Task Complexity
We propose two complementary metrics to quantify
task complexity for each dataset:

1. Normalized Turn Count: Measures complex-
ity in terms of dialog length:

Normalized Turn Count =
ln(1 + t)

ln(1 + t+ C)
,

where t is average number of turns per chat
and C is a constant number6.

6We set C = 1000.
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Figure 1: Task complexity. Comparison of task com-
plexity across the three tasks measured by dialog act
diversity and normalized turn count. Higher values in-
dicate greater task complexity. Error bars denote 95%
confidence intervals.

2. Dialog Act Diversity: Measures complexity
from the perspective of dialog acts:

Dialog Act Diversity = d/dmax,

where d is the average number of distinct di-
alog acts per chat, and dmax is the maximum
number of available dialog acts7. We use the
ISO dialog act framework to ensure this met-
ric is applicable across all tasks.

As shown in Fig. 1, task complexity increases
progressively from the slot-filling tasks, Multi-
WOZ and SpokenWOZ, to the more challenging
PCS dataset.

The two metrics used to assess task complex-
ity are complementary. For instance, a lengthy
conversation consisting solely of simple yes/no ex-
changes will result in a high Normalized Turn
Count but remains fundamentally simple. In such
cases, Dialog Act Diversity would remain low.
Conversely, Dialog Act Diversity can be high
even for single-turn conversations if they involve
complex responses featuring multiple dialog acts.
In these scenarios, Normalized Turn Count pro-
vides additional context.

Both metrics are normalized to a range between
0 and 1. To derive an overall measure of task com-
plexity, we simply compute the average of the two
metrics.

4 Results

4.1 The Behavior Gap
We analyzed the behavior gap between LLM agents
and human experts across tasks of increasing com-
plexity, focusing on differences in dialog acts, tool
usage, and knowledge utilization patterns.

7In our setting, dmax = 11

(a)

(b)

Figure 2: Dialog act gap. Comparing the dialog act se-
lection pattern across the three tasks between the human
expert and the three LLM agents. (a) Overall discrep-
ancy, measured as 1 − micro-F1 score, between LLM
agents and human experts. Error bars denote 95% confi-
dence intervals. (b) Mean number of dialog acts chosen
per turn by agents and human experts. Asterisks denote
statistical significance in the differences between agents
and human experts.8

4.1.1 Dialog Act Gap
To compare the dialog act selection patterns of hu-
man experts and LLM agents, we annotated their
turn-by-turn responses using the dialog act classi-
fiers detailed in Section 3.3.1. To evaluate the align-
ment of dialog acts between the human experts and
LLM agents, we employed the micro-F1 score9.
Discrepancy was quantified as 1− micro-F1 score.

We observed that the overall discrepancy in-
creased with task complexity (average correlation:
0.963), with highest differences observed in the
PCS task (Fig. 2a). Smaller language models
(e.g., Llama-3.3-70B-Instruct) exhibited higher dis-
crepancies (Fig. 2a). However, the behavior gap
between models narrowed as task complexity in-
creased (Fig. 2a), suggesting that even advanced

8Single asterisk (*) denotes p < 0.05, double asterisks
(**) denote p < 0.01, and triple asterisks (***) denote p <
0.001, and n.s. denotes a non-significant result.

9This is treated as a multi-label classification problem with
the dialog acts of the human experts considered as the target.
The micro-F1 score reflects the degree to which the AI agent’s
responses match the human expert’s targets.
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(a)

(b)

Figure 3: Tool usage gap. Comparing the tool usage
pattern across the three tasks between the human expert
and the three LLM agents. (a) Overall discrepancy,
computed as 1− micro-F1 score, between LLM agents
and human experts. Error bars denote 95% confidence
intervals. (b) Mean number of tools invoked per turn
by LLM agents and human experts. Asterisks denote
statistical significance in the differences between agents
and human experts.

models struggle with complex scenarios. Further-
more, we found that LLM agents consistently used
more dialog acts per turn compared to humans
(Fig. 2b).

4.1.2 Tool Use Gap

To compare the tool usage patterns of human ex-
perts and LLM agents, we annotated their turn-
by-turn responses using the tool use classifiers
detailed in Section 3.3.2. Similar to dialog acts,
the tool use discrepancies, also quantified as 1 −
micro-F1 score, increased with task complexity
(Fig. 3a). Smaller models exhibited higher dis-
crepancies compared to larger models (Fig. 3a),
although the gap narrowed for the most complex
tasks (Fig. 3a).

Additionally, LLM agents tend to invoke tools
more frequently than human experts (Fig. 3b). This
trend was particularly pronounced in smaller mod-
els (Fig. 3b), which also exhibited higher discrep-
ancies (Fig. 3a). These observations suggest that
LLM agents (particularly smaller models) adopt

(a)

(b)

Figure 4: Knowledge usage gap. Comparison of knowl-
edge usage patterns between human experts and three
LLM agents across tasks. (a) ROUGE-1 precision
shows the extent to which agents copy-paste retrieved
knowledge into responses. (b) Compression ratio quan-
tifies how efficiently retrieved knowledge is condensed,
with higher values indicating greater compression. As-
terisks denote statistical significance in the differences
between agents and human experts.

less efficient and more incorrect tool usage strate-
gies relative to the human benchmark.

4.1.3 External Knowledge Use Gap
To compare knowledge usage, we employed two
metrics as outlined in Section 3.3.3: ROUGE-1
precision and compression ratio. We found that
LLM agents exhibited a higher propensity to ver-
bosely "copy and paste" retrieved knowledge di-
rectly into their responses, in contrast to human
experts who were more adept at digesting and con-
densing the knowledge into meaningful insights.
This propensity among LLM agents is evidenced
by higher ROUGE-1 precision scores (Fig. 4a),
which indicate the extent of direct copying from
retrieved knowledge, and lower compression ra-
tios (Fig. 4b), compared to human experts. This
behavior persisted even when the agents were ex-
plicitly instructed to be concise and provided with
concise human responses in the conversation his-
tory10, as in the teacher-forcing setting. While

10The concise human responses in the conversation history
serve as few-shot examples for the LLM agents, but they failed
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Figure 5: Overall performance. GPT-4o-based agent
performance across the four evaluation metrics. Higher
score indicated better performance. Error bars denote
95% confidence intervals.

some degree of copying may occasionally be ap-
propriate—especially for preserving important de-
tails—the frequency and extent to which LLM
agents rely on this strategy suggest a limited ability
to understand and communicate retrieved knowl-
edge effectively.

4.2 The Impact of Behavior Gap on Task
Performance

We next analyzed how the behavior gap between
LLM agents and human experts impacts task per-
formance across tasks of varying complexity. Us-
ing the performance evaluator described in Sec-
tion 3.4, we analyzed the performance for our
most advanced model (GPT-4o) and found that the
overall performance decreased with increasing task
complexity (Fig. 5), indicating that even state-of-
the-art models face challenges with more complex
tasks. Below, we explore how the performance
relates to the behavior gap (dialog acts and tool
usage).

Statistical Correlation. We compared agent per-
formance for turns where human-agent dialog acts
and tool usage were aligned (F1 score ≥ 0.5) ver-
sus turns where they were misaligned (F1 score
< 0.5). The results showed that the response scores
were significantly higher (p < 0.05) across most
metrics and tasks when the behavior was aligned
(Fig. 6).

Behavior Intervention. Building on this obser-
vation, we tested whether injecting known hu-
man dialog acts and selected tools into the sys-
tem prompt could improve agent performance.
Indeed, this intervention significantly improved
agent performance across all tasks for most metrics

to learn from them.

(a)

(b)

Figure 6: Correlation of behavior gap with perfor-
mance. Comparison of performance on turns with
aligned (filled bars) versus misaligned (unfilled bars)
dialog acts (a) or tool usage (b). The patterned area
shows the performance gap. Asterisks denote statistical
significance in the performance differences.

(p < 0.0511; Fig. 7). This improvement was par-
ticularly pronounced in the PCS task (22.4% and
26.3% on average for dialog act and tool injection,
respectively; Fig. 7), highlighting the importance
of behavior alignment in handling more complex
scenarios.

5 Discussion

In this study, we identify a clear behavior gap be-
tween LLM agents and human experts–a gap that
widens as tasks complexity increases. Our analysis
reveals three key behavior gaps: LLM agents often
adopt different dialog strategies, use tools more
frequently but less effectively, and rely on copy-
ing retrieved knowledge rather than synthesizing it
into meaningful insights. These gaps negatively im-
pact agent performance, but aligning LLM behav-
ior more closely with human strategies mitigates
this effect.

11The p-value corresponds to a one-sample t-test on the
log-transformed ratio of performance (injection vs no injec-
tion), with the null hypothesis that the log ratio ≤ 0 (i.e., no
improvement).
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(a)

(b)

Figure 7: Improving performance through behav-
ior injection. Performance improvement (%) when
injecting human dialog acts (a) or human-selected tools
(b) into system prompts, compared to the no injection
baseline. Asterisks denote statistical significance in the
performance differences.

Our findings emphasize the importance of en-
hancing LLM agents’ multi-turn dialog capabilities.
Our observation that injecting human dialog acts
or human-selected tools into prompts improves per-
formance is consistent with prior research on the
significance of selecting effective dialog strategies
(Yu et al., 2023; Li et al., 2024; Deng et al., 2023;
Zhang et al., 2023b). Beyond ensuring smooth di-
alog flow, addressing gaps in external knowledge
usage is crucial, as it enables the agent to efficiently
and effectively leverage external knowledge to pro-
vide actionable insights.

This requirement is particularly crucial for more
complex tasks (Zhou et al., 2024; Yang et al., 2024;
Qian et al., 2024), as our findings indicate a corre-
lation between task complexity and behavior gap.
Collectively, these insights emphasize that training
models to grasp not only lexical tokens but also
dialog strategies is beneficial.

6 Limitations

The accuracy of our analysis depends on the re-
liability of the LLM-based classifiers used in our

framework. While these classifiers were validated
on benchmark datasets with ground-truth annota-
tions, applying them to domains that significantly
differ from those benchmarks may require further
validation to ensure consistent performance.

Moreover, our analysis is confined to turn-level
comparisons due to the teacher-forcing evaluation
setup. While this setting provides controlled, inter-
pretable diagnostics, it limits our ability to assess
full dialog-level strategies and dynamics. Extend-
ing the framework to evaluate dialog-level behavior
remains an avenue for future work.

Lastly, our study does not include recently
released reasoning LLMs such as GPT-o1 or
DeepSeek-R1 (Guo et al., 2025), which may ex-
hibit distinct behavioral patterns. Understanding
how these newer models behave within our frame-
work is an open question for future exploration.
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A Appendix

A.1 Datasets

MultiWOZ. The Multi-Domain Wizard-of-Oz
(MultiWOZ) dataset (Budzianowski et al., 2018)
is a widely used benchmark for evaluating TOD
systems. It consists of over 10,000 human-human
written dialogs spanning seven domains: Attrac-
tion, Hospital, Police, Hotel, Restaurant, Taxi, and

speaker content
agent Thank you for calling [PRODUCT NAME]. My

name is [PII], can I have your name, please?
customer My name is [PII]
agent Hi [PII], how are you doing today?
customer I’m doing fine, thank you.
agent How can I help you? [PII].
customer I have [PRODUCT NAME]. And I’m trying to,

you know, I’ve downloaded transactions and
I would like to deposit them and match them
with the transaction’s, but I’m doing something
wrong because it seems to take the deposit’s but
it’s not matching with the downloads.

agent Hello. I see. And what is the year version of the
[PRODUCT NAME] you have?

customer It is [VERSION] [PRODUCT NAME].
agent All right. And what do you mean by it’s not

matching with the transactions that you have?
So you enter, have you entered transactions man-
ually inside [PRODUCT NAME] and then you
download the transactions on your bank?

Table 2: A snippet for the PCS task.

Train. Its text-based modality and low average
number of turns per dialog make it the simplest
among the three datasets in terms of complexity.

For our experiments, we specifically utilized
the test set of MultiWOZ 2.2 (Zang et al., 2020),
which includes 1,000 dialogs (Table1) across five
domains: hotel, attraction, restaurant, taxi, and
train.

SpokenWOZ. SpokenWOZ (Si et al., 2024)
builds upon MultiWOZ by introducing challenges
associated with spoken language. It was con-
structed from human-to-human spoken conversa-
tions conducted via phone calls, transcribed to
text. This introduces additional complexity due
to unique challenges inherent in spoken conversa-
tion such as incomplete utterances. The average
number of turns per dialog increases to 36 (Ta-
ble 1), reflecting the more verbose nature of spoken
interactions compared to written ones.

For our study, we focused on a subset of the Spo-
kenWOZ test set that aligns with the five domains
used in MultiWOZ: hotel, attraction, restaurant,
taxi, and train. This resulted in a test set containing
987 dialogs (Table 1) .

PCS. The dialogs are filtered based on the im-
pact of the agent’s response on user satisfaction, as
judged by GPT-4o, so the human agent responses
can serve as a proxy for high-quality standards.
This dataset contained 832 dialogs (Table 1) with
an average of 120 turns per dialog (Table 1). We
present a snippet of the PCS dataset in Table 2.
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A.2 Zero-Shot Agent
Here we provide details on the the Zero-shot ReAct
agent employed in this work. See Table. 3 for a
sample system prompt.

A.2.1 Tool and Prompt Configurations
MultiWOZ Task. For the MultiWOZ dataset,
the agent was equipped with tools to allow infor-
mation retrieval and booking across five domains:
hotel, attraction, restaurant, taxi, and train. The
following tools were integrated into the agent:

• Search Tools: These tools enabled the agent
to query the MultiWOZ database to retrieve
information about hotels (FindHotels),
attractions (FindAttractions), restau-
rants (FindRestaurants), and trains
(FindTrains) based on user preferences (e.g.,
location, price range).

• Booking Tools: These tools allowed the
agent to book hotels (BookHotel), restaurants
(BookRestaurant), trains (BookTrain), and
taxis (BookTaxi).

To minimize hallucination and ensure accurate
tool usage, we provided the agent with an exhaus-
tive list of all entities present in the MultiWOZ
database as part of its system prompt. This en-
sured that the agent could accurately identify valid
entities during search and booking operations.

SpokenWOZ Task. The SpokenWOZ task
builds upon MultiWOZ by introducing additional
complexity due to its spoken modality. The agent
for this task was configured with all the tools avail-
able in MultiWOZ (search and booking tools) along
with an additional tool:

• BookParking: This tool enabled the agent to
book parking spaces for users when requested.

Similar to MultiWOZ, an exhaustive list of enti-
ties was included in the system prompt to reduce
hallucination and ensure accurate tool usage. Addi-
tionally, once the user’s booking is successful, the
agent was prompted to not only provide the entity
booked but also ask for the user’s profile informa-
tion such as name, ID, email, license plate number,
and phone.

PCS Task. The PCS dataset presented unique
challenges due to its real-world nature and diverse
task requirements. Unlike traditional slot-filling
tasks, this task does not have a predefined list of

slots due to significant variations in individual user
circumstances and the inherent complexity of the
service. The complexity also comes from the spo-
ken characteristics, such as incomplete utterances
and back-channel. For this dataset, we equipped
the agent with four specialized tools based on tool
usage pattern from the human experts:

• KnowledgeLookup: This tool allowed the
agent to search an internal knowledge base
as well as the internet for product-related in-
formation.

• CustomerInfoLookup: This tool simulated
the agent retrieving customer-specific infor-
mation.

• EscalateOrTransfer: This tool simulated
the agent escalating unresolved issues to other
teams or departments when necessary.

• ScreenShare: This tool simulated initiating
a screen-sharing session with the customer.

The Customer Info Lookup, Escalation,
and ScreenShare tools did not return specific in-
formation but instead provided confirmation of
their usage. This design ensured that the behav-
ior analysis focused on when and how tools were
invoked rather than the detailed content of their
outputs. The KnowledgeLookup tool, in contrast,
was fully implemented returning detailed responses
containing information such as relevant product in-
formation, troubleshooting guides, etc.

A.3 Task-Specific WOZ Framework
The task-specific WOZ framework was based on
the dialogue act types defined in the MultiWOZ 2.2
dataset (Zang et al., 2020). This framework was
only used for analyzing the agent’s performance
on the MultiWOZ and SpokenWOZ datasets. It in-
cluded 10 dialogue act types: inform, request,
select, recommend, nooffer, offerbook,
book, nobook, greet, and reqmore. These acts
combined capture key conversational behaviors in
the MultiWOZ and SpokenWOZ datasets.

To ensure clarity and avoid overlapping defini-
tions that might confuse our LLM-based classifier,
we merged certain act types that were originally
present in the MultiWOZ 2.2 dataset. More specifi-
cally:

• The greet act combined similar acts such as
"welcome," "greet," "bye," and "thanks" from
MultiWOZ into a single unified category.
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• The book act combined both "book" and "of-
ferbooked" into one category since they were
closely related in function.

These modifications simplified the annotation
process while preserving the semantic distinctions
necessary for analyzing dialogue actions.

A.4 LLM-Based Dialog classifiers
Both the classifiers were designed to receive the
user input and the corresponding agent response
as input and output a list of predicted dialogue act
types present in the agent’s response. The clas-
sifiers also provide reasoning for the presence or
absence of each act, which improved its accuracy.
We implemented structured outputs to ensure con-
sistency and robustness. in the classifier’s outputs.

The system prompt for both the classifiers in-
cluded definitions of each dialogue act type. It also
included few-shot examples for each of the dia-
logue act types. See Table. 4 for a sample system
prompt.

Each of our classifier was validated against
ground-truth annotations from established datasets:

1. WOZ classifier: For this classifier, we val-
idated predictions using the annotated dia-
logue acts from the test set of MultiWOZ
2.2 (Budzianowski et al., 2020) dataset.

2. ISO classifier: For this classifier, we val-
idated predictions using the DialogBank
dataset (Bunt et al., 2019), which contains
dialogues from various sources annotated ac-
cording to the ISO 24617-2 standards.

A.5 Tool Classifier
We developed task-specific tool classifiers for each
of the three tasks: MultiWOZ, SpokenWOZ, and
PCS. Similar to the dialogue act classifiers, the tool
usage classifiers were designed to take the user in-
put and the corresponding agent response as input
and output a list of predicted tools used during the
generation of the agent’s response. Additionally,
the classifiers also generated reasoning for the pres-
ence or absence of each tool in the agent’s response,
and employed structured outputs to ensure consis-
tency and robustness in the classifier’s outputs.

The system prompts included tool definitions tai-
lored to each task (see Table 5 for a sample prompt
and Section A.2 for task-specific tool lists).

A.6 Performance evaluator
To validate the response quality evaluator, we used
the test set of the MultiWOZ 2.2 (Budzianowski

Figure 8: Relative difference (%) in scores for the four
metrics for dialogs with success rate of 1 versus dialogs
with success rate of 0.

et al., 2020) dataset. We compared the aggregated
predicted scores for agent responses in each dialog
from the validation dataset with the success rate for
those dialogs, calculated using the method outlined
by Nekvinda and Dušek (2021). The validation
results are presented in Figure 8.
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***Task Description***
You are a multi-domain customer support assistant for booking various services in Cambridge, UK,
including hotel bookings, restaurant reservations, train bookings, taxi bookings, and finding
attractions. All the services and information you provide are specific to Cambridge, UK and its
surrounding areas.

***Database Details***
Available options in the database:
Areas in Cambridge: west, centre, south, east, north
Train Departure Stations: leicester, kings lynn, cambridge, ...
Train Arrival Stations: leicester, kings lynn, cambridge, ...
Hotels: alpha-milton guest house, archway house, autumn house, ...
Hotel Types: hotel, guesthouse
Attractions: cambridge artworks, whale of a time, clare college, ...
Attraction Types: entertainment, mutliple sports, college, ...
Restaurants: ugly duckling, prezzo, caffe uno,
Cuisines: portuguese, vietnamese, italian, ..

When users mention locations or entity names that don't exactly match but are similar to these
options, try to match them to the closest valid option. For example:
- If user says 'city center', match it to 'centre'
- If user mentions 'kings cross', match it to 'london kings cross'
- If user says 'fitzwilliam', match it to 'fitzwilliam museum'

***Important Guidelines***
Decide the next step based on the user's question:
- Ask clarifying questions if the input is ambiguous.
- Use the provided tools appropriately. Do not make up tools.
- Always review the conversation history before responding.
- Be polite and professional in your responses.
- Respond concisely and clearly.

Table 3: System prompt for the Zero-shot MultiWOZ agent. An exhaustive list of entities were provided in the
system prompt. For brevity, only a few are demonstrated.
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***Task Description***
You are an expert in analyzing task-oriented dialogues. You are provided a conversation that contains
the user's input and the agent's response to the input. Your task is to analyze
the dialog acts present in the agent's response to a user input. A response can have multiple
dialog acts. For each dialog act, you must explain whether it is present or absent
in the agent's response.

***Dialog Act Types***
A dialog act represents the function of the agent's response. The possible dialog acts are:
- inform: Agent provides factual information or details relevant to the user query
- request: Agent asks user for specific missing information needed to fulfill their request
- select: Agent presents one or more options in response to the user's request and actively asks
user to choose between them
- recommend: Agent makes a specific suggestion with positive framing, often using phrases like
"I recommend", "I suggest", or "How about"
- nooffer: Agent explicitly states that no options exist matching user's criteria
- offerbook: Agent presents booking details and explicitly asks if user wants to proceed with
booking. Mostly occurs for train-related bookings
- book: Agent confirms a completed booking and usually provides certain details regarding the booking
- nobook: Agent states that a specific booking request cannot be completed
- greet: Agent responds to a user's indication that their needs have been met, typically
accompanied by gratitude. The response can range from simple acknowledgments to well-wishes related
to the service provided or a simple goodbye.
- reqmore: Explicitly asks if user needs additional help or has other requests

***Few-Shot Examples***
Here are some examples of each dialog acts where the user input is followed by the agent's
response and the dialog act is corresponding to the agent's response only:

**inform**

user: Could I have their phone number please and type of cuisine they serve?
agent: They serve international food and their phone number is 01223 812660.

user: Hello I would like to find a restaurant in the west part of the city that costs a moderate amount.
agent: Prezzo is a moderately priced italian restaurant in the west part of town.

**request**

user: Can you tell me what the travel time is and the price?
agent: Which train would you like that for?

user: It's important that I arrive no later than 23:30.
agent: Where will you be departing from?
...
...
...

******
Analyze the following conversation and list all dialog acts that apply. Multiple acts can be present
in a single response.

**Latest user input**:
{user_input}

**Latest agent response**:
{response}

Table 4: System prompt for WOZ dialog act classifier. 10 few-shot examples were used per act. For brevity, only a
subset of the examples are demonstrated.
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***Task Description***
You are an expert in analyzing task-oriented dialogues. You are provided a conversation that contains
the current user input and an AI agent's response to it. Your task is to analyze the tools used by
the AI agent to generate the response. Multiple tools can be used in a single response. For each tool,
you must explain if and why it has been used or not by the agent for the current response.

***AI Agent Description***
The AI agent whose response you are analyzing is a multi-domain customer support assistant for booking
various services in Cambridge, UK, including hotel bookings, restaurant reservations, train bookings,
taxi bookings, and finding attractions. All the services and information it provides are specific
to Cambridge, UK and its surrounding areas.

***Available Tools***
The AI agent uses the following tools to generate responses:

1. **FindHotels**: The agent uses this tool to find hotels in Cambridge, UK. The agent provides
information about the hotel, such as its name, location, price, rating, etc. The agent generally
uses this tool to recommend one or more hotels to the user.
2. **BookHotel**: The agent uses this tool to book a hotel in Cambridge, UK. The agent may provide
information about the booking, such as the hotel name, check-in date, check-out date, number of guests,
price, etc. The agent generally uses this tool to confirm that the booking was successful or
not and provide details.
3. **FindRestaurants**: The agent uses this tool to find restaurants in Cambridge, UK. The agent
provides information about the restaurant, such as its name, location, cuisine, price, rating, etc.
The agent generally uses this tool to recommend one or more restaurants to the user.
4. **BookRestaurant**: The agent uses this tool to book a restaurant in Cambridge, UK. The agent
provides information about the booking, such as the restaurant name, reservation date, reservation
time, number of guests, price, etc. The agent generally uses this tool to confirm that the booking was
successful or not and provide details.
...
...
...

***Few-Shot Examples***
Here are some examples of each tool usage where the user input is followed by the agent's
response and the agent uses that tool to generate its response:

**FindHotels**
user: Great! Yes, I'll also need to find a hotel with free parking and free wifi.
agent: I would recommend the ashley hotel.

**FindRestaurants**
user: Could I have their phone number please and type of cuisine they serve?
agent: They serve international food and their phone number is 01223 812660.
...
...
...

******
Analyze the following conversation and list all the tools used by the AI agent to generate the
response. Multiple tools can be used in a single response. You must explain if and why each tool
has been used or not by the agent for the current response and provide a list of all tools
used by the agent for the current response based on your analysis.

**User input**:
{user_input}

**Agent response**:
{response}

Table 5: System prompt for the MultiWOZ tool classifier. 10 few-shot examples were used per tool. For brevity,
only a subset of the examples are demonstrated.
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***Task Description***:
You are an expert task-oriented dialog system evaluator. Your task is to evaluate the agent response
and provide feedback on the quality of the response based on the conversation history and the
current user input.

***Evaluation Metrics***
1. Coherence (Flow and connection with context):

Score 1: Completely disconnected from context, ignores previous conversation
Score 2: Barely acknowledges context, major inconsistencies
Score 3: Basic connection to context, some flow issues
Score 4: Good connection to context, minor flow issues
Score 5: Perfect flow and connection, fully integrates context

2. Specificity (Level of detail and precision):
Score 1: Extremely vague, no concrete information
Score 2: Minimal details, mostly general statements
Score 3: Basic details, some specific information
Score 4: Detailed information, most aspects covered
Score 5: Comprehensive details, precise information about all aspects

3. Satisfaction (Likelihood of meeting user needs):
Score 1: Completely fails to address user needs
Score 2: Minimally addresses user needs, requires multiple follow-ups
Score 3: Partially addresses needs, requires some clarification
Score 4: Mostly addresses needs, minor clarification needed
Score 5: Fully addresses all user needs, no clarification needed

4. Effectiveness (How well the response addresses the user input):
Score 1: Completely misses the point of the input
Score 2: Barely addresses the input, major gaps
Score 3: Addresses main point but misses details
Score 4: Addresses input well with minor omissions
Score 5: Perfectly addresses all aspects of the input

***Evaluation Guidelines***
You have to evaluate the response using 4 metrics (coherence, specificity, satisfaction,
effectiveness) on a scale of 1-5 for each metric. Follow these guidelines:
- Break down evaluation into specific aspects
- Consider both explicit and implicit requirements
- Provide concrete examples in reasoning
- Be consistent in scoring across evaluations
- Avoid position and length biases
- Avoid defaulting to the highest score; a lot of the times, responses will have some room for
improvement
- Be strict in your scoring. A score of 5 should only be given for truly exceptional responses that
meet all criteria perfectly
- Focus on quality over quantity

******
Analyze the following conversation and provide a score for each of the evaluation metric. You must
provide a reasoning to justify your score for each metric.

**Conversation History**
{context}

**Current User Input**
{current_input}

Agent Response**:
{response}

Table 6: System prompt for the response quality evaluator.
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